src/hotspot/share/gc/g1/g1ConcurrentMark.hpp
changeset 47216 71c04702a3d5
parent 46752 a2b799e3f0be
child 47678 c84eeb55c55e
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #ifndef SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
       
    26 #define SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
       
    27 
       
    28 #include "classfile/javaClasses.hpp"
       
    29 #include "gc/g1/g1ConcurrentMarkBitMap.hpp"
       
    30 #include "gc/g1/g1ConcurrentMarkObjArrayProcessor.hpp"
       
    31 #include "gc/g1/g1RegionToSpaceMapper.hpp"
       
    32 #include "gc/g1/heapRegionSet.hpp"
       
    33 #include "gc/shared/taskqueue.hpp"
       
    34 
       
    35 class G1CollectedHeap;
       
    36 class G1CMTask;
       
    37 class G1ConcurrentMark;
       
    38 class ConcurrentGCTimer;
       
    39 class G1OldTracer;
       
    40 class G1SurvivorRegions;
       
    41 
       
    42 #ifdef _MSC_VER
       
    43 #pragma warning(push)
       
    44 // warning C4522: multiple assignment operators specified
       
    45 #pragma warning(disable:4522)
       
    46 #endif
       
    47 
       
    48 // This is a container class for either an oop or a continuation address for
       
    49 // mark stack entries. Both are pushed onto the mark stack.
       
    50 class G1TaskQueueEntry VALUE_OBJ_CLASS_SPEC {
       
    51 private:
       
    52   void* _holder;
       
    53 
       
    54   static const uintptr_t ArraySliceBit = 1;
       
    55 
       
    56   G1TaskQueueEntry(oop obj) : _holder(obj) {
       
    57     assert(_holder != NULL, "Not allowed to set NULL task queue element");
       
    58   }
       
    59   G1TaskQueueEntry(HeapWord* addr) : _holder((void*)((uintptr_t)addr | ArraySliceBit)) { }
       
    60 public:
       
    61   G1TaskQueueEntry(const G1TaskQueueEntry& other) { _holder = other._holder; }
       
    62   G1TaskQueueEntry() : _holder(NULL) { }
       
    63 
       
    64   static G1TaskQueueEntry from_slice(HeapWord* what) { return G1TaskQueueEntry(what); }
       
    65   static G1TaskQueueEntry from_oop(oop obj) { return G1TaskQueueEntry(obj); }
       
    66 
       
    67   G1TaskQueueEntry& operator=(const G1TaskQueueEntry& t) {
       
    68     _holder = t._holder;
       
    69     return *this;
       
    70   }
       
    71 
       
    72   volatile G1TaskQueueEntry& operator=(const volatile G1TaskQueueEntry& t) volatile {
       
    73     _holder = t._holder;
       
    74     return *this;
       
    75   }
       
    76 
       
    77   oop obj() const {
       
    78     assert(!is_array_slice(), "Trying to read array slice " PTR_FORMAT " as oop", p2i(_holder));
       
    79     return (oop)_holder;
       
    80   }
       
    81 
       
    82   HeapWord* slice() const {
       
    83     assert(is_array_slice(), "Trying to read oop " PTR_FORMAT " as array slice", p2i(_holder));
       
    84     return (HeapWord*)((uintptr_t)_holder & ~ArraySliceBit);
       
    85   }
       
    86 
       
    87   bool is_oop() const { return !is_array_slice(); }
       
    88   bool is_array_slice() const { return ((uintptr_t)_holder & ArraySliceBit) != 0; }
       
    89   bool is_null() const { return _holder == NULL; }
       
    90 };
       
    91 
       
    92 #ifdef _MSC_VER
       
    93 #pragma warning(pop)
       
    94 #endif
       
    95 
       
    96 typedef GenericTaskQueue<G1TaskQueueEntry, mtGC> G1CMTaskQueue;
       
    97 typedef GenericTaskQueueSet<G1CMTaskQueue, mtGC> G1CMTaskQueueSet;
       
    98 
       
    99 // Closure used by CM during concurrent reference discovery
       
   100 // and reference processing (during remarking) to determine
       
   101 // if a particular object is alive. It is primarily used
       
   102 // to determine if referents of discovered reference objects
       
   103 // are alive. An instance is also embedded into the
       
   104 // reference processor as the _is_alive_non_header field
       
   105 class G1CMIsAliveClosure: public BoolObjectClosure {
       
   106   G1CollectedHeap* _g1;
       
   107  public:
       
   108   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
       
   109 
       
   110   bool do_object_b(oop obj);
       
   111 };
       
   112 
       
   113 // Represents the overflow mark stack used by concurrent marking.
       
   114 //
       
   115 // Stores oops in a huge buffer in virtual memory that is always fully committed.
       
   116 // Resizing may only happen during a STW pause when the stack is empty.
       
   117 //
       
   118 // Memory is allocated on a "chunk" basis, i.e. a set of oops. For this, the mark
       
   119 // stack memory is split into evenly sized chunks of oops. Users can only
       
   120 // add or remove entries on that basis.
       
   121 // Chunks are filled in increasing address order. Not completely filled chunks
       
   122 // have a NULL element as a terminating element.
       
   123 //
       
   124 // Every chunk has a header containing a single pointer element used for memory
       
   125 // management. This wastes some space, but is negligible (< .1% with current sizing).
       
