src/hotspot/share/gc/g1/g1MonitoringSupport.cpp
changeset 47216 71c04702a3d5
parent 38183 cb68e4923223
child 48116 8a5e8cd321d9
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * Copyright (c) 2011, 2016, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "gc/g1/g1CollectedHeap.inline.hpp"
       
    27 #include "gc/g1/g1MonitoringSupport.hpp"
       
    28 #include "gc/g1/g1Policy.hpp"
       
    29 
       
    30 G1GenerationCounters::G1GenerationCounters(G1MonitoringSupport* g1mm,
       
    31                                            const char* name,
       
    32                                            int ordinal, int spaces,
       
    33                                            size_t min_capacity,
       
    34                                            size_t max_capacity,
       
    35                                            size_t curr_capacity)
       
    36   : GenerationCounters(name, ordinal, spaces, min_capacity,
       
    37                        max_capacity, curr_capacity), _g1mm(g1mm) { }
       
    38 
       
    39 // We pad the capacity three times given that the young generation
       
    40 // contains three spaces (eden and two survivors).
       
    41 G1YoungGenerationCounters::G1YoungGenerationCounters(G1MonitoringSupport* g1mm,
       
    42                                                      const char* name)
       
    43   : G1GenerationCounters(g1mm, name, 0 /* ordinal */, 3 /* spaces */,
       
    44                G1MonitoringSupport::pad_capacity(0, 3) /* min_capacity */,
       
    45                G1MonitoringSupport::pad_capacity(g1mm->young_gen_max(), 3),
       
    46                G1MonitoringSupport::pad_capacity(0, 3) /* curr_capacity */) {
       
    47   if (UsePerfData) {
       
    48     update_all();
       
    49   }
       
    50 }
       
    51 
       
    52 G1OldGenerationCounters::G1OldGenerationCounters(G1MonitoringSupport* g1mm,
       
    53                                                  const char* name)
       
    54   : G1GenerationCounters(g1mm, name, 1 /* ordinal */, 1 /* spaces */,
       
    55                G1MonitoringSupport::pad_capacity(0) /* min_capacity */,
       
    56                G1MonitoringSupport::pad_capacity(g1mm->old_gen_max()),
       
    57                G1MonitoringSupport::pad_capacity(0) /* curr_capacity */) {
       
    58   if (UsePerfData) {
       
    59     update_all();
       
    60   }
       
    61 }
       
    62 
       
    63 void G1YoungGenerationCounters::update_all() {
       
    64   size_t committed =
       
    65             G1MonitoringSupport::pad_capacity(_g1mm->young_gen_committed(), 3);
       
    66   _current_size->set_value(committed);
       
    67 }
       
    68 
       
    69 void G1OldGenerationCounters::update_all() {
       
    70   size_t committed =
       
    71             G1MonitoringSupport::pad_capacity(_g1mm->old_gen_committed());
       
    72   _current_size->set_value(committed);
       
    73 }
       
    74 
       
    75 G1MonitoringSupport::G1MonitoringSupport(G1CollectedHeap* g1h) :
       
    76   _g1h(g1h),
       
    77   _incremental_collection_counters(NULL),
       
    78   _full_collection_counters(NULL),
       
    79   _old_collection_counters(NULL),
       
    80   _old_space_counters(NULL),
       
    81   _young_collection_counters(NULL),
       
    82   _eden_counters(NULL),
       
    83   _from_counters(NULL),
       
    84   _to_counters(NULL),
       
    85 
       
    86   _overall_reserved(0),
       
    87   _overall_committed(0),    _overall_used(0),
       
    88   _young_region_num(0),
       
    89   _young_gen_committed(0),
       
    90   _eden_committed(0),       _eden_used(0),
       
    91   _survivor_committed(0),   _survivor_used(0),
       
    92   _old_committed(0),        _old_used(0) {
       
    93 
       
    94   _overall_reserved = g1h->max_capacity();
       
    95   recalculate_sizes();
       
    96 
       
    97   // Counters for GC collections
       
    98   //
       
    99   //  name "collector.0".  In a generational collector this would be the
       
   100   // young generation collection.
       
   101   _incremental_collection_counters =
       
   102     new CollectorCounters("G1 incremental collections", 0);
       
   103   //   name "collector.1".  In a generational collector this would be the
       
   104   // old generation collection.
       
   105   _full_collection_counters =
       
   106     new CollectorCounters("G1 stop-the-world full collections", 1);
       
   107 
       
   108   // timer sampling for all counters supporting sampling only update the
       
   109   // used value.  See the take_sample() method.  G1 requires both used and
       
   110   // capacity updated so sampling is not currently used.  It might
       
   111   // be sufficient to update all counters in take_sample() even though
       
   112   // take_sample() only returns "used".  When sampling was used, there
       
   113   // were some anomolous values emitted which may have been the consequence
       
   114   // of not updating all values simultaneously (i.e., see the calculation done
       
   115   // in eden_space_used(), is it possible that the values used to
       
   116   // calculate either eden_used or survivor_used are being updated by
       
   117   // the collector when the sample is being done?).
       
   118   const bool sampled = false;
       
   119 
       
   120   // "Generation" and "Space" counters.
       
   121   //
       
   122   //  name "generation.1" This is logically the old generation in
       
   123   // generational GC terms.  The "1, 1" parameters are for
       
   124   // the n-th generation (=1) with 1 space.
       
   125   // Counters are created from minCapacity, maxCapacity, and capacity
       
   126   _old_collection_counters = new G1OldGenerationCounters(this, "old");
       
   127 
       
   128   //  name  "generation.1.space.0"
       
   129   // Counters are created from maxCapacity, capacity, initCapacity,
       
   130   // and used.
       
   131   _old_space_counters = new HSpaceCounters("space", 0 /* ordinal */,
       
   132     pad_capacity(overall_reserved()) /* max_capacity */,
       
   133     pad_capacity(old_space_committed()) /* init_capacity */,
       
   134    _old_collection_counters);
       
   135 
       
   136   //   Young collection set
       
   137   //  name "generation.0".  This is logically the young generation.
       
   138   //  The "0, 3" are parameters for the n-th generation (=0) with 3 spaces.
       
   139   // See  _old_collection_counters for additional counters
       
   140   _young_collection_counters = new G1YoungGenerationCounters(this, "young");
       
   141 
       
   142   //  name "generation.0.space.0"
       
   143   // See _old_space_counters for additional counters
       
   144   _eden_counters = new HSpaceCounters("eden", 0 /* ordinal */,
       
   145     pad_capacity(overall_reserved()) /* max_capacity */,
       
   146     pad_capacity(eden_space_committed()) /* init_capacity */,
       
   147     _young_collection_counters);
       
   148 
       
   149   //  name "generation.0.space.1"
       
   150   // See _old_space_counters for additional counters
       
   151   // Set the arguments to indicate that this survivor space is not used.
       
   152   _from_counters = new HSpaceCounters("s0", 1 /* ordinal */,
       
   153     pad_capacity(0) /* max_capacity */,
       
   154     pad_capacity(0) /* init_capacity */,
       
   155     _young_collection_counters);
       
   156 
       
   157   //  name "generation.0.space.2"
       
   158   // See _old_space_counters for additional counters
       
   159   _to_counters = new HSpaceCounters("s1", 2 /* ordinal */,
       
   160     pad_capacity(overall_reserved()) /* max_capacity */,
       
   161     pad_capacity(survivor_space_committed()) /* init_capacity */,
       
   162     _young_collection_counters);
       
   163 
       
   164   if (UsePerfData) {
       
   165     // Given that this survivor space is not used, we update it here
       
   166     // once to reflect that its used space is 0 so that we don't have to
       
   167     // worry about updating it again later.
       
   168     _from_counters->update_used(0);
       
   169   }
       
   170 }
       
   171 
       
   172 void G1MonitoringSupport::recalculate_sizes() {
       
   173   G1CollectedHeap* g1 = g1h();
       
   174 
       
   175   // Recalculate all the sizes from scratch. We assume that this is
       
   176   // called at a point where no concurrent updates to the various
       
   177   // values we read here are possible (i.e., at a STW phase at the end
       
   178   // of a GC).
       
   179 
       
   180   uint young_list_length = g1->young_regions_count();
       
   181   uint survivor_list_length = g1->survivor_regions_count();
       
   182   assert(young_list_length >= survivor_list_length, "invariant");
       
   183   uint eden_list_length = young_list_length - survivor_list_length;
       
   184   // Max length includes any potential extensions to the young gen
       
   185   // we'll do when the GC locker is active.
       
   186   uint young_list_max_length = g1->g1_policy()->young_list_max_length();
       
   187   assert(young_list_max_length >= survivor_list_length, "invariant");
       
   188   uint eden_list_max_length = young_list_max_length - survivor_list_length;
       
   189 
       
   190   _overall_used = g1->used_unlocked();
       
   191   _eden_used = (size_t) eden_list_length * HeapRegion::GrainBytes;
       
   192   _survivor_used = (size_t) survivor_list_length * HeapRegion::GrainBytes;
       
   193   _young_region_num = young_list_length;
       
   194   _old_used = subtract_up_to_zero(_overall_used, _eden_used + _survivor_used);
       
   195 
       
   196   // First calculate the committed sizes that can be calculated independently.
       
   197   _survivor_committed = _survivor_used;
       
   198   _old_committed = HeapRegion::align_up_to_region_byte_size(_old_used);
       
   199 
       
   200   // Next, start with the overall committed size.
       
   201   _overall_committed = g1->capacity();
       
   202   size_t committed = _overall_committed;
       
   203 
       
   204   // Remove the committed size we have calculated so far (for the
       
   205   // survivor and old space).
       
   206   assert(committed >= (_survivor_committed + _old_committed), "sanity");
       
   207   committed -= _survivor_committed + _old_committed;
       
   208 
       
   209   // Next, calculate and remove the committed size for the eden.
       
   210   _eden_committed = (size_t) eden_list_max_length * HeapRegion::GrainBytes;
       
   211   // Somewhat defensive: be robust in case there are inaccuracies in
       
   212   // the calculations
       
   213   _eden_committed = MIN2(_eden_committed, committed);
       
   214   committed -= _eden_committed;
       
   215 
       
   216   // Finally, give the rest to the old space...
       
   217   _old_committed += committed;
       
   218   // ..and calculate the young gen committed.
       
   219   _young_gen_committed = _eden_committed + _survivor_committed;
       
   220 
       
   221   assert(_overall_committed ==
       
   222          (_eden_committed + _survivor_committed + _old_committed),
       
   223          "the committed sizes should add up");
       
   224   // Somewhat defensive: cap the eden used size to make sure it
       
   225   // never exceeds the committed size.
       
   226   _eden_used = MIN2(_eden_used, _eden_committed);
       
   227   // _survivor_committed and _old_committed are calculated in terms of
       
   228   // the corresponding _*_used value, so the next two conditions
       
   229   // should hold.
       
   230   assert(_survivor_used <= _survivor_committed, "post-condition");
       
   231   assert(_old_used <= _old_committed, "post-condition");
       
   232 }
       
   233 
       
   234 void G1MonitoringSupport::recalculate_eden_size() {
       
   235   G1CollectedHeap* g1 = g1h();
       
   236 
       
   237   // When a new eden region is allocated, only the eden_used size is
       
   238   // affected (since we have recalculated everything else at the last GC).
       
   239 
       
   240   uint young_region_num = g1h()->young_regions_count();
       
   241   if (young_region_num > _young_region_num) {
       
   242     uint diff = young_region_num - _young_region_num;
       
   243     _eden_used += (size_t) diff * HeapRegion::GrainBytes;
       
   244     // Somewhat defensive: cap the eden used size to make sure it
       
   245     // never exceeds the committed size.
       
   246     _eden_used = MIN2(_eden_used, _eden_committed);
       
   247     _young_region_num = young_region_num;
       
   248   }
       
   249 }
       
   250 
       
   251 void G1MonitoringSupport::update_sizes() {
       
   252   recalculate_sizes();
       
   253   if (UsePerfData) {
       
   254     eden_counters()->update_capacity(pad_capacity(eden_space_committed()));
       
   255     eden_counters()->update_used(eden_space_used());
       
   256     // only the to survivor space (s1) is active, so we don't need to
       
   257     // update the counters for the from survivor space (s0)
       
   258     to_counters()->update_capacity(pad_capacity(survivor_space_committed()));
       
   259     to_counters()->update_used(survivor_space_used());
       
   260     old_space_counters()->update_capacity(pad_capacity(old_space_committed()));
       
   261     old_space_counters()->update_used(old_space_used());
       
   262     old_collection_counters()->update_all();
       
   263     young_collection_counters()->update_all();
       
   264     MetaspaceCounters::update_performance_counters();
       
   265     CompressedClassSpaceCounters::update_performance_counters();
       
   266   }
       
   267 }
       
   268 
       
   269 void G1MonitoringSupport::update_eden_size() {
       
   270   recalculate_eden_size();
       
   271   if (UsePerfData) {
       
   272     eden_counters()->update_used(eden_space_used());
       
   273   }
       
   274 }