src/hotspot/share/gc/parallel/psYoungGen.cpp
changeset 47216 71c04702a3d5
parent 46625 edefffab74e2
child 49164 7e958a8ebcd3
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "gc/parallel/mutableNUMASpace.hpp"
       
    27 #include "gc/parallel/parallelScavengeHeap.hpp"
       
    28 #include "gc/parallel/psMarkSweepDecorator.hpp"
       
    29 #include "gc/parallel/psScavenge.hpp"
       
    30 #include "gc/parallel/psYoungGen.hpp"
       
    31 #include "gc/shared/gcUtil.hpp"
       
    32 #include "gc/shared/spaceDecorator.hpp"
       
    33 #include "logging/log.hpp"
       
    34 #include "oops/oop.inline.hpp"
       
    35 #include "runtime/java.hpp"
       
    36 #include "utilities/align.hpp"
       
    37 
       
    38 PSYoungGen::PSYoungGen(size_t        initial_size,
       
    39                        size_t        min_size,
       
    40                        size_t        max_size) :
       
    41   _init_gen_size(initial_size),
       
    42   _min_gen_size(min_size),
       
    43   _max_gen_size(max_size)
       
    44 {}
       
    45 
       
    46 void PSYoungGen::initialize_virtual_space(ReservedSpace rs, size_t alignment) {
       
    47   assert(_init_gen_size != 0, "Should have a finite size");
       
    48   _virtual_space = new PSVirtualSpace(rs, alignment);
       
    49   if (!virtual_space()->expand_by(_init_gen_size)) {
       
    50     vm_exit_during_initialization("Could not reserve enough space for "
       
    51                                   "object heap");
       
    52   }
       
    53 }
       
    54 
       
    55 void PSYoungGen::initialize(ReservedSpace rs, size_t alignment) {
       
    56   initialize_virtual_space(rs, alignment);
       
    57   initialize_work();
       
    58 }
       
    59 
       
    60 void PSYoungGen::initialize_work() {
       
    61 
       
    62   _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
       
    63                         (HeapWord*)virtual_space()->high_boundary());
       
    64 
       
    65   MemRegion cmr((HeapWord*)virtual_space()->low(),
       
    66                 (HeapWord*)virtual_space()->high());
       
    67   ParallelScavengeHeap::heap()->barrier_set()->resize_covered_region(cmr);
       
    68 
       
    69   if (ZapUnusedHeapArea) {
       
    70     // Mangle newly committed space immediately because it
       
    71     // can be done here more simply that after the new
       
    72     // spaces have been computed.
       
    73     SpaceMangler::mangle_region(cmr);
       
    74   }
       
    75 
       
    76   if (UseNUMA) {
       
    77     _eden_space = new MutableNUMASpace(virtual_space()->alignment());
       
    78   } else {
       
    79     _eden_space = new MutableSpace(virtual_space()->alignment());
       
    80   }
       
    81   _from_space = new MutableSpace(virtual_space()->alignment());
       
    82   _to_space   = new MutableSpace(virtual_space()->alignment());
       
    83 
       
    84   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
       
    85     vm_exit_during_initialization("Could not allocate a young gen space");
       
    86   }
       
    87 
       
    88   // Allocate the mark sweep views of spaces
       
    89   _eden_mark_sweep =
       
    90       new PSMarkSweepDecorator(_eden_space, NULL, MarkSweepDeadRatio);
       
    91   _from_mark_sweep =
       
    92       new PSMarkSweepDecorator(_from_space, NULL, MarkSweepDeadRatio);
       
    93   _to_mark_sweep =
       
    94       new PSMarkSweepDecorator(_to_space, NULL, MarkSweepDeadRatio);
       
    95 
       
    96   if (_eden_mark_sweep == NULL ||
       
    97       _from_mark_sweep == NULL ||
       
    98       _to_mark_sweep == NULL) {
       
    99     vm_exit_during_initialization("Could not complete allocation"
       
   100                                   " of the young generation");
       
   101   }
       
   102 
       
   103   // Generation Counters - generation 0, 3 subspaces
       
   104   _gen_counters = new PSGenerationCounters("new", 0, 3, _min_gen_size,
       
   105                                            _max_gen_size, _virtual_space);
       
   106 
       
   107   // Compute maximum space sizes for performance counters
       
   108   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
       
   109   size_t alignment = heap->space_alignment();
       
   110   size_t size = virtual_space()->reserved_size();
       
   111 
       
   112   size_t max_survivor_size;
       
   113   size_t max_eden_size;
       
   114 
       
   115   if (UseAdaptiveSizePolicy) {
       
   116     max_survivor_size = size / MinSurvivorRatio;
       
   117 
       
   118     // round the survivor space size down to the nearest alignment
       
   119     // and make sure its size is greater than 0.
       
   120     max_survivor_size = align_down(max_survivor_size, alignment);
       
   121     max_survivor_size = MAX2(max_survivor_size, alignment);
       
   122 
       
   123     // set the maximum size of eden to be the size of the young gen
       
   124     // less two times the minimum survivor size. The minimum survivor
       
   125     // size for UseAdaptiveSizePolicy is one alignment.
       
   126     max_eden_size = size - 2 * alignment;
       
   127   } else {
       
   128     max_survivor_size = size / InitialSurvivorRatio;
       
   129 
       
   130     // round the survivor space size down to the nearest alignment
       
   131     // and make sure its size is greater than 0.
       