   126 //
       
   127 // Memory management is done using a mix of tracking a high water-mark indicating
       
   128 // that all chunks at a lower address are valid chunks, and a singly linked free
       
   129 // list connecting all empty chunks.
       
   130 class G1CMMarkStack VALUE_OBJ_CLASS_SPEC {
       
   131 public:
       
   132   // Number of TaskQueueEntries that can fit in a single chunk.
       
   133   static const size_t EntriesPerChunk = 1024 - 1 /* One reference for the next pointer */;
       
   134 private:
       
   135   struct TaskQueueEntryChunk {
       
   136     TaskQueueEntryChunk* next;
       
   137     G1TaskQueueEntry data[EntriesPerChunk];
       
   138   };
       
   139 
       
   140   size_t _max_chunk_capacity;    // Maximum number of TaskQueueEntryChunk elements on the stack.
       
   141 
       
   142   TaskQueueEntryChunk* _base;    // Bottom address of allocated memory area.
       
   143   size_t _chunk_capacity;        // Current maximum number of TaskQueueEntryChunk elements.
       
   144 
       
   145   char _pad0[DEFAULT_CACHE_LINE_SIZE];
       
   146   TaskQueueEntryChunk* volatile _free_list;  // Linked list of free chunks that can be allocated by users.
       
   147   char _pad1[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*)];
       
   148   TaskQueueEntryChunk* volatile _chunk_list; // List of chunks currently containing data.
       
   149   volatile size_t _chunks_in_chunk_list;
       
   150   char _pad2[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*) - sizeof(size_t)];
       
   151 
       
   152   volatile size_t _hwm;          // High water mark within the reserved space.
       
   153   char _pad4[DEFAULT_CACHE_LINE_SIZE - sizeof(size_t)];
       
   154 
       
   155   // Allocate a new chunk from the reserved memory, using the high water mark. Returns
       
   156   // NULL if out of memory.
       
   157   TaskQueueEntryChunk* allocate_new_chunk();
       
   158 
       
   159   // Atomically add the given chunk to the list.
       
   160   void add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem);
       
   161   // Atomically remove and return a chunk from the given list. Returns NULL if the
       
   162   // list is empty.
       
   163   TaskQueueEntryChunk* remove_chunk_from_list(TaskQueueEntryChunk* volatile* list);
       
   164 
       
   165   void add_chunk_to_chunk_list(TaskQueueEntryChunk* elem);
       
   166   void add_chunk_to_free_list(TaskQueueEntryChunk* elem);
       
   167 
       
   168   TaskQueueEntryChunk* remove_chunk_from_chunk_list();
       
   169   TaskQueueEntryChunk* remove_chunk_from_free_list();
       
   170 
       
   171   // Resizes the mark stack to the given new capacity. Releases any previous
       
   172   // memory if successful.
       
   173   bool resize(size_t new_capacity);
       
   174 
       
   175  public:
       
   176   G1CMMarkStack();
       
   177   ~G1CMMarkStack();
       
   178 
       
   179   // Alignment and minimum capacity of this mark stack in number of oops.
       
   180   static size_t capacity_alignment();
       
   181 
       
   182   // Allocate and initialize the mark stack with the given number of oops.
       
   183   bool initialize(size_t initial_capacity, size_t max_capacity);
       
   184 
       
   185   // Pushes the given buffer containing at most EntriesPerChunk elements on the mark
       
   186   // stack. If less than EntriesPerChunk elements are to be pushed, the array must
       
   187   // be terminated with a NULL.
       
   188   // Returns whether the buffer contents were successfully pushed to the global mark
       
   189   // stack.
       
   190   bool par_push_chunk(G1TaskQueueEntry* buffer);
       
   191 
       
   192   // Pops a chunk from this mark stack, copying them into the given buffer. This
       
   193   // chunk may contain up to EntriesPerChunk elements. If there are less, the last
       
   194   // element in the array is a NULL pointer.
       
   195   bool par_pop_chunk(G1TaskQueueEntry* buffer);
       
   196 
       
   197   // Return whether the chunk list is empty. Racy due to unsynchronized access to
       
   198   // _chunk_list.
       
   199   bool is_empty() const { return _chunk_list == NULL; }
       
   200 
       
   201   size_t capacity() const  { return _chunk_capacity; }
       
   202 
       
   203   // Expand the stack, typically in response to an overflow condition
       
   204   void expand();
       
   205 
       
   206   // Return the approximate number of oops on this mark stack. Racy due to
       
   207   // unsynchronized access to _chunks_in_chunk_list.
       
   208   size_t size() const { return _chunks_in_chunk_list * EntriesPerChunk; }
       
   209 
       
   210   void set_empty();
       
   211 
       
   212   // Apply Fn to every oop on the mark stack. The mark stack must not
       
   213   // be modified while iterating.
       
   214   template<typename Fn> void iterate(Fn fn) const PRODUCT_RETURN;
       
   215 };
       
   216 
       
   217 // Root Regions are regions that are not empty at the beginning of a
       
   218 // marking cycle and which we might collect during an evacuation pause
       
   219 // while the cycle is active. Given that, during evacuation pauses, we
       
   220 // do not copy objects that are explicitly marked, what we have to do
       
   221 // for the root regions is to scan them and mark all objects reachable
       
   222 // from them. According to the SATB assumptions, we only need to visit
       
   223 // each object once during marking. So, as long as we finish this scan
       
   224 // before the next evacuation pause, we can copy the objects from the
       
   225 // root regions without having to mark them or do anything else to them.
       
   226 //
       
   227 // Currently, we only support root region scanning once (at the start
       
   228 // of the marking cycle) and the root regions are all the survivor
       
   229 // regions populated during the initial-mark pause.
       
   230 class G1CMRootRegions VALUE_OBJ_CLASS_SPEC {
       
   231 private:
       
   232   const G1SurvivorRegions* _survivors;
       
   233   G1ConcurrentMark*        _cm;
       
   234 
       
   235   volatile bool            _scan_in_progress;
       
   236   volatile bool            _should_abort;
       
   237   volatile int             _claimed_survivor_index;
       
   238 
       
   239   void notify_scan_done();
       
   240 
       
   241 public:
       
   242   G1CMRootRegions();
       
   243   // We actually do most of the initialization in this method.
       
   244   void init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm);
       
   245 
       
   246   // Reset the claiming / scanning of the root regions.
       
   247   void prepare_for_scan();
       
   248 
       
   249   // Forces get_next() to return NULL so that the iteration aborts early.
       
   250   void abort() { _should_abort = true; }
       
   251 
       
   252   // Return true if the CM thread are actively scanning root regions,
       
   253   // false otherwise.
       
   254   bool scan_in_progress() { return _scan_in_progress; }
       
   255 
       
   256   // Claim the next root region to scan atomically, or return NULL if
       
   257   // all have been claimed.
       
   258   HeapRegion* claim_next();
       
   259 
       
   260   // The number of root regions to scan.
       
   261   uint num_root_regions() const;
       
   262 
       
   263   void cancel_scan();
       
   264 
       
   265   // Flag that we're done with root region scanning and notify anyone
       
   266   // who's waiting on it. If aborted is false, assume that all regions
       
   267   // have been claimed.
       
   268   void scan_finished();
       
   269 
       
   270   // If CM threads are still scanning root regions, wait until they
       
   271   // are done. Return true if we had to wait, false otherwise.
       
   272   bool wait_until_scan_finished();
       
   273 };
       
   274 
       
   275 class ConcurrentMarkThread;
       
   276 
       
   277 class G1ConcurrentMark: public CHeapObj<mtGC> {
       
   278   friend class ConcurrentMarkThread;
       
   279   friend class G1ParNoteEndTask;
       
   280   friend class G1VerifyLiveDataClosure;
       
   281   friend class G1CMRefProcTaskProxy;
       
   282   friend class G1CMRefProcTaskExecutor;
       
   283   friend class G1CMKeepAliveAndDrainClosure;
       
   284   friend class G1CMDrainMarkingStackClosure;
       
   285   friend class G1CMBitMapClosure;
       
   286   friend class G1CMConcurrentMarkingTask;
       
   287   friend class G1CMRemarkTask;
       
   288   friend class G1CMTask;
       
   289 
       
   290 protected:
       
   291   ConcurrentMarkThread* _cmThread;   // The thread doing the work
       
   292   G1CollectedHeap*      _g1h;        // The heap
       
   293   uint                  _parallel_marking_threads; // The number of marking
       
   294                                                    // threads we're using
       
   295   uint                  _max_parallel_marking_threads; // Max number of marking
       
   296                                                        // threads we'll ever use
       
   297   double                _sleep_factor; // How much we have to sleep, with
       
   298                                        // respect to the work we just did, to
       
   299                                        // meet the marking overhead goal
       
   300   double                _marking_task_overhead; // Marking target overhead for
       
   301                                                 // a single task
       
   302 
       
   303   FreeRegionList        _cleanup_list;
       
   304 
       
   305   // Concurrent marking support structures
       
   306   G1CMBitMap              _markBitMap1;
       
   307   G1CMBitMap              _markBitMap2;
       
   308   G1CMBitMap*             _prevMarkBitMap; // Completed mark bitmap
       
   309   G1CMBitMap*             _nextMarkBitMap; // Under-construction mark bitmap
       
   310 
       
   311   // Heap bounds
       
   312   HeapWord*               _heap_start;
       
   313   HeapWord*               _heap_end;
       
   314 
       
   315   // Root region tracking and claiming
       
   316   G1CMRootRegions         _root_regions;
       
   317 
       
   318   // For gray objects
       
   319   G1CMMarkStack           _global_mark_stack; // Grey objects behind global finger
       
   320   HeapWord* volatile      _finger;  // The global finger, region aligned,
       
   321                                     // always points to the end of the
       
   322                                     // last claimed region
       
   323 
       
   324   // Marking tasks
       
   325   uint                    _max_worker_id;// Maximum worker id
       
   326   uint                    _active_tasks; // Task num currently active
       
   327   G1CMTask**              _tasks;        // Task queue array (max_worker_id len)
       
   328   G1CMTaskQueueSet*       _task_queues;  // Task queue set
       
   329   ParallelTaskTerminator  _terminator;   // For termination
       
   330 
       
   331   // Two sync barriers that are used to synchronize tasks when an
       
   332   // overflow occurs. The algorithm is the following. All tasks enter
       
   333   // the first one to ensure that they have all stopped manipulating
       
   334   // the global data structures. After they exit it, they re-initialize
       
   335   // their data structures and task 0 re-initializes the global data
       
   336   // structures. Then, they enter the second sync barrier. This
       
   337   // ensure, that no task starts doing work before all data
       
   338   // structures (local and global) have been re-initialized. When they
       
   339   // exit it, they are free to start working again.
       
   340   WorkGangBarrierSync     _first_overflow_barrier_sync;
       
   341   WorkGangBarrierSync     _second_overflow_barrier_sync;
       
   342 
       
   343   // This is set by any task, when an overflow on the global data
       
   344   // structures is detected
       
   345   volatile bool           _has_overflown;
       
   346   // True: marking is concurrent, false: we're in remark
       
   347   volatile bool           _concurrent;
       
   348   // Set at the end of a Full GC so that marking aborts
       
   349   volatile bool           _has_aborted;
       
   350 
       
   351   // Used when remark aborts due to an overflow to indicate that
       
   352   // another concurrent marking phase should start
       
   353   volatile bool           _restart_for_overflow;
       
   354 
       
   355   // This is true from the very start of concurrent marking until the
       
   356   // point when all the tasks complete their work. It is really used
       
   357   // to determine the points between the end of concurrent marking and
       
   358   // time of remark.
       
   359   volatile bool           _concurrent_marking_in_progress;
       
   360 
       
   361   ConcurrentGCTimer*      _gc_timer_cm;
       
   362 
       
   363   G1OldTracer*            _gc_tracer_cm;
       
   364 
       
   365   // All of these times are in ms
       
   366   NumberSeq _init_times;
       
   367   NumberSeq _remark_times;
       
   368   NumberSeq _remark_mark_times;
       
   369   NumberSeq _remark_weak_ref_times;
       
   370   NumberSeq _cleanup_times;
       
   371   double    _total_counting_time;
       
   372   double    _total_rs_scrub_time;
       
   373 
       
   374   double*   _accum_task_vtime;   // Accumulated task vtime
       
   375 
       
   376   WorkGang* _parallel_workers;
       
   377 
       
   378   void weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes);
       
   379   void weakRefsWork(bool clear_all_soft_refs);
       
   380 
       
   381   void swapMarkBitMaps();
       
   382 
       
   383   // It resets the global marking data structures, as well as the
       
   384   // task local ones; should be called during initial mark.
       
   385   void reset();
       
   386 
       
   387   // Resets all the marking data structures. Called when we have to restart
       
   388   // marking or when marking completes (via set_non_marking_state below).
       
   389   void reset_marking_state();
       
   390 
       
   391   // We do this after we're done with marking so that the marking data
       
   392   // structures are initialized to a sensible and predictable state.
       
   393   void set_non_marking_state();
       
   394 
       
   395   // Called to indicate how many threads are currently active.
       
   396   void set_concurrency(uint active_tasks);
       
   397 
       
   398   // It should be called to indicate which phase we're in (concurrent
       
   399   // mark or remark) and how many threads are currently active.
       
   400   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
       
   401 
       
   402   // Prints all gathered CM-related statistics
       
   403   void print_stats();
       
   404 
       
   405   bool cleanup_list_is_empty() {
       
   406     return _cleanup_list.is_empty();
       
   407   }
       
   408 
       
   409   // Accessor methods
       
   410   uint parallel_marking_threads() const     { return _parallel_marking_threads; }
       
   411   uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
       
   412   double sleep_factor()                     { return _sleep_factor; }
       
   413   double marking_task_overhead()            { return _marking_task_overhead;}
       
   414 
       
   415   HeapWord*               finger()          { return _finger;   }
       
   416   bool                    concurrent()      { return _concurrent; }
       
   417   uint                    active_tasks()    { return _active_tasks; }
       
   418   ParallelTaskTerminator* terminator()      { return &_terminator; }
       
   419 
       
   420   // It claims the next available region to be scanned by a marking
       
   421   // task/thread. It might return NULL if the next region is empty or
       
   422   // we have run out of regions. In the latter case, out_of_regions()
       
   423   // determines whether we've really run out of regions or the task
       
   424   // should call claim_region() again. This might seem a bit
       
   425   // awkward. Originally, the code was written so that claim_region()
       
   426   // either successfully returned with a non-empty region or there
       
   427   // were no more regions to be claimed. The problem with this was
       
   428   // that, in certain circumstances, it iterated over large chunks of
       
   429   // the heap finding only empty regions and, while it was working, it
       
   430   // was preventing the calling task to call its regular clock
       
   431   // method. So, this way, each task will spend very little time in
       
   432   // claim_region() and is allowed to call the regular clock method
       
   433   // frequently.
       
   434   HeapRegion* claim_region(uint worker_id);
       
   435 
       
   436   // It determines whether we've run out of regions to scan. Note that
       
   437   // the finger can point past the heap end in case the heap was expanded
       
   438   // to satisfy an allocation without doing a GC. This is fine, because all
       
   439   // objects in those regions will be considered live anyway because of
       
   440   // SATB guarantees (i.e. their TAMS will be equal to bottom).
       
   441   bool        out_of_regions() { return _finger >= _heap_end; }
       
   442 
       
   443   // Returns the task with the given id
       
   444   G1CMTask* task(int id) {
       
   445     assert(0 <= id && id < (int) _active_tasks,
       
   446            "task id not within active bounds");
       
   447     return _tasks[id];
       
   448   }
       
   449 
       
   450   // Returns the task queue with the given id
       
   451   G1CMTaskQueue* task_queue(int id) {
       
   452     assert(0 <= id && id < (int) _active_tasks,
       
   453            "task queue id not within active bounds");
       
   454     return (G1CMTaskQueue*) _task_queues->queue(id);
       
   455   }
       
   456 
       
   457   // Returns the task queue set
       
   458   G1CMTaskQueueSet* task_queues()  { return _task_queues; }
       
   459 
       
   460   // Access / manipulation of the overflow flag which is set to
       
   461   // indicate that the global stack has overflown
       
   462   bool has_overflown()           { return _has_overflown; }
       
   463   void set_has_overflown()       { _has_overflown = true; }
       
   464   void clear_has_overflown()     { _has_overflown = false; }
       
   465   bool restart_for_overflow()    { return _restart_for_overflow; }
       
   466 
       
   467   // Methods to enter the two overflow sync barriers
       
   468   void enter_first_sync_barrier(uint worker_id);
       
   469   void enter_second_sync_barrier(uint worker_id);
       
   470 
       
   471   // Card index of the bottom of the G1 heap. Used for biasing indices into
       
   472   // the card bitmaps.
       
   473   intptr_t _heap_bottom_card_num;
       
   474 
       
   475   // Set to true when initialization is complete
       
   476   bool _completed_initialization;
       
   477 
       
   478   // end_timer, true to end gc timer after ending concurrent phase.
       
   479   void register_concurrent_phase_end_common(bool end_timer);
       
   480 
       
   481   // Clear the given bitmap in parallel using the given WorkGang. If may_yield is
       
   482   // true, periodically insert checks to see if this method should exit prematurely.
       
   483   void clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield);
       
   484 public:
       
   485   // Manipulation of the global mark stack.
       
   486   // The push and pop operations are used by tasks for transfers
       
   487   // between task-local queues and the global mark stack.
       
   488   bool mark_stack_push(G1TaskQueueEntry* arr) {
       
   489     if (!_global_mark_stack.par_push_chunk(arr)) {
       
   490       set_has_overflown();
       
   491       return false;
       
   492     }
       
   493     return true;
       
   494   }
       
   495   bool mark_stack_pop(G1TaskQueueEntry* arr) {
       
   496     return _global_mark_stack.par_pop_chunk(arr);
       
   497   }
       
   498   size_t mark_stack_size()                { return _global_mark_stack.size(); }
       
   499   size_t partial_mark_stack_size_target() { return _global_mark_stack.capacity()/3; }
       
   500   bool mark_stack_empty()                 { return _global_mark_stack.is_empty(); }
       
   501 
       
   502   G1CMRootRegions* root_regions() { return &_root_regions; }
       
   503 
       
   504   bool concurrent_marking_in_progress() {
       
   505     return _concurrent_marking_in_progress;
       
   506   }
       
   507   void set_concurrent_marking_in_progress() {
       
   508     _concurrent_marking_in_progress = true;
       
   509   }
       
   510   void clear_concurrent_marking_in_progress() {
       
   511     _concurrent_marking_in_progress = false;
       
   512   }
       
   513 
       
   514   void concurrent_cycle_start();
       
   515   void concurrent_cycle_end();
       
   516 
       
   517   void update_accum_task_vtime(int i, double vtime) {
       
   518     _accum_task_vtime[i] += vtime;
       
   519   }
       
   520 
       
   521   double all_task_accum_vtime() {
       
   522     double ret = 0.0;
       
   523     for (uint i = 0; i < _max_worker_id; ++i)
       
   524       ret += _accum_task_vtime[i];
       
   525     return ret;
       
   526   }
       
   527 
       
   528   // Attempts to steal an object from the task queues of other tasks
       
   529   bool try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry);
       
   530 
       
   531   G1ConcurrentMark(G1CollectedHeap* g1h,
       
   532                    G1RegionToSpaceMapper* prev_bitmap_storage,
       
   533                    G1RegionToSpaceMapper* next_bitmap_storage);
       
   534   ~G1ConcurrentMark();
       
   535 
       
   536   ConcurrentMarkThread* cmThread() { return _cmThread; }
       
   537 
       
   538   const G1CMBitMap* const prevMarkBitMap() const { return _prevMarkBitMap; }
       
   539   G1CMBitMap* nextMarkBitMap() const { return _nextMarkBitMap; }
       
   540 
       
   541   // Returns the number of GC threads to be used in a concurrent
       
   542   // phase based on the number of GC threads being used in a STW
       
   543   // phase.
       
   544   uint scale_parallel_threads(uint n_par_threads);
       
   545 
       
   546   // Calculates the number of GC threads to be used in a concurrent phase.
       
   547   uint calc_parallel_marking_threads();
       
   548 
       
   549   // Prepare internal data structures for the next mark cycle. This includes clearing
       
   550   // the next mark bitmap and some internal data structures. This method is intended
       
   551   // to be called concurrently to the mutator. It will yield to safepoint requests.
       
   552   void cleanup_for_next_mark();
       
   553 
       
   554   // Clear the previous marking bitmap during safepoint.
       
   555   void clear_prev_bitmap(WorkGang* workers);
       
   556 
       
   557   // Return whether the next mark bitmap has no marks set. To be used for assertions
       
   558   // only. Will not yield to pause requests.
       
   559   bool nextMarkBitmapIsClear();
       
   560 
       
   561   // These two do the work that needs to be done before and after the
       
   562   // initial root checkpoint. Since this checkpoint can be done at two
       
   563   // different points (i.e. an explicit pause or piggy-backed on a
       
   564   // young collection), then it's nice to be able to easily share the
       
   565   // pre/post code. It might be the case that we can put everything in
       
   566   // the post method. TP
       
   567   void checkpointRootsInitialPre();
       
   568   void checkpointRootsInitialPost();
       
   569 
       
   570   // Scan all the root regions and mark everything reachable from
       
   571   // them.
       
   572   void scan_root_regions();
       
   573 
       
   574   // Scan a single root region and mark everything reachable from it.
       
   575   void scanRootRegion(HeapRegion* hr);
       
   576 
       
   577   // Do concurrent phase of marking, to a tentative transitive closure.
       
   578   void mark_from_roots();
       
   579 
       
   580   void checkpointRootsFinal(bool clear_all_soft_refs);
       
   581   void checkpointRootsFinalWork();
       
   582   void cleanup();
       
   583   void complete_cleanup();
       
   584 
       
   585   // Mark in the previous bitmap.  NB: this is usually read-only, so use
       
   586   // this carefully!
       
   587   inline void markPrev(oop p);
       
   588 
       
   589   // Clears marks for all objects in the given range, for the prev or
       
   590   // next bitmaps.  NB: the previous bitmap is usually
       
   591   // read-only, so use this carefully!
       
   592   void clearRangePrevBitmap(MemRegion mr);
       
   593 
       
   594   // Verify that there are no CSet oops on the stacks (taskqueues /
       
   595   // global mark stack) and fingers (global / per-task).
       
   596   // If marking is not in progress, it's a no-op.
       
   597   void verify_no_cset_oops() PRODUCT_RETURN;
       
   598 
       
   599   inline bool isPrevMarked(oop p) const;
       
   600 
       
   601   inline bool do_yield_check();
       
   602 
       
   603   // Abandon current marking iteration due to a Full GC.
       
   604   void abort();
       
   605 
       
   606   bool has_aborted()      { return _has_aborted; }
       
   607 
       
   608   void print_summary_info();
       
   609 
       
   610   void print_worker_threads_on(outputStream* st) const;
       
   611   void threads_do(ThreadClosure* tc) const;
       
   612 
       
   613   void print_on_error(outputStream* st) const;
       
   614 
       
   615   // Mark the given object on the next bitmap if it is below nTAMS.
       
   616   inline bool mark_in_next_bitmap(HeapRegion* const hr, oop const obj);
       
   617   inline bool mark_in_next_bitmap(oop const obj);
       
   618 
       
   619   // Returns true if initialization was successfully completed.
       
   620   bool completed_initialization() const {
       
   621     return _completed_initialization;
       
   622   }
       
   623 
       
   624   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
       
   625   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
       
   626 
       
   627 private:
       
   628   // Clear (Reset) all liveness count data.
       
   629   void clear_live_data(WorkGang* workers);
       
   630 
       
   631 #ifdef ASSERT
       
   632   // Verify all of the above data structures that they are in initial state.
       
   633   void verify_live_data_clear();
       
   634 #endif
       
   635 
       
   636   // Aggregates the per-card liveness data based on the current marking. Also sets
       
   637   // the amount of marked bytes for each region.
       
   638   void create_live_data();
       
   639 
       
   640   void finalize_live_data();
       
   641 
       
   642   void verify_live_data();
       
   643 };
       
   644 
       
   645 // A class representing a marking task.
       
   646 class G1CMTask : public TerminatorTerminator {
       
   647 private:
       
   648   enum PrivateConstants {
       
   649     // The regular clock call is called once the scanned words reaches
       
   650     // this limit
       
   651     words_scanned_period          = 12*1024,
       
   652     // The regular clock call is called once the number of visited
       
   653     // references reaches this limit
       
   654     refs_reached_period           = 1024,
       
   655     // Initial value for the hash seed, used in the work stealing code
       
   656     init_hash_seed                = 17
       
   657   };
       
   658 
       
   659   G1CMObjArrayProcessor       _objArray_processor;
       
   660 
       
   661   uint                        _worker_id;
       
   662   G1CollectedHeap*            _g1h;
       
   663   G1ConcurrentMark*           _cm;
       
   664   G1CMBitMap*                 _nextMarkBitMap;
       
   665   // the task queue of this task
       
   666   G1CMTaskQueue*              _task_queue;
       
   667 private:
       
   668   // the task queue set---needed for stealing
       
   669   G1CMTaskQueueSet*           _task_queues;
       
   670   // indicates whether the task has been claimed---this is only  for
       
   671   // debugging purposes
       
   672   bool                        _claimed;
       
   673 
       
   674   // number of calls to this task
       
   675   int                         _calls;
       
   676 
       
   677   // when the virtual timer reaches this time, the marking step should
       
   678   // exit
       
   679   double                      _time_target_ms;
       
   680   // the start time of the current marking step
       
   681   double                      _start_time_ms;
       
   682 
       
   683   // the oop closure used for iterations over oops
       
   684   G1CMOopClosure*             _cm_oop_closure;
       
   685 
       
   686   // the region this task is scanning, NULL if we're not scanning any
       
   687   HeapRegion*                 _curr_region;
       
   688   // the local finger of this task, NULL if we're not scanning a region
       
   689   HeapWord*                   _finger;
       
   690   // limit of the region this task is scanning, NULL if we're not scanning one
       
   691   HeapWord*                   _region_limit;
       
   692 
       
   693   // the number of words this task has scanned
       
   694   size_t                      _words_scanned;
       
   695   // When _words_scanned reaches this limit, the regular clock is
       
   696   // called. Notice that this might be decreased under certain
       
   697   // circumstances (i.e. when we believe that we did an expensive
       
   698   // operation).
       
   699   size_t                      _words_scanned_limit;
       
   700   // the initial value of _words_scanned_limit (i.e. what it was
       
   701   // before it was decreased).
       
   702   size_t                      _real_words_scanned_limit;
       
   703 
       
   704   // the number of references this task has visited
       
   705   size_t                      _refs_reached;
       
   706   // When _refs_reached reaches this limit, the regular clock is
       
   707   // called. Notice this this might be decreased under certain
       
   708   // circumstances (i.e. when we believe that we did an expensive
       
   709   // operation).
       
   710   size_t                      _refs_reached_limit;
       
   711   // the initial value of _refs_reached_limit (i.e. what it was before
       
   712   // it was decreased).
       
   713   size_t                      _real_refs_reached_limit;
       
   714 
       
   715   // used by the work stealing stuff
       
   716   int                         _hash_seed;
       
   717   // if this is true, then the task has aborted for some reason
       
   718   bool                        _has_aborted;
       
   719   // set when the task aborts because it has met its time quota
       
   720   bool                        _has_timed_out;
       
   721   // true when we're draining SATB buffers; this avoids the task
       
   722   // aborting due to SATB buffers being available (as we're already
       
   723   // dealing with them)
       
   724   bool                        _draining_satb_buffers;
       
   725 
       
   726   // number sequence of past step times
       
   727   NumberSeq                   _step_times_ms;
       
   728   // elapsed time of this task
       
   729   double                      _elapsed_time_ms;
       
   730   // termination time of this task
       
   731   double                      _termination_time_ms;
       
   732   // when this task got into the termination protocol
       
   733   double                      _termination_start_time_ms;
       
   734 
       
   735   // true when the task is during a concurrent phase, false when it is
       
   736   // in the remark phase (so, in the latter case, we do not have to
       
   737   // check all the things that we have to check during the concurrent
       
   738   // phase, i.e. SATB buffer availability...)
       
   739   bool                        _concurrent;
       
   740 
       
   741   TruncatedSeq                _marking_step_diffs_ms;
       
   742 
       
   743   // it updates the local fields after this task has claimed
       
   744   // a new region to scan
       
   745   void setup_for_region(HeapRegion* hr);
       
   746   // it brings up-to-date the limit of the region
       
   747   void update_region_limit();
       
   748 
       
   749   // called when either the words scanned or the refs visited limit
       
   750   // has been reached
       
   751   void reached_limit();
       
   752   // recalculates the words scanned and refs visited limits
       
   753   void recalculate_limits();
       
   754   // decreases the words scanned and refs visited limits when we reach
       
   755   // an expensive operation
       
   756   void decrease_limits();
       
   757   // it checks whether the words scanned or refs visited reached their
       
   758   // respective limit and calls reached_limit() if they have
       
   759   void check_limits() {
       
   760     if (_words_scanned >= _words_scanned_limit ||
       
   761         _refs_reached >= _refs_reached_limit) {
       
   762       reached_limit();
       
   763     }
       
   764   }
       
   765   // this is supposed to be called regularly during a marking step as
       
   766   // it checks a bunch of conditions that might cause the marking step
       
   767   // to abort
       
   768   void regular_clock_call();
       
   769   bool concurrent() { return _concurrent; }
       
   770 
       
   771   // Test whether obj might have already been passed over by the
       
   772   // mark bitmap scan, and so needs to be pushed onto the mark stack.
       
   773   bool is_below_finger(oop obj, HeapWord* global_finger) const;
       
   774 
       
   775   template<bool scan> void process_grey_task_entry(G1TaskQueueEntry task_entry);
       
   776 public:
       
   777   // Apply the closure on the given area of the objArray. Return the number of words
       
   778   // scanned.
       
   779   inline size_t scan_objArray(objArrayOop obj, MemRegion mr);
       
   780   // It resets the task; it should be called right at the beginning of
       
   781   // a marking phase.
       
   782   void reset(G1CMBitMap* _nextMarkBitMap);
       
   783   // it clears all the fields that correspond to a claimed region.
       
   784   void clear_region_fields();
       
   785 
       
   786   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
       
   787 
       
   788   // The main method of this class which performs a marking step
       
   789   // trying not to exceed the given duration. However, it might exit
       
   790   // prematurely, according to some conditions (i.e. SATB buffers are
       
   791   // available for processing).
       
   792   void do_marking_step(double target_ms,
       
   793                        bool do_termination,
       
   794                        bool is_serial);
       
   795 
       
   796   // These two calls start and stop the timer
       
   797   void record_start_time() {
       
   798     _elapsed_time_ms = os::elapsedTime() * 1000.0;
       
   799   }
       
   800   void record_end_time() {
       
   801     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
       
   802   }
       
   803 
       
   804   // returns the worker ID associated with this task.
       
   805   uint worker_id() { return _worker_id; }
       
   806 
       
   807   // From TerminatorTerminator. It determines whether this task should
       
   808   // exit the termination protocol after it's entered it.
       
   809   virtual bool should_exit_termination();
       
   810 
       
   811   // Resets the local region fields after a task has finished scanning a
       
   812   // region; or when they have become stale as a result of the region
       
   813   // being evacuated.
       
   814   void giveup_current_region();
       
   815 
       
   816   HeapWord* finger()            { return _finger; }
       
   817 
       
   818   bool has_aborted()            { return _has_aborted; }
       
   819   void set_has_aborted()        { _has_aborted = true; }
       
   820   void clear_has_aborted()      { _has_aborted = false; }
       
   821   bool has_timed_out()          { return _has_timed_out; }
       
   822   bool claimed()                { return _claimed; }
       
   823 
       
   824   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
       
   825 
       
   826   // Increment the number of references this task has visited.
       
   827   void increment_refs_reached() { ++_refs_reached; }
       
   828 
       
   829   // Grey the object by marking it.  If not already marked, push it on
       
   830   // the local queue if below the finger.
       
   831   // obj is below its region's NTAMS.
       
   832   inline void make_reference_grey(oop obj);
       
   833 
       
   834   // Grey the object (by calling make_grey_reference) if required,
       
   835   // e.g. obj is below its containing region's NTAMS.
       
   836   // Precondition: obj is a valid heap object.
       
   837   inline void deal_with_reference(oop obj);
       
   838 
       
   839   // It scans an object and visits its children.
       
   840   inline void scan_task_entry(G1TaskQueueEntry task_entry);
       
   841 
       
   842   // It pushes an object on the local queue.
       
   843   inline void push(G1TaskQueueEntry task_entry);
       
   844 
       
   845   // Move entries to the global stack.
       
   846   void move_entries_to_global_stack();
       
   847   // Move entries from the global stack, return true if we were successful to do so.
       
   848   bool get_entries_from_global_stack();
       
   849 
       
   850   // It pops and scans objects from the local queue. If partially is
       
   851   // true, then it stops when the queue size is of a given limit. If
       
   852   // partially is false, then it stops when the queue is empty.
       
   853   void drain_local_queue(bool partially);
       
   854   // It moves entries from the global stack to the local queue and
       
   855   // drains the local queue. If partially is true, then it stops when
       
   856   // both the global stack and the local queue reach a given size. If
       
   857   // partially if false, it tries to empty them totally.
       
   858   void drain_global_stack(bool partially);
       
   859   // It keeps picking SATB buffers and processing them until no SATB
       
   860   // buffers are available.
       
   861   void drain_satb_buffers();
       
   862 
       
   863   // moves the local finger to a new location
       
   864   inline void move_finger_to(HeapWord* new_finger) {
       
   865     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
       
   866     _finger = new_finger;
       
   867   }
       
   868 
       
   869   G1CMTask(uint worker_id,
       
   870            G1ConcurrentMark *cm,
       
   871            G1CMTaskQueue* task_queue,
       
   872            G1CMTaskQueueSet* task_queues);
       
   873 
       
   874   // it prints statistics associated with this task
       
   875   void print_stats();
       
   876 };
       
   877 
       
   878 // Class that's used to to print out per-region liveness
       
   879 // information. It's currently used at the end of marking and also
       
   880 // after we sort the old regions at the end of the cleanup operation.
       
   881 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
       
   882 private:
       
   883   // Accumulators for these values.
       
   884   size_t _total_used_bytes;
       
   885   size_t _total_capacity_bytes;
       
   886   size_t _total_prev_live_bytes;
       
   887   size_t _total_next_live_bytes;
       
   888 
       
   889   // Accumulator for the remembered set size
       
   890   size_t _total_remset_bytes;
       
   891 
       
   892   // Accumulator for strong code roots memory size
       
   893   size_t _total_strong_code_roots_bytes;
       
   894 
       
   895   static double perc(size_t val, size_t total) {
       
   896     if (total == 0) {
       
   897       return 0.0;
       
   898     } else {
       
   899       return 100.0 * ((double) val / (double) total);
       
   900     }
       
   901   }
       
   902 
       
   903   static double bytes_to_mb(size_t val) {
       
   904     return (double) val / (double) M;
       
   905   }
       
   906 
       
   907 public:
       
   908   // The header and footer are printed in the constructor and
       
   909   // destructor respectively.
       
   910   G1PrintRegionLivenessInfoClosure(const char* phase_name);
       
   911   virtual bool doHeapRegion(HeapRegion* r);
       
   912   ~G1PrintRegionLivenessInfoClosure();
       
   913 };
       
   914 
       
   915 #endif // SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP