src/hotspot/os/windows/perfMemory_windows.cpp
changeset 47216 71c04702a3d5
parent 46405 17ab5460b2cb
child 48865 53427ddce0a0
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "classfile/vmSymbols.hpp"
       
    27 #include "logging/log.hpp"
       
    28 #include "memory/allocation.inline.hpp"
       
    29 #include "memory/resourceArea.hpp"
       
    30 #include "oops/oop.inline.hpp"
       
    31 #include "os_windows.inline.hpp"
       
    32 #include "runtime/handles.inline.hpp"
       
    33 #include "runtime/os.hpp"
       
    34 #include "runtime/perfMemory.hpp"
       
    35 #include "services/memTracker.hpp"
       
    36 #include "utilities/exceptions.hpp"
       
    37 
       
    38 #include <windows.h>
       
    39 #include <sys/types.h>
       
    40 #include <sys/stat.h>
       
    41 #include <errno.h>
       
    42 #include <lmcons.h>
       
    43 
       
    44 typedef BOOL (WINAPI *SetSecurityDescriptorControlFnPtr)(
       
    45    IN PSECURITY_DESCRIPTOR pSecurityDescriptor,
       
    46    IN SECURITY_DESCRIPTOR_CONTROL ControlBitsOfInterest,
       
    47    IN SECURITY_DESCRIPTOR_CONTROL ControlBitsToSet);
       
    48 
       
    49 // Standard Memory Implementation Details
       
    50 
       
    51 // create the PerfData memory region in standard memory.
       
    52 //
       
    53 static char* create_standard_memory(size_t size) {
       
    54 
       
    55   // allocate an aligned chuck of memory
       
    56   char* mapAddress = os::reserve_memory(size);
       
    57 
       
    58   if (mapAddress == NULL) {
       
    59     return NULL;
       
    60   }
       
    61 
       
    62   // commit memory
       
    63   if (!os::commit_memory(mapAddress, size, !ExecMem)) {
       
    64     if (PrintMiscellaneous && Verbose) {
       
    65       warning("Could not commit PerfData memory\n");
       
    66     }
       
    67     os::release_memory(mapAddress, size);
       
    68     return NULL;
       
    69   }
       
    70 
       
    71   return mapAddress;
       
    72 }
       
    73 
       
    74 // delete the PerfData memory region
       
    75 //
       
    76 static void delete_standard_memory(char* addr, size_t size) {
       
    77 
       
    78   // there are no persistent external resources to cleanup for standard
       
    79   // memory. since DestroyJavaVM does not support unloading of the JVM,
       
    80   // cleanup of the memory resource is not performed. The memory will be
       
    81   // reclaimed by the OS upon termination of the process.
       
    82   //
       
    83   return;
       
    84 
       
    85 }
       
    86 
       
    87 // save the specified memory region to the given file
       
    88 //
       
    89 static void save_memory_to_file(char* addr, size_t size) {
       
    90 
       
    91   const char* destfile = PerfMemory::get_perfdata_file_path();
       
    92   assert(destfile[0] != '\0', "invalid Perfdata file path");
       
    93 
       
    94   int fd = ::_open(destfile, _O_BINARY|_O_CREAT|_O_WRONLY|_O_TRUNC,
       
    95                    _S_IREAD|_S_IWRITE);
       
    96 
       
    97   if (fd == OS_ERR) {
       
    98     if (PrintMiscellaneous && Verbose) {
       
    99       warning("Could not create Perfdata save file: %s: %s\n",
       
   100               destfile, os::strerror(errno));
       
   101     }
       
   102   } else {
       
   103     for (size_t remaining = size; remaining > 0;) {
       
   104 
       
   105       int nbytes = ::_write(fd, addr, (unsigned int)remaining);
       
   106       if (nbytes == OS_ERR) {
       
   107         if (PrintMiscellaneous && Verbose) {
       
   108           warning("Could not write Perfdata save file: %s: %s\n",
       
   109                   destfile, os::strerror(errno));
       
   110         }
       
   111         break;
       
   112       }
       
   113 
       
   114       remaining -= (size_t)nbytes;
       
   115       addr += nbytes;
       
   116     }
       
   117 
       
   118     int result = ::_close(fd);
       
   119     if (PrintMiscellaneous && Verbose) {
       
   120       if (result == OS_ERR) {
       
   121         warning("Could not close %s: %s\n", destfile, os::strerror(errno));
       
   122       }
       
   123     }
       
   124   }
       
   125 
       
   126   FREE_C_HEAP_ARRAY(char, destfile);
       
   127 }
       
   128 
       
   129 // Shared Memory Implementation Details
       
   130 
       
   131 // Note: the win32 shared memory implementation uses two objects to represent
       
   132 // the shared memory: a windows kernel based file mapping object and a backing
       
   133 // store file. On windows, the name space for shared memory is a kernel
       
   134 // based name space that is disjoint from other win32 name spaces. Since Java
       
   135 // is unaware of this name space, a parallel file system based name space is
       
   136 // maintained, which provides a common file system based shared memory name
       
   137 // space across the supported platforms and one that Java apps can deal with
       
   138 // through simple file apis.
       
   139 //
       
   140 // For performance and resource cleanup reasons, it is recommended that the
       
   141 // user specific directory and the backing store file be stored in either a
       
   142 // RAM based file system or a local disk based file system. Network based
       
   143 // file systems are not recommended for performance reasons. In addition,
       
   144 // use of SMB network based file systems may result in unsuccesful cleanup
       
   145 // of the disk based resource on exit of the VM. The Windows TMP and TEMP
       
   146 // environement variables, as used by the GetTempPath() Win32 API (see
       
   147 // os::get_temp_directory() in os_win32.cpp), control the location of the
       
   148 // user specific directory and the shared memory backing store file.
       
   149 
       
   150 static HANDLE sharedmem_fileMapHandle = NULL;
       
   151 static HANDLE sharedmem_fileHandle = INVALID_HANDLE_VALUE;
       
   152 static char*  sharedmem_fileName = NULL;
       
   153 
       
   154 // return the user specific temporary directory name.
       
   155 //
       
   156 // the caller is expected to free the allocated memory.
       
   157 //
       
   158 static char* get_user_tmp_dir(const char* user) {
       
   159 
       
   160   const char* tmpdir = os::get_temp_directory();
       
   161   const char* perfdir = PERFDATA_NAME;
       
   162   size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
       
   163   char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
       
   164 
       
   165   // construct the path name to user specific tmp directory
       
   166   _snprintf(dirname, nbytes, "%s\\%s_%s", tmpdir, perfdir, user);
       
   167 
       
   168   return dirname;
       
   169 }
       
   170 
       
   171 // convert the given file name into a process id. if the file
       
   172 // does not meet the file naming constraints, return 0.
       
   173 //
       
   174 static int filename_to_pid(const char* filename) {
       
   175 
       
   176   // a filename that doesn't begin with a digit is not a
       
   177   // candidate for conversion.
       
   178   //
       
   179   if (!isdigit(*filename)) {
       
   180     return 0;
       
   181   }
       
   182 
       
   183   // check if file name can be converted to an integer without
       
   184   // any leftover characters.
       
   185   //
       
   186   char* remainder = NULL;
       
   187   errno = 0;
       
   188   int pid = (int)strtol(filename, &remainder, 10);
       
   189 
       
   190   if (errno != 0) {
       
   191     return 0;
       
   192   }
       
   193 
       
   194   // check for left over characters. If any, then the filename is
       
   195   // not a candidate for conversion.
       
   196   //
       
   197   if (remainder != NULL && *remainder != '\0') {
       
   198     return 0;
       
   199   }
       
   200 
       
   201   // successful conversion, return the pid
       
   202   return pid;
       
   203 }
       
   204 
       
   205 // check if the given path is considered a secure directory for
       
   206 // the backing store files. Returns true if the directory exists
       
   207 // and is considered a secure location. Returns false if the path
       
   208 // is a symbolic link or if an error occurred.
       
   209 //
       
   210 static bool is_directory_secure(const char* path) {
       
   211 
       
   212   DWORD fa;
       
   213 
       
   214   fa = GetFileAttributes(path);
       
   215   if (fa == 0xFFFFFFFF) {
       
   216     DWORD lasterror = GetLastError();
       
   217     if (lasterror == ERROR_FILE_NOT_FOUND) {
       
   218       return false;
       
   219     }
       
   220     else {
       
   221       // unexpected error, declare the path insecure
       
   222       if (PrintMiscellaneous && Verbose) {
       
   223         warning("could not get attributes for file %s: ",
       
   224                 " lasterror = %d\n", path, lasterror);
       
   225       }
       
   226       return false;
       
   227     }
       
   228   }
       
   229 
       
   230   if (fa & FILE_ATTRIBUTE_REPARSE_POINT) {
       
   231     // we don't accept any redirection for the user specific directory
       
   232     // so declare the path insecure. This may be too conservative,
       
   233     // as some types of reparse points might be acceptable, but it
       
   234     // is probably more secure to avoid these conditions.
       
   235     //
       
   236     if (PrintMiscellaneous && Verbose) {
       
   237       warning("%s is a reparse point\n", path);
       
   238     }
       
   239     return false;
       
   240   }
       
   241 
       
   242   if (fa & FILE_ATTRIBUTE_DIRECTORY) {
       
   243     // this is the expected case. Since windows supports symbolic
       
   244     // links to directories only, not to files, there is no need
       
   245     // to check for open write permissions on the directory. If the
       
   246     // directory has open write permissions, any files deposited that
       
   247     // are not expected will be removed by the cleanup code.
       
   248     //
       
   249     return true;
       
   250   }
       
   251   else {
       
   252     // this is either a regular file or some other type of file,
       
   253     // any of which are unexpected and therefore insecure.
       
   254     //
       
   255     if (PrintMiscellaneous && Verbose) {
       
   256       warning("%s is not a directory, file attributes = "
       
   257               INTPTR_FORMAT "\n", path, fa);
       
   258     }
       
   259     return false;
       
   260   }
       
   261 }
       
   262 
       
   263 // return the user name for the owner of this process
       
   264 //
       
   265 // the caller is expected to free the allocated memory.
       
   266 //
       
   267 static char* get_user_name() {
       
   268 
       
   269   /* get the user name. This code is adapted from code found in
       
   270    * the jdk in src/windows/native/java/lang/java_props_md.c
       
   271    * java_props_md.c  1.29 02/02/06. According to the original
       
   272    * source, the call to GetUserName is avoided because of a resulting
       
   273    * increase in footprint of 100K.
       
   274    */
       
   275   char* user = getenv("USERNAME");
       
   276   char buf[UNLEN+1];
       
   277   DWORD buflen = sizeof(buf);
       
   278   if (user == NULL || strlen(user) == 0) {
       
   279     if (GetUserName(buf, &buflen)) {
       
   280       user = buf;
       
   281     }
       
   282     else {
       
   283       return NULL;
       
   284     }
       
   285   }
       
   286 
       
   287   char* user_name = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
       
   288   strcpy(user_name, user);
       
   289 
       
   290   return user_name;
       
   291 }
       
   292 
       
   293 // return the name of the user that owns the process identified by vmid.
       
   294 //
       
   295 // This method uses a slow directory search algorithm to find the backing
       
   296 // store file for the specified vmid and returns the user name, as determined
       
   297 // by the user name suffix of the hsperfdata_<username> directory name.
       
   298 //
       
   299 // the caller is expected to free the allocated memory.
       
   300 //
       
   301 static char* get_user_name_slow(int vmid) {
       
   302 
       
   303   // directory search
       
   304   char* latest_user = NULL;
       
   305   time_t latest_ctime = 0;
       
   306 
       
   307   const char* tmpdirname = os::get_temp_directory();
       
   308 
       
   309   DIR* tmpdirp = os::opendir(tmpdirname);
       
   310 
       
   311   if (tmpdirp == NULL) {
       
   312     return NULL;
       
   313   }
       
   314 
       
   315   // for each entry in the directory that matches the pattern hsperfdata_*,
       
   316   // open the directory and check if the file for the given vmid exists.
       
   317   // The file with the expected name and the latest creation date is used
       
   318   // to determine the user name for the process id.
       
   319   //
       
   320   struct dirent* dentry;
       
   321   char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
       
   322   errno = 0;
       
   323   while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
       
   324 
       
   325     // check if the directory entry is a hsperfdata file
       
   326     if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
       
   327       continue;
       
   328     }
       
   329 
       
   330     char* usrdir_name = NEW_C_HEAP_ARRAY(char,
       
   331         strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
       
   332     strcpy(usrdir_name, tmpdirname);
       
   333     strcat(usrdir_name, "\\");
       
   334     strcat(usrdir_name, dentry->d_name);
       
   335 
       
   336     DIR* subdirp = os::opendir(usrdir_name);
       
   337 
       
   338     if (subdirp == NULL) {
       
   339       FREE_C_HEAP_ARRAY(char, usrdir_name);
       
   340       continue;
       
   341     }
       
   342 
       
   343     // Since we don't create the backing store files in directories
       
   344     // pointed to by symbolic links, we also don't follow them when
       
   345     // looking for the files. We check for a symbolic link after the
       
   346     // call to opendir in order to eliminate a small window where the
       
   347     // symlink can be exploited.
       
   348     //
       
   349     if (!is_directory_secure(usrdir_name)) {
       
   350       FREE_C_HEAP_ARRAY(char, usrdir_name);
       
   351       os::closedir(subdirp);
       
   352       continue;
       
   353     }
       
   354 
       
   355     struct dirent* udentry;
       
   356     char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
       
   357     errno = 0;
       
   358     while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
       
   359 
       
   360       if (filename_to_pid(udentry->d_name) == vmid) {
       
   361         struct stat statbuf;
       
   362 
       
   363         char* filename = NEW_C_HEAP_ARRAY(char,
       
   364            strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
       
   365 
       
   366         strcpy(filename, usrdir_name);
       
   367         strcat(filename, "\\");
       
   368         strcat(filename, udentry->d_name);
       
   369 
       
   370         if (::stat(filename, &statbuf) == OS_ERR) {
       
   371            FREE_C_HEAP_ARRAY(char, filename);
       
   372            continue;
       
   373         }
       
   374 
       
   375         // skip over files that are not regular files.
       
   376         if ((statbuf.st_mode & S_IFMT) != S_IFREG) {
       
   377           FREE_C_HEAP_ARRAY(char, filename);
       
   378           continue;
       
   379         }
       
   380 
       
   381         // If we found a matching file with a newer creation time, then
       
   382         // save the user name. The newer creation time indicates that
       
   383         // we found a newer incarnation of the process associated with
       
   384         // vmid. Due to the way that Windows recycles pids and the fact
       
   385         // that we can't delete the file from the file system namespace
       
   386         // until last close, it is possible for there to be more than
       
   387         // one hsperfdata file with a name matching vmid (diff users).
       
   388         //
       
   389         // We no longer ignore hsperfdata files where (st_size == 0).
       
   390         // In this function, all we're trying to do is determine the
       
   391         // name of the user that owns the process associated with vmid
       
   392         // so the size doesn't matter. Very rarely, we have observed
       
   393         // hsperfdata files where (st_size == 0) and the st_size field
       
   394         // later becomes the expected value.
       
   395         //
       
   396         if (statbuf.st_ctime > latest_ctime) {
       
   397           char* user = strchr(dentry->d_name, '_') + 1;
       
   398 
       
   399           if (latest_user != NULL) FREE_C_HEAP_ARRAY(char, latest_user);
       
   400           latest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
       
   401 
       
   402           strcpy(latest_user, user);
       
   403           latest_ctime = statbuf.st_ctime;
       
   404         }
       
   405 
       
   406         FREE_C_HEAP_ARRAY(char, filename);
       
   407       }
       
   408     }
       
   409     os::closedir(subdirp);
       
   410     FREE_C_HEAP_ARRAY(char, udbuf);
       
   411     FREE_C_HEAP_ARRAY(char, usrdir_name);
       
   412   }
       
   413   os::closedir(tmpdirp);
       
   414   FREE_C_HEAP_ARRAY(char, tdbuf);
       
   415 
       
   416   return(latest_user);
       
   417 }
       
   418 
       
   419 // return the name of the user that owns the process identified by vmid.
       
   420 //
       
   421 // note: this method should only be used via the Perf native methods.
       
   422 // There are various costs to this method and limiting its use to the
       
   423 // Perf native methods limits the impact to monitoring applications only.
       
   424 //
       
   425 static char* get_user_name(int vmid) {
       
   426 
       
   427   // A fast implementation is not provided at this time. It's possible
       
   428   // to provide a fast process id to user name mapping function using
       
   429   // the win32 apis, but the default ACL for the process object only
       
   430   // allows processes with the same owner SID to acquire the process
       
   431   // handle (via OpenProcess(PROCESS_QUERY_INFORMATION)). It's possible
       
   432   // to have the JVM change the ACL for the process object to allow arbitrary
       
   433   // users to access the process handle and the process security token.
       
   434   // The security ramifications need to be studied before providing this
       
   435   // mechanism.
       
   436   //
       
   437   return get_user_name_slow(vmid);
       
   438 }
       
   439 
       
   440 // return the name of the shared memory file mapping object for the
       
   441 // named shared memory region for the given user name and vmid.
       
   442 //
       
   443 // The file mapping object's name is not the file name. It is a name
       
   444 // in a separate name space.
       
   445 //
       
   446 // the caller is expected to free the allocated memory.
       
   447 //
       
   448 static char *get_sharedmem_objectname(const char* user, int vmid) {
       
   449 
       
   450   // construct file mapping object's name, add 3 for two '_' and a
       
   451   // null terminator.
       
   452   int nbytes = (int)strlen(PERFDATA_NAME) + (int)strlen(user) + 3;
       
   453 
       
   454   // the id is converted to an unsigned value here because win32 allows
       
   455   // negative process ids. However, OpenFileMapping API complains
       
   456   // about a name containing a '-' characters.
       
   457   //
       
   458   nbytes += UINT_CHARS;
       
   459   char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
       
   460   _snprintf(name, nbytes, "%s_%s_%u", PERFDATA_NAME, user, vmid);
       
   461 
       
   462   return name;
       
   463 }
       
   464 
       
   465 // return the file name of the backing store file for the named
       
   466 // shared memory region for the given user name and vmid.
       
   467 //
       
   468 // the caller is expected to free the allocated memory.
       
   469 //
       
   470 static char* get_sharedmem_filename(const char* dirname, int vmid) {
       
   471 
       
   472   // add 2 for the file separator and a null terminator.
       
   473   size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
       
   474 
       
   475   char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
       
   476   _snprintf(name, nbytes, "%s\\%d", dirname, vmid);
       
   477 
       
   478   return name;
       
   479 }
       
   480 
       
   481 // remove file
       
   482 //
       
   483 // this method removes the file with the given file name.
       
   484 //
       
   485 // Note: if the indicated file is on an SMB network file system, this
       
   486 // method may be unsuccessful in removing the file.
       
   487 //
       
   488 static void remove_file(const char* dirname, const char* filename) {
       
   489 
       
   490   size_t nbytes = strlen(dirname) + strlen(filename) + 2;
       
   491   char* path = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
       
   492 
       
   493   strcpy(path, dirname);
       
   494   strcat(path, "\\");
       
   495   strcat(path, filename);
       
   496 
       
   497   if (::unlink(path) == OS_ERR) {
       
   498     if (PrintMiscellaneous && Verbose) {
       
   499       if (errno != ENOENT) {
       
   500         warning("Could not unlink shared memory backing"
       
   501                 " store file %s : %s\n", path, os::strerror(errno));
       
   502       }
       
   503     }
       
   504   }
       
   505 
       
   506   FREE_C_HEAP_ARRAY(char, path);
       
   507 }
       
   508 
       
   509 // returns true if the process represented by pid is alive, otherwise
       
   510 // returns false. the validity of the result is only accurate if the
       
   511 // target process is owned by the same principal that owns this process.
       
   512 // this method should not be used if to test the status of an otherwise
       
   513 // arbitrary process unless it is know that this process has the appropriate
       
   514 // privileges to guarantee a result valid.
       
   515 //
       
   516 static bool is_alive(int pid) {
       
   517 
       
   518   HANDLE ph = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, pid);
       
   519   if (ph == NULL) {
       
   520     // the process does not exist.
       
   521     if (PrintMiscellaneous && Verbose) {
       
   522       DWORD lastError = GetLastError();
       
   523       if (lastError != ERROR_INVALID_PARAMETER) {
       
   524         warning("OpenProcess failed: %d\n", GetLastError());
       
   525       }
       
   526     }
       
   527     return false;
       
   528   }
       
   529 
       
   530   DWORD exit_status;
       
   531   if (!GetExitCodeProcess(ph, &exit_status)) {
       
   532     if (PrintMiscellaneous && Verbose) {
       
   533       warning("GetExitCodeProcess failed: %d\n", GetLastError());
       
   534     }
       
   535     CloseHandle(ph);
       
   536     return false;
       
   537   }
       
   538 
       
   539   CloseHandle(ph);
       
   540   return (exit_status == STILL_ACTIVE) ? true : false;
       
   541 }
       
   542 
       
   543 // check if the file system is considered secure for the backing store files
       
   544 //
       
   545 static bool is_filesystem_secure(const char* path) {
       
   546 
       
   547   char root_path[MAX_PATH];
       
   548   char fs_type[MAX_PATH];
       
   549 
       
   550   if (PerfBypassFileSystemCheck) {
       
   551     if (PrintMiscellaneous && Verbose) {
       
   552       warning("bypassing file system criteria checks for %s\n", path);
       
   553     }
       
   554     return true;
       
   555   }
       
   556 
       
   557   char* first_colon = strchr((char *)path, ':');
       
   558   if (first_colon == NULL) {
       
   559     if (PrintMiscellaneous && Verbose) {
       
   560       warning("expected device specifier in path: %s\n", path);
       
   561     }
       
   562     return false;
       
   563   }
       
   564 
       
   565   size_t len = (size_t)(first_colon - path);
       
   566   assert(len + 2 <= MAX_PATH, "unexpected device specifier length");
       
   567   strncpy(root_path, path, len + 1);
       
   568   root_path[len + 1] = '\\';
       
   569   root_path[len + 2] = '\0';
       
   570 
       
   571   // check that we have something like "C:\" or "AA:\"
       
   572   assert(strlen(root_path) >= 3, "device specifier too short");
       
   573   assert(strchr(root_path, ':') != NULL, "bad device specifier format");
       
   574   assert(strchr(root_path, '\\') != NULL, "bad device specifier format");
       
   575 
       
   576   DWORD maxpath;
       
   577   DWORD flags;
       
   578 
       
   579   if (!GetVolumeInformation(root_path, NULL, 0, NULL, &maxpath,
       
   580                             &flags, fs_type, MAX_PATH)) {
       
   581     // we can't get information about the volume, so assume unsafe.
       
   582     if (PrintMiscellaneous && Verbose) {
       
   583       warning("could not get device information for %s: "
       
   584               " path = %s: lasterror = %d\n",
       
   585               root_path, path, GetLastError());
       
   586     }
       
   587     return false;
       
   588   }
       
   589 
       
   590   if ((flags & FS_PERSISTENT_ACLS) == 0) {
       
   591     // file system doesn't support ACLs, declare file system unsafe
       
   592     if (PrintMiscellaneous && Verbose) {
       
   593       warning("file system type %s on device %s does not support"
       
   594               " ACLs\n", fs_type, root_path);
       
   595     }
       
   596     return false;
       
   597   }
       
   598 
       
   599   if ((flags & FS_VOL_IS_COMPRESSED) != 0) {
       
   600     // file system is compressed, declare file system unsafe
       
   601     if (PrintMiscellaneous && Verbose) {
       
   602       warning("file system type %s on device %s is compressed\n",
       
   603               fs_type, root_path);
       
   604     }
       
   605     return false;
       
   606   }
       
   607 
       
   608   return true;
       
   609 }
       
   610 
       
   611 // cleanup stale shared memory resources
       
   612 //
       
   613 // This method attempts to remove all stale shared memory files in
       
   614 // the named user temporary directory. It scans the named directory
       
   615 // for files matching the pattern ^$[0-9]*$. For each file found, the
       
   616 // process id is extracted from the file name and a test is run to
       
   617 // determine if the process is alive. If the process is not alive,
       
   618 // any stale file resources are removed.
       
   619 //
       
   620 static void cleanup_sharedmem_resources(const char* dirname) {
       
   621 
       
   622   // open the user temp directory
       
   623   DIR* dirp = os::opendir(dirname);
       
   624 
       
   625   if (dirp == NULL) {
       
   626     // directory doesn't exist, so there is nothing to cleanup
       
   627     return;
       
   628   }
       
   629 
       
   630   if (!is_directory_secure(dirname)) {
       
   631     // the directory is not secure, don't attempt any cleanup
       
   632     os::closedir(dirp);
       
   633     return;
       
   634   }
       
   635 
       
   636   // for each entry in the directory that matches the expected file
       
   637   // name pattern, determine if the file resources are stale and if
       
   638   // so, remove the file resources. Note, instrumented HotSpot processes
       
   639   // for this user may start and/or terminate during this search and
       
   640   // remove or create new files in this directory. The behavior of this
       
   641   // loop under these conditions is dependent upon the implementation of
       
   642   // opendir/readdir.
       
   643   //
       
   644   struct dirent* entry;
       
   645   char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
       
   646   errno = 0;
       
   647   while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
       
   648 
       
   649     int pid = filename_to_pid(entry->d_name);
       
   650 
       
   651     if (pid == 0) {
       
   652 
       
   653       if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
       
   654 
       
   655         // attempt to remove all unexpected files, except "." and ".."
       
   656         remove_file(dirname, entry->d_name);
       
   657       }
       
   658 
       
   659       errno = 0;
       
   660       continue;
       
   661     }
       
   662 
       
   663     // we now have a file name that converts to a valid integer
       
   664     // that could represent a process id . if this process id
       
   665     // matches the current process id or the process is not running,
       
   666     // then remove the stale file resources.
       
   667     //
       
   668     // process liveness is detected by checking the exit status
       
   669     // of the process. if the process id is valid and the exit status
       
   670     // indicates that it is still running, the file file resources
       
   671     // are not removed. If the process id is invalid, or if we don't
       
   672     // have permissions to check the process status, or if the process
       
   673     // id is valid and the process has terminated, the the file resources
       
   674     // are assumed to be stale and are removed.
       
   675     //
       
   676     if (pid == os::current_process_id() || !is_alive(pid)) {
       
   677 
       
   678       // we can only remove the file resources. Any mapped views
       
   679       // of the file can only be unmapped by the processes that
       
   680       // opened those views and the file mapping object will not
       
   681       // get removed until all views are unmapped.
       
   682       //
       
   683       remove_file(dirname, entry->d_name);
       
   684     }
       
   685     errno = 0;
       
   686   }
       
   687   os::closedir(dirp);
       
   688   FREE_C_HEAP_ARRAY(char, dbuf);
       
   689 }
       
   690 
       
   691 // create a file mapping object with the requested name, and size
       
   692 // from the file represented by the given Handle object
       
   693 //
       
   694 static HANDLE create_file_mapping(const char* name, HANDLE fh, LPSECURITY_ATTRIBUTES fsa, size_t size) {
       
   695 
       
   696   DWORD lowSize = (DWORD)size;
       
   697   DWORD highSize = 0;
       
   698   HANDLE fmh = NULL;
       
   699 
       
   700   // Create a file mapping object with the given name. This function
       
   701   // will grow the file to the specified size.
       
   702   //
       
   703   fmh = CreateFileMapping(
       
   704                fh,                 /* HANDLE file handle for backing store */
       
   705                fsa,                /* LPSECURITY_ATTRIBUTES Not inheritable */
       
   706                PAGE_READWRITE,     /* DWORD protections */
       
   707                highSize,           /* DWORD High word of max size */
       
   708                lowSize,            /* DWORD Low word of max size */
       
   709                name);              /* LPCTSTR name for object */
       
   710 
       
   711   if (fmh == NULL) {
       
   712     if (PrintMiscellaneous && Verbose) {
       
   713       warning("CreateFileMapping failed, lasterror = %d\n", GetLastError());
       
   714     }
       
   715     return NULL;
       
   716   }
       
   717 
       
   718   if (GetLastError() == ERROR_ALREADY_EXISTS) {
       
   719 
       
   720     // a stale file mapping object was encountered. This object may be
       
   721     // owned by this or some other user and cannot be removed until
       
   722     // the other processes either exit or close their mapping objects
       
   723     // and/or mapped views of this mapping object.
       
   724     //
       
   725     if (PrintMiscellaneous && Verbose) {
       
   726       warning("file mapping already exists, lasterror = %d\n", GetLastError());
       
   727     }
       
   728 
       
   729     CloseHandle(fmh);
       
   730     return NULL;
       
   731   }
       
   732 
       
   733   return fmh;
       
   734 }
       
   735 
       
   736 
       
   737 // method to free the given security descriptor and the contained
       
   738 // access control list.
       
   739 //
       
   740 static void free_security_desc(PSECURITY_DESCRIPTOR pSD) {
       
   741 
       
   742   BOOL success, exists, isdefault;
       
   743   PACL pACL;
       
   744 
       
   745   if (pSD != NULL) {
       
   746 
       
   747     // get the access control list from the security descriptor
       
   748     success = GetSecurityDescriptorDacl(pSD, &exists, &pACL, &isdefault);
       
   749 
       
   750     // if an ACL existed and it was not a default acl, then it must
       
   751     // be an ACL we enlisted. free the resources.
       
   752     //
       
   753     if (success && exists && pACL != NULL && !isdefault) {
       
   754       FREE_C_HEAP_ARRAY(char, pACL);
       
   755     }
       
   756 
       
   757     // free the security descriptor
       
   758     FREE_C_HEAP_ARRAY(char, pSD);
       
   759   }
       
   760 }
       
   761 
       
   762 // method to free up a security attributes structure and any
       
   763 // contained security descriptors and ACL
       
   764 //
       
   765 static void free_security_attr(LPSECURITY_ATTRIBUTES lpSA) {
       
   766 
       
   767   if (lpSA != NULL) {
       
   768     // free the contained security descriptor and the ACL
       
   769     free_security_desc(lpSA->lpSecurityDescriptor);
       
   770     lpSA->lpSecurityDescriptor = NULL;
       
   771 
       
   772     // free the security attributes structure
       
   773     FREE_C_HEAP_ARRAY(char, lpSA);
       
   774   }
       
   775 }
       
   776 
       
   777 // get the user SID for the process indicated by the process handle
       
   778 //
       
   779 static PSID get_user_sid(HANDLE hProcess) {
       
   780 
       
   781   HANDLE hAccessToken;
       
   782   PTOKEN_USER token_buf = NULL;
       
   783   DWORD rsize = 0;
       
   784 
       
   785   if (hProcess == NULL) {
       
   786     return NULL;
       
   787   }
       
   788 
       
   789   // get the process token
       
   790   if (!OpenProcessToken(hProcess, TOKEN_READ, &hAccessToken)) {
       
   791     if (PrintMiscellaneous && Verbose) {
       
   792       warning("OpenProcessToken failure: lasterror = %d \n", GetLastError());
       
   793     }
       
   794     return NULL;
       
   795   }
       
   796 
       
   797   // determine the size of the token structured needed to retrieve
       
   798   // the user token information from the access token.
       
   799   //
       
   800   if (!GetTokenInformation(hAccessToken, TokenUser, NULL, rsize, &rsize)) {
       
   801     DWORD lasterror = GetLastError();
       
   802     if (lasterror != ERROR_INSUFFICIENT_BUFFER) {
       
   803       if (PrintMiscellaneous && Verbose) {
       
   804         warning("GetTokenInformation failure: lasterror = %d,"
       
   805                 " rsize = %d\n", lasterror, rsize);
       
   806       }
       
   807       CloseHandle(hAccessToken);
       
   808       return NULL;
       
   809     }
       
   810   }
       
   811 
       
   812   token_buf = (PTOKEN_USER) NEW_C_HEAP_ARRAY(char, rsize, mtInternal);
       
   813 
       
   814   // get the user token information
       
   815   if (!GetTokenInformation(hAccessToken, TokenUser, token_buf, rsize, &rsize)) {
       
   816     if (PrintMiscellaneous && Verbose) {
       
   817       warning("GetTokenInformation failure: lasterror = %d,"
       
   818               " rsize = %d\n", GetLastError(), rsize);
       
   819     }
       
   820     FREE_C_HEAP_ARRAY(char, token_buf);
       
   821     CloseHandle(hAccessToken);
       
   822     return NULL;
       
   823   }
       
   824 
       
   825   DWORD nbytes = GetLengthSid(token_buf->User.Sid);
       
   826   PSID pSID = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
       
   827 
       
   828   if (!CopySid(nbytes, pSID, token_buf->User.Sid)) {
       
   829     if (PrintMiscellaneous && Verbose) {
       
   830       warning("GetTokenInformation failure: lasterror = %d,"
       
   831               " rsize = %d\n", GetLastError(), rsize);
       
   832     }
       
   833     FREE_C_HEAP_ARRAY(char, token_buf);
       
   834     FREE_C_HEAP_ARRAY(char, pSID);
       
   835     CloseHandle(hAccessToken);
       
   836     return NULL;
       
   837   }
       
   838 
       
   839   // close the access token.
       
   840   CloseHandle(hAccessToken);
       
   841   FREE_C_HEAP_ARRAY(char, token_buf);
       
   842 
       
   843   return pSID;
       
   844 }
       
   845 
       
   846 // structure used to consolidate access control entry information
       
   847 //
       
   848 typedef struct ace_data {
       
   849   PSID pSid;      // SID of the ACE
       
   850   DWORD mask;     // mask for the ACE
       
   851 } ace_data_t;
       
   852 
       
   853 
       
   854 // method to add an allow access control entry with the access rights
       
   855 // indicated in mask for the principal indicated in SID to the given
       
   856 // security descriptor. Much of the DACL handling was adapted from
       
   857 // the example provided here:
       
   858 //      http://support.microsoft.com/kb/102102/EN-US/
       
   859 //
       
   860 
       
   861 static bool add_allow_aces(PSECURITY_DESCRIPTOR pSD,
       
   862                            ace_data_t aces[], int ace_count) {
       
   863   PACL newACL = NULL;
       
   864   PACL oldACL = NULL;
       
   865 
       
   866   if (pSD == NULL) {
       
   867     return false;
       
   868   }
       
   869 
       
   870   BOOL exists, isdefault;
       
   871 
       
   872   // retrieve any existing access control list.
       
   873   if (!GetSecurityDescriptorDacl(pSD, &exists, &oldACL, &isdefault)) {
       
   874     if (PrintMiscellaneous && Verbose) {
       
   875       warning("GetSecurityDescriptor failure: lasterror = %d \n",
       
   876               GetLastError());
       
   877     }
       
   878     return false;
       
   879   }
       
   880 
       
   881   // get the size of the DACL
       
   882   ACL_SIZE_INFORMATION aclinfo;
       
   883 
       
   884   // GetSecurityDescriptorDacl may return true value for exists (lpbDaclPresent)
       
   885   // while oldACL is NULL for some case.
       
   886   if (oldACL == NULL) {
       
   887     exists = FALSE;
       
   888   }
       
   889 
       
   890   if (exists) {
       
   891     if (!GetAclInformation(oldACL, &aclinfo,
       
   892                            sizeof(ACL_SIZE_INFORMATION),
       
   893                            AclSizeInformation)) {
       
   894       if (PrintMiscellaneous && Verbose) {
       
   895         warning("GetAclInformation failure: lasterror = %d \n", GetLastError());
       
   896         return false;
       
   897       }
       
   898     }
       
   899   } else {
       
   900     aclinfo.AceCount = 0; // assume NULL DACL
       
   901     aclinfo.AclBytesFree = 0;
       
   902     aclinfo.AclBytesInUse = sizeof(ACL);
       
   903   }
       
   904 
       
   905   // compute the size needed for the new ACL
       
   906   // initial size of ACL is sum of the following:
       
   907   //   * size of ACL structure.
       
   908   //   * size of each ACE structure that ACL is to contain minus the sid
       
   909   //     sidStart member (DWORD) of the ACE.
       
   910   //   * length of the SID that each ACE is to contain.
       
   911   DWORD newACLsize = aclinfo.AclBytesInUse +
       
   912                         (sizeof(ACCESS_ALLOWED_ACE) - sizeof(DWORD)) * ace_count;
       
   913   for (int i = 0; i < ace_count; i++) {
       
   914      assert(aces[i].pSid != 0, "pSid should not be 0");
       
   915      newACLsize += GetLengthSid(aces[i].pSid);
       
   916   }
       
   917 
       
   918   // create the new ACL
       
   919   newACL = (PACL) NEW_C_HEAP_ARRAY(char, newACLsize, mtInternal);
       
   920 
       
   921   if (!InitializeAcl(newACL, newACLsize, ACL_REVISION)) {
       
   922     if (PrintMiscellaneous && Verbose) {
       
   923       warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
       
   924     }
       
   925     FREE_C_HEAP_ARRAY(char, newACL);
       
   926     return false;
       
   927   }
       
   928 
       
   929   unsigned int ace_index = 0;
       
   930   // copy any existing ACEs from the old ACL (if any) to the new ACL.
       
   931   if (aclinfo.AceCount != 0) {
       
   932     while (ace_index < aclinfo.AceCount) {
       
   933       LPVOID ace;
       
   934       if (!GetAce(oldACL, ace_index, &ace)) {
       
   935         if (PrintMiscellaneous && Verbose) {
       
   936           warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
       
   937         }
       
   938         FREE_C_HEAP_ARRAY(char, newACL);
       
   939         return false;
       
   940       }
       
   941       if (((ACCESS_ALLOWED_ACE *)ace)->Header.AceFlags && INHERITED_ACE) {
       
   942         // this is an inherited, allowed ACE; break from loop so we can
       
   943         // add the new access allowed, non-inherited ACE in the correct
       
   944         // position, immediately following all non-inherited ACEs.
       
   945         break;
       
   946       }
       
   947 
       
   948       // determine if the SID of this ACE matches any of the SIDs
       
   949       // for which we plan to set ACEs.
       
   950       int matches = 0;
       
   951       for (int i = 0; i < ace_count; i++) {
       
   952         if (EqualSid(aces[i].pSid, &(((ACCESS_ALLOWED_ACE *)ace)->SidStart))) {
       
   953           matches++;
       
   954           break;
       
   955         }
       
   956       }
       
   957 
       
   958       // if there are no SID matches, then add this existing ACE to the new ACL
       
   959       if (matches == 0) {
       
   960         if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
       
   961                     ((PACE_HEADER)ace)->AceSize)) {
       
   962           if (PrintMiscellaneous && Verbose) {
       
   963             warning("AddAce failure: lasterror = %d \n", GetLastError());
       
   964           }
       
   965           FREE_C_HEAP_ARRAY(char, newACL);
       
   966           return false;
       
   967         }
       
   968       }
       
   969       ace_index++;
       
   970     }
       
   971   }
       
   972 
       
   973   // add the passed-in access control entries to the new ACL
       
   974   for (int i = 0; i < ace_count; i++) {
       
   975     if (!AddAccessAllowedAce(newACL, ACL_REVISION,
       
   976                              aces[i].mask, aces[i].pSid)) {
       
   977       if (PrintMiscellaneous && Verbose) {
       
   978         warning("AddAccessAllowedAce failure: lasterror = %d \n",
       
   979                 GetLastError());
       
   980       }
       
   981       FREE_C_HEAP_ARRAY(char, newACL);
       
   982       return false;
       
   983     }
       
   984   }
       
   985 
       
   986   // now copy the rest of the inherited ACEs from the old ACL
       
   987   if (aclinfo.AceCount != 0) {
       
   988     // picking up at ace_index, where we left off in the
       
   989     // previous ace_index loop
       
   990     while (ace_index < aclinfo.AceCount) {
       
   991       LPVOID ace;
       
   992       if (!GetAce(oldACL, ace_index, &ace)) {
       
   993         if (PrintMiscellaneous && Verbose) {
       
   994           warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
       
   995         }
       
   996         FREE_C_HEAP_ARRAY(char, newACL);
       
   997         return false;
       
   998       }
       
   999       if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
       
  1000                   ((PACE_HEADER)ace)->AceSize)) {
       
  1001         if (PrintMiscellaneous && Verbose) {
       
  1002           warning("AddAce failure: lasterror = %d \n", GetLastError());
       
  1003         }
       
  1004         FREE_C_HEAP_ARRAY(char, newACL);
       
  1005         return false;
       
  1006       }
       
  1007       ace_index++;
       
  1008     }
       
  1009   }
       
  1010 
       
  1011   // add the new ACL to the security descriptor.
       
  1012   if (!SetSecurityDescriptorDacl(pSD, TRUE, newACL, FALSE)) {
       
  1013     if (PrintMiscellaneous && Verbose) {
       
  1014       warning("SetSecurityDescriptorDacl failure:"
       
  1015               " lasterror = %d \n", GetLastError());
       
  1016     }
       
  1017     FREE_C_HEAP_ARRAY(char, newACL);
       
  1018     return false;
       
  1019   }
       
  1020 
       
  1021   // if running on windows 2000 or later, set the automatic inheritance
       
  1022   // control flags.
       
  1023   SetSecurityDescriptorControlFnPtr _SetSecurityDescriptorControl;
       
  1024   _SetSecurityDescriptorControl = (SetSecurityDescriptorControlFnPtr)
       
  1025        GetProcAddress(GetModuleHandle(TEXT("advapi32.dll")),
       
  1026                       "SetSecurityDescriptorControl");
       
  1027 
       
  1028   if (_SetSecurityDescriptorControl != NULL) {
       
  1029     // We do not want to further propagate inherited DACLs, so making them
       
  1030     // protected prevents that.
       
  1031     if (!_SetSecurityDescriptorControl(pSD, SE_DACL_PROTECTED,
       
  1032                                             SE_DACL_PROTECTED)) {
       
  1033       if (PrintMiscellaneous && Verbose) {
       
  1034         warning("SetSecurityDescriptorControl failure:"
       
  1035                 " lasterror = %d \n", GetLastError());
       
  1036       }
       
  1037       FREE_C_HEAP_ARRAY(char, newACL);
       
  1038       return false;
       
  1039     }
       
  1040   }
       
  1041    // Note, the security descriptor maintains a reference to the newACL, not
       
  1042    // a copy of it. Therefore, the newACL is not freed here. It is freed when
       
  1043    // the security descriptor containing its reference is freed.
       
  1044    //
       
  1045    return true;
       
  1046 }
       
  1047 
       
  1048 // method to create a security attributes structure, which contains a
       
  1049 // security descriptor and an access control list comprised of 0 or more
       
  1050 // access control entries. The method take an array of ace_data structures
       
  1051 // that indicate the ACE to be added to the security descriptor.
       
  1052 //
       
  1053 // the caller must free the resources associated with the security
       
  1054 // attributes structure created by this method by calling the
       
  1055 // free_security_attr() method.
       
  1056 //
       
  1057 static LPSECURITY_ATTRIBUTES make_security_attr(ace_data_t aces[], int count) {
       
  1058 
       
  1059   // allocate space for a security descriptor
       
  1060   PSECURITY_DESCRIPTOR pSD = (PSECURITY_DESCRIPTOR)
       
  1061      NEW_C_HEAP_ARRAY(char, SECURITY_DESCRIPTOR_MIN_LENGTH, mtInternal);
       
  1062 
       
  1063   // initialize the security descriptor
       
  1064   if (!InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION)) {
       
  1065     if (PrintMiscellaneous && Verbose) {
       
  1066       warning("InitializeSecurityDescriptor failure: "
       
  1067               "lasterror = %d \n", GetLastError());
       
  1068     }
       
  1069     free_security_desc(pSD);
       
  1070     return NULL;
       
  1071   }
       
  1072 
       
  1073   // add the access control entries
       
  1074   if (!add_allow_aces(pSD, aces, count)) {
       
  1075     free_security_desc(pSD);
       
  1076     return NULL;
       
  1077   }
       
  1078 
       
  1079   // allocate and initialize the security attributes structure and
       
  1080   // return it to the caller.
       
  1081   //
       
  1082   LPSECURITY_ATTRIBUTES lpSA = (LPSECURITY_ATTRIBUTES)
       
  1083     NEW_C_HEAP_ARRAY(char, sizeof(SECURITY_ATTRIBUTES), mtInternal);
       
  1084   lpSA->nLength = sizeof(SECURITY_ATTRIBUTES);
       
  1085   lpSA->lpSecurityDescriptor = pSD;
       
  1086   lpSA->bInheritHandle = FALSE;
       
  1087 
       
  1088   return(lpSA);
       
  1089 }
       
  1090 
       
  1091 // method to create a security attributes structure with a restrictive
       
  1092 // access control list that creates a set access rights for the user/owner
       
  1093 // of the securable object and a separate set access rights for everyone else.
       
  1094 // also provides for full access rights for the administrator group.
       
  1095 //
       
  1096 // the caller must free the resources associated with the security
       
  1097 // attributes structure created by this method by calling the
       
  1098 // free_security_attr() method.
       
  1099 //
       
  1100 
       
  1101 static LPSECURITY_ATTRIBUTES make_user_everybody_admin_security_attr(
       
  1102                                 DWORD umask, DWORD emask, DWORD amask) {
       
  1103 
       
  1104   ace_data_t aces[3];
       
  1105 
       
  1106   // initialize the user ace data
       
  1107   aces[0].pSid = get_user_sid(GetCurrentProcess());
       
  1108   aces[0].mask = umask;
       
  1109 
       
  1110   if (aces[0].pSid == 0)
       
  1111     return NULL;
       
  1112 
       
  1113   // get the well known SID for BUILTIN\Administrators
       
  1114   PSID administratorsSid = NULL;
       
  1115   SID_IDENTIFIER_AUTHORITY SIDAuthAdministrators = SECURITY_NT_AUTHORITY;
       
  1116 
       
  1117   if (!AllocateAndInitializeSid( &SIDAuthAdministrators, 2,
       
  1118            SECURITY_BUILTIN_DOMAIN_RID,
       
  1119            DOMAIN_ALIAS_RID_ADMINS,
       
  1120            0, 0, 0, 0, 0, 0, &administratorsSid)) {
       
  1121 
       
  1122     if (PrintMiscellaneous && Verbose) {
       
  1123       warning("AllocateAndInitializeSid failure: "
       
  1124               "lasterror = %d \n", GetLastError());
       
  1125     }
       
  1126     return NULL;
       
  1127   }
       
  1128 
       
  1129   // initialize the ace data for administrator group
       
  1130   aces[1].pSid = administratorsSid;
       
  1131   aces[1].mask = amask;
       
  1132 
       
  1133   // get the well known SID for the universal Everybody
       
  1134   PSID everybodySid = NULL;
       
  1135   SID_IDENTIFIER_AUTHORITY SIDAuthEverybody = SECURITY_WORLD_SID_AUTHORITY;
       
  1136 
       
  1137   if (!AllocateAndInitializeSid( &SIDAuthEverybody, 1, SECURITY_WORLD_RID,
       
  1138            0, 0, 0, 0, 0, 0, 0, &everybodySid)) {
       
  1139 
       
  1140     if (PrintMiscellaneous && Verbose) {
       
  1141       warning("AllocateAndInitializeSid failure: "
       
  1142               "lasterror = %d \n", GetLastError());
       
  1143     }
       
  1144     return NULL;
       
  1145   }
       
  1146 
       
  1147   // initialize the ace data for everybody else.
       
  1148   aces[2].pSid = everybodySid;
       
  1149   aces[2].mask = emask;
       
  1150 
       
  1151   // create a security attributes structure with access control
       
  1152   // entries as initialized above.
       
  1153   LPSECURITY_ATTRIBUTES lpSA = make_security_attr(aces, 3);
       
  1154   FREE_C_HEAP_ARRAY(char, aces[0].pSid);
       
  1155   FreeSid(everybodySid);
       
  1156   FreeSid(administratorsSid);
       
  1157   return(lpSA);
       
  1158 }
       
  1159 
       
  1160 
       
  1161 // method to create the security attributes structure for restricting
       
  1162 // access to the user temporary directory.
       
  1163 //
       
  1164 // the caller must free the resources associated with the security
       
  1165 // attributes structure created by this method by calling the
       
  1166 // free_security_attr() method.
       
  1167 //
       
  1168 static LPSECURITY_ATTRIBUTES make_tmpdir_security_attr() {
       
  1169 
       
  1170   // create full access rights for the user/owner of the directory
       
  1171   // and read-only access rights for everybody else. This is
       
  1172   // effectively equivalent to UNIX 755 permissions on a directory.
       
  1173   //
       
  1174   DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_ALL_ACCESS;
       
  1175   DWORD emask = GENERIC_READ | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
       
  1176   DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
       
  1177 
       
  1178   return make_user_everybody_admin_security_attr(umask, emask, amask);
       
  1179 }
       
  1180 
       
  1181 // method to create the security attributes structure for restricting
       
  1182 // access to the shared memory backing store file.
       
  1183 //
       
  1184 // the caller must free the resources associated with the security
       
  1185 // attributes structure created by this method by calling the
       
  1186 // free_security_attr() method.
       
  1187 //
       
  1188 static LPSECURITY_ATTRIBUTES make_file_security_attr() {
       
  1189 
       
  1190   // create extensive access rights for the user/owner of the file
       
  1191   // and attribute read-only access rights for everybody else. This
       
  1192   // is effectively equivalent to UNIX 600 permissions on a file.
       
  1193   //
       
  1194   DWORD umask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
       
  1195   DWORD emask = STANDARD_RIGHTS_READ | FILE_READ_ATTRIBUTES |
       
  1196                  FILE_READ_EA | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
       
  1197   DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
       
  1198 
       
  1199   return make_user_everybody_admin_security_attr(umask, emask, amask);
       
  1200 }
       
  1201 
       
  1202 // method to create the security attributes structure for restricting
       
  1203 // access to the name shared memory file mapping object.
       
  1204 //
       
  1205 // the caller must free the resources associated with the security
       
  1206 // attributes structure created by this method by calling the
       
  1207 // free_security_attr() method.
       
  1208 //
       
  1209 static LPSECURITY_ATTRIBUTES make_smo_security_attr() {
       
  1210 
       
  1211   // create extensive access rights for the user/owner of the shared
       
  1212   // memory object and attribute read-only access rights for everybody
       
  1213   // else. This is effectively equivalent to UNIX 600 permissions on
       
  1214   // on the shared memory object.
       
  1215   //
       
  1216   DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_MAP_ALL_ACCESS;
       
  1217   DWORD emask = STANDARD_RIGHTS_READ; // attributes only
       
  1218   DWORD amask = STANDARD_RIGHTS_ALL | FILE_MAP_ALL_ACCESS;
       
  1219 
       
  1220   return make_user_everybody_admin_security_attr(umask, emask, amask);
       
  1221 }
       
  1222 
       
  1223 // make the user specific temporary directory
       
  1224 //
       
  1225 static bool make_user_tmp_dir(const char* dirname) {
       
  1226 
       
  1227 
       
  1228   LPSECURITY_ATTRIBUTES pDirSA = make_tmpdir_security_attr();
       
  1229   if (pDirSA == NULL) {
       
  1230     return false;
       
  1231   }
       
  1232 
       
  1233 
       
  1234   // create the directory with the given security attributes
       
  1235   if (!CreateDirectory(dirname, pDirSA)) {
       
  1236     DWORD lasterror = GetLastError();
       
  1237     if (lasterror == ERROR_ALREADY_EXISTS) {
       
  1238       // The directory already exists and was probably created by another
       
  1239       // JVM instance. However, this could also be the result of a
       
  1240       // deliberate symlink. Verify that the existing directory is safe.
       
  1241       //
       
  1242       if (!is_directory_secure(dirname)) {
       
  1243         // directory is not secure
       
  1244         if (PrintMiscellaneous && Verbose) {
       
  1245           warning("%s directory is insecure\n", dirname);
       
  1246         }
       
  1247         return false;
       
  1248       }
       
  1249       // The administrator should be able to delete this directory.
       
  1250       // But the directory created by previous version of JVM may not
       
  1251       // have permission for administrators to delete this directory.
       
  1252       // So add full permission to the administrator. Also setting new
       
  1253       // DACLs might fix the corrupted the DACLs.
       
  1254       SECURITY_INFORMATION secInfo = DACL_SECURITY_INFORMATION;
       
  1255       if (!SetFileSecurity(dirname, secInfo, pDirSA->lpSecurityDescriptor)) {
       
  1256         if (PrintMiscellaneous && Verbose) {
       
  1257           lasterror = GetLastError();
       
  1258           warning("SetFileSecurity failed for %s directory.  lasterror %d \n",
       
  1259                                                         dirname, lasterror);
       
  1260         }
       
  1261       }
       
  1262     }
       
  1263     else {
       
  1264       if (PrintMiscellaneous && Verbose) {
       
  1265         warning("CreateDirectory failed: %d\n", GetLastError());
       
  1266       }
       
  1267       return false;
       
  1268     }
       
  1269   }
       
  1270 
       
  1271   // free the security attributes structure
       
  1272   free_security_attr(pDirSA);
       
  1273 
       
  1274   return true;
       
  1275 }
       
  1276 
       
  1277 // create the shared memory resources
       
  1278 //
       
  1279 // This function creates the shared memory resources. This includes
       
  1280 // the backing store file and the file mapping shared memory object.
       
  1281 //
       
  1282 static HANDLE create_sharedmem_resources(const char* dirname, const char* filename, const char* objectname, size_t size) {
       
  1283 
       
  1284   HANDLE fh = INVALID_HANDLE_VALUE;
       
  1285   HANDLE fmh = NULL;
       
  1286 
       
  1287 
       
  1288   // create the security attributes for the backing store file
       
  1289   LPSECURITY_ATTRIBUTES lpFileSA = make_file_security_attr();
       
  1290   if (lpFileSA == NULL) {
       
  1291     return NULL;
       
  1292   }
       
  1293 
       
  1294   // create the security attributes for the shared memory object
       
  1295   LPSECURITY_ATTRIBUTES lpSmoSA = make_smo_security_attr();
       
  1296   if (lpSmoSA == NULL) {
       
  1297     free_security_attr(lpFileSA);
       
  1298     return NULL;
       
  1299   }
       
  1300 
       
  1301   // create the user temporary directory
       
  1302   if (!make_user_tmp_dir(dirname)) {
       
  1303     // could not make/find the directory or the found directory
       
  1304     // was not secure
       
  1305     return NULL;
       
  1306   }
       
  1307 
       
  1308   // Create the file - the FILE_FLAG_DELETE_ON_CLOSE flag allows the
       
  1309   // file to be deleted by the last process that closes its handle to
       
  1310   // the file. This is important as the apis do not allow a terminating
       
  1311   // JVM being monitored by another process to remove the file name.
       
  1312   //
       
  1313   fh = CreateFile(
       
  1314              filename,                          /* LPCTSTR file name */
       
  1315 
       
  1316              GENERIC_READ|GENERIC_WRITE,        /* DWORD desired access */
       
  1317              FILE_SHARE_DELETE|FILE_SHARE_READ, /* DWORD share mode, future READONLY
       
  1318                                                  * open operations allowed
       
  1319                                                  */
       
  1320              lpFileSA,                          /* LPSECURITY security attributes */
       
  1321              CREATE_ALWAYS,                     /* DWORD creation disposition
       
  1322                                                  * create file, if it already
       
  1323                                                  * exists, overwrite it.
       
  1324                                                  */
       
  1325              FILE_FLAG_DELETE_ON_CLOSE,         /* DWORD flags and attributes */
       
  1326 
       
  1327              NULL);                             /* HANDLE template file access */
       
  1328 
       
  1329   free_security_attr(lpFileSA);
       
  1330 
       
  1331   if (fh == INVALID_HANDLE_VALUE) {
       
  1332     DWORD lasterror = GetLastError();
       
  1333     if (PrintMiscellaneous && Verbose) {
       
  1334       warning("could not create file %s: %d\n", filename, lasterror);
       
  1335     }
       
  1336     return NULL;
       
  1337   }
       
  1338 
       
  1339   // try to create the file mapping
       
  1340   fmh = create_file_mapping(objectname, fh, lpSmoSA, size);
       
  1341 
       
  1342   free_security_attr(lpSmoSA);
       
  1343 
       
  1344   if (fmh == NULL) {
       
  1345     // closing the file handle here will decrement the reference count
       
  1346     // on the file. When all processes accessing the file close their
       
  1347     // handle to it, the reference count will decrement to 0 and the
       
  1348     // OS will delete the file. These semantics are requested by the
       
  1349     // FILE_FLAG_DELETE_ON_CLOSE flag in CreateFile call above.
       
  1350     CloseHandle(fh);
       
  1351     fh = NULL;
       
  1352     return NULL;
       
  1353   } else {
       
  1354     // We created the file mapping, but rarely the size of the
       
  1355     // backing store file is reported as zero (0) which can cause
       
  1356     // failures when trying to use the hsperfdata file.
       
  1357     struct stat statbuf;
       
  1358     int ret_code = ::stat(filename, &statbuf);
       
  1359     if (ret_code == OS_ERR) {
       
  1360       if (PrintMiscellaneous && Verbose) {
       
  1361         warning("Could not get status information from file %s: %s\n",
       
  1362             filename, os::strerror(errno));
       
  1363       }
       
  1364       CloseHandle(fmh);
       
  1365       CloseHandle(fh);
       
  1366       fh = NULL;
       
  1367       fmh = NULL;
       
  1368       return NULL;
       
  1369     }
       
  1370 
       
  1371     // We could always call FlushFileBuffers() but the Microsoft
       
  1372     // docs indicate that it is considered expensive so we only
       
  1373     // call it when we observe the size as zero (0).
       
  1374     if (statbuf.st_size == 0 && FlushFileBuffers(fh) != TRUE) {
       
  1375       DWORD lasterror = GetLastError();
       
  1376       if (PrintMiscellaneous && Verbose) {
       
  1377         warning("could not flush file %s: %d\n", filename, lasterror);
       
  1378       }
       
  1379       CloseHandle(fmh);
       
  1380       CloseHandle(fh);
       
  1381       fh = NULL;
       
  1382       fmh = NULL;
       
  1383       return NULL;
       
  1384     }
       
  1385   }
       
  1386 
       
  1387   // the file has been successfully created and the file mapping
       
  1388   // object has been created.
       
  1389   sharedmem_fileHandle = fh;
       
  1390   sharedmem_fileName = os::strdup(filename);
       
  1391 
       
  1392   return fmh;
       
  1393 }
       
  1394 
       
  1395 // open the shared memory object for the given vmid.
       
  1396 //
       
  1397 static HANDLE open_sharedmem_object(const char* objectname, DWORD ofm_access, TRAPS) {
       
  1398 
       
  1399   HANDLE fmh;
       
  1400 
       
  1401   // open the file mapping with the requested mode
       
  1402   fmh = OpenFileMapping(
       
  1403                ofm_access,       /* DWORD access mode */
       
  1404                FALSE,            /* BOOL inherit flag - Do not allow inherit */
       
  1405                objectname);      /* name for object */
       
  1406 
       
  1407   if (fmh == NULL) {
       
  1408     DWORD lasterror = GetLastError();
       
  1409     if (PrintMiscellaneous && Verbose) {
       
  1410       warning("OpenFileMapping failed for shared memory object %s:"
       
  1411               " lasterror = %d\n", objectname, lasterror);
       
  1412     }
       
  1413     THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
       
  1414                err_msg("Could not open PerfMemory, error %d", lasterror),
       
  1415                INVALID_HANDLE_VALUE);
       
  1416   }
       
  1417 
       
  1418   return fmh;;
       
  1419 }
       
  1420 
       
  1421 // create a named shared memory region
       
  1422 //
       
  1423 // On Win32, a named shared memory object has a name space that
       
  1424 // is independent of the file system name space. Shared memory object,
       
  1425 // or more precisely, file mapping objects, provide no mechanism to
       
  1426 // inquire the size of the memory region. There is also no api to
       
  1427 // enumerate the memory regions for various processes.
       
  1428 //
       
  1429 // This implementation utilizes the shared memory name space in parallel
       
  1430 // with the file system name space. This allows us to determine the
       
  1431 // size of the shared memory region from the size of the file and it
       
  1432 // allows us to provide a common, file system based name space for
       
  1433 // shared memory across platforms.
       
  1434 //
       
  1435 static char* mapping_create_shared(size_t size) {
       
  1436 
       
  1437   void *mapAddress;
       
  1438   int vmid = os::current_process_id();
       
  1439 
       
  1440   // get the name of the user associated with this process
       
  1441   char* user = get_user_name();
       
  1442 
       
  1443   if (user == NULL) {
       
  1444     return NULL;
       
  1445   }
       
  1446 
       
  1447   // construct the name of the user specific temporary directory
       
  1448   char* dirname = get_user_tmp_dir(user);
       
  1449 
       
  1450   // check that the file system is secure - i.e. it supports ACLs.
       
  1451   if (!is_filesystem_secure(dirname)) {
       
  1452     FREE_C_HEAP_ARRAY(char, dirname);
       
  1453     FREE_C_HEAP_ARRAY(char, user);
       
  1454     return NULL;
       
  1455   }
       
  1456 
       
  1457   // create the names of the backing store files and for the
       
  1458   // share memory object.
       
  1459   //
       
  1460   char* filename = get_sharedmem_filename(dirname, vmid);
       
  1461   char* objectname = get_sharedmem_objectname(user, vmid);
       
  1462 
       
  1463   // cleanup any stale shared memory resources
       
  1464   cleanup_sharedmem_resources(dirname);
       
  1465 
       
  1466   assert(((size != 0) && (size % os::vm_page_size() == 0)),
       
  1467          "unexpected PerfMemry region size");
       
  1468 
       
  1469   FREE_C_HEAP_ARRAY(char, user);
       
  1470 
       
  1471   // create the shared memory resources
       
  1472   sharedmem_fileMapHandle =
       
  1473                create_sharedmem_resources(dirname, filename, objectname, size);
       
  1474 
       
  1475   FREE_C_HEAP_ARRAY(char, filename);
       
  1476   FREE_C_HEAP_ARRAY(char, objectname);
       
  1477   FREE_C_HEAP_ARRAY(char, dirname);
       
  1478 
       
  1479   if (sharedmem_fileMapHandle == NULL) {
       
  1480     return NULL;
       
  1481   }
       
  1482 
       
  1483   // map the file into the address space
       
  1484   mapAddress = MapViewOfFile(
       
  1485                    sharedmem_fileMapHandle, /* HANDLE = file mapping object */
       
  1486                    FILE_MAP_ALL_ACCESS,     /* DWORD access flags */
       
  1487                    0,                       /* DWORD High word of offset */
       
  1488                    0,                       /* DWORD Low word of offset */
       
  1489                    (DWORD)size);            /* DWORD Number of bytes to map */
       
  1490 
       
  1491   if (mapAddress == NULL) {
       
  1492     if (PrintMiscellaneous && Verbose) {
       
  1493       warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
       
  1494     }
       
  1495     CloseHandle(sharedmem_fileMapHandle);
       
  1496     sharedmem_fileMapHandle = NULL;
       
  1497     return NULL;
       
  1498   }
       
  1499 
       
  1500   // clear the shared memory region
       
  1501   (void)memset(mapAddress, '\0', size);
       
  1502 
       
  1503   // it does not go through os api, the operation has to record from here
       
  1504   MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress,
       
  1505     size, CURRENT_PC, mtInternal);
       
  1506 
       
  1507   return (char*) mapAddress;
       
  1508 }
       
  1509 
       
  1510 // this method deletes the file mapping object.
       
  1511 //
       
  1512 static void delete_file_mapping(char* addr, size_t size) {
       
  1513 
       
  1514   // cleanup the persistent shared memory resources. since DestroyJavaVM does
       
  1515   // not support unloading of the JVM, unmapping of the memory resource is not
       
  1516   // performed. The memory will be reclaimed by the OS upon termination of all
       
  1517   // processes mapping the resource. The file mapping handle and the file
       
  1518   // handle are closed here to expedite the remove of the file by the OS. The
       
  1519   // file is not removed directly because it was created with
       
  1520   // FILE_FLAG_DELETE_ON_CLOSE semantics and any attempt to remove it would
       
  1521   // be unsuccessful.
       
  1522 
       
  1523   // close the fileMapHandle. the file mapping will still be retained
       
  1524   // by the OS as long as any other JVM processes has an open file mapping
       
  1525   // handle or a mapped view of the file.
       
  1526   //
       
  1527   if (sharedmem_fileMapHandle != NULL) {
       
  1528     CloseHandle(sharedmem_fileMapHandle);
       
  1529     sharedmem_fileMapHandle = NULL;
       
  1530   }
       
  1531 
       
  1532   // close the file handle. This will decrement the reference count on the
       
  1533   // backing store file. When the reference count decrements to 0, the OS
       
  1534   // will delete the file. These semantics apply because the file was
       
  1535   // created with the FILE_FLAG_DELETE_ON_CLOSE flag.
       
  1536   //
       
  1537   if (sharedmem_fileHandle != INVALID_HANDLE_VALUE) {
       
  1538     CloseHandle(sharedmem_fileHandle);
       
  1539     sharedmem_fileHandle = INVALID_HANDLE_VALUE;
       
  1540   }
       
  1541 }
       
  1542 
       
  1543 // this method determines the size of the shared memory file
       
  1544 //
       
  1545 static size_t sharedmem_filesize(const char* filename, TRAPS) {
       
  1546 
       
  1547   struct stat statbuf;
       
  1548 
       
  1549   // get the file size
       
  1550   //
       
  1551   // on win95/98/me, _stat returns a file size of 0 bytes, but on
       
  1552   // winnt/2k the appropriate file size is returned. support for
       
  1553   // the sharable aspects of performance counters was abandonded
       
  1554   // on the non-nt win32 platforms due to this and other api
       
  1555   // inconsistencies
       
  1556   //
       
  1557   if (::stat(filename, &statbuf) == OS_ERR) {
       
  1558     if (PrintMiscellaneous && Verbose) {
       
  1559       warning("stat %s failed: %s\n", filename, os::strerror(errno));
       
  1560     }
       
  1561     THROW_MSG_0(vmSymbols::java_io_IOException(),
       
  1562                 "Could not determine PerfMemory size");
       
  1563   }
       
  1564 
       
  1565   if ((statbuf.st_size == 0) || (statbuf.st_size % os::vm_page_size() != 0)) {
       
  1566     if (PrintMiscellaneous && Verbose) {
       
  1567       warning("unexpected file size: size = " SIZE_FORMAT "\n",
       
  1568               statbuf.st_size);
       
  1569     }
       
  1570     THROW_MSG_0(vmSymbols::java_lang_Exception(),
       
  1571                 "Invalid PerfMemory size");
       
  1572   }
       
  1573 
       
  1574   return statbuf.st_size;
       
  1575 }
       
  1576 
       
  1577 // this method opens a file mapping object and maps the object
       
  1578 // into the address space of the process
       
  1579 //
       
  1580 static void open_file_mapping(const char* user, int vmid,
       
  1581                               PerfMemory::PerfMemoryMode mode,
       
  1582                               char** addrp, size_t* sizep, TRAPS) {
       
  1583 
       
  1584   ResourceMark rm;
       
  1585 
       
  1586   void *mapAddress = 0;
       
  1587   size_t size = 0;
       
  1588   HANDLE fmh;
       
  1589   DWORD ofm_access;
       
  1590   DWORD mv_access;
       
  1591   const char* luser = NULL;
       
  1592 
       
  1593   if (mode == PerfMemory::PERF_MODE_RO) {
       
  1594     ofm_access = FILE_MAP_READ;
       
  1595     mv_access = FILE_MAP_READ;
       
  1596   }
       
  1597   else if (mode == PerfMemory::PERF_MODE_RW) {
       
  1598 #ifdef LATER
       
  1599     ofm_access = FILE_MAP_READ | FILE_MAP_WRITE;
       
  1600     mv_access = FILE_MAP_READ | FILE_MAP_WRITE;
       
  1601 #else
       
  1602     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
       
  1603               "Unsupported access mode");
       
  1604 #endif
       
  1605   }
       
  1606   else {
       
  1607     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
       
  1608               "Illegal access mode");
       
  1609   }
       
  1610 
       
  1611   // if a user name wasn't specified, then find the user name for
       
  1612   // the owner of the target vm.
       
  1613   if (user == NULL || strlen(user) == 0) {
       
  1614     luser = get_user_name(vmid);
       
  1615   }
       
  1616   else {
       
  1617     luser = user;
       
  1618   }
       
  1619 
       
  1620   if (luser == NULL) {
       
  1621     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
       
  1622               "Could not map vmid to user name");
       
  1623   }
       
  1624 
       
  1625   // get the names for the resources for the target vm
       
  1626   char* dirname = get_user_tmp_dir(luser);
       
  1627 
       
  1628   // since we don't follow symbolic links when creating the backing
       
  1629   // store file, we also don't following them when attaching
       
  1630   //
       
  1631   if (!is_directory_secure(dirname)) {
       
  1632     FREE_C_HEAP_ARRAY(char, dirname);
       
  1633     if (luser != user) FREE_C_HEAP_ARRAY(char, luser);
       
  1634     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
       
  1635               "Process not found");
       
  1636   }
       
  1637 
       
  1638   char* filename = get_sharedmem_filename(dirname, vmid);
       
  1639   char* objectname = get_sharedmem_objectname(luser, vmid);
       
  1640 
       
  1641   // copy heap memory to resource memory. the objectname and
       
  1642   // filename are passed to methods that may throw exceptions.
       
  1643   // using resource arrays for these names prevents the leaks
       
  1644   // that would otherwise occur.
       
  1645   //
       
  1646   char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
       
  1647   char* robjectname = NEW_RESOURCE_ARRAY(char, strlen(objectname) + 1);
       
  1648   strcpy(rfilename, filename);
       
  1649   strcpy(robjectname, objectname);
       
  1650 
       
  1651   // free the c heap resources that are no longer needed
       
  1652   if (luser != user) FREE_C_HEAP_ARRAY(char, luser);
       
  1653   FREE_C_HEAP_ARRAY(char, dirname);
       
  1654   FREE_C_HEAP_ARRAY(char, filename);
       
  1655   FREE_C_HEAP_ARRAY(char, objectname);
       
  1656 
       
  1657   if (*sizep == 0) {
       
  1658     size = sharedmem_filesize(rfilename, CHECK);
       
  1659   } else {
       
  1660     size = *sizep;
       
  1661   }
       
  1662 
       
  1663   assert(size > 0, "unexpected size <= 0");
       
  1664 
       
  1665   // Open the file mapping object with the given name
       
  1666   fmh = open_sharedmem_object(robjectname, ofm_access, CHECK);
       
  1667 
       
  1668   assert(fmh != INVALID_HANDLE_VALUE, "unexpected handle value");
       
  1669 
       
  1670   // map the entire file into the address space
       
  1671   mapAddress = MapViewOfFile(
       
  1672                  fmh,             /* HANDLE Handle of file mapping object */
       
  1673                  mv_access,       /* DWORD access flags */
       
  1674                  0,               /* DWORD High word of offset */
       
  1675                  0,               /* DWORD Low word of offset */
       
  1676                  size);           /* DWORD Number of bytes to map */
       
  1677 
       
  1678   if (mapAddress == NULL) {
       
  1679     if (PrintMiscellaneous && Verbose) {
       
  1680       warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
       
  1681     }
       
  1682     CloseHandle(fmh);
       
  1683     THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
       
  1684               "Could not map PerfMemory");
       
  1685   }
       
  1686 
       
  1687   // it does not go through os api, the operation has to record from here
       
  1688   MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress, size,
       
  1689     CURRENT_PC, mtInternal);
       
  1690 
       
  1691 
       
  1692   *addrp = (char*)mapAddress;
       
  1693   *sizep = size;
       
  1694 
       
  1695   // File mapping object can be closed at this time without
       
  1696   // invalidating the mapped view of the file
       
  1697   CloseHandle(fmh);
       
  1698 
       
  1699   log_debug(perf, memops)("mapped " SIZE_FORMAT " bytes for vmid %d at "
       
  1700                           INTPTR_FORMAT "\n", size, vmid, mapAddress);
       
  1701 }
       
  1702 
       
  1703 // this method unmaps the the mapped view of the the
       
  1704 // file mapping object.
       
  1705 //
       
  1706 static void remove_file_mapping(char* addr) {
       
  1707 
       
  1708   // the file mapping object was closed in open_file_mapping()
       
  1709   // after the file map view was created. We only need to
       
  1710   // unmap the file view here.
       
  1711   UnmapViewOfFile(addr);
       
  1712 }
       
  1713 
       
  1714 // create the PerfData memory region in shared memory.
       
  1715 static char* create_shared_memory(size_t size) {
       
  1716 
       
  1717   return mapping_create_shared(size);
       
  1718 }
       
  1719 
       
  1720 // release a named, shared memory region
       
  1721 //
       
  1722 void delete_shared_memory(char* addr, size_t size) {
       
  1723 
       
  1724   delete_file_mapping(addr, size);
       
  1725 }
       
  1726 
       
  1727 
       
  1728 
       
  1729 
       
  1730 // create the PerfData memory region
       
  1731 //
       
  1732 // This method creates the memory region used to store performance
       
  1733 // data for the JVM. The memory may be created in standard or
       
  1734 // shared memory.
       
  1735 //
       
  1736 void PerfMemory::create_memory_region(size_t size) {
       
  1737 
       
  1738   if (PerfDisableSharedMem) {
       
  1739     // do not share the memory for the performance data.
       
  1740     PerfDisableSharedMem = true;
       
  1741     _start = create_standard_memory(size);
       
  1742   }
       
  1743   else {
       
  1744     _start = create_shared_memory(size);
       
  1745     if (_start == NULL) {
       
  1746 
       
  1747       // creation of the shared memory region failed, attempt
       
  1748       // to create a contiguous, non-shared memory region instead.
       
  1749       //
       
  1750       if (PrintMiscellaneous && Verbose) {
       
  1751         warning("Reverting to non-shared PerfMemory region.\n");
       
  1752       }
       
  1753       PerfDisableSharedMem = true;
       
  1754       _start = create_standard_memory(size);
       
  1755     }
       
  1756   }
       
  1757 
       
  1758   if (_start != NULL) _capacity = size;
       
  1759 
       
  1760 }
       
  1761 
       
  1762 // delete the PerfData memory region
       
  1763 //
       
  1764 // This method deletes the memory region used to store performance
       
  1765 // data for the JVM. The memory region indicated by the <address, size>
       
  1766 // tuple will be inaccessible after a call to this method.
       
  1767 //
       
  1768 void PerfMemory::delete_memory_region() {
       
  1769 
       
  1770   assert((start() != NULL && capacity() > 0), "verify proper state");
       
  1771 
       
  1772   // If user specifies PerfDataSaveFile, it will save the performance data
       
  1773   // to the specified file name no matter whether PerfDataSaveToFile is specified
       
  1774   // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
       
  1775   // -XX:+PerfDataSaveToFile.
       
  1776   if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
       
  1777     save_memory_to_file(start(), capacity());
       
  1778   }
       
  1779 
       
  1780   if (PerfDisableSharedMem) {
       
  1781     delete_standard_memory(start(), capacity());
       
  1782   }
       
  1783   else {
       
  1784     delete_shared_memory(start(), capacity());
       
  1785   }
       
  1786 }
       
  1787 
       
  1788 // attach to the PerfData memory region for another JVM
       
  1789 //
       
  1790 // This method returns an <address, size> tuple that points to
       
  1791 // a memory buffer that is kept reasonably synchronized with
       
  1792 // the PerfData memory region for the indicated JVM. This
       
  1793 // buffer may be kept in synchronization via shared memory
       
  1794 // or some other mechanism that keeps the buffer updated.
       
  1795 //
       
  1796 // If the JVM chooses not to support the attachability feature,
       
  1797 // this method should throw an UnsupportedOperation exception.
       
  1798 //
       
  1799 // This implementation utilizes named shared memory to map
       
  1800 // the indicated process's PerfData memory region into this JVMs
       
  1801 // address space.
       
  1802 //
       
  1803 void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode,
       
  1804                         char** addrp, size_t* sizep, TRAPS) {
       
  1805 
       
  1806   if (vmid == 0 || vmid == os::current_process_id()) {
       
  1807      *addrp = start();
       
  1808      *sizep = capacity();
       
  1809      return;
       
  1810   }
       
  1811 
       
  1812   open_file_mapping(user, vmid, mode, addrp, sizep, CHECK);
       
  1813 }
       
  1814 
       
  1815 // detach from the PerfData memory region of another JVM
       
  1816 //
       
  1817 // This method detaches the PerfData memory region of another
       
  1818 // JVM, specified as an <address, size> tuple of a buffer
       
  1819 // in this process's address space. This method may perform
       
  1820 // arbitrary actions to accomplish the detachment. The memory
       
  1821 // region specified by <address, size> will be inaccessible after
       
  1822 // a call to this method.
       
  1823 //
       
  1824 // If the JVM chooses not to support the attachability feature,
       
  1825 // this method should throw an UnsupportedOperation exception.
       
  1826 //
       
  1827 // This implementation utilizes named shared memory to detach
       
  1828 // the indicated process's PerfData memory region from this
       
  1829 // process's address space.
       
  1830 //
       
  1831 void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
       
  1832 
       
  1833   assert(addr != 0, "address sanity check");
       
  1834   assert(bytes > 0, "capacity sanity check");
       
  1835 
       
  1836   if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
       
  1837     // prevent accidental detachment of this process's PerfMemory region
       
  1838     return;
       
  1839   }
       
  1840 
       
  1841   if (MemTracker::tracking_level() > NMT_minimal) {
       
  1842     // it does not go through os api, the operation has to record from here
       
  1843     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
       
  1844     remove_file_mapping(addr);
       
  1845     tkr.record((address)addr, bytes);
       
  1846   } else {
       
  1847     remove_file_mapping(addr);
       
  1848   }
       
  1849 }