   132     max_survivor_size = align_down(max_survivor_size, alignment);
       
   133     max_survivor_size = MAX2(max_survivor_size, alignment);
       
   134 
       
   135     // set the maximum size of eden to be the size of the young gen
       
   136     // less two times the survivor size when the generation is 100%
       
   137     // committed. The minimum survivor size for -UseAdaptiveSizePolicy
       
   138     // is dependent on the committed portion (current capacity) of the
       
   139     // generation - the less space committed, the smaller the survivor
       
   140     // space, possibly as small as an alignment. However, we are interested
       
   141     // in the case where the young generation is 100% committed, as this
       
   142     // is the point where eden reaches its maximum size. At this point,
       
   143     // the size of a survivor space is max_survivor_size.
       
   144     max_eden_size = size - 2 * max_survivor_size;
       
   145   }
       
   146 
       
   147   _eden_counters = new SpaceCounters("eden", 0, max_eden_size, _eden_space,
       
   148                                      _gen_counters);
       
   149   _from_counters = new SpaceCounters("s0", 1, max_survivor_size, _from_space,
       
   150                                      _gen_counters);
       
   151   _to_counters = new SpaceCounters("s1", 2, max_survivor_size, _to_space,
       
   152                                    _gen_counters);
       
   153 
       
   154   compute_initial_space_boundaries();
       
   155 }
       
   156 
       
   157 void PSYoungGen::compute_initial_space_boundaries() {
       
   158   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
       
   159 
       
   160   // Compute sizes
       
   161   size_t alignment = heap->space_alignment();
       
   162   size_t size = virtual_space()->committed_size();
       
   163   assert(size >= 3 * alignment, "Young space is not large enough for eden + 2 survivors");
       
   164 
       
   165   size_t survivor_size = size / InitialSurvivorRatio;
       
   166   survivor_size = align_down(survivor_size, alignment);
       
   167   // ... but never less than an alignment
       
   168   survivor_size = MAX2(survivor_size, alignment);
       
   169 
       
   170   // Young generation is eden + 2 survivor spaces
       
   171   size_t eden_size = size - (2 * survivor_size);
       
   172 
       
   173   // Now go ahead and set 'em.
       
   174   set_space_boundaries(eden_size, survivor_size);
       
   175   space_invariants();
       
   176 
       
   177   if (UsePerfData) {
       
   178     _eden_counters->update_capacity();
       
   179     _from_counters->update_capacity();
       
   180     _to_counters->update_capacity();
       
   181   }
       
   182 }
       
   183 
       
   184 void PSYoungGen::set_space_boundaries(size_t eden_size, size_t survivor_size) {
       
   185   assert(eden_size < virtual_space()->committed_size(), "just checking");
       
   186   assert(eden_size > 0  && survivor_size > 0, "just checking");
       
   187 
       
   188   // Initial layout is Eden, to, from. After swapping survivor spaces,
       
   189   // that leaves us with Eden, from, to, which is step one in our two
       
   190   // step resize-with-live-data procedure.
       
   191   char *eden_start = virtual_space()->low();
       
   192   char *to_start   = eden_start + eden_size;
       
   193   char *from_start = to_start   + survivor_size;
       
   194   char *from_end   = from_start + survivor_size;
       
   195 
       
   196   assert(from_end == virtual_space()->high(), "just checking");
       
   197   assert(is_object_aligned(eden_start), "checking alignment");
       
   198   assert(is_object_aligned(to_start),   "checking alignment");
       
   199   assert(is_object_aligned(from_start), "checking alignment");
       
   200 
       
   201   MemRegion eden_mr((HeapWord*)eden_start, (HeapWord*)to_start);
       
   202   MemRegion to_mr  ((HeapWord*)to_start, (HeapWord*)from_start);
       
   203   MemRegion from_mr((HeapWord*)from_start, (HeapWord*)from_end);
       
   204 
       
   205   eden_space()->initialize(eden_mr, true, ZapUnusedHeapArea);
       
   206     to_space()->initialize(to_mr  , true, ZapUnusedHeapArea);
       
   207   from_space()->initialize(from_mr, true, ZapUnusedHeapArea);
       
   208 }
       
   209 
       
   210 #ifndef PRODUCT
       
   211 void PSYoungGen::space_invariants() {
       
   212   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
       
   213   const size_t alignment = heap->space_alignment();
       
   214 
       
   215   // Currently, our eden size cannot shrink to zero
       
   216   guarantee(eden_space()->capacity_in_bytes() >= alignment, "eden too small");
       
   217   guarantee(from_space()->capacity_in_bytes() >= alignment, "from too small");
       
   218   guarantee(to_space()->capacity_in_bytes() >= alignment, "to too small");
       
   219 
       
   220   // Relationship of spaces to each other
       
   221   char* eden_start = (char*)eden_space()->bottom();
       
   222   char* eden_end   = (char*)eden_space()->end();
       
   223   char* from_start = (char*)from_space()->bottom();
       
   224   char* from_end   = (char*)from_space()->end();
       
   225   char* to_start   = (char*)to_space()->bottom();
       
   226   char* to_end     = (char*)to_space()->end();
       
   227 
       
   228   guarantee(eden_start >= virtual_space()->low(), "eden bottom");
       
   229   guarantee(eden_start < eden_end, "eden space consistency");
       
   230   guarantee(from_start < from_end, "from space consistency");
       
   231   guarantee(to_start < to_end, "to space consistency");
       
   232 
       
   233   // Check whether from space is below to space
       
   234   if (from_start < to_start) {
       
   235     // Eden, from, to
       
   236     guarantee(eden_end <= from_start, "eden/from boundary");
       
   237     guarantee(from_end <= to_start,   "from/to boundary");
       
   238     guarantee(to_end <= virtual_space()->high(), "to end");
       
   239   } else {
       
   240     // Eden, to, from
       
   241     guarantee(eden_end <= to_start, "eden/to boundary");
       
   242     guarantee(to_end <= from_start, "to/from boundary");
       
   243     guarantee(from_end <= virtual_space()->high(), "from end");
       
   244   }
       
   245 
       
   246   // More checks that the virtual space is consistent with the spaces
       
   247   assert(virtual_space()->committed_size() >=
       
   248     (eden_space()->capacity_in_bytes() +
       
   249      to_space()->capacity_in_bytes() +
       
   250      from_space()->capacity_in_bytes()), "Committed size is inconsistent");
       
   251   assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(),
       
   252     "Space invariant");
       
   253   char* eden_top = (char*)eden_space()->top();
       
   254   char* from_top = (char*)from_space()->top();
       
   255   char* to_top = (char*)to_space()->top();
       
   256   assert(eden_top <= virtual_space()->high(), "eden top");
       
   257   assert(from_top <= virtual_space()->high(), "from top");
       
   258   assert(to_top <= virtual_space()->high(), "to top");
       
   259 
       
   260   virtual_space()->verify();
       
   261 }
       
   262 #endif
       
   263 
       
   264 void PSYoungGen::resize(size_t eden_size, size_t survivor_size) {
       
   265   // Resize the generation if needed. If the generation resize
       
   266   // reports false, do not attempt to resize the spaces.
       
   267   if (resize_generation(eden_size, survivor_size)) {
       
   268     // Then we lay out the spaces inside the generation
       
   269     resize_spaces(eden_size, survivor_size);
       
   270 
       
   271     space_invariants();
       
   272 
       
   273     log_trace(gc, ergo)("Young generation size: "
       
   274                         "desired eden: " SIZE_FORMAT " survivor: " SIZE_FORMAT
       
   275                         " used: " SIZE_FORMAT " capacity: " SIZE_FORMAT
       
   276                         " gen limits: " SIZE_FORMAT " / " SIZE_FORMAT,
       
   277                         eden_size, survivor_size, used_in_bytes(), capacity_in_bytes(),
       
   278                         _max_gen_size, min_gen_size());
       
   279   }
       
   280 }
       
   281 
       
   282 
       
   283 bool PSYoungGen::resize_generation(size_t eden_size, size_t survivor_size) {
       
   284   const size_t alignment = virtual_space()->alignment();
       
   285   size_t orig_size = virtual_space()->committed_size();
       
   286   bool size_changed = false;
       
   287 
       
   288   // There used to be this guarantee there.
       
   289   // guarantee ((eden_size + 2*survivor_size)  <= _max_gen_size, "incorrect input arguments");
       
   290   // Code below forces this requirement.  In addition the desired eden
       
   291   // size and desired survivor sizes are desired goals and may
       
   292   // exceed the total generation size.
       
   293 
       
   294   assert(min_gen_size() <= orig_size && orig_size <= max_size(), "just checking");
       
   295 
       
   296   // Adjust new generation size
       
   297   const size_t eden_plus_survivors =
       
   298           align_up(eden_size + 2 * survivor_size, alignment);
       
   299   size_t desired_size = MAX2(MIN2(eden_plus_survivors, max_size()),
       
   300                              min_gen_size());
       
   301   assert(desired_size <= max_size(), "just checking");
       
   302 
       
   303   if (desired_size > orig_size) {
       
   304     // Grow the generation
       
   305     size_t change = desired_size - orig_size;
       
   306     assert(change % alignment == 0, "just checking");
       
   307     HeapWord* prev_high = (HeapWord*) virtual_space()->high();
       
   308     if (!virtual_space()->expand_by(change)) {
       
   309       return false; // Error if we fail to resize!
       
   310     }
       
   311     if (ZapUnusedHeapArea) {
       
   312       // Mangle newly committed space immediately because it
       
   313       // can be done here more simply that after the new
       
   314       // spaces have been computed.
       
   315       HeapWord* new_high = (HeapWord*) virtual_space()->high();
       
   316       MemRegion mangle_region(prev_high, new_high);
       
   317       SpaceMangler::mangle_region(mangle_region);
       
   318     }
       
   319     size_changed = true;
       
   320   } else if (desired_size < orig_size) {
       
   321     size_t desired_change = orig_size - desired_size;
       
   322     assert(desired_change % alignment == 0, "just checking");
       
   323 
       
   324     desired_change = limit_gen_shrink(desired_change);
       
   325 
       
   326     if (desired_change > 0) {
       
   327       virtual_space()->shrink_by(desired_change);
       
   328       reset_survivors_after_shrink();
       
   329 
       
   330       size_changed = true;
       
   331     }
       
   332   } else {
       
   333     if (orig_size == gen_size_limit()) {
       
   334       log_trace(gc)("PSYoung generation size at maximum: " SIZE_FORMAT "K", orig_size/K);
       
   335     } else if (orig_size == min_gen_size()) {
       
   336       log_trace(gc)("PSYoung generation size at minium: " SIZE_FORMAT "K", orig_size/K);
       
   337     }
       
   338   }
       
   339 
       
   340   if (size_changed) {
       
   341     post_resize();
       
   342     log_trace(gc)("PSYoung generation size changed: " SIZE_FORMAT "K->" SIZE_FORMAT "K",
       
   343                   orig_size/K, virtual_space()->committed_size()/K);
       
   344   }
       
   345 
       
   346   guarantee(eden_plus_survivors <= virtual_space()->committed_size() ||
       
   347             virtual_space()->committed_size() == max_size(), "Sanity");
       
   348 
       
   349   return true;
       
   350 }
       
   351 
       
   352 #ifndef PRODUCT
       
   353 // In the numa case eden is not mangled so a survivor space
       
   354 // moving into a region previously occupied by a survivor
       
   355 // may find an unmangled region.  Also in the PS case eden
       
   356 // to-space and from-space may not touch (i.e., there may be
       
   357 // gaps between them due to movement while resizing the
       
   358 // spaces).  Those gaps must be mangled.
       
   359 void PSYoungGen::mangle_survivors(MutableSpace* s1,
       
   360                                   MemRegion s1MR,
       
   361                                   MutableSpace* s2,
       
   362                                   MemRegion s2MR) {
       
   363   // Check eden and gap between eden and from-space, in deciding
       
   364   // what to mangle in from-space.  Check the gap between from-space
       
   365   // and to-space when deciding what to mangle.
       
   366   //
       
   367   //      +--------+   +----+    +---+
       
   368   //      | eden   |   |s1  |    |s2 |
       
   369   //      +--------+   +----+    +---+
       
   370   //                 +-------+ +-----+
       
   371   //                 |s1MR   | |s2MR |
       
   372   //                 +-------+ +-----+
       
   373   // All of survivor-space is properly mangled so find the
       
   374   // upper bound on the mangling for any portion above current s1.
       
   375   HeapWord* delta_end = MIN2(s1->bottom(), s1MR.end());
       
   376   MemRegion delta1_left;
       
   377   if (s1MR.start() < delta_end) {
       
   378     delta1_left = MemRegion(s1MR.start(), delta_end);
       
   379     s1->mangle_region(delta1_left);
       
   380   }
       
   381   // Find any portion to the right of the current s1.
       
   382   HeapWord* delta_start = MAX2(s1->end(), s1MR.start());
       
   383   MemRegion delta1_right;
       
   384   if (delta_start < s1MR.end()) {
       
   385     delta1_right = MemRegion(delta_start, s1MR.end());
       
   386     s1->mangle_region(delta1_right);
       
   387   }
       
   388 
       
   389   // Similarly for the second survivor space except that
       
   390   // any of the new region that overlaps with the current
       
   391   // region of the first survivor space has already been
       
   392   // mangled.
       
   393   delta_end = MIN2(s2->bottom(), s2MR.end());
       
   394   delta_start = MAX2(s2MR.start(), s1->end());
       
   395   MemRegion delta2_left;
       
   396   if (s2MR.start() < delta_end) {
       
   397     delta2_left = MemRegion(s2MR.start(), delta_end);
       
   398     s2->mangle_region(delta2_left);
       
   399   }
       
   400   delta_start = MAX2(s2->end(), s2MR.start());
       
   401   MemRegion delta2_right;
       
   402   if (delta_start < s2MR.end()) {
       
   403     s2->mangle_region(delta2_right);
       
   404   }
       
   405 
       
   406   // s1
       
   407   log_develop_trace(gc)("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
       
   408     "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
       
   409     p2i(s1->bottom()), p2i(s1->end()),
       
   410     p2i(s1MR.start()), p2i(s1MR.end()));
       
   411   log_develop_trace(gc)("    Mangle before: [" PTR_FORMAT ", "
       
   412     PTR_FORMAT ")  Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
       
   413     p2i(delta1_left.start()), p2i(delta1_left.end()),
       
   414     p2i(delta1_right.start()), p2i(delta1_right.end()));
       
   415 
       
   416   // s2
       
   417   log_develop_trace(gc)("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
       
   418     "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
       
   419     p2i(s2->bottom()), p2i(s2->end()),
       
   420     p2i(s2MR.start()), p2i(s2MR.end()));
       
   421   log_develop_trace(gc)("    Mangle before: [" PTR_FORMAT ", "
       
   422     PTR_FORMAT ")  Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
       
   423     p2i(delta2_left.start()), p2i(delta2_left.end()),
       
   424     p2i(delta2_right.start()), p2i(delta2_right.end()));
       
   425 }
       
   426 #endif // NOT PRODUCT
       
   427 
       
   428 void PSYoungGen::resize_spaces(size_t requested_eden_size,
       
   429                                size_t requested_survivor_size) {
       
   430   assert(UseAdaptiveSizePolicy, "sanity check");
       
   431   assert(requested_eden_size > 0  && requested_survivor_size > 0,
       
   432          "just checking");
       
   433 
       
   434   // We require eden and to space to be empty
       
   435   if ((!eden_space()->is_empty()) || (!to_space()->is_empty())) {
       
   436     return;
       
   437   }
       
   438 
       
   439   log_trace(gc, ergo)("PSYoungGen::resize_spaces(requested_eden_size: " SIZE_FORMAT ", requested_survivor_size: " SIZE_FORMAT ")",
       
   440                       requested_eden_size, requested_survivor_size);
       
   441   log_trace(gc, ergo)("    eden: [" PTR_FORMAT ".." PTR_FORMAT ") " SIZE_FORMAT,
       
   442                       p2i(eden_space()->bottom()),
       
   443                       p2i(eden_space()->end()),
       
   444                       pointer_delta(eden_space()->end(),
       
   445                                     eden_space()->bottom(),
       
   446                                     sizeof(char)));
       
   447   log_trace(gc, ergo)("    from: [" PTR_FORMAT ".." PTR_FORMAT ") " SIZE_FORMAT,
       
   448                       p2i(from_space()->bottom()),
       
   449                       p2i(from_space()->end()),
       
   450                       pointer_delta(from_space()->end(),
       
   451                                     from_space()->bottom(),
       
   452                                     sizeof(char)));
       
   453   log_trace(gc, ergo)("      to: [" PTR_FORMAT ".." PTR_FORMAT ") " SIZE_FORMAT,
       
   454                       p2i(to_space()->bottom()),
       
   455                       p2i(to_space()->end()),
       
   456                       pointer_delta(  to_space()->end(),
       
   457                                       to_space()->bottom(),
       
   458                                       sizeof(char)));
       
   459 
       
   460   // There's nothing to do if the new sizes are the same as the current
       
   461   if (requested_survivor_size == to_space()->capacity_in_bytes() &&
       
   462       requested_survivor_size == from_space()->capacity_in_bytes() &&
       
   463       requested_eden_size == eden_space()->capacity_in_bytes()) {
       
   464     log_trace(gc, ergo)("    capacities are the right sizes, returning");
       
   465     return;
       
   466   }
       
   467 
       
   468   char* eden_start = (char*)eden_space()->bottom();
       
   469   char* eden_end   = (char*)eden_space()->end();
       
   470   char* from_start = (char*)from_space()->bottom();
       
   471   char* from_end   = (char*)from_space()->end();
       
   472   char* to_start   = (char*)to_space()->bottom();
       
   473   char* to_end     = (char*)to_space()->end();
       
   474 
       
   475   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
       
   476   const size_t alignment = heap->space_alignment();
       
   477   const bool maintain_minimum =
       
   478     (requested_eden_size + 2 * requested_survivor_size) <= min_gen_size();
       
   479 
       
   480   bool eden_from_to_order = from_start < to_start;
       
   481   // Check whether from space is below to space
       
   482   if (eden_from_to_order) {
       
   483     // Eden, from, to
       
   484     eden_from_to_order = true;
       
   485     log_trace(gc, ergo)("  Eden, from, to:");
       
   486 
       
   487     // Set eden
       
   488     // "requested_eden_size" is a goal for the size of eden
       
   489     // and may not be attainable.  "eden_size" below is
       
   490     // calculated based on the location of from-space and
       
   491     // the goal for the size of eden.  from-space is
       
   492     // fixed in place because it contains live data.
       
   493     // The calculation is done this way to avoid 32bit
       
   494     // overflow (i.e., eden_start + requested_eden_size
       
   495     // may too large for representation in 32bits).
       
   496     size_t eden_size;
       
   497     if (maintain_minimum) {
       
   498       // Only make eden larger than the requested size if
       
   499       // the minimum size of the generation has to be maintained.
       
   500       // This could be done in general but policy at a higher
       
   501       // level is determining a requested size for eden and that
       
   502       // should be honored unless there is a fundamental reason.
       
   503       eden_size = pointer_delta(from_start,
       
   504                                 eden_start,
       
   505                                 sizeof(char));
       
   506     } else {
       
   507       eden_size = MIN2(requested_eden_size,
       
   508                        pointer_delta(from_start, eden_start, sizeof(char)));
       
   509     }
       
   510 
       
   511     eden_end = eden_start + eden_size;
       
   512     assert(eden_end >= eden_start, "addition overflowed");
       
   513 
       
   514     // To may resize into from space as long as it is clear of live data.
       
   515     // From space must remain page aligned, though, so we need to do some
       
   516     // extra calculations.
       
   517 
       
   518     // First calculate an optimal to-space
       
   519     to_end   = (char*)virtual_space()->high();
       
   520     to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
       
   521                                     sizeof(char));
       
   522 
       
   523     // Does the optimal to-space overlap from-space?
       
   524     if (to_start < (char*)from_space()->end()) {
       
   525       // Calculate the minimum offset possible for from_end
       
   526       size_t from_size = pointer_delta(from_space()->top(), from_start, sizeof(char));
       
   527 
       
   528       // Should we be in this method if from_space is empty? Why not the set_space method? FIX ME!
       
   529       if (from_size == 0) {
       
   530         from_size = alignment;
       
   531       } else {
       
   532         from_size = align_up(from_size, alignment);
       
   533       }
       
   534 
       
   535       from_end = from_start + from_size;
       
   536       assert(from_end > from_start, "addition overflow or from_size problem");
       
   537 
       
   538       guarantee(from_end <= (char*)from_space()->end(), "from_end moved to the right");
       
   539 
       
   540       // Now update to_start with the new from_end
       
   541       to_start = MAX2(from_end, to_start);
       
   542     }
       
   543 
       
   544     guarantee(to_start != to_end, "to space is zero sized");
       
   545 
       
   546     log_trace(gc, ergo)("    [eden_start .. eden_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
       
   547                         p2i(eden_start),
       
   548                         p2i(eden_end),
       
   549                         pointer_delta(eden_end, eden_start, sizeof(char)));
       
   550     log_trace(gc, ergo)("    [from_start .. from_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
       
   551                         p2i(from_start),
       
   552                         p2i(from_end),
       
   553                         pointer_delta(from_end, from_start, sizeof(char)));
       
   554     log_trace(gc, ergo)("    [  to_start ..   to_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
       
   555                         p2i(to_start),
       
   556                         p2i(to_end),
       
   557                         pointer_delta(  to_end,   to_start, sizeof(char)));
       
   558   } else {
       
   559     // Eden, to, from
       
   560     log_trace(gc, ergo)("  Eden, to, from:");
       
   561 
       
   562     // To space gets priority over eden resizing. Note that we position
       
   563     // to space as if we were able to resize from space, even though from
       
   564     // space is not modified.
       
   565     // Giving eden priority was tried and gave poorer performance.
       
   566     to_end   = (char*)pointer_delta(virtual_space()->high(),
       
   567                                     (char*)requested_survivor_size,
       
   568                                     sizeof(char));
       
   569     to_end   = MIN2(to_end, from_start);
       
   570     to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
       
   571                                     sizeof(char));
       
   572     // if the space sizes are to be increased by several times then
       
   573     // 'to_start' will point beyond the young generation. In this case
       
   574     // 'to_start' should be adjusted.
       
   575     to_start = MAX2(to_start, eden_start + alignment);
       
   576 
       
   577     // Compute how big eden can be, then adjust end.
       
   578     // See  comments above on calculating eden_end.
       
   579     size_t eden_size;
       
   580     if (maintain_minimum) {
       
   581       eden_size = pointer_delta(to_start, eden_start, sizeof(char));
       
   582     } else {
       
   583       eden_size = MIN2(requested_eden_size,
       
   584                        pointer_delta(to_start, eden_start, sizeof(char)));
       
   585     }
       
   586     eden_end = eden_start + eden_size;
       
   587     assert(eden_end >= eden_start, "addition overflowed");
       
   588 
       
   589     // Could choose to not let eden shrink
       
   590     // to_start = MAX2(to_start, eden_end);
       
   591 
       
   592     // Don't let eden shrink down to 0 or less.
       
   593     eden_end = MAX2(eden_end, eden_start + alignment);
       
   594     to_start = MAX2(to_start, eden_end);
       
   595 
       
   596     log_trace(gc, ergo)("    [eden_start .. eden_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
       
   597                         p2i(eden_start),
       
   598                         p2i(eden_end),
       
   599                         pointer_delta(eden_end, eden_start, sizeof(char)));
       
   600     log_trace(gc, ergo)("    [  to_start ..   to_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
       
   601                         p2i(to_start),
       
   602                         p2i(to_end),
       
   603                         pointer_delta(  to_end,   to_start, sizeof(char)));
       
   604     log_trace(gc, ergo)("    [from_start .. from_end): [" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
       
   605                         p2i(from_start),
       
   606                         p2i(from_end),
       
   607                         pointer_delta(from_end, from_start, sizeof(char)));
       
   608   }
       
   609 
       
   610 
       
   611   guarantee((HeapWord*)from_start <= from_space()->bottom(),
       
   612             "from start moved to the right");
       
   613   guarantee((HeapWord*)from_end >= from_space()->top(),
       
   614             "from end moved into live data");
       
   615   assert(is_object_aligned(eden_start), "checking alignment");
       
   616   assert(is_object_aligned(from_start), "checking alignment");
       
   617   assert(is_object_aligned(to_start), "checking alignment");
       
   618 
       
   619   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)eden_end);
       
   620   MemRegion toMR  ((HeapWord*)to_start,   (HeapWord*)to_end);
       
   621   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)from_end);
       
   622 
       
   623   // Let's make sure the call to initialize doesn't reset "top"!
       
   624   HeapWord* old_from_top = from_space()->top();
       
   625 
       
   626   // For logging block  below
       
   627   size_t old_from = from_space()->capacity_in_bytes();
       
   628   size_t old_to   = to_space()->capacity_in_bytes();
       
   629 
       
   630   if (ZapUnusedHeapArea) {
       
   631     // NUMA is a special case because a numa space is not mangled
       
   632     // in order to not prematurely bind its address to memory to
       
   633     // the wrong memory (i.e., don't want the GC thread to first
       
   634     // touch the memory).  The survivor spaces are not numa
       
   635     // spaces and are mangled.
       
   636     if (UseNUMA) {
       
   637       if (eden_from_to_order) {
       
   638         mangle_survivors(from_space(), fromMR, to_space(), toMR);
       
   639       } else {
       
   640         mangle_survivors(to_space(), toMR, from_space(), fromMR);
       
   641       }
       
   642     }
       
   643 
       
   644     // If not mangling the spaces, do some checking to verify that
       
   645     // the spaces are already mangled.
       
   646     // The spaces should be correctly mangled at this point so
       
   647     // do some checking here. Note that they are not being mangled
       
   648     // in the calls to initialize().
       
   649     // Must check mangling before the spaces are reshaped.  Otherwise,
       
   650     // the bottom or end of one space may have moved into an area
       
   651     // covered by another space and a failure of the check may
       
   652     // not correctly indicate which space is not properly mangled.
       
   653     HeapWord* limit = (HeapWord*) virtual_space()->high();
       
   654     eden_space()->check_mangled_unused_area(limit);
       
   655     from_space()->check_mangled_unused_area(limit);
       
   656       to_space()->check_mangled_unused_area(limit);
       
   657   }
       
   658   // When an existing space is being initialized, it is not
       
   659   // mangled because the space has been previously mangled.
       
   660   eden_space()->initialize(edenMR,
       
   661                            SpaceDecorator::Clear,
       
   662                            SpaceDecorator::DontMangle);
       
   663     to_space()->initialize(toMR,
       
   664                            SpaceDecorator::Clear,
       
   665                            SpaceDecorator::DontMangle);
       
   666   from_space()->initialize(fromMR,
       
   667                            SpaceDecorator::DontClear,
       
   668                            SpaceDecorator::DontMangle);
       
   669 
       
   670   assert(from_space()->top() == old_from_top, "from top changed!");
       
   671 
       
   672   log_trace(gc, ergo)("AdaptiveSizePolicy::survivor space sizes: collection: %d (" SIZE_FORMAT ", " SIZE_FORMAT ") -> (" SIZE_FORMAT ", " SIZE_FORMAT ") ",
       
   673                       ParallelScavengeHeap::heap()->total_collections(),
       
   674                       old_from, old_to,
       
   675                       from_space()->capacity_in_bytes(),
       
   676                       to_space()->capacity_in_bytes());
       
   677 }
       
   678 
       
   679 void PSYoungGen::swap_spaces() {
       
   680   MutableSpace* s    = from_space();
       
   681   _from_space        = to_space();
       
   682   _to_space          = s;
       
   683 
       
   684   // Now update the decorators.
       
   685   PSMarkSweepDecorator* md = from_mark_sweep();
       
   686   _from_mark_sweep           = to_mark_sweep();
       
   687   _to_mark_sweep             = md;
       
   688 
       
   689   assert(from_mark_sweep()->space() == from_space(), "Sanity");
       
   690   assert(to_mark_sweep()->space() == to_space(), "Sanity");
       
   691 }
       
   692 
       
   693 size_t PSYoungGen::capacity_in_bytes() const {
       
   694   return eden_space()->capacity_in_bytes()
       
   695        + from_space()->capacity_in_bytes();  // to_space() is only used during scavenge
       
   696 }
       
   697 
       
   698 
       
   699 size_t PSYoungGen::used_in_bytes() const {
       
   700   return eden_space()->used_in_bytes()
       
   701        + from_space()->used_in_bytes();      // to_space() is only used during scavenge
       
   702 }
       
   703 
       
   704 
       
   705 size_t PSYoungGen::free_in_bytes() const {
       
   706   return eden_space()->free_in_bytes()
       
   707        + from_space()->free_in_bytes();      // to_space() is only used during scavenge
       
   708 }
       
   709 
       
   710 size_t PSYoungGen::capacity_in_words() const {
       
   711   return eden_space()->capacity_in_words()
       
   712        + from_space()->capacity_in_words();  // to_space() is only used during scavenge
       
   713 }
       
   714 
       
   715 
       
   716 size_t PSYoungGen::used_in_words() const {
       
   717   return eden_space()->used_in_words()
       
   718        + from_space()->used_in_words();      // to_space() is only used during scavenge
       
   719 }
       
   720 
       
   721 
       
   722 size_t PSYoungGen::free_in_words() const {
       
   723   return eden_space()->free_in_words()
       
   724        + from_space()->free_in_words();      // to_space() is only used during scavenge
       
   725 }
       
   726 
       
   727 void PSYoungGen::object_iterate(ObjectClosure* blk) {
       
   728   eden_space()->object_iterate(blk);
       
   729   from_space()->object_iterate(blk);
       
   730   to_space()->object_iterate(blk);
       
   731 }
       
   732 
       
   733 void PSYoungGen::precompact() {
       
   734   eden_mark_sweep()->precompact();
       
   735   from_mark_sweep()->precompact();
       
   736   to_mark_sweep()->precompact();
       
   737 }
       
   738 
       
   739 void PSYoungGen::adjust_pointers() {
       
   740   eden_mark_sweep()->adjust_pointers();
       
   741   from_mark_sweep()->adjust_pointers();
       
   742   to_mark_sweep()->adjust_pointers();
       
   743 }
       
   744 
       
   745 void PSYoungGen::compact() {
       
   746   eden_mark_sweep()->compact(ZapUnusedHeapArea);
       
   747   from_mark_sweep()->compact(ZapUnusedHeapArea);
       
   748   // Mark sweep stores preserved markOops in to space, don't disturb!
       
   749   to_mark_sweep()->compact(false);
       
   750 }
       
   751 
       
   752 void PSYoungGen::print() const { print_on(tty); }
       
   753 void PSYoungGen::print_on(outputStream* st) const {
       
   754   st->print(" %-15s", "PSYoungGen");
       
   755   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
       
   756              capacity_in_bytes()/K, used_in_bytes()/K);
       
   757   virtual_space()->print_space_boundaries_on(st);
       
   758   st->print("  eden"); eden_space()->print_on(st);
       
   759   st->print("  from"); from_space()->print_on(st);
       
   760   st->print("  to  "); to_space()->print_on(st);
       
   761 }
       
   762 
       
   763 // Note that a space is not printed before the [NAME:
       
   764 void PSYoungGen::print_used_change(size_t prev_used) const {
       
   765   log_info(gc, heap)("%s: "  SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
       
   766       name(), prev_used / K, used_in_bytes() / K, capacity_in_bytes() / K);
       
   767 }
       
   768 
       
   769 size_t PSYoungGen::available_for_expansion() {
       
   770   ShouldNotReachHere();
       
   771   return 0;
       
   772 }
       
   773 
       
   774 size_t PSYoungGen::available_for_contraction() {
       
   775   ShouldNotReachHere();
       
   776   return 0;
       
   777 }
       
   778 
       
   779 size_t PSYoungGen::available_to_min_gen() {
       
   780   assert(virtual_space()->committed_size() >= min_gen_size(), "Invariant");
       
   781   return virtual_space()->committed_size() - min_gen_size();
       
   782 }
       
   783 
       
   784 // This method assumes that from-space has live data and that
       
   785 // any shrinkage of the young gen is limited by location of
       
   786 // from-space.
       
   787 size_t PSYoungGen::available_to_live() {
       
   788   size_t delta_in_survivor = 0;
       
   789   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
       
   790   const size_t space_alignment = heap->space_alignment();
       
   791   const size_t gen_alignment = heap->generation_alignment();
       
   792 
       
   793   MutableSpace* space_shrinking = NULL;
       
   794   if (from_space()->end() > to_space()->end()) {
       
   795     space_shrinking = from_space();
       
   796   } else {
       
   797     space_shrinking = to_space();
       
   798   }
       
   799 
       
   800   // Include any space that is committed but not included in
       
   801   // the survivor spaces.
       
   802   assert(((HeapWord*)virtual_space()->high()) >= space_shrinking->end(),
       
   803     "Survivor space beyond high end");
       
   804   size_t unused_committed = pointer_delta(virtual_space()->high(),
       
   805     space_shrinking->end(), sizeof(char));
       
   806 
       
   807   if (space_shrinking->is_empty()) {
       
   808     // Don't let the space shrink to 0
       
   809     assert(space_shrinking->capacity_in_bytes() >= space_alignment,
       
   810       "Space is too small");
       
   811     delta_in_survivor = space_shrinking->capacity_in_bytes() - space_alignment;
       
   812   } else {
       
   813     delta_in_survivor = pointer_delta(space_shrinking->end(),
       
   814                                       space_shrinking->top(),
       
   815                                       sizeof(char));
       
   816   }
       
   817 
       
   818   size_t delta_in_bytes = unused_committed + delta_in_survivor;
       
   819   delta_in_bytes = align_down(delta_in_bytes, gen_alignment);
       
   820   return delta_in_bytes;
       
   821 }
       
   822 
       
   823 // Return the number of bytes available for resizing down the young
       
   824 // generation.  This is the minimum of
       
   825 //      input "bytes"
       
   826 //      bytes to the minimum young gen size
       
   827 //      bytes to the size currently being used + some small extra
       
   828 size_t PSYoungGen::limit_gen_shrink(size_t bytes) {
       
   829   // Allow shrinkage into the current eden but keep eden large enough
       
   830   // to maintain the minimum young gen size
       
   831   bytes = MIN3(bytes, available_to_min_gen(), available_to_live());
       
   832   return align_down(bytes, virtual_space()->alignment());
       
   833 }
       
   834 
       
   835 void PSYoungGen::reset_after_change() {
       
   836   ShouldNotReachHere();
       
   837 }
       
   838 
       
   839 void PSYoungGen::reset_survivors_after_shrink() {
       
   840   _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
       
   841                         (HeapWord*)virtual_space()->high_boundary());
       
   842   PSScavenge::reference_processor()->set_span(_reserved);
       
   843 
       
   844   MutableSpace* space_shrinking = NULL;
       
   845   if (from_space()->end() > to_space()->end()) {
       
   846     space_shrinking = from_space();
       
   847   } else {
       
   848     space_shrinking = to_space();
       
   849   }
       
   850 
       
   851   HeapWord* new_end = (HeapWord*)virtual_space()->high();
       
   852   assert(new_end >= space_shrinking->bottom(), "Shrink was too large");
       
   853   // Was there a shrink of the survivor space?
       
   854   if (new_end < space_shrinking->end()) {
       
   855     MemRegion mr(space_shrinking->bottom(), new_end);
       
   856     space_shrinking->initialize(mr,
       
   857                                 SpaceDecorator::DontClear,
       
   858                                 SpaceDecorator::Mangle);
       
   859   }
       
   860 }
       
   861 
       
   862 // This method currently does not expect to expand into eden (i.e.,
       
   863 // the virtual space boundaries is expected to be consistent
       
   864 // with the eden boundaries..
       
   865 void PSYoungGen::post_resize() {
       
   866   assert_locked_or_safepoint(Heap_lock);
       
   867   assert((eden_space()->bottom() < to_space()->bottom()) &&
       
   868          (eden_space()->bottom() < from_space()->bottom()),
       
   869          "Eden is assumed to be below the survivor spaces");
       
   870 
       
   871   MemRegion cmr((HeapWord*)virtual_space()->low(),
       
   872                 (HeapWord*)virtual_space()->high());
       
   873   ParallelScavengeHeap::heap()->barrier_set()->resize_covered_region(cmr);
       
   874   space_invariants();
       
   875 }
       
   876 
       
   877 
       
   878 
       
   879 void PSYoungGen::update_counters() {
       
   880   if (UsePerfData) {
       
   881     _eden_counters->update_all();
       
   882     _from_counters->update_all();
       
   883     _to_counters->update_all();
       
   884     _gen_counters->update_all();
       
   885   }
       
   886 }
       
   887 
       
   888 void PSYoungGen::verify() {
       
   889   eden_space()->verify();
       
   890   from_space()->verify();
       
   891   to_space()->verify();
       
   892 }
       
   893 
       
   894 #ifndef PRODUCT
       
   895 void PSYoungGen::record_spaces_top() {
       
   896   assert(ZapUnusedHeapArea, "Not mangling unused space");
       
   897   eden_space()->set_top_for_allocations();
       
   898   from_space()->set_top_for_allocations();
       
   899   to_space()->set_top_for_allocations();
       
   900 }
       
   901 #endif