src/hotspot/share/gc/shared/collectedHeap.hpp
changeset 47216 71c04702a3d5
parent 46702 13ae789b982e
child 47622 817f2a7019e4
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #ifndef SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
       
    26 #define SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
       
    27 
       
    28 #include "gc/shared/gcCause.hpp"
       
    29 #include "gc/shared/gcWhen.hpp"
       
    30 #include "memory/allocation.hpp"
       
    31 #include "runtime/handles.hpp"
       
    32 #include "runtime/perfData.hpp"
       
    33 #include "runtime/safepoint.hpp"
       
    34 #include "utilities/debug.hpp"
       
    35 #include "utilities/events.hpp"
       
    36 #include "utilities/formatBuffer.hpp"
       
    37 
       
    38 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
       
    39 // is an abstract class: there may be many different kinds of heaps.  This
       
    40 // class defines the functions that a heap must implement, and contains
       
    41 // infrastructure common to all heaps.
       
    42 
       
    43 class AdaptiveSizePolicy;
       
    44 class BarrierSet;
       
    45 class CollectorPolicy;
       
    46 class GCHeapSummary;
       
    47 class GCTimer;
       
    48 class GCTracer;
       
    49 class MetaspaceSummary;
       
    50 class Thread;
       
    51 class ThreadClosure;
       
    52 class VirtualSpaceSummary;
       
    53 class WorkGang;
       
    54 class nmethod;
       
    55 
       
    56 class GCMessage : public FormatBuffer<1024> {
       
    57  public:
       
    58   bool is_before;
       
    59 
       
    60  public:
       
    61   GCMessage() {}
       
    62 };
       
    63 
       
    64 class CollectedHeap;
       
    65 
       
    66 class GCHeapLog : public EventLogBase<GCMessage> {
       
    67  private:
       
    68   void log_heap(CollectedHeap* heap, bool before);
       
    69 
       
    70  public:
       
    71   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
       
    72 
       
    73   void log_heap_before(CollectedHeap* heap) {
       
    74     log_heap(heap, true);
       
    75   }
       
    76   void log_heap_after(CollectedHeap* heap) {
       
    77     log_heap(heap, false);
       
    78   }
       
    79 };
       
    80 
       
    81 //
       
    82 // CollectedHeap
       
    83 //   GenCollectedHeap
       
    84 //   G1CollectedHeap
       
    85 //   ParallelScavengeHeap
       
    86 //
       
    87 class CollectedHeap : public CHeapObj<mtInternal> {
       
    88   friend class VMStructs;
       
    89   friend class JVMCIVMStructs;
       
    90   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
       
    91 
       
    92  private:
       
    93 #ifdef ASSERT
       
    94   static int       _fire_out_of_memory_count;
       
    95 #endif
       
    96 
       
    97   GCHeapLog* _gc_heap_log;
       
    98 
       
    99   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2
       
   100   // or INCLUDE_JVMCI is being used
       
   101   bool _defer_initial_card_mark;
       
   102 
       
   103   MemRegion _reserved;
       
   104 
       
   105  protected:
       
   106   BarrierSet* _barrier_set;
       
   107   bool _is_gc_active;
       
   108 
       
   109   // Used for filler objects (static, but initialized in ctor).
       
   110   static size_t _filler_array_max_size;
       
   111 
       
   112   unsigned int _total_collections;          // ... started
       
   113   unsigned int _total_full_collections;     // ... started
       
   114   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
       
   115   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
       
   116 
       
   117   // Reason for current garbage collection.  Should be set to
       
   118   // a value reflecting no collection between collections.
       
   119   GCCause::Cause _gc_cause;
       
   120   GCCause::Cause _gc_lastcause;
       
   121   PerfStringVariable* _perf_gc_cause;
       
   122   PerfStringVariable* _perf_gc_lastcause;
       
   123 
       
   124   // Constructor
       
   125   CollectedHeap();
       
   126 
       
   127   // Do common initializations that must follow instance construction,
       
   128   // for example, those needing virtual calls.
       
   129   // This code could perhaps be moved into initialize() but would
       
   130   // be slightly more awkward because we want the latter to be a
       
   131   // pure virtual.
       
   132   void pre_initialize();
       
   133 
       
   134   // Create a new tlab. All TLAB allocations must go through this.
       
   135   virtual HeapWord* allocate_new_tlab(size_t size);
       
   136 
       
   137   // Accumulate statistics on all tlabs.
       
   138   virtual void accumulate_statistics_all_tlabs();
       
   139 
       
   140   // Reinitialize tlabs before resuming mutators.
       
   141   virtual void resize_all_tlabs();
       
   142 
       
   143   // Allocate from the current thread's TLAB, with broken-out slow path.
       
   144   inline static HeapWord* allocate_from_tlab(Klass* klass, Thread* thread, size_t size);
       
   145   static HeapWord* allocate_from_tlab_slow(Klass* klass, Thread* thread, size_t size);
       
   146 
       
   147   // Allocate an uninitialized block of the given size, or returns NULL if
       
   148   // this is impossible.
       
   149   inline static HeapWord* common_mem_allocate_noinit(Klass* klass, size_t size, TRAPS);
       
   150 
       
   151   // Like allocate_init, but the block returned by a successful allocation
       
   152   // is guaranteed initialized to zeros.
       
   153   inline static HeapWord* common_mem_allocate_init(Klass* klass, size_t size, TRAPS);
       
   154 
       
   155   // Helper functions for (VM) allocation.
       
   156   inline static void post_allocation_setup_common(Klass* klass, HeapWord* obj);
       
   157   inline static void post_allocation_setup_no_klass_install(Klass* klass,
       
   158                                                             HeapWord* objPtr);
       
   159 
       
   160   inline static void post_allocation_setup_obj(Klass* klass, HeapWord* obj, int size);
       
   161 
       
   162   inline static void post_allocation_setup_array(Klass* klass,
       
   163                                                  HeapWord* obj, int length);
       
   164 
       
   165   inline static void post_allocation_setup_class(Klass* klass, HeapWord* obj, int size);
       
   166 
       
   167   // Clears an allocated object.
       
   168   inline static void init_obj(HeapWord* obj, size_t size);
       
   169 
       
   170   // Filler object utilities.
       
   171   static inline size_t filler_array_hdr_size();
       
   172   static inline size_t filler_array_min_size();
       
   173 
       
   174   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
       
   175   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
       
   176 
       
   177   // Fill with a single array; caller must ensure filler_array_min_size() <=
       
   178   // words <= filler_array_max_size().
       
   179   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
       
   180 
       
   181   // Fill with a single object (either an int array or a java.lang.Object).
       
   182   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
       
   183 
       
   184   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
       
   185 
       
   186   // Verification functions
       
   187   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
       
   188     PRODUCT_RETURN;
       
   189   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
       
   190     PRODUCT_RETURN;
       
   191   debug_only(static void check_for_valid_allocation_state();)
       
   192 
       
   193  public:
       
   194   enum Name {
       
   195     GenCollectedHeap,
       
   196     ParallelScavengeHeap,
       
   197     G1CollectedHeap
       
   198   };
       
   199 
       
   200   static inline size_t filler_array_max_size() {
       
   201     return _filler_array_max_size;
       
   202   }
       
   203 
       
   204   virtual Name kind() const = 0;
       
   205 
       
   206   virtual const char* name() const = 0;
       
   207 
       
   208   /**
       
   209    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
       
   210    * and JNI_OK on success.
       
   211    */
       
   212   virtual jint initialize() = 0;
       
   213 
       
   214   // In many heaps, there will be a need to perform some initialization activities
       
   215   // after the Universe is fully formed, but before general heap allocation is allowed.
       
   216   // This is the correct place to place such initialization methods.
       
   217   virtual void post_initialize() = 0;
       
   218 
       
   219   // Stop any onging concurrent work and prepare for exit.
       
   220   virtual void stop() {}
       
   221 
       
   222   void initialize_reserved_region(HeapWord *start, HeapWord *end);
       
   223   MemRegion reserved_region() const { return _reserved; }
       
   224   address base() const { return (address)reserved_region().start(); }
       
   225 
       
   226   virtual size_t capacity() const = 0;
       
   227   virtual size_t used() const = 0;
       
   228 
       
   229   // Return "true" if the part of the heap that allocates Java
       
   230   // objects has reached the maximal committed limit that it can
       
   231   // reach, without a garbage collection.
       
   232   virtual bool is_maximal_no_gc() const = 0;
       
   233 
       
   234   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
       
   235   // memory that the vm could make available for storing 'normal' java objects.
       
   236   // This is based on the reserved address space, but should not include space
       
   237   // that the vm uses internally for bookkeeping or temporary storage
       
   238   // (e.g., in the case of the young gen, one of the survivor
       
   239   // spaces).
       
   240   virtual size_t max_capacity() const = 0;
       
   241 
       
   242   // Returns "TRUE" if "p" points into the reserved area of the heap.
       
   243   bool is_in_reserved(const void* p) const {
       
   244     return _reserved.contains(p);
       
   245   }
       
   246 
       
   247   bool is_in_reserved_or_null(const void* p) const {
       
   248     return p == NULL || is_in_reserved(p);
       
   249   }
       
   250 
       
   251   // Returns "TRUE" iff "p" points into the committed areas of the heap.
       
   252   // This method can be expensive so avoid using it in performance critical
       
   253   // code.
       
   254   virtual bool is_in(const void* p) const = 0;
       
   255 
       
   256   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
       
   257 
       
   258   // Let's define some terms: a "closed" subset of a heap is one that
       
   259   //
       
   260   // 1) contains all currently-allocated objects, and
       
   261   //
       
   262   // 2) is closed under reference: no object in the closed subset
       
   263   //    references one outside the closed subset.
       
   264   //
       
   265   // Membership in a heap's closed subset is useful for assertions.
       
   266   // Clearly, the entire heap is a closed subset, so the default
       
   267   // implementation is to use "is_in_reserved".  But this may not be too
       
   268   // liberal to perform useful checking.  Also, the "is_in" predicate
       
   269   // defines a closed subset, but may be too expensive, since "is_in"
       
   270   // verifies that its argument points to an object head.  The
       
   271   // "closed_subset" method allows a heap to define an intermediate
       
   272   // predicate, allowing more precise checking than "is_in_reserved" at
       
   273   // lower cost than "is_in."
       
   274 
       
   275   // One important case is a heap composed of disjoint contiguous spaces,
       
   276   // such as the Garbage-First collector.  Such heaps have a convenient
       
   277   // closed subset consisting of the allocated portions of those
       
   278   // contiguous spaces.
       
   279 
       
   280   // Return "TRUE" iff the given pointer points into the heap's defined
       
   281   // closed subset (which defaults to the entire heap).
       
   282   virtual bool is_in_closed_subset(const void* p) const {
       
   283     return is_in_reserved(p);
       
   284   }
       
   285 
       
   286   bool is_in_closed_subset_or_null(const void* p) const {
       
   287     return p == NULL || is_in_closed_subset(p);
       
   288   }
       
   289 
       
   290   // An object is scavengable if its location may move during a scavenge.
       
   291   // (A scavenge is a GC which is not a full GC.)
       
   292   virtual bool is_scavengable(const void *p) = 0;
       
   293 
       
   294   void set_gc_cause(GCCause::Cause v) {
       
   295      if (UsePerfData) {
       
   296        _gc_lastcause = _gc_cause;
       
   297        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
       
   298        _perf_gc_cause->set_value(GCCause::to_string(v));
       
   299      }
       
   300     _gc_cause = v;
       
   301   }
       
   302   GCCause::Cause gc_cause() { return _gc_cause; }
       
   303 
       
   304   // General obj/array allocation facilities.
       
   305   inline static oop obj_allocate(Klass* klass, int size, TRAPS);
       
   306   inline static oop array_allocate(Klass* klass, int size, int length, TRAPS);
       
   307   inline static oop array_allocate_nozero(Klass* klass, int size, int length, TRAPS);
       
   308   inline static oop class_allocate(Klass* klass, int size, TRAPS);
       
   309 
       
   310   // Raw memory allocation facilities
       
   311   // The obj and array allocate methods are covers for these methods.
       
   312   // mem_allocate() should never be
       
   313   // called to allocate TLABs, only individual objects.
       
   314   virtual HeapWord* mem_allocate(size_t size,
       
   315                                  bool* gc_overhead_limit_was_exceeded) = 0;
       
   316 
       
   317   // Utilities for turning raw memory into filler objects.
       
   318   //
       
   319   // min_fill_size() is the smallest region that can be filled.
       
   320   // fill_with_objects() can fill arbitrary-sized regions of the heap using
       
   321   // multiple objects.  fill_with_object() is for regions known to be smaller
       
   322   // than the largest array of integers; it uses a single object to fill the
       
   323   // region and has slightly less overhead.
       
   324   static size_t min_fill_size() {
       
   325     return size_t(align_object_size(oopDesc::header_size()));
       
   326   }
       
   327 
       
   328   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
       
   329 
       
   330   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
       
   331   static void fill_with_object(MemRegion region, bool zap = true) {
       
   332     fill_with_object(region.start(), region.word_size(), zap);
       
   333   }
       
   334   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
       
   335     fill_with_object(start, pointer_delta(end, start), zap);
       
   336   }
       
   337 
       
   338   // Return the address "addr" aligned by "alignment_in_bytes" if such
       
   339   // an address is below "end".  Return NULL otherwise.
       
   340   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
       
   341                                                    HeapWord* end,
       
   342                                                    unsigned short alignment_in_bytes);
       
   343 
       
   344   // Some heaps may offer a contiguous region for shared non-blocking
       
   345   // allocation, via inlined code (by exporting the address of the top and
       
   346   // end fields defining the extent of the contiguous allocation region.)
       
   347 
       
   348   // This function returns "true" iff the heap supports this kind of
       
   349   // allocation.  (Default is "no".)
       
   350   virtual bool supports_inline_contig_alloc() const {
       
   351     return false;
       
   352   }
       
   353   // These functions return the addresses of the fields that define the
       
   354   // boundaries of the contiguous allocation area.  (These fields should be
       
   355   // physically near to one another.)
       
   356   virtual HeapWord* volatile* top_addr() const {
       
   357     guarantee(false, "inline contiguous allocation not supported");
       
   358     return NULL;
       
   359   }
       
   360   virtual HeapWord** end_addr() const {
       
   361     guarantee(false, "inline contiguous allocation not supported");
       
   362     return NULL;
       
   363   }
       
   364 
       
   365   // Some heaps may be in an unparseable state at certain times between
       
   366   // collections. This may be necessary for efficient implementation of
       
   367   // certain allocation-related activities. Calling this function before
       
   368   // attempting to parse a heap ensures that the heap is in a parsable
       
   369   // state (provided other concurrent activity does not introduce
       
   370   // unparsability). It is normally expected, therefore, that this
       
   371   // method is invoked with the world stopped.
       
   372   // NOTE: if you override this method, make sure you call
       
   373   // super::ensure_parsability so that the non-generational
       
   374   // part of the work gets done. See implementation of
       
   375   // CollectedHeap::ensure_parsability and, for instance,
       
   376   // that of GenCollectedHeap::ensure_parsability().
       
   377   // The argument "retire_tlabs" controls whether existing TLABs
       
   378   // are merely filled or also retired, thus preventing further
       
   379   // allocation from them and necessitating allocation of new TLABs.
       
   380   virtual void ensure_parsability(bool retire_tlabs);
       
   381 
       
   382   // Section on thread-local allocation buffers (TLABs)
       
   383   // If the heap supports thread-local allocation buffers, it should override
       
   384   // the following methods:
       
   385   // Returns "true" iff the heap supports thread-local allocation buffers.
       
   386   // The default is "no".
       
   387   virtual bool supports_tlab_allocation() const = 0;
       
   388 
       
   389   // The amount of space available for thread-local allocation buffers.
       
   390   virtual size_t tlab_capacity(Thread *thr) const = 0;
       
   391 
       
   392   // The amount of used space for thread-local allocation buffers for the given thread.
       
   393   virtual size_t tlab_used(Thread *thr) const = 0;
       
   394 
       
   395   virtual size_t max_tlab_size() const;
       
   396 
       
   397   // An estimate of the maximum allocation that could be performed
       
   398   // for thread-local allocation buffers without triggering any
       
   399   // collection or expansion activity.
       
   400   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
       
   401     guarantee(false, "thread-local allocation buffers not supported");
       
   402     return 0;
       
   403   }
       
   404 
       
   405   // Can a compiler initialize a new object without store barriers?
       
   406   // This permission only extends from the creation of a new object
       
   407   // via a TLAB up to the first subsequent safepoint. If such permission
       
   408   // is granted for this heap type, the compiler promises to call
       
   409   // defer_store_barrier() below on any slow path allocation of
       
   410   // a new object for which such initializing store barriers will
       
   411   // have been elided.
       
   412   virtual bool can_elide_tlab_store_barriers() const = 0;
       
   413 
       
   414   // If a compiler is eliding store barriers for TLAB-allocated objects,
       
   415   // there is probably a corresponding slow path which can produce
       
   416   // an object allocated anywhere.  The compiler's runtime support
       
   417   // promises to call this function on such a slow-path-allocated
       
   418   // object before performing initializations that have elided
       
   419   // store barriers. Returns new_obj, or maybe a safer copy thereof.
       
   420   virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
       
   421 
       
   422   // Answers whether an initializing store to a new object currently
       
   423   // allocated at the given address doesn't need a store
       
   424   // barrier. Returns "true" if it doesn't need an initializing
       
   425   // store barrier; answers "false" if it does.
       
   426   virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
       
   427 
       
   428   // If a compiler is eliding store barriers for TLAB-allocated objects,
       
   429   // we will be informed of a slow-path allocation by a call
       
   430   // to new_store_pre_barrier() above. Such a call precedes the
       
   431   // initialization of the object itself, and no post-store-barriers will
       
   432   // be issued. Some heap types require that the barrier strictly follows
       
   433   // the initializing stores. (This is currently implemented by deferring the
       
   434   // barrier until the next slow-path allocation or gc-related safepoint.)
       
   435   // This interface answers whether a particular heap type needs the card
       
   436   // mark to be thus strictly sequenced after the stores.
       
   437   virtual bool card_mark_must_follow_store() const = 0;
       
   438 
       
   439   // If the CollectedHeap was asked to defer a store barrier above,
       
   440   // this informs it to flush such a deferred store barrier to the
       
   441   // remembered set.
       
   442   virtual void flush_deferred_store_barrier(JavaThread* thread);
       
   443 
       
   444   // Perform a collection of the heap; intended for use in implementing
       
   445   // "System.gc".  This probably implies as full a collection as the
       
   446   // "CollectedHeap" supports.
       
   447   virtual void collect(GCCause::Cause cause) = 0;
       
   448 
       
   449   // Perform a full collection
       
   450   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
       
   451 
       
   452   // This interface assumes that it's being called by the
       
   453   // vm thread. It collects the heap assuming that the
       
   454   // heap lock is already held and that we are executing in
       
   455   // the context of the vm thread.
       
   456   virtual void collect_as_vm_thread(GCCause::Cause cause);
       
   457 
       
   458   // Returns the barrier set for this heap
       
   459   BarrierSet* barrier_set() { return _barrier_set; }
       
   460   void set_barrier_set(BarrierSet* barrier_set);
       
   461 
       
   462   // Returns "true" iff there is a stop-world GC in progress.  (I assume
       
   463   // that it should answer "false" for the concurrent part of a concurrent
       
   464   // collector -- dld).
       
   465   bool is_gc_active() const { return _is_gc_active; }
       
   466 
       
   467   // Total number of GC collections (started)
       
   468   unsigned int total_collections() const { return _total_collections; }
       
   469   unsigned int total_full_collections() const { return _total_full_collections;}
       
   470 
       
   471   // Increment total number of GC collections (started)
       
   472   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
       
   473   void increment_total_collections(bool full = false) {
       
   474     _total_collections++;
       
   475     if (full) {
       
   476       increment_total_full_collections();
       
   477     }
       
   478   }
       
   479 
       
   480   void increment_total_full_collections() { _total_full_collections++; }
       
   481 
       
   482   // Return the CollectorPolicy for the heap
       
   483   virtual CollectorPolicy* collector_policy() const = 0;
       
   484 
       
   485   // Iterate over all objects, calling "cl.do_object" on each.
       
   486   virtual void object_iterate(ObjectClosure* cl) = 0;
       
   487 
       
   488   // Similar to object_iterate() except iterates only
       
   489   // over live objects.
       
   490   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
       
   491 
       
   492   // NOTE! There is no requirement that a collector implement these
       
   493   // functions.
       
   494   //
       
   495   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
       
   496   // each address in the (reserved) heap is a member of exactly
       
   497   // one block.  The defining characteristic of a block is that it is
       
   498   // possible to find its size, and thus to progress forward to the next
       
   499   // block.  (Blocks may be of different sizes.)  Thus, blocks may
       
   500   // represent Java objects, or they might be free blocks in a
       
   501   // free-list-based heap (or subheap), as long as the two kinds are
       
   502   // distinguishable and the size of each is determinable.
       
   503 
       
   504   // Returns the address of the start of the "block" that contains the
       
   505   // address "addr".  We say "blocks" instead of "object" since some heaps
       
   506   // may not pack objects densely; a chunk may either be an object or a
       
   507   // non-object.
       
   508   virtual HeapWord* block_start(const void* addr) const = 0;
       
   509 
       
   510   // Requires "addr" to be the start of a chunk, and returns its size.
       
   511   // "addr + size" is required to be the start of a new chunk, or the end
       
   512   // of the active area of the heap.
       
   513   virtual size_t block_size(const HeapWord* addr) const = 0;
       
   514 
       
   515   // Requires "addr" to be the start of a block, and returns "TRUE" iff
       
   516   // the block is an object.
       
   517   virtual bool block_is_obj(const HeapWord* addr) const = 0;
       
   518 
       
   519   // Returns the longest time (in ms) that has elapsed since the last
       
   520   // time that any part of the heap was examined by a garbage collection.
       
   521   virtual jlong millis_since_last_gc() = 0;
       
   522 
       
   523   // Perform any cleanup actions necessary before allowing a verification.
       
   524   virtual void prepare_for_verify() = 0;
       
   525 
       
   526   // Generate any dumps preceding or following a full gc
       
   527  private:
       
   528   void full_gc_dump(GCTimer* timer, bool before);
       
   529  public:
       
   530   void pre_full_gc_dump(GCTimer* timer);
       
   531   void post_full_gc_dump(GCTimer* timer);
       
   532 
       
   533   VirtualSpaceSummary create_heap_space_summary();
       
   534   GCHeapSummary create_heap_summary();
       
   535 
       
   536   MetaspaceSummary create_metaspace_summary();
       
   537 
       
   538   // Print heap information on the given outputStream.
       
   539   virtual void print_on(outputStream* st) const = 0;
       
   540   // The default behavior is to call print_on() on tty.
       
   541   virtual void print() const {
       
   542     print_on(tty);
       
   543   }
       
   544   // Print more detailed heap information on the given
       
   545   // outputStream. The default behavior is to call print_on(). It is
       
   546   // up to each subclass to override it and add any additional output
       
   547   // it needs.
       
   548   virtual void print_extended_on(outputStream* st) const {
       
   549     print_on(st);
       
   550   }
       
   551 
       
   552   virtual void print_on_error(outputStream* st) const;
       
   553 
       
   554   // Print all GC threads (other than the VM thread)
       
   555   // used by this heap.
       
   556   virtual void print_gc_threads_on(outputStream* st) const = 0;
       
   557   // The default behavior is to call print_gc_threads_on() on tty.
       
   558   void print_gc_threads() {
       
   559     print_gc_threads_on(tty);
       
   560   }
       
   561   // Iterator for all GC threads (other than VM thread)
       
   562   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
       
   563 
       
   564   // Print any relevant tracing info that flags imply.
       
   565   // Default implementation does nothing.
       
   566   virtual void print_tracing_info() const = 0;
       
   567 
       
   568   void print_heap_before_gc();
       
   569   void print_heap_after_gc();
       
   570 
       
   571   // Registering and unregistering an nmethod (compiled code) with the heap.
       
   572   // Override with specific mechanism for each specialized heap type.
       
   573   virtual void register_nmethod(nmethod* nm);
       
   574   virtual void unregister_nmethod(nmethod* nm);
       
   575 
       
   576   void trace_heap_before_gc(const GCTracer* gc_tracer);
       
   577   void trace_heap_after_gc(const GCTracer* gc_tracer);
       
   578 
       
   579   // Heap verification
       
   580   virtual void verify(VerifyOption option) = 0;
       
   581 
       
   582   // Return true if concurrent phase control (via
       
   583   // request_concurrent_phase_control) is supported by this collector.
       
   584   // The default implementation returns false.
       
   585   virtual bool supports_concurrent_phase_control() const;
       
   586 
       
   587   // Return a NULL terminated array of concurrent phase names provided
       
   588   // by this collector.  Supports Whitebox testing.  These are the
       
   589   // names recognized by request_concurrent_phase(). The default
       
   590   // implementation returns an array of one NULL element.
       
   591   virtual const char* const* concurrent_phases() const;
       
   592 
       
   593   // Request the collector enter the indicated concurrent phase, and
       
   594   // wait until it does so.  Supports WhiteBox testing.  Only one
       
   595   // request may be active at a time.  Phases are designated by name;
       
   596   // the set of names and their meaning is GC-specific.  Once the
       
   597   // requested phase has been reached, the collector will attempt to
       
   598   // avoid transitioning to a new phase until a new request is made.
       
   599   // [Note: A collector might not be able to remain in a given phase.
       
   600   // For example, a full collection might cancel an in-progress
       
   601   // concurrent collection.]
       
   602   //
       
   603   // Returns true when the phase is reached.  Returns false for an
       
   604   // unknown phase.  The default implementation returns false.
       
   605   virtual bool request_concurrent_phase(const char* phase);
       
   606 
       
   607   // Provides a thread pool to SafepointSynchronize to use
       
   608   // for parallel safepoint cleanup.
       
   609   // GCs that use a GC worker thread pool may want to share
       
   610   // it for use during safepoint cleanup. This is only possible
       
   611   // if the GC can pause and resume concurrent work (e.g. G1
       
   612   // concurrent marking) for an intermittent non-GC safepoint.
       
   613   // If this method returns NULL, SafepointSynchronize will
       
   614   // perform cleanup tasks serially in the VMThread.
       
   615   virtual WorkGang* get_safepoint_workers() { return NULL; }
       
   616 
       
   617   // Non product verification and debugging.
       
   618 #ifndef PRODUCT
       
   619   // Support for PromotionFailureALot.  Return true if it's time to cause a
       
   620   // promotion failure.  The no-argument version uses
       
   621   // this->_promotion_failure_alot_count as the counter.
       
   622   inline bool promotion_should_fail(volatile size_t* count);
       
   623   inline bool promotion_should_fail();
       
   624 
       
   625   // Reset the PromotionFailureALot counters.  Should be called at the end of a
       
   626   // GC in which promotion failure occurred.
       
   627   inline void reset_promotion_should_fail(volatile size_t* count);
       
   628   inline void reset_promotion_should_fail();
       
   629 #endif  // #ifndef PRODUCT
       
   630 
       
   631 #ifdef ASSERT
       
   632   static int fired_fake_oom() {
       
   633     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
       
   634   }
       
   635 #endif
       
   636 
       
   637  public:
       
   638   // Copy the current allocation context statistics for the specified contexts.
       
   639   // For each context in contexts, set the corresponding entries in the totals
       
   640   // and accuracy arrays to the current values held by the statistics.  Each
       
   641   // array should be of length len.
       
   642   // Returns true if there are more stats available.
       
   643   virtual bool copy_allocation_context_stats(const jint* contexts,
       
   644                                              jlong* totals,
       
   645                                              jbyte* accuracy,
       
   646                                              jint len) {
       
   647     return false;
       
   648   }
       
   649 
       
   650 };
       
   651 
       
   652 // Class to set and reset the GC cause for a CollectedHeap.
       
   653 
       
   654 class GCCauseSetter : StackObj {
       
   655   CollectedHeap* _heap;
       
   656   GCCause::Cause _previous_cause;
       
   657  public:
       
   658   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
       
   659     assert(SafepointSynchronize::is_at_safepoint(),
       
   660            "This method manipulates heap state without locking");
       
   661     _heap = heap;
       
   662     _previous_cause = _heap->gc_cause();
       
   663     _heap->set_gc_cause(cause);
       
   664   }
       
   665 
       
   666   ~GCCauseSetter() {
       
   667     assert(SafepointSynchronize::is_at_safepoint(),
       
   668           "This method manipulates heap state without locking");
       
   669     _heap->set_gc_cause(_previous_cause);
       
   670   }
       
   671 };
       
   672 
       
   673 #endif // SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP