src/hotspot/share/c1/c1_Runtime1.cpp
changeset 47216 71c04702a3d5
parent 46968 9119841280f4
child 47624 b055cb5170f5
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "asm/codeBuffer.hpp"
       
    27 #include "c1/c1_CodeStubs.hpp"
       
    28 #include "c1/c1_Defs.hpp"
       
    29 #include "c1/c1_FrameMap.hpp"
       
    30 #include "c1/c1_LIRAssembler.hpp"
       
    31 #include "c1/c1_MacroAssembler.hpp"
       
    32 #include "c1/c1_Runtime1.hpp"
       
    33 #include "classfile/systemDictionary.hpp"
       
    34 #include "classfile/vmSymbols.hpp"
       
    35 #include "code/codeBlob.hpp"
       
    36 #include "code/compiledIC.hpp"
       
    37 #include "code/pcDesc.hpp"
       
    38 #include "code/scopeDesc.hpp"
       
    39 #include "code/vtableStubs.hpp"
       
    40 #include "compiler/disassembler.hpp"
       
    41 #include "gc/shared/barrierSet.hpp"
       
    42 #include "gc/shared/collectedHeap.hpp"
       
    43 #include "interpreter/bytecode.hpp"
       
    44 #include "interpreter/interpreter.hpp"
       
    45 #include "logging/log.hpp"
       
    46 #include "memory/allocation.inline.hpp"
       
    47 #include "memory/oopFactory.hpp"
       
    48 #include "memory/resourceArea.hpp"
       
    49 #include "oops/objArrayKlass.hpp"
       
    50 #include "oops/oop.inline.hpp"
       
    51 #include "runtime/atomic.hpp"
       
    52 #include "runtime/biasedLocking.hpp"
       
    53 #include "runtime/compilationPolicy.hpp"
       
    54 #include "runtime/interfaceSupport.hpp"
       
    55 #include "runtime/javaCalls.hpp"
       
    56 #include "runtime/sharedRuntime.hpp"
       
    57 #include "runtime/threadCritical.hpp"
       
    58 #include "runtime/vframe.hpp"
       
    59 #include "runtime/vframeArray.hpp"
       
    60 #include "runtime/vm_version.hpp"
       
    61 #include "utilities/copy.hpp"
       
    62 #include "utilities/events.hpp"
       
    63 
       
    64 
       
    65 // Implementation of StubAssembler
       
    66 
       
    67 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
       
    68   _name = name;
       
    69   _must_gc_arguments = false;
       
    70   _frame_size = no_frame_size;
       
    71   _num_rt_args = 0;
       
    72   _stub_id = stub_id;
       
    73 }
       
    74 
       
    75 
       
    76 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
       
    77   _name = name;
       
    78   _must_gc_arguments = must_gc_arguments;
       
    79 }
       
    80 
       
    81 
       
    82 void StubAssembler::set_frame_size(int size) {
       
    83   if (_frame_size == no_frame_size) {
       
    84     _frame_size = size;
       
    85   }
       
    86   assert(_frame_size == size, "can't change the frame size");
       
    87 }
       
    88 
       
    89 
       
    90 void StubAssembler::set_num_rt_args(int args) {
       
    91   if (_num_rt_args == 0) {
       
    92     _num_rt_args = args;
       
    93   }
       
    94   assert(_num_rt_args == args, "can't change the number of args");
       
    95 }
       
    96 
       
    97 // Implementation of Runtime1
       
    98 
       
    99 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
       
   100 const char *Runtime1::_blob_names[] = {
       
   101   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
       
   102 };
       
   103 
       
   104 #ifndef PRODUCT
       
   105 // statistics
       
   106 int Runtime1::_generic_arraycopy_cnt = 0;
       
   107 int Runtime1::_generic_arraycopystub_cnt = 0;
       
   108 int Runtime1::_arraycopy_slowcase_cnt = 0;
       
   109 int Runtime1::_arraycopy_checkcast_cnt = 0;
       
   110 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
       
   111 int Runtime1::_new_type_array_slowcase_cnt = 0;
       
   112 int Runtime1::_new_object_array_slowcase_cnt = 0;
       
   113 int Runtime1::_new_instance_slowcase_cnt = 0;
       
   114 int Runtime1::_new_multi_array_slowcase_cnt = 0;
       
   115 int Runtime1::_monitorenter_slowcase_cnt = 0;
       
   116 int Runtime1::_monitorexit_slowcase_cnt = 0;
       
   117 int Runtime1::_patch_code_slowcase_cnt = 0;
       
   118 int Runtime1::_throw_range_check_exception_count = 0;
       
   119 int Runtime1::_throw_index_exception_count = 0;
       
   120 int Runtime1::_throw_div0_exception_count = 0;
       
   121 int Runtime1::_throw_null_pointer_exception_count = 0;
       
   122 int Runtime1::_throw_class_cast_exception_count = 0;
       
   123 int Runtime1::_throw_incompatible_class_change_error_count = 0;
       
   124 int Runtime1::_throw_array_store_exception_count = 0;
       
   125 int Runtime1::_throw_count = 0;
       
   126 
       
   127 static int _byte_arraycopy_stub_cnt = 0;
       
   128 static int _short_arraycopy_stub_cnt = 0;
       
   129 static int _int_arraycopy_stub_cnt = 0;
       
   130 static int _long_arraycopy_stub_cnt = 0;
       
   131 static int _oop_arraycopy_stub_cnt = 0;
       
   132 
       
   133 address Runtime1::arraycopy_count_address(BasicType type) {
       
   134   switch (type) {
       
   135   case T_BOOLEAN:
       
   136   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
       
   137   case T_CHAR:
       
   138   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
       
   139   case T_FLOAT:
       
   140   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
       
   141   case T_DOUBLE:
       
   142   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
       
   143   case T_ARRAY:
       
   144   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
       
   145   default:
       
   146     ShouldNotReachHere();
       
   147     return NULL;
       
   148   }
       
   149 }
       
   150 
       
   151 
       
   152 #endif
       
   153 
       
   154 // Simple helper to see if the caller of a runtime stub which
       
   155 // entered the VM has been deoptimized
       
   156 
       
   157 static bool caller_is_deopted() {
       
   158   JavaThread* thread = JavaThread::current();
       
   159   RegisterMap reg_map(thread, false);
       
   160   frame runtime_frame = thread->last_frame();
       
   161   frame caller_frame = runtime_frame.sender(&reg_map);
       
   162   assert(caller_frame.is_compiled_frame(), "must be compiled");
       
   163   return caller_frame.is_deoptimized_frame();
       
   164 }
       
   165 
       
   166 // Stress deoptimization
       
   167 static void deopt_caller() {
       
   168   if ( !caller_is_deopted()) {
       
   169     JavaThread* thread = JavaThread::current();
       
   170     RegisterMap reg_map(thread, false);
       
   171     frame runtime_frame = thread->last_frame();
       
   172     frame caller_frame = runtime_frame.sender(&reg_map);
       
   173     Deoptimization::deoptimize_frame(thread, caller_frame.id());
       
   174     assert(caller_is_deopted(), "Must be deoptimized");
       
   175   }
       
   176 }
       
   177 
       
   178 
       
   179 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
       
   180   assert(0 <= id && id < number_of_ids, "illegal stub id");
       
   181   ResourceMark rm;
       
   182   // create code buffer for code storage
       
   183   CodeBuffer code(buffer_blob);
       
   184 
       
   185   OopMapSet* oop_maps;
       
   186   int frame_size;
       
   187   bool must_gc_arguments;
       
   188 
       
   189   Compilation::setup_code_buffer(&code, 0);
       
   190 
       
   191   // create assembler for code generation
       
   192   StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
       
   193   // generate code for runtime stub
       
   194   oop_maps = generate_code_for(id, sasm);
       
   195   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
       
   196          "if stub has an oop map it must have a valid frame size");
       
   197 
       
   198 #ifdef ASSERT
       
   199   // Make sure that stubs that need oopmaps have them
       
   200   switch (id) {
       
   201     // These stubs don't need to have an oopmap
       
   202   case dtrace_object_alloc_id:
       
   203   case g1_pre_barrier_slow_id:
       
   204   case g1_post_barrier_slow_id:
       
   205   case slow_subtype_check_id:
       
   206   case fpu2long_stub_id:
       
   207   case unwind_exception_id:
       
   208   case counter_overflow_id:
       
   209 #if defined(SPARC) || defined(PPC32)
       
   210   case handle_exception_nofpu_id:  // Unused on sparc
       
   211 #endif
       
   212     break;
       
   213 
       
   214     // All other stubs should have oopmaps
       
   215   default:
       
   216     assert(oop_maps != NULL, "must have an oopmap");
       
   217   }
       
   218 #endif
       
   219 
       
   220   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
       
   221   sasm->align(BytesPerWord);
       
   222   // make sure all code is in code buffer
       
   223   sasm->flush();
       
   224 
       
   225   frame_size = sasm->frame_size();
       
   226   must_gc_arguments = sasm->must_gc_arguments();
       
   227   // create blob - distinguish a few special cases
       
   228   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
       
   229                                                  &code,
       
   230                                                  CodeOffsets::frame_never_safe,
       
   231                                                  frame_size,
       
   232                                                  oop_maps,
       
   233                                                  must_gc_arguments);
       
   234   // install blob
       
   235   assert(blob != NULL, "blob must exist");
       
   236   _blobs[id] = blob;
       
   237 }
       
   238 
       
   239 
       
   240 void Runtime1::initialize(BufferBlob* blob) {
       
   241   // platform-dependent initialization
       
   242   initialize_pd();
       
   243   // generate stubs
       
   244   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
       
   245   // printing
       
   246 #ifndef PRODUCT
       
   247   if (PrintSimpleStubs) {
       
   248     ResourceMark rm;
       
   249     for (int id = 0; id < number_of_ids; id++) {
       
   250       _blobs[id]->print();
       
   251       if (_blobs[id]->oop_maps() != NULL) {
       
   252         _blobs[id]->oop_maps()->print();
       
   253       }
       
   254     }
       
   255   }
       
   256 #endif
       
   257 }
       
   258 
       
   259 
       
   260 CodeBlob* Runtime1::blob_for(StubID id) {
       
   261   assert(0 <= id && id < number_of_ids, "illegal stub id");
       
   262   return _blobs[id];
       
   263 }
       
   264 
       
   265 
       
   266 const char* Runtime1::name_for(StubID id) {
       
   267   assert(0 <= id && id < number_of_ids, "illegal stub id");
       
   268   return _blob_names[id];
       
   269 }
       
   270 
       
   271 const char* Runtime1::name_for_address(address entry) {
       
   272   for (int id = 0; id < number_of_ids; id++) {
       
   273     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
       
   274   }
       
   275 
       
   276 #define FUNCTION_CASE(a, f) \
       
   277   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
       
   278 
       
   279   FUNCTION_CASE(entry, os::javaTimeMillis);
       
   280   FUNCTION_CASE(entry, os::javaTimeNanos);
       
   281   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
       
   282   FUNCTION_CASE(entry, SharedRuntime::d2f);
       
   283   FUNCTION_CASE(entry, SharedRuntime::d2i);
       
   284   FUNCTION_CASE(entry, SharedRuntime::d2l);
       
   285   FUNCTION_CASE(entry, SharedRuntime::dcos);
       
   286   FUNCTION_CASE(entry, SharedRuntime::dexp);
       
   287   FUNCTION_CASE(entry, SharedRuntime::dlog);
       
   288   FUNCTION_CASE(entry, SharedRuntime::dlog10);
       
   289   FUNCTION_CASE(entry, SharedRuntime::dpow);
       
   290   FUNCTION_CASE(entry, SharedRuntime::drem);
       
   291   FUNCTION_CASE(entry, SharedRuntime::dsin);
       
   292   FUNCTION_CASE(entry, SharedRuntime::dtan);
       
   293   FUNCTION_CASE(entry, SharedRuntime::f2i);
       
   294   FUNCTION_CASE(entry, SharedRuntime::f2l);
       
   295   FUNCTION_CASE(entry, SharedRuntime::frem);
       
   296   FUNCTION_CASE(entry, SharedRuntime::l2d);
       
   297   FUNCTION_CASE(entry, SharedRuntime::l2f);
       
   298   FUNCTION_CASE(entry, SharedRuntime::ldiv);
       
   299   FUNCTION_CASE(entry, SharedRuntime::lmul);
       
   300   FUNCTION_CASE(entry, SharedRuntime::lrem);
       
   301   FUNCTION_CASE(entry, SharedRuntime::lrem);
       
   302   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
       
   303   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
       
   304   FUNCTION_CASE(entry, is_instance_of);
       
   305   FUNCTION_CASE(entry, trace_block_entry);
       
   306 #ifdef TRACE_HAVE_INTRINSICS
       
   307   FUNCTION_CASE(entry, TRACE_TIME_METHOD);
       
   308 #endif
       
   309   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
       
   310   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
       
   311   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
       
   312   FUNCTION_CASE(entry, StubRoutines::dexp());
       
   313   FUNCTION_CASE(entry, StubRoutines::dlog());
       
   314   FUNCTION_CASE(entry, StubRoutines::dlog10());
       
   315   FUNCTION_CASE(entry, StubRoutines::dpow());
       
   316   FUNCTION_CASE(entry, StubRoutines::dsin());
       
   317   FUNCTION_CASE(entry, StubRoutines::dcos());
       
   318   FUNCTION_CASE(entry, StubRoutines::dtan());
       
   319 
       
   320 #undef FUNCTION_CASE
       
   321 
       
   322   // Soft float adds more runtime names.
       
   323   return pd_name_for_address(entry);
       
   324 }
       
   325 
       
   326 
       
   327 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
       
   328   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
       
   329 
       
   330   assert(klass->is_klass(), "not a class");
       
   331   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
       
   332   InstanceKlass* h = InstanceKlass::cast(klass);
       
   333   h->check_valid_for_instantiation(true, CHECK);
       
   334   // make sure klass is initialized
       
   335   h->initialize(CHECK);
       
   336   // allocate instance and return via TLS
       
   337   oop obj = h->allocate_instance(CHECK);
       
   338   thread->set_vm_result(obj);
       
   339 JRT_END
       
   340 
       
   341 
       
   342 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
       
   343   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
       
   344   // Note: no handle for klass needed since they are not used
       
   345   //       anymore after new_typeArray() and no GC can happen before.
       
   346   //       (This may have to change if this code changes!)
       
   347   assert(klass->is_klass(), "not a class");
       
   348   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
       
   349   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
       
   350   thread->set_vm_result(obj);
       
   351   // This is pretty rare but this runtime patch is stressful to deoptimization
       
   352   // if we deoptimize here so force a deopt to stress the path.
       
   353   if (DeoptimizeALot) {
       
   354     deopt_caller();
       
   355   }
       
   356 
       
   357 JRT_END
       
   358 
       
   359 
       
   360 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
       
   361   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
       
   362 
       
   363   // Note: no handle for klass needed since they are not used
       
   364   //       anymore after new_objArray() and no GC can happen before.
       
   365   //       (This may have to change if this code changes!)
       
   366   assert(array_klass->is_klass(), "not a class");
       
   367   Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive
       
   368   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
       
   369   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
       
   370   thread->set_vm_result(obj);
       
   371   // This is pretty rare but this runtime patch is stressful to deoptimization
       
   372   // if we deoptimize here so force a deopt to stress the path.
       
   373   if (DeoptimizeALot) {
       
   374     deopt_caller();
       
   375   }
       
   376 JRT_END
       
   377 
       
   378 
       
   379 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
       
   380   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
       
   381 
       
   382   assert(klass->is_klass(), "not a class");
       
   383   assert(rank >= 1, "rank must be nonzero");
       
   384   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
       
   385   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
       
   386   thread->set_vm_result(obj);
       
   387 JRT_END
       
   388 
       
   389 
       
   390 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
       
   391   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
       
   392 JRT_END
       
   393 
       
   394 
       
   395 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
       
   396   ResourceMark rm(thread);
       
   397   const char* klass_name = obj->klass()->external_name();
       
   398   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
       
   399 JRT_END
       
   400 
       
   401 
       
   402 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
       
   403 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
       
   404 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
       
   405 // a constant.
       
   406 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
       
   407   nmethod* osr_nm = NULL;
       
   408   methodHandle method(THREAD, m);
       
   409 
       
   410   RegisterMap map(THREAD, false);
       
   411   frame fr =  THREAD->last_frame().sender(&map);
       
   412   nmethod* nm = (nmethod*) fr.cb();
       
   413   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
       
   414   methodHandle enclosing_method(THREAD, nm->method());
       
   415 
       
   416   CompLevel level = (CompLevel)nm->comp_level();
       
   417   int bci = InvocationEntryBci;
       
   418   if (branch_bci != InvocationEntryBci) {
       
   419     // Compute destination bci
       
   420     address pc = method()->code_base() + branch_bci;
       
   421     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
       
   422     int offset = 0;
       
   423     switch (branch) {
       
   424       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
       
   425       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
       
   426       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
       
   427       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
       
   428       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
       
   429       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
       
   430       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
       
   431         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
       
   432         break;
       
   433       case Bytecodes::_goto_w:
       
   434         offset = Bytes::get_Java_u4(pc + 1);
       
   435         break;
       
   436       default: ;
       
   437     }
       
   438     bci = branch_bci + offset;
       
   439   }
       
   440   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
       
   441   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
       
   442   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
       
   443   return osr_nm;
       
   444 }
       
   445 
       
   446 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
       
   447   nmethod* osr_nm;
       
   448   JRT_BLOCK
       
   449     osr_nm = counter_overflow_helper(thread, bci, method);
       
   450     if (osr_nm != NULL) {
       
   451       RegisterMap map(thread, false);
       
   452       frame fr =  thread->last_frame().sender(&map);
       
   453       Deoptimization::deoptimize_frame(thread, fr.id());
       
   454     }
       
   455   JRT_BLOCK_END
       
   456   return NULL;
       
   457 JRT_END
       
   458 
       
   459 extern void vm_exit(int code);
       
   460 
       
   461 // Enter this method from compiled code handler below. This is where we transition
       
   462 // to VM mode. This is done as a helper routine so that the method called directly
       
   463 // from compiled code does not have to transition to VM. This allows the entry
       
   464 // method to see if the nmethod that we have just looked up a handler for has
       
   465 // been deoptimized while we were in the vm. This simplifies the assembly code
       
   466 // cpu directories.
       
   467 //
       
   468 // We are entering here from exception stub (via the entry method below)
       
   469 // If there is a compiled exception handler in this method, we will continue there;
       
   470 // otherwise we will unwind the stack and continue at the caller of top frame method
       
   471 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
       
   472 // control the area where we can allow a safepoint. After we exit the safepoint area we can
       
   473 // check to see if the handler we are going to return is now in a nmethod that has
       
   474 // been deoptimized. If that is the case we return the deopt blob
       
   475 // unpack_with_exception entry instead. This makes life for the exception blob easier
       
   476 // because making that same check and diverting is painful from assembly language.
       
   477 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
       
   478   // Reset method handle flag.
       
   479   thread->set_is_method_handle_return(false);
       
   480 
       
   481   Handle exception(thread, ex);
       
   482   nm = CodeCache::find_nmethod(pc);
       
   483   assert(nm != NULL, "this is not an nmethod");
       
   484   // Adjust the pc as needed/
       
   485   if (nm->is_deopt_pc(pc)) {
       
   486     RegisterMap map(thread, false);
       
   487     frame exception_frame = thread->last_frame().sender(&map);
       
   488     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
       
   489     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
       
   490     pc = exception_frame.pc();
       
   491   }
       
   492 #ifdef ASSERT
       
   493   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
       
   494   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
       
   495   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
       
   496     if (ExitVMOnVerifyError) vm_exit(-1);
       
   497     ShouldNotReachHere();
       
   498   }
       
   499 #endif
       
   500 
       
   501   // Check the stack guard pages and reenable them if necessary and there is
       
   502   // enough space on the stack to do so.  Use fast exceptions only if the guard
       
   503   // pages are enabled.
       
   504   bool guard_pages_enabled = thread->stack_guards_enabled();
       
   505   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
       
   506 
       
   507   if (JvmtiExport::can_post_on_exceptions()) {
       
   508     // To ensure correct notification of exception catches and throws
       
   509     // we have to deoptimize here.  If we attempted to notify the
       
   510     // catches and throws during this exception lookup it's possible
       
   511     // we could deoptimize on the way out of the VM and end back in
       
   512     // the interpreter at the throw site.  This would result in double
       
   513     // notifications since the interpreter would also notify about
       
   514     // these same catches and throws as it unwound the frame.
       
   515 
       
   516     RegisterMap reg_map(thread);
       
   517     frame stub_frame = thread->last_frame();
       
   518     frame caller_frame = stub_frame.sender(&reg_map);
       
   519 
       
   520     // We don't really want to deoptimize the nmethod itself since we
       
   521     // can actually continue in the exception handler ourselves but I
       
   522     // don't see an easy way to have the desired effect.
       
   523     Deoptimization::deoptimize_frame(thread, caller_frame.id());
       
   524     assert(caller_is_deopted(), "Must be deoptimized");
       
   525 
       
   526     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
       
   527   }
       
   528 
       
   529   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
       
   530   if (guard_pages_enabled) {
       
   531     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
       
   532     if (fast_continuation != NULL) {
       
   533       // Set flag if return address is a method handle call site.
       
   534       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
       
   535       return fast_continuation;
       
   536     }
       
   537   }
       
   538 
       
   539   // If the stack guard pages are enabled, check whether there is a handler in
       
   540   // the current method.  Otherwise (guard pages disabled), force an unwind and
       
   541   // skip the exception cache update (i.e., just leave continuation==NULL).
       
   542   address continuation = NULL;
       
   543   if (guard_pages_enabled) {
       
   544 
       
   545     // New exception handling mechanism can support inlined methods
       
   546     // with exception handlers since the mappings are from PC to PC
       
   547 
       
   548     // debugging support
       
   549     // tracing
       
   550     if (log_is_enabled(Info, exceptions)) {
       
   551       ResourceMark rm;
       
   552       stringStream tempst;
       
   553       tempst.print("compiled method <%s>\n"
       
   554                    " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
       
   555                    nm->method()->print_value_string(), p2i(pc), p2i(thread));
       
   556       Exceptions::log_exception(exception, tempst);
       
   557     }
       
   558     // for AbortVMOnException flag
       
   559     Exceptions::debug_check_abort(exception);
       
   560 
       
   561     // Clear out the exception oop and pc since looking up an
       
   562     // exception handler can cause class loading, which might throw an
       
   563     // exception and those fields are expected to be clear during
       
   564     // normal bytecode execution.
       
   565     thread->clear_exception_oop_and_pc();
       
   566 
       
   567     bool recursive_exception = false;
       
   568     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
       
   569     // If an exception was thrown during exception dispatch, the exception oop may have changed
       
   570     thread->set_exception_oop(exception());
       
   571     thread->set_exception_pc(pc);
       
   572 
       
   573     // the exception cache is used only by non-implicit exceptions
       
   574     // Update the exception cache only when there didn't happen
       
   575     // another exception during the computation of the compiled
       
   576     // exception handler. Checking for exception oop equality is not
       
   577     // sufficient because some exceptions are pre-allocated and reused.
       
   578     if (continuation != NULL && !recursive_exception) {
       
   579       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
       
   580     }
       
   581   }
       
   582 
       
   583   thread->set_vm_result(exception());
       
   584   // Set flag if return address is a method handle call site.
       
   585   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
       
   586 
       
   587   if (log_is_enabled(Info, exceptions)) {
       
   588     ResourceMark rm;
       
   589     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
       
   590                          " for exception thrown at PC " PTR_FORMAT,
       
   591                          p2i(thread), p2i(continuation), p2i(pc));
       
   592   }
       
   593 
       
   594   return continuation;
       
   595 JRT_END
       
   596 
       
   597 // Enter this method from compiled code only if there is a Java exception handler
       
   598 // in the method handling the exception.
       
   599 // We are entering here from exception stub. We don't do a normal VM transition here.
       
   600 // We do it in a helper. This is so we can check to see if the nmethod we have just
       
   601 // searched for an exception handler has been deoptimized in the meantime.
       
   602 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
       
   603   oop exception = thread->exception_oop();
       
   604   address pc = thread->exception_pc();
       
   605   // Still in Java mode
       
   606   DEBUG_ONLY(ResetNoHandleMark rnhm);
       
   607   nmethod* nm = NULL;
       
   608   address continuation = NULL;
       
   609   {
       
   610     // Enter VM mode by calling the helper
       
   611     ResetNoHandleMark rnhm;
       
   612     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
       
   613   }
       
   614   // Back in JAVA, use no oops DON'T safepoint
       
   615 
       
   616   // Now check to see if the nmethod we were called from is now deoptimized.
       
   617   // If so we must return to the deopt blob and deoptimize the nmethod
       
   618   if (nm != NULL && caller_is_deopted()) {
       
   619     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
       
   620   }
       
   621 
       
   622   assert(continuation != NULL, "no handler found");
       
   623   return continuation;
       
   624 }
       
   625 
       
   626 
       
   627 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
       
   628   NOT_PRODUCT(_throw_range_check_exception_count++;)
       
   629   char message[jintAsStringSize];
       
   630   sprintf(message, "%d", index);
       
   631   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
       
   632 JRT_END
       
   633 
       
   634 
       
   635 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
       
   636   NOT_PRODUCT(_throw_index_exception_count++;)
       
   637   char message[16];
       
   638   sprintf(message, "%d", index);
       
   639   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
       
   640 JRT_END
       
   641 
       
   642 
       
   643 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
       
   644   NOT_PRODUCT(_throw_div0_exception_count++;)
       
   645   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
       
   646 JRT_END
       
   647 
       
   648 
       
   649 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
       
   650   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
       
   651   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
       
   652 JRT_END
       
   653 
       
   654 
       
   655 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
       
   656   NOT_PRODUCT(_throw_class_cast_exception_count++;)
       
   657   ResourceMark rm(thread);
       
   658   char* message = SharedRuntime::generate_class_cast_message(
       
   659     thread, object->klass());
       
   660   SharedRuntime::throw_and_post_jvmti_exception(
       
   661     thread, vmSymbols::java_lang_ClassCastException(), message);
       
   662 JRT_END
       
   663 
       
   664 
       
   665 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
       
   666   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
       
   667   ResourceMark rm(thread);
       
   668   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
       
   669 JRT_END
       
   670 
       
   671 
       
   672 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
       
   673   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
       
   674   if (PrintBiasedLockingStatistics) {
       
   675     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
       
   676   }
       
   677   Handle h_obj(thread, obj);
       
   678   if (UseBiasedLocking) {
       
   679     // Retry fast entry if bias is revoked to avoid unnecessary inflation
       
   680     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
       
   681   } else {
       
   682     if (UseFastLocking) {
       
   683       // When using fast locking, the compiled code has already tried the fast case
       
   684       assert(obj == lock->obj(), "must match");
       
   685       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
       
   686     } else {
       
   687       lock->set_obj(obj);
       
   688       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
       
   689     }
       
   690   }
       
   691 JRT_END
       
   692 
       
   693 
       
   694 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
       
   695   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
       
   696   assert(thread == JavaThread::current(), "threads must correspond");
       
   697   assert(thread->last_Java_sp(), "last_Java_sp must be set");
       
   698   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
       
   699   EXCEPTION_MARK;
       
   700 
       
   701   oop obj = lock->obj();
       
   702   assert(oopDesc::is_oop(obj), "must be NULL or an object");
       
   703   if (UseFastLocking) {
       
   704     // When using fast locking, the compiled code has already tried the fast case
       
   705     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
       
   706   } else {
       
   707     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
       
   708   }
       
   709 JRT_END
       
   710 
       
   711 // Cf. OptoRuntime::deoptimize_caller_frame
       
   712 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread, jint trap_request))
       
   713   // Called from within the owner thread, so no need for safepoint
       
   714   RegisterMap reg_map(thread, false);
       
   715   frame stub_frame = thread->last_frame();
       
   716   assert(stub_frame.is_runtime_frame(), "Sanity check");
       
   717   frame caller_frame = stub_frame.sender(&reg_map);
       
   718   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
       
   719   assert(nm != NULL, "Sanity check");
       
   720   methodHandle method(thread, nm->method());
       
   721   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
       
   722   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
       
   723   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
       
   724 
       
   725   if (action == Deoptimization::Action_make_not_entrant) {
       
   726     if (nm->make_not_entrant()) {
       
   727       if (reason == Deoptimization::Reason_tenured) {
       
   728         MethodData* trap_mdo = Deoptimization::get_method_data(thread, method, true /*create_if_missing*/);
       
   729         if (trap_mdo != NULL) {
       
   730           trap_mdo->inc_tenure_traps();
       
   731         }
       
   732       }
       
   733     }
       
   734   }
       
   735 
       
   736   // Deoptimize the caller frame.
       
   737   Deoptimization::deoptimize_frame(thread, caller_frame.id());
       
   738   // Return to the now deoptimized frame.
       
   739 JRT_END
       
   740 
       
   741 
       
   742 #ifndef DEOPTIMIZE_WHEN_PATCHING
       
   743 
       
   744 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
       
   745   Bytecode_field field_access(caller, bci);
       
   746   // This can be static or non-static field access
       
   747   Bytecodes::Code code       = field_access.code();
       
   748 
       
   749   // We must load class, initialize class and resolve the field
       
   750   fieldDescriptor result; // initialize class if needed
       
   751   constantPoolHandle constants(THREAD, caller->constants());
       
   752   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL);
       
   753   return result.field_holder();
       
   754 }
       
   755 
       
   756 
       
   757 //
       
   758 // This routine patches sites where a class wasn't loaded or
       
   759 // initialized at the time the code was generated.  It handles
       
   760 // references to classes, fields and forcing of initialization.  Most
       
   761 // of the cases are straightforward and involving simply forcing
       
   762 // resolution of a class, rewriting the instruction stream with the
       
   763 // needed constant and replacing the call in this function with the
       
   764 // patched code.  The case for static field is more complicated since
       
   765 // the thread which is in the process of initializing a class can
       
   766 // access it's static fields but other threads can't so the code
       
   767 // either has to deoptimize when this case is detected or execute a
       
   768 // check that the current thread is the initializing thread.  The
       
   769 // current
       
   770 //
       
   771 // Patches basically look like this:
       
   772 //
       
   773 //
       
   774 // patch_site: jmp patch stub     ;; will be patched
       
   775 // continue:   ...
       
   776 //             ...
       
   777 //             ...
       
   778 //             ...
       
   779 //
       
   780 // They have a stub which looks like this:
       
   781 //
       
   782 //             ;; patch body
       
   783 //             movl <const>, reg           (for class constants)
       
   784 //        <or> movl [reg1 + <const>], reg  (for field offsets)
       
   785 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
       
   786 //             <being_init offset> <bytes to copy> <bytes to skip>
       
   787 // patch_stub: call Runtime1::patch_code (through a runtime stub)
       
   788 //             jmp patch_site
       
   789 //
       
   790 //
       
   791 // A normal patch is done by rewriting the patch body, usually a move,
       
   792 // and then copying it into place over top of the jmp instruction
       
   793 // being careful to flush caches and doing it in an MP-safe way.  The
       
   794 // constants following the patch body are used to find various pieces
       
   795 // of the patch relative to the call site for Runtime1::patch_code.
       
   796 // The case for getstatic and putstatic is more complicated because
       
   797 // getstatic and putstatic have special semantics when executing while
       
   798 // the class is being initialized.  getstatic/putstatic on a class
       
   799 // which is being_initialized may be executed by the initializing
       
   800 // thread but other threads have to block when they execute it.  This
       
   801 // is accomplished in compiled code by executing a test of the current
       
   802 // thread against the initializing thread of the class.  It's emitted
       
   803 // as boilerplate in their stub which allows the patched code to be
       
   804 // executed before it's copied back into the main body of the nmethod.
       
   805 //
       
   806 // being_init: get_thread(<tmp reg>
       
   807 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
       
   808 //             jne patch_stub
       
   809 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
       
   810 //             movl reg, [reg1 + <const>]  (for field offsets)
       
   811 //             jmp continue
       
   812 //             <being_init offset> <bytes to copy> <bytes to skip>
       
   813 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
       
   814 //             jmp patch_site
       
   815 //
       
   816 // If the class is being initialized the patch body is rewritten and
       
   817 // the patch site is rewritten to jump to being_init, instead of
       
   818 // patch_stub.  Whenever this code is executed it checks the current
       
   819 // thread against the intializing thread so other threads will enter
       
   820 // the runtime and end up blocked waiting the class to finish
       
   821 // initializing inside the calls to resolve_field below.  The
       
   822 // initializing class will continue on it's way.  Once the class is
       
   823 // fully_initialized, the intializing_thread of the class becomes
       
   824 // NULL, so the next thread to execute this code will fail the test,
       
   825 // call into patch_code and complete the patching process by copying
       
   826 // the patch body back into the main part of the nmethod and resume
       
   827 // executing.
       
   828 //
       
   829 //
       
   830 
       
   831 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
       
   832   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
       
   833 
       
   834   ResourceMark rm(thread);
       
   835   RegisterMap reg_map(thread, false);
       
   836   frame runtime_frame = thread->last_frame();
       
   837   frame caller_frame = runtime_frame.sender(&reg_map);
       
   838 
       
   839   // last java frame on stack
       
   840   vframeStream vfst(thread, true);
       
   841   assert(!vfst.at_end(), "Java frame must exist");
       
   842 
       
   843   methodHandle caller_method(THREAD, vfst.method());
       
   844   // Note that caller_method->code() may not be same as caller_code because of OSR's
       
   845   // Note also that in the presence of inlining it is not guaranteed
       
   846   // that caller_method() == caller_code->method()
       
   847 
       
   848   int bci = vfst.bci();
       
   849   Bytecodes::Code code = caller_method()->java_code_at(bci);
       
   850 
       
   851   // this is used by assertions in the access_field_patching_id
       
   852   BasicType patch_field_type = T_ILLEGAL;
       
   853   bool deoptimize_for_volatile = false;
       
   854   bool deoptimize_for_atomic = false;
       
   855   int patch_field_offset = -1;
       
   856   Klass* init_klass = NULL; // klass needed by load_klass_patching code
       
   857   Klass* load_klass = NULL; // klass needed by load_klass_patching code
       
   858   Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
       
   859   Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
       
   860   bool load_klass_or_mirror_patch_id =
       
   861     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
       
   862 
       
   863   if (stub_id == Runtime1::access_field_patching_id) {
       
   864 
       
   865     Bytecode_field field_access(caller_method, bci);
       
   866     fieldDescriptor result; // initialize class if needed
       
   867     Bytecodes::Code code = field_access.code();
       
   868     constantPoolHandle constants(THREAD, caller_method->constants());
       
   869     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK);
       
   870     patch_field_offset = result.offset();
       
   871 
       
   872     // If we're patching a field which is volatile then at compile it
       
   873     // must not have been know to be volatile, so the generated code
       
   874     // isn't correct for a volatile reference.  The nmethod has to be
       
   875     // deoptimized so that the code can be regenerated correctly.
       
   876     // This check is only needed for access_field_patching since this
       
   877     // is the path for patching field offsets.  load_klass is only
       
   878     // used for patching references to oops which don't need special
       
   879     // handling in the volatile case.
       
   880 
       
   881     deoptimize_for_volatile = result.access_flags().is_volatile();
       
   882 
       
   883     // If we are patching a field which should be atomic, then
       
   884     // the generated code is not correct either, force deoptimizing.
       
   885     // We need to only cover T_LONG and T_DOUBLE fields, as we can
       
   886     // break access atomicity only for them.
       
   887 
       
   888     // Strictly speaking, the deoptimizaation on 64-bit platforms
       
   889     // is unnecessary, and T_LONG stores on 32-bit platforms need
       
   890     // to be handled by special patching code when AlwaysAtomicAccesses
       
   891     // becomes product feature. At this point, we are still going
       
   892     // for the deoptimization for consistency against volatile
       
   893     // accesses.
       
   894 
       
   895     patch_field_type = result.field_type();
       
   896     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
       
   897 
       
   898   } else if (load_klass_or_mirror_patch_id) {
       
   899     Klass* k = NULL;
       
   900     switch (code) {
       
   901       case Bytecodes::_putstatic:
       
   902       case Bytecodes::_getstatic:
       
   903         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
       
   904           init_klass = klass;
       
   905           mirror = Handle(THREAD, klass->java_mirror());
       
   906         }
       
   907         break;
       
   908       case Bytecodes::_new:
       
   909         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
       
   910           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
       
   911         }
       
   912         break;
       
   913       case Bytecodes::_multianewarray:
       
   914         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
       
   915           k = caller_method->constants()->klass_at(mna.index(), CHECK);
       
   916         }
       
   917         break;
       
   918       case Bytecodes::_instanceof:
       
   919         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
       
   920           k = caller_method->constants()->klass_at(io.index(), CHECK);
       
   921         }
       
   922         break;
       
   923       case Bytecodes::_checkcast:
       
   924         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
       
   925           k = caller_method->constants()->klass_at(cc.index(), CHECK);
       
   926         }
       
   927         break;
       
   928       case Bytecodes::_anewarray:
       
   929         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
       
   930           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
       
   931           k = ek->array_klass(CHECK);
       
   932         }
       
   933         break;
       
   934       case Bytecodes::_ldc:
       
   935       case Bytecodes::_ldc_w:
       
   936         {
       
   937           Bytecode_loadconstant cc(caller_method, bci);
       
   938           oop m = cc.resolve_constant(CHECK);
       
   939           mirror = Handle(THREAD, m);
       
   940         }
       
   941         break;
       
   942       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
       
   943     }
       
   944     load_klass = k;
       
   945   } else if (stub_id == load_appendix_patching_id) {
       
   946     Bytecode_invoke bytecode(caller_method, bci);
       
   947     Bytecodes::Code bc = bytecode.invoke_code();
       
   948 
       
   949     CallInfo info;
       
   950     constantPoolHandle pool(thread, caller_method->constants());
       
   951     int index = bytecode.index();
       
   952     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
       
   953     switch (bc) {
       
   954       case Bytecodes::_invokehandle: {
       
   955         int cache_index = ConstantPool::decode_cpcache_index(index, true);
       
   956         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
       
   957         ConstantPoolCacheEntry* cpce = pool->cache()->entry_at(cache_index);
       
   958         cpce->set_method_handle(pool, info);
       
   959         appendix = Handle(THREAD, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
       
   960         break;
       
   961       }
       
   962       case Bytecodes::_invokedynamic: {
       
   963         ConstantPoolCacheEntry* cpce = pool->invokedynamic_cp_cache_entry_at(index);
       
   964         cpce->set_dynamic_call(pool, info);
       
   965         appendix = Handle(THREAD, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
       
   966         break;
       
   967       }
       
   968       default: fatal("unexpected bytecode for load_appendix_patching_id");
       
   969     }
       
   970   } else {
       
   971     ShouldNotReachHere();
       
   972   }
       
   973 
       
   974   if (deoptimize_for_volatile || deoptimize_for_atomic) {
       
   975     // At compile time we assumed the field wasn't volatile/atomic but after
       
   976     // loading it turns out it was volatile/atomic so we have to throw the
       
   977     // compiled code out and let it be regenerated.
       
   978     if (TracePatching) {
       
   979       if (deoptimize_for_volatile) {
       
   980         tty->print_cr("Deoptimizing for patching volatile field reference");
       
   981       }
       
   982       if (deoptimize_for_atomic) {
       
   983         tty->print_cr("Deoptimizing for patching atomic field reference");
       
   984       }
       
   985     }
       
   986 
       
   987     // It's possible the nmethod was invalidated in the last
       
   988     // safepoint, but if it's still alive then make it not_entrant.
       
   989     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
       
   990     if (nm != NULL) {
       
   991       nm->make_not_entrant();
       
   992     }
       
   993 
       
   994     Deoptimization::deoptimize_frame(thread, caller_frame.id());
       
   995 
       
   996     // Return to the now deoptimized frame.
       
   997   }
       
   998 
       
   999   // Now copy code back
       
  1000 
       
  1001   {
       
  1002     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
       
  1003     //
       
  1004     // Deoptimization may have happened while we waited for the lock.
       
  1005     // In that case we don't bother to do any patching we just return
       
  1006     // and let the deopt happen
       
  1007     if (!caller_is_deopted()) {
       
  1008       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
       
  1009       address instr_pc = jump->jump_destination();
       
  1010       NativeInstruction* ni = nativeInstruction_at(instr_pc);
       
  1011       if (ni->is_jump() ) {
       
  1012         // the jump has not been patched yet
       
  1013         // The jump destination is slow case and therefore not part of the stubs
       
  1014         // (stubs are only for StaticCalls)
       
  1015 
       
  1016         // format of buffer
       
  1017         //    ....
       
  1018         //    instr byte 0     <-- copy_buff
       
  1019         //    instr byte 1
       
  1020         //    ..
       
  1021         //    instr byte n-1
       
  1022         //      n
       
  1023         //    ....             <-- call destination
       
  1024 
       
  1025         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
       
  1026         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
       
  1027         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
       
  1028         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
       
  1029         address copy_buff = stub_location - *byte_skip - *byte_count;
       
  1030         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
       
  1031         if (TracePatching) {
       
  1032           ttyLocker ttyl;
       
  1033           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
       
  1034                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
       
  1035           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
       
  1036           assert(caller_code != NULL, "nmethod not found");
       
  1037 
       
  1038           // NOTE we use pc() not original_pc() because we already know they are
       
  1039           // identical otherwise we'd have never entered this block of code
       
  1040 
       
  1041           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
       
  1042           assert(map != NULL, "null check");
       
  1043           map->print();
       
  1044           tty->cr();
       
  1045 
       
  1046           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
       
  1047         }
       
  1048         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
       
  1049         bool do_patch = true;
       
  1050         if (stub_id == Runtime1::access_field_patching_id) {
       
  1051           // The offset may not be correct if the class was not loaded at code generation time.
       
  1052           // Set it now.
       
  1053           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
       
  1054           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
       
  1055           assert(patch_field_offset >= 0, "illegal offset");
       
  1056           n_move->add_offset_in_bytes(patch_field_offset);
       
  1057         } else if (load_klass_or_mirror_patch_id) {
       
  1058           // If a getstatic or putstatic is referencing a klass which
       
  1059           // isn't fully initialized, the patch body isn't copied into
       
  1060           // place until initialization is complete.  In this case the
       
  1061           // patch site is setup so that any threads besides the
       
  1062           // initializing thread are forced to come into the VM and
       
  1063           // block.
       
  1064           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
       
  1065                      InstanceKlass::cast(init_klass)->is_initialized();
       
  1066           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
       
  1067           if (jump->jump_destination() == being_initialized_entry) {
       
  1068             assert(do_patch == true, "initialization must be complete at this point");
       
  1069           } else {
       
  1070             // patch the instruction <move reg, klass>
       
  1071             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
       
  1072 
       
  1073             assert(n_copy->data() == 0 ||
       
  1074                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
       
  1075                    "illegal init value");
       
  1076             if (stub_id == Runtime1::load_klass_patching_id) {
       
  1077               assert(load_klass != NULL, "klass not set");
       
  1078               n_copy->set_data((intx) (load_klass));
       
  1079             } else {
       
  1080               assert(mirror() != NULL, "klass not set");
       
  1081               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
       
  1082               n_copy->set_data(cast_from_oop<intx>(mirror()));
       
  1083             }
       
  1084 
       
  1085             if (TracePatching) {
       
  1086               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
       
  1087             }
       
  1088           }
       
  1089         } else if (stub_id == Runtime1::load_appendix_patching_id) {
       
  1090           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
       
  1091           assert(n_copy->data() == 0 ||
       
  1092                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
       
  1093                  "illegal init value");
       
  1094           n_copy->set_data(cast_from_oop<intx>(appendix()));
       
  1095 
       
  1096           if (TracePatching) {
       
  1097             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
       
  1098           }
       
  1099         } else {
       
  1100           ShouldNotReachHere();
       
  1101         }
       
  1102 
       
  1103 #if defined(SPARC) || defined(PPC32)
       
  1104         if (load_klass_or_mirror_patch_id ||
       
  1105             stub_id == Runtime1::load_appendix_patching_id) {
       
  1106           // Update the location in the nmethod with the proper
       
  1107           // metadata.  When the code was generated, a NULL was stuffed
       
  1108           // in the metadata table and that table needs to be update to
       
  1109           // have the right value.  On intel the value is kept
       
  1110           // directly in the instruction instead of in the metadata
       
  1111           // table, so set_data above effectively updated the value.
       
  1112           nmethod* nm = CodeCache::find_nmethod(instr_pc);
       
  1113           assert(nm != NULL, "invalid nmethod_pc");
       
  1114           RelocIterator mds(nm, copy_buff, copy_buff + 1);
       
  1115           bool found = false;
       
  1116           while (mds.next() && !found) {
       
  1117             if (mds.type() == relocInfo::oop_type) {
       
  1118               assert(stub_id == Runtime1::load_mirror_patching_id ||
       
  1119                      stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
       
  1120               oop_Relocation* r = mds.oop_reloc();
       
  1121               oop* oop_adr = r->oop_addr();
       
  1122               *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
       
  1123               r->fix_oop_relocation();
       
  1124               found = true;
       
  1125             } else if (mds.type() == relocInfo::metadata_type) {
       
  1126               assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
       
  1127               metadata_Relocation* r = mds.metadata_reloc();
       
  1128               Metadata** metadata_adr = r->metadata_addr();
       
  1129               *metadata_adr = load_klass;
       
  1130               r->fix_metadata_relocation();
       
  1131               found = true;
       
  1132             }
       
  1133           }
       
  1134           assert(found, "the metadata must exist!");
       
  1135         }
       
  1136 #endif
       
  1137         if (do_patch) {
       
  1138           // replace instructions
       
  1139           // first replace the tail, then the call
       
  1140 #ifdef ARM
       
  1141           if((load_klass_or_mirror_patch_id ||
       
  1142               stub_id == Runtime1::load_appendix_patching_id) &&
       
  1143               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
       
  1144             nmethod* nm = CodeCache::find_nmethod(instr_pc);
       
  1145             address addr = NULL;
       
  1146             assert(nm != NULL, "invalid nmethod_pc");
       
  1147             RelocIterator mds(nm, copy_buff, copy_buff + 1);
       
  1148             while (mds.next()) {
       
  1149               if (mds.type() == relocInfo::oop_type) {
       
  1150                 assert(stub_id == Runtime1::load_mirror_patching_id ||
       
  1151                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
       
  1152                 oop_Relocation* r = mds.oop_reloc();
       
  1153                 addr = (address)r->oop_addr();
       
  1154                 break;
       
  1155               } else if (mds.type() == relocInfo::metadata_type) {
       
  1156                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
       
  1157                 metadata_Relocation* r = mds.metadata_reloc();
       
  1158                 addr = (address)r->metadata_addr();
       
  1159                 break;
       
  1160               }
       
  1161             }
       
  1162             assert(addr != NULL, "metadata relocation must exist");
       
  1163             copy_buff -= *byte_count;
       
  1164             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
       
  1165             n_copy2->set_pc_relative_offset(addr, instr_pc);
       
  1166           }
       
  1167 #endif
       
  1168 
       
  1169           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
       
  1170             address ptr = copy_buff + i;
       
  1171             int a_byte = (*ptr) & 0xFF;
       
  1172             address dst = instr_pc + i;
       
  1173             *(unsigned char*)dst = (unsigned char) a_byte;
       
  1174           }
       
  1175           ICache::invalidate_range(instr_pc, *byte_count);
       
  1176           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
       
  1177 
       
  1178           if (load_klass_or_mirror_patch_id ||
       
  1179               stub_id == Runtime1::load_appendix_patching_id) {
       
  1180             relocInfo::relocType rtype =
       
  1181               (stub_id == Runtime1::load_klass_patching_id) ?
       
  1182                                    relocInfo::metadata_type :
       
  1183                                    relocInfo::oop_type;
       
  1184             // update relocInfo to metadata
       
  1185             nmethod* nm = CodeCache::find_nmethod(instr_pc);
       
  1186             assert(nm != NULL, "invalid nmethod_pc");
       
  1187 
       
  1188             // The old patch site is now a move instruction so update
       
  1189             // the reloc info so that it will get updated during
       
  1190             // future GCs.
       
  1191             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
       
  1192             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
       
  1193                                                      relocInfo::none, rtype);
       
  1194 #ifdef SPARC
       
  1195             // Sparc takes two relocations for an metadata so update the second one.
       
  1196             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
       
  1197             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
       
  1198             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
       
  1199                                                      relocInfo::none, rtype);
       
  1200 #endif
       
  1201 #ifdef PPC32
       
  1202           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
       
  1203             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
       
  1204             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
       
  1205                                                      relocInfo::none, rtype);
       
  1206           }
       
  1207 #endif
       
  1208           }
       
  1209 
       
  1210         } else {
       
  1211           ICache::invalidate_range(copy_buff, *byte_count);
       
  1212           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
       
  1213         }
       
  1214       }
       
  1215     }
       
  1216   }
       
  1217 
       
  1218   // If we are patching in a non-perm oop, make sure the nmethod
       
  1219   // is on the right list.
       
  1220   if (ScavengeRootsInCode) {
       
  1221     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
       
  1222     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
       
  1223     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
       
  1224     if (!nm->on_scavenge_root_list() &&
       
  1225         ((mirror.not_null() && mirror()->is_scavengable()) ||
       
  1226          (appendix.not_null() && appendix->is_scavengable()))) {
       
  1227       CodeCache::add_scavenge_root_nmethod(nm);
       
  1228     }
       
  1229 
       
  1230     // Since we've patched some oops in the nmethod,
       
  1231     // (re)register it with the heap.
       
  1232     Universe::heap()->register_nmethod(nm);
       
  1233   }
       
  1234 JRT_END
       
  1235 
       
  1236 #else // DEOPTIMIZE_WHEN_PATCHING
       
  1237 
       
  1238 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
       
  1239   RegisterMap reg_map(thread, false);
       
  1240 
       
  1241   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
       
  1242   if (TracePatching) {
       
  1243     tty->print_cr("Deoptimizing because patch is needed");
       
  1244   }
       
  1245 
       
  1246   frame runtime_frame = thread->last_frame();
       
  1247   frame caller_frame = runtime_frame.sender(&reg_map);
       
  1248 
       
  1249   // It's possible the nmethod was invalidated in the last
       
  1250   // safepoint, but if it's still alive then make it not_entrant.
       
  1251   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
       
  1252   if (nm != NULL) {
       
  1253     nm->make_not_entrant();
       
  1254   }
       
  1255 
       
  1256   Deoptimization::deoptimize_frame(thread, caller_frame.id());
       
  1257 
       
  1258   // Return to the now deoptimized frame.
       
  1259 JRT_END
       
  1260 
       
  1261 #endif // DEOPTIMIZE_WHEN_PATCHING
       
  1262 
       
  1263 //
       
  1264 // Entry point for compiled code. We want to patch a nmethod.
       
  1265 // We don't do a normal VM transition here because we want to
       
  1266 // know after the patching is complete and any safepoint(s) are taken
       
  1267 // if the calling nmethod was deoptimized. We do this by calling a
       
  1268 // helper method which does the normal VM transition and when it
       
  1269 // completes we can check for deoptimization. This simplifies the
       
  1270 // assembly code in the cpu directories.
       
  1271 //
       
  1272 int Runtime1::move_klass_patching(JavaThread* thread) {
       
  1273 //
       
  1274 // NOTE: we are still in Java
       
  1275 //
       
  1276   Thread* THREAD = thread;
       
  1277   debug_only(NoHandleMark nhm;)
       
  1278   {
       
  1279     // Enter VM mode
       
  1280 
       
  1281     ResetNoHandleMark rnhm;
       
  1282     patch_code(thread, load_klass_patching_id);
       
  1283   }
       
  1284   // Back in JAVA, use no oops DON'T safepoint
       
  1285 
       
  1286   // Return true if calling code is deoptimized
       
  1287 
       
  1288   return caller_is_deopted();
       
  1289 }
       
  1290 
       
  1291 int Runtime1::move_mirror_patching(JavaThread* thread) {
       
  1292 //
       
  1293 // NOTE: we are still in Java
       
  1294 //
       
  1295   Thread* THREAD = thread;
       
  1296   debug_only(NoHandleMark nhm;)
       
  1297   {
       
  1298     // Enter VM mode
       
  1299 
       
  1300     ResetNoHandleMark rnhm;
       
  1301     patch_code(thread, load_mirror_patching_id);
       
  1302   }
       
  1303   // Back in JAVA, use no oops DON'T safepoint
       
  1304 
       
  1305   // Return true if calling code is deoptimized
       
  1306 
       
  1307   return caller_is_deopted();
       
  1308 }
       
  1309 
       
  1310 int Runtime1::move_appendix_patching(JavaThread* thread) {
       
  1311 //
       
  1312 // NOTE: we are still in Java
       
  1313 //
       
  1314   Thread* THREAD = thread;
       
  1315   debug_only(NoHandleMark nhm;)
       
  1316   {
       
  1317     // Enter VM mode
       
  1318 
       
  1319     ResetNoHandleMark rnhm;
       
  1320     patch_code(thread, load_appendix_patching_id);
       
  1321   }
       
  1322   // Back in JAVA, use no oops DON'T safepoint
       
  1323 
       
  1324   // Return true if calling code is deoptimized
       
  1325 
       
  1326   return caller_is_deopted();
       
  1327 }
       
  1328 //
       
  1329 // Entry point for compiled code. We want to patch a nmethod.
       
  1330 // We don't do a normal VM transition here because we want to
       
  1331 // know after the patching is complete and any safepoint(s) are taken
       
  1332 // if the calling nmethod was deoptimized. We do this by calling a
       
  1333 // helper method which does the normal VM transition and when it
       
  1334 // completes we can check for deoptimization. This simplifies the
       
  1335 // assembly code in the cpu directories.
       
  1336 //
       
  1337 
       
  1338 int Runtime1::access_field_patching(JavaThread* thread) {
       
  1339 //
       
  1340 // NOTE: we are still in Java
       
  1341 //
       
  1342   Thread* THREAD = thread;
       
  1343   debug_only(NoHandleMark nhm;)
       
  1344   {
       
  1345     // Enter VM mode
       
  1346 
       
  1347     ResetNoHandleMark rnhm;
       
  1348     patch_code(thread, access_field_patching_id);
       
  1349   }
       
  1350   // Back in JAVA, use no oops DON'T safepoint
       
  1351 
       
  1352   // Return true if calling code is deoptimized
       
  1353 
       
  1354   return caller_is_deopted();
       
  1355 JRT_END
       
  1356 
       
  1357 
       
  1358 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
       
  1359   // for now we just print out the block id
       
  1360   tty->print("%d ", block_id);
       
  1361 JRT_END
       
  1362 
       
  1363 
       
  1364 // Array copy return codes.
       
  1365 enum {
       
  1366   ac_failed = -1, // arraycopy failed
       
  1367   ac_ok = 0       // arraycopy succeeded
       
  1368 };
       
  1369 
       
  1370 
       
  1371 // Below length is the # elements copied.
       
  1372 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
       
  1373                                           oopDesc* dst, T* dst_addr,
       
  1374                                           int length) {
       
  1375 
       
  1376   // For performance reasons, we assume we are using a card marking write
       
  1377   // barrier. The assert will fail if this is not the case.
       
  1378   // Note that we use the non-virtual inlineable variant of write_ref_array.
       
  1379   BarrierSet* bs = Universe::heap()->barrier_set();
       
  1380   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
       
  1381   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
       
  1382   if (src == dst) {
       
  1383     // same object, no check
       
  1384     bs->write_ref_array_pre(dst_addr, length);
       
  1385     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
       
  1386     bs->write_ref_array((HeapWord*)dst_addr, length);
       
  1387     return ac_ok;
       
  1388   } else {
       
  1389     Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass();
       
  1390     Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass();
       
  1391     if (stype == bound || stype->is_subtype_of(bound)) {
       
  1392       // Elements are guaranteed to be subtypes, so no check necessary
       
  1393       bs->write_ref_array_pre(dst_addr, length);
       
  1394       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
       
  1395       bs->write_ref_array((HeapWord*)dst_addr, length);
       
  1396       return ac_ok;
       
  1397     }
       
  1398   }
       
  1399   return ac_failed;
       
  1400 }
       
  1401 
       
  1402 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
       
  1403 // and we did not copy anything
       
  1404 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
       
  1405 #ifndef PRODUCT
       
  1406   _generic_arraycopy_cnt++;        // Slow-path oop array copy
       
  1407 #endif
       
  1408 
       
  1409   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
       
  1410   if (!dst->is_array() || !src->is_array()) return ac_failed;
       
  1411   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
       
  1412   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
       
  1413 
       
  1414   if (length == 0) return ac_ok;
       
  1415   if (src->is_typeArray()) {
       
  1416     Klass* klass_oop = src->klass();
       
  1417     if (klass_oop != dst->klass()) return ac_failed;
       
  1418     TypeArrayKlass* klass = TypeArrayKlass::cast(klass_oop);
       
  1419     const int l2es = klass->log2_element_size();
       
  1420     const int ihs = klass->array_header_in_bytes() / wordSize;
       
  1421     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
       
  1422     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
       
  1423     // Potential problem: memmove is not guaranteed to be word atomic
       
  1424     // Revisit in Merlin
       
  1425     memmove(dst_addr, src_addr, length << l2es);
       
  1426     return ac_ok;
       
  1427   } else if (src->is_objArray() && dst->is_objArray()) {
       
  1428     if (UseCompressedOops) {
       
  1429       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
       
  1430       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
       
  1431       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
       
  1432     } else {
       
  1433       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
       
  1434       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
       
  1435       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
       
  1436     }
       
  1437   }
       
  1438   return ac_failed;
       
  1439 JRT_END
       
  1440 
       
  1441 
       
  1442 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
       
  1443   // had to return int instead of bool, otherwise there may be a mismatch
       
  1444   // between the C calling convention and the Java one.
       
  1445   // e.g., on x86, GCC may clear only %al when returning a bool false, but
       
  1446   // JVM takes the whole %eax as the return value, which may misinterpret
       
  1447   // the return value as a boolean true.
       
  1448 
       
  1449   assert(mirror != NULL, "should null-check on mirror before calling");
       
  1450   Klass* k = java_lang_Class::as_Klass(mirror);
       
  1451   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
       
  1452 JRT_END
       
  1453 
       
  1454 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
       
  1455   ResourceMark rm;
       
  1456 
       
  1457   assert(!TieredCompilation, "incompatible with tiered compilation");
       
  1458 
       
  1459   RegisterMap reg_map(thread, false);
       
  1460   frame runtime_frame = thread->last_frame();
       
  1461   frame caller_frame = runtime_frame.sender(&reg_map);
       
  1462 
       
  1463   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
       
  1464   assert (nm != NULL, "no more nmethod?");
       
  1465   nm->make_not_entrant();
       
  1466 
       
  1467   methodHandle m(nm->method());
       
  1468   MethodData* mdo = m->method_data();
       
  1469 
       
  1470   if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
       
  1471     // Build an MDO.  Ignore errors like OutOfMemory;
       
  1472     // that simply means we won't have an MDO to update.
       
  1473     Method::build_interpreter_method_data(m, THREAD);
       
  1474     if (HAS_PENDING_EXCEPTION) {
       
  1475       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
       
  1476       CLEAR_PENDING_EXCEPTION;
       
  1477     }
       
  1478     mdo = m->method_data();
       
  1479   }
       
  1480 
       
  1481   if (mdo != NULL) {
       
  1482     mdo->inc_trap_count(Deoptimization::Reason_none);
       
  1483   }
       
  1484 
       
  1485   if (TracePredicateFailedTraps) {
       
  1486     stringStream ss1, ss2;
       
  1487     vframeStream vfst(thread);
       
  1488     methodHandle inlinee = methodHandle(vfst.method());
       
  1489     inlinee->print_short_name(&ss1);
       
  1490     m->print_short_name(&ss2);
       
  1491     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
       
  1492   }
       
  1493 
       
  1494 
       
  1495   Deoptimization::deoptimize_frame(thread, caller_frame.id());
       
  1496 
       
  1497 JRT_END
       
  1498 
       
  1499 #ifndef PRODUCT
       
  1500 void Runtime1::print_statistics() {
       
  1501   tty->print_cr("C1 Runtime statistics:");
       
  1502   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
       
  1503   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
       
  1504   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
       
  1505   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
       
  1506   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
       
  1507   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
       
  1508   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
       
  1509   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_stub_cnt);
       
  1510   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_stub_cnt);
       
  1511   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_stub_cnt);
       
  1512   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_stub_cnt);
       
  1513   tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_stub_cnt);
       
  1514   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
       
  1515   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
       
  1516   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
       
  1517 
       
  1518   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
       
  1519   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
       
  1520   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
       
  1521   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
       
  1522   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
       
  1523   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
       
  1524   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
       
  1525 
       
  1526   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
       
  1527   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
       
  1528   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
       
  1529   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
       
  1530   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
       
  1531   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
       
  1532   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
       
  1533   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
       
  1534 
       
  1535   SharedRuntime::print_ic_miss_histogram();
       
  1536   tty->cr();
       
  1537 }
       
  1538 #endif // PRODUCT