src/hotspot/os/solaris/perfMemory_solaris.cpp
changeset 47216 71c04702a3d5
parent 46405 17ab5460b2cb
child 50080 6fd9fbefd2b4
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "classfile/vmSymbols.hpp"
       
    27 #include "logging/log.hpp"
       
    28 #include "memory/allocation.inline.hpp"
       
    29 #include "memory/resourceArea.hpp"
       
    30 #include "oops/oop.inline.hpp"
       
    31 #include "os_solaris.inline.hpp"
       
    32 #include "runtime/handles.inline.hpp"
       
    33 #include "runtime/perfMemory.hpp"
       
    34 #include "services/memTracker.hpp"
       
    35 #include "utilities/exceptions.hpp"
       
    36 
       
    37 // put OS-includes here
       
    38 #include <sys/types.h>
       
    39 #include <sys/mman.h>
       
    40 #include <errno.h>
       
    41 #include <stdio.h>
       
    42 #include <unistd.h>
       
    43 #include <sys/stat.h>
       
    44 #include <signal.h>
       
    45 #include <procfs.h>
       
    46 
       
    47 /* For POSIX-compliant getpwuid_r on Solaris */
       
    48 #define _POSIX_PTHREAD_SEMANTICS
       
    49 #include <pwd.h>
       
    50 
       
    51 static char* backing_store_file_name = NULL;  // name of the backing store
       
    52                                               // file, if successfully created.
       
    53 
       
    54 // Standard Memory Implementation Details
       
    55 
       
    56 // create the PerfData memory region in standard memory.
       
    57 //
       
    58 static char* create_standard_memory(size_t size) {
       
    59 
       
    60   // allocate an aligned chuck of memory
       
    61   char* mapAddress = os::reserve_memory(size);
       
    62 
       
    63   if (mapAddress == NULL) {
       
    64     return NULL;
       
    65   }
       
    66 
       
    67   // commit memory
       
    68   if (!os::commit_memory(mapAddress, size, !ExecMem)) {
       
    69     if (PrintMiscellaneous && Verbose) {
       
    70       warning("Could not commit PerfData memory\n");
       
    71     }
       
    72     os::release_memory(mapAddress, size);
       
    73     return NULL;
       
    74   }
       
    75 
       
    76   return mapAddress;
       
    77 }
       
    78 
       
    79 // delete the PerfData memory region
       
    80 //
       
    81 static void delete_standard_memory(char* addr, size_t size) {
       
    82 
       
    83   // there are no persistent external resources to cleanup for standard
       
    84   // memory. since DestroyJavaVM does not support unloading of the JVM,
       
    85   // cleanup of the memory resource is not performed. The memory will be
       
    86   // reclaimed by the OS upon termination of the process.
       
    87   //
       
    88   return;
       
    89 }
       
    90 
       
    91 // save the specified memory region to the given file
       
    92 //
       
    93 // Note: this function might be called from signal handler (by os::abort()),
       
    94 // don't allocate heap memory.
       
    95 //
       
    96 static void save_memory_to_file(char* addr, size_t size) {
       
    97 
       
    98   const char* destfile = PerfMemory::get_perfdata_file_path();
       
    99   assert(destfile[0] != '\0', "invalid PerfData file path");
       
   100 
       
   101   int result;
       
   102 
       
   103   RESTARTABLE(::open(destfile, O_CREAT|O_WRONLY|O_TRUNC, S_IREAD|S_IWRITE),
       
   104               result);;
       
   105   if (result == OS_ERR) {
       
   106     if (PrintMiscellaneous && Verbose) {
       
   107       warning("Could not create Perfdata save file: %s: %s\n",
       
   108               destfile, os::strerror(errno));
       
   109     }
       
   110   } else {
       
   111 
       
   112     int fd = result;
       
   113 
       
   114     for (size_t remaining = size; remaining > 0;) {
       
   115 
       
   116       RESTARTABLE(::write(fd, addr, remaining), result);
       
   117       if (result == OS_ERR) {
       
   118         if (PrintMiscellaneous && Verbose) {
       
   119           warning("Could not write Perfdata save file: %s: %s\n",
       
   120                   destfile, os::strerror(errno));
       
   121         }
       
   122         break;
       
   123       }
       
   124       remaining -= (size_t)result;
       
   125       addr += result;
       
   126     }
       
   127 
       
   128     result = ::close(fd);
       
   129     if (PrintMiscellaneous && Verbose) {
       
   130       if (result == OS_ERR) {
       
   131         warning("Could not close %s: %s\n", destfile, os::strerror(errno));
       
   132       }
       
   133     }
       
   134   }
       
   135   FREE_C_HEAP_ARRAY(char, destfile);
       
   136 }
       
   137 
       
   138 
       
   139 // Shared Memory Implementation Details
       
   140 
       
   141 // Note: the solaris and linux shared memory implementation uses the mmap
       
   142 // interface with a backing store file to implement named shared memory.
       
   143 // Using the file system as the name space for shared memory allows a
       
   144 // common name space to be supported across a variety of platforms. It
       
   145 // also provides a name space that Java applications can deal with through
       
   146 // simple file apis.
       
   147 //
       
   148 // The solaris and linux implementations store the backing store file in
       
   149 // a user specific temporary directory located in the /tmp file system,
       
   150 // which is always a local file system and is sometimes a RAM based file
       
   151 // system.
       
   152 
       
   153 // return the user specific temporary directory name.
       
   154 //
       
   155 // the caller is expected to free the allocated memory.
       
   156 //
       
   157 static char* get_user_tmp_dir(const char* user) {
       
   158 
       
   159   const char* tmpdir = os::get_temp_directory();
       
   160   const char* perfdir = PERFDATA_NAME;
       
   161   size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
       
   162   char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
       
   163 
       
   164   // construct the path name to user specific tmp directory
       
   165   snprintf(dirname, nbytes, "%s/%s_%s", tmpdir, perfdir, user);
       
   166 
       
   167   return dirname;
       
   168 }
       
   169 
       
   170 // convert the given file name into a process id. if the file
       
   171 // does not meet the file naming constraints, return 0.
       
   172 //
       
   173 static pid_t filename_to_pid(const char* filename) {
       
   174 
       
   175   // a filename that doesn't begin with a digit is not a
       
   176   // candidate for conversion.
       
   177   //
       
   178   if (!isdigit(*filename)) {
       
   179     return 0;
       
   180   }
       
   181 
       
   182   // check if file name can be converted to an integer without
       
   183   // any leftover characters.
       
   184   //
       
   185   char* remainder = NULL;
       
   186   errno = 0;
       
   187   pid_t pid = (pid_t)strtol(filename, &remainder, 10);
       
   188 
       
   189   if (errno != 0) {
       
   190     return 0;
       
   191   }
       
   192 
       
   193   // check for left over characters. If any, then the filename is
       
   194   // not a candidate for conversion.
       
   195   //
       
   196   if (remainder != NULL && *remainder != '\0') {
       
   197     return 0;
       
   198   }
       
   199 
       
   200   // successful conversion, return the pid
       
   201   return pid;
       
   202 }
       
   203 
       
   204 
       
   205 // Check if the given statbuf is considered a secure directory for
       
   206 // the backing store files. Returns true if the directory is considered
       
   207 // a secure location. Returns false if the statbuf is a symbolic link or
       
   208 // if an error occurred.
       
   209 //
       
   210 static bool is_statbuf_secure(struct stat *statp) {
       
   211   if (S_ISLNK(statp->st_mode) || !S_ISDIR(statp->st_mode)) {
       
   212     // The path represents a link or some non-directory file type,
       
   213     // which is not what we expected. Declare it insecure.
       
   214     //
       
   215     return false;
       
   216   }
       
   217   // We have an existing directory, check if the permissions are safe.
       
   218   //
       
   219   if ((statp->st_mode & (S_IWGRP|S_IWOTH)) != 0) {
       
   220     // The directory is open for writing and could be subjected
       
   221     // to a symlink or a hard link attack. Declare it insecure.
       
   222     //
       
   223     return false;
       
   224   }
       
   225   // If user is not root then see if the uid of the directory matches the effective uid of the process.
       
   226   uid_t euid = geteuid();
       
   227   if ((euid != 0) && (statp->st_uid != euid)) {
       
   228     // The directory was not created by this user, declare it insecure.
       
   229     //
       
   230     return false;
       
   231   }
       
   232   return true;
       
   233 }
       
   234 
       
   235 
       
   236 // Check if the given path is considered a secure directory for
       
   237 // the backing store files. Returns true if the directory exists
       
   238 // and is considered a secure location. Returns false if the path
       
   239 // is a symbolic link or if an error occurred.
       
   240 //
       
   241 static bool is_directory_secure(const char* path) {
       
   242   struct stat statbuf;
       
   243   int result = 0;
       
   244 
       
   245   RESTARTABLE(::lstat(path, &statbuf), result);
       
   246   if (result == OS_ERR) {
       
   247     return false;
       
   248   }
       
   249 
       
   250   // The path exists, see if it is secure.
       
   251   return is_statbuf_secure(&statbuf);
       
   252 }
       
   253 
       
   254 
       
   255 // Check if the given directory file descriptor is considered a secure
       
   256 // directory for the backing store files. Returns true if the directory
       
   257 // exists and is considered a secure location. Returns false if the path
       
   258 // is a symbolic link or if an error occurred.
       
   259 //
       
   260 static bool is_dirfd_secure(int dir_fd) {
       
   261   struct stat statbuf;
       
   262   int result = 0;
       
   263 
       
   264   RESTARTABLE(::fstat(dir_fd, &statbuf), result);
       
   265   if (result == OS_ERR) {
       
   266     return false;
       
   267   }
       
   268 
       
   269   // The path exists, now check its mode.
       
   270   return is_statbuf_secure(&statbuf);
       
   271 }
       
   272 
       
   273 
       
   274 // Check to make sure fd1 and fd2 are referencing the same file system object.
       
   275 //
       
   276 static bool is_same_fsobject(int fd1, int fd2) {
       
   277   struct stat statbuf1;
       
   278   struct stat statbuf2;
       
   279   int result = 0;
       
   280 
       
   281   RESTARTABLE(::fstat(fd1, &statbuf1), result);
       
   282   if (result == OS_ERR) {
       
   283     return false;
       
   284   }
       
   285   RESTARTABLE(::fstat(fd2, &statbuf2), result);
       
   286   if (result == OS_ERR) {
       
   287     return false;
       
   288   }
       
   289 
       
   290   if ((statbuf1.st_ino == statbuf2.st_ino) &&
       
   291       (statbuf1.st_dev == statbuf2.st_dev)) {
       
   292     return true;
       
   293   } else {
       
   294     return false;
       
   295   }
       
   296 }
       
   297 
       
   298 
       
   299 // Open the directory of the given path and validate it.
       
   300 // Return a DIR * of the open directory.
       
   301 //
       
   302 static DIR *open_directory_secure(const char* dirname) {
       
   303   // Open the directory using open() so that it can be verified
       
   304   // to be secure by calling is_dirfd_secure(), opendir() and then check
       
   305   // to see if they are the same file system object.  This method does not
       
   306   // introduce a window of opportunity for the directory to be attacked that
       
   307   // calling opendir() and is_directory_secure() does.
       
   308   int result;
       
   309   DIR *dirp = NULL;
       
   310   RESTARTABLE(::open(dirname, O_RDONLY|O_NOFOLLOW), result);
       
   311   if (result == OS_ERR) {
       
   312     // Directory doesn't exist or is a symlink, so there is nothing to cleanup.
       
   313     if (PrintMiscellaneous && Verbose) {
       
   314       if (errno == ELOOP) {
       
   315         warning("directory %s is a symlink and is not secure\n", dirname);
       
   316       } else {
       
   317         warning("could not open directory %s: %s\n", dirname, os::strerror(errno));
       
   318       }
       
   319     }
       
   320     return dirp;
       
   321   }
       
   322   int fd = result;
       
   323 
       
   324   // Determine if the open directory is secure.
       
   325   if (!is_dirfd_secure(fd)) {
       
   326     // The directory is not a secure directory.
       
   327     os::close(fd);
       
   328     return dirp;
       
   329   }
       
   330 
       
   331   // Open the directory.
       
   332   dirp = ::opendir(dirname);
       
   333   if (dirp == NULL) {
       
   334     // The directory doesn't exist, close fd and return.
       
   335     os::close(fd);
       
   336     return dirp;
       
   337   }
       
   338 
       
   339   // Check to make sure fd and dirp are referencing the same file system object.
       
   340   if (!is_same_fsobject(fd, dirp->d_fd)) {
       
   341     // The directory is not secure.
       
   342     os::close(fd);
       
   343     os::closedir(dirp);
       
   344     dirp = NULL;
       
   345     return dirp;
       
   346   }
       
   347 
       
   348   // Close initial open now that we know directory is secure
       
   349   os::close(fd);
       
   350 
       
   351   return dirp;
       
   352 }
       
   353 
       
   354 // NOTE: The code below uses fchdir(), open() and unlink() because
       
   355 // fdopendir(), openat() and unlinkat() are not supported on all
       
   356 // versions.  Once the support for fdopendir(), openat() and unlinkat()
       
   357 // is available on all supported versions the code can be changed
       
   358 // to use these functions.
       
   359 
       
   360 // Open the directory of the given path, validate it and set the
       
   361 // current working directory to it.
       
   362 // Return a DIR * of the open directory and the saved cwd fd.
       
   363 //
       
   364 static DIR *open_directory_secure_cwd(const char* dirname, int *saved_cwd_fd) {
       
   365 
       
   366   // Open the directory.
       
   367   DIR* dirp = open_directory_secure(dirname);
       
   368   if (dirp == NULL) {
       
   369     // Directory doesn't exist or is insecure, so there is nothing to cleanup.
       
   370     return dirp;
       
   371   }
       
   372   int fd = dirp->d_fd;
       
   373 
       
   374   // Open a fd to the cwd and save it off.
       
   375   int result;
       
   376   RESTARTABLE(::open(".", O_RDONLY), result);
       
   377   if (result == OS_ERR) {
       
   378     *saved_cwd_fd = -1;
       
   379   } else {
       
   380     *saved_cwd_fd = result;
       
   381   }
       
   382 
       
   383   // Set the current directory to dirname by using the fd of the directory and
       
   384   // handle errors, otherwise shared memory files will be created in cwd.
       
   385   result = fchdir(fd);
       
   386   if (result == OS_ERR) {
       
   387     if (PrintMiscellaneous && Verbose) {
       
   388       warning("could not change to directory %s", dirname);
       
   389     }
       
   390     if (*saved_cwd_fd != -1) {
       
   391       ::close(*saved_cwd_fd);
       
   392       *saved_cwd_fd = -1;
       
   393     }
       
   394     // Close the directory.
       
   395     os::closedir(dirp);
       
   396     return NULL;
       
   397   } else {
       
   398     return dirp;
       
   399   }
       
   400 }
       
   401 
       
   402 // Close the directory and restore the current working directory.
       
   403 //
       
   404 static void close_directory_secure_cwd(DIR* dirp, int saved_cwd_fd) {
       
   405 
       
   406   int result;
       
   407   // If we have a saved cwd change back to it and close the fd.
       
   408   if (saved_cwd_fd != -1) {
       
   409     result = fchdir(saved_cwd_fd);
       
   410     ::close(saved_cwd_fd);
       
   411   }
       
   412 
       
   413   // Close the directory.
       
   414   os::closedir(dirp);
       
   415 }
       
   416 
       
   417 // Check if the given file descriptor is considered a secure.
       
   418 //
       
   419 static bool is_file_secure(int fd, const char *filename) {
       
   420 
       
   421   int result;
       
   422   struct stat statbuf;
       
   423 
       
   424   // Determine if the file is secure.
       
   425   RESTARTABLE(::fstat(fd, &statbuf), result);
       
   426   if (result == OS_ERR) {
       
   427     if (PrintMiscellaneous && Verbose) {
       
   428       warning("fstat failed on %s: %s\n", filename, os::strerror(errno));
       
   429     }
       
   430     return false;
       
   431   }
       
   432   if (statbuf.st_nlink > 1) {
       
   433     // A file with multiple links is not expected.
       
   434     if (PrintMiscellaneous && Verbose) {
       
   435       warning("file %s has multiple links\n", filename);
       
   436     }
       
   437     return false;
       
   438   }
       
   439   return true;
       
   440 }
       
   441 
       
   442 // return the user name for the given user id
       
   443 //
       
   444 // the caller is expected to free the allocated memory.
       
   445 //
       
   446 static char* get_user_name(uid_t uid) {
       
   447 
       
   448   struct passwd pwent;
       
   449 
       
   450   // determine the max pwbuf size from sysconf, and hardcode
       
   451   // a default if this not available through sysconf.
       
   452   //
       
   453   long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
       
   454   if (bufsize == -1)
       
   455     bufsize = 1024;
       
   456 
       
   457   char* pwbuf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
       
   458 
       
   459   struct passwd* p = NULL;
       
   460   int result = getpwuid_r(uid, &pwent, pwbuf, (size_t)bufsize, &p);
       
   461 
       
   462   if (p == NULL || p->pw_name == NULL || *(p->pw_name) == '\0') {
       
   463     if (PrintMiscellaneous && Verbose) {
       
   464       if (p == NULL) {
       
   465         warning("Could not retrieve passwd entry: %s\n",
       
   466                 os::strerror(errno));
       
   467       }
       
   468       else {
       
   469         warning("Could not determine user name: %s\n",
       
   470                 p->pw_name == NULL ? "pw_name = NULL" :
       
   471                                      "pw_name zero length");
       
   472       }
       
   473     }
       
   474     FREE_C_HEAP_ARRAY(char, pwbuf);
       
   475     return NULL;
       
   476   }
       
   477 
       
   478   char* user_name = NEW_C_HEAP_ARRAY(char, strlen(p->pw_name) + 1, mtInternal);
       
   479   strcpy(user_name, p->pw_name);
       
   480 
       
   481   FREE_C_HEAP_ARRAY(char, pwbuf);
       
   482   return user_name;
       
   483 }
       
   484 
       
   485 // return the name of the user that owns the process identified by vmid.
       
   486 //
       
   487 // This method uses a slow directory search algorithm to find the backing
       
   488 // store file for the specified vmid and returns the user name, as determined
       
   489 // by the user name suffix of the hsperfdata_<username> directory name.
       
   490 //
       
   491 // the caller is expected to free the allocated memory.
       
   492 //
       
   493 static char* get_user_name_slow(int vmid, TRAPS) {
       
   494 
       
   495   // short circuit the directory search if the process doesn't even exist.
       
   496   if (kill(vmid, 0) == OS_ERR) {
       
   497     if (errno == ESRCH) {
       
   498       THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
       
   499                   "Process not found");
       
   500     }
       
   501     else /* EPERM */ {
       
   502       THROW_MSG_0(vmSymbols::java_io_IOException(), os::strerror(errno));
       
   503     }
       
   504   }
       
   505 
       
   506   // directory search
       
   507   char* oldest_user = NULL;
       
   508   time_t oldest_ctime = 0;
       
   509 
       
   510   const char* tmpdirname = os::get_temp_directory();
       
   511 
       
   512   // open the temp directory
       
   513   DIR* tmpdirp = os::opendir(tmpdirname);
       
   514 
       
   515   if (tmpdirp == NULL) {
       
   516     // Cannot open the directory to get the user name, return.
       
   517     return NULL;
       
   518   }
       
   519 
       
   520   // for each entry in the directory that matches the pattern hsperfdata_*,
       
   521   // open the directory and check if the file for the given vmid exists.
       
   522   // The file with the expected name and the latest creation date is used
       
   523   // to determine the user name for the process id.
       
   524   //
       
   525   struct dirent* dentry;
       
   526   char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
       
   527   errno = 0;
       
   528   while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
       
   529 
       
   530     // check if the directory entry is a hsperfdata file
       
   531     if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
       
   532       continue;
       
   533     }
       
   534 
       
   535     char* usrdir_name = NEW_C_HEAP_ARRAY(char,
       
   536                   strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
       
   537     strcpy(usrdir_name, tmpdirname);
       
   538     strcat(usrdir_name, "/");
       
   539     strcat(usrdir_name, dentry->d_name);
       
   540 
       
   541     // open the user directory
       
   542     DIR* subdirp = open_directory_secure(usrdir_name);
       
   543 
       
   544     if (subdirp == NULL) {
       
   545       FREE_C_HEAP_ARRAY(char, usrdir_name);
       
   546       continue;
       
   547     }
       
   548 
       
   549     // Since we don't create the backing store files in directories
       
   550     // pointed to by symbolic links, we also don't follow them when
       
   551     // looking for the files. We check for a symbolic link after the
       
   552     // call to opendir in order to eliminate a small window where the
       
   553     // symlink can be exploited.
       
   554     //
       
   555     if (!is_directory_secure(usrdir_name)) {
       
   556       FREE_C_HEAP_ARRAY(char, usrdir_name);
       
   557       os::closedir(subdirp);
       
   558       continue;
       
   559     }
       
   560 
       
   561     struct dirent* udentry;
       
   562     char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
       
   563     errno = 0;
       
   564     while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
       
   565 
       
   566       if (filename_to_pid(udentry->d_name) == vmid) {
       
   567         struct stat statbuf;
       
   568         int result;
       
   569 
       
   570         char* filename = NEW_C_HEAP_ARRAY(char,
       
   571                  strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
       
   572 
       
   573         strcpy(filename, usrdir_name);
       
   574         strcat(filename, "/");
       
   575         strcat(filename, udentry->d_name);
       
   576 
       
   577         // don't follow symbolic links for the file
       
   578         RESTARTABLE(::lstat(filename, &statbuf), result);
       
   579         if (result == OS_ERR) {
       
   580            FREE_C_HEAP_ARRAY(char, filename);
       
   581            continue;
       
   582         }
       
   583 
       
   584         // skip over files that are not regular files.
       
   585         if (!S_ISREG(statbuf.st_mode)) {
       
   586           FREE_C_HEAP_ARRAY(char, filename);
       
   587           continue;
       
   588         }
       
   589 
       
   590         // compare and save filename with latest creation time
       
   591         if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
       
   592 
       
   593           if (statbuf.st_ctime > oldest_ctime) {
       
   594             char* user = strchr(dentry->d_name, '_') + 1;
       
   595 
       
   596             if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user);
       
   597             oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
       
   598 
       
   599             strcpy(oldest_user, user);
       
   600             oldest_ctime = statbuf.st_ctime;
       
   601           }
       
   602         }
       
   603 
       
   604         FREE_C_HEAP_ARRAY(char, filename);
       
   605       }
       
   606     }
       
   607     os::closedir(subdirp);
       
   608     FREE_C_HEAP_ARRAY(char, udbuf);
       
   609     FREE_C_HEAP_ARRAY(char, usrdir_name);
       
   610   }
       
   611   os::closedir(tmpdirp);
       
   612   FREE_C_HEAP_ARRAY(char, tdbuf);
       
   613 
       
   614   return(oldest_user);
       
   615 }
       
   616 
       
   617 // return the name of the user that owns the JVM indicated by the given vmid.
       
   618 //
       
   619 static char* get_user_name(int vmid, TRAPS) {
       
   620 
       
   621   char psinfo_name[PATH_MAX];
       
   622   int result;
       
   623 
       
   624   snprintf(psinfo_name, PATH_MAX, "/proc/%d/psinfo", vmid);
       
   625 
       
   626   RESTARTABLE(::open(psinfo_name, O_RDONLY), result);
       
   627 
       
   628   if (result != OS_ERR) {
       
   629     int fd = result;
       
   630 
       
   631     psinfo_t psinfo;
       
   632     char* addr = (char*)&psinfo;
       
   633 
       
   634     for (size_t remaining = sizeof(psinfo_t); remaining > 0;) {
       
   635 
       
   636       RESTARTABLE(::read(fd, addr, remaining), result);
       
   637       if (result == OS_ERR) {
       
   638         ::close(fd);
       
   639         THROW_MSG_0(vmSymbols::java_io_IOException(), "Read error");
       
   640       } else {
       
   641         remaining-=result;
       
   642         addr+=result;
       
   643       }
       
   644     }
       
   645 
       
   646     ::close(fd);
       
   647 
       
   648     // get the user name for the effective user id of the process
       
   649     char* user_name = get_user_name(psinfo.pr_euid);
       
   650 
       
   651     return user_name;
       
   652   }
       
   653 
       
   654   if (result == OS_ERR && errno == EACCES) {
       
   655 
       
   656     // In this case, the psinfo file for the process id existed,
       
   657     // but we didn't have permission to access it.
       
   658     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
       
   659                 os::strerror(errno));
       
   660   }
       
   661 
       
   662   // at this point, we don't know if the process id itself doesn't
       
   663   // exist or if the psinfo file doesn't exit. If the psinfo file
       
   664   // doesn't exist, then we are running on Solaris 2.5.1 or earlier.
       
   665   // since the structured procfs and old procfs interfaces can't be
       
   666   // mixed, we attempt to find the file through a directory search.
       
   667 
       
   668   return get_user_name_slow(vmid, THREAD);
       
   669 }
       
   670 
       
   671 // return the file name of the backing store file for the named
       
   672 // shared memory region for the given user name and vmid.
       
   673 //
       
   674 // the caller is expected to free the allocated memory.
       
   675 //
       
   676 static char* get_sharedmem_filename(const char* dirname, int vmid) {
       
   677 
       
   678   // add 2 for the file separator and a NULL terminator.
       
   679   size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
       
   680 
       
   681   char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
       
   682   snprintf(name, nbytes, "%s/%d", dirname, vmid);
       
   683 
       
   684   return name;
       
   685 }
       
   686 
       
   687 
       
   688 // remove file
       
   689 //
       
   690 // this method removes the file specified by the given path
       
   691 //
       
   692 static void remove_file(const char* path) {
       
   693 
       
   694   int result;
       
   695 
       
   696   // if the file is a directory, the following unlink will fail. since
       
   697   // we don't expect to find directories in the user temp directory, we
       
   698   // won't try to handle this situation. even if accidentially or
       
   699   // maliciously planted, the directory's presence won't hurt anything.
       
   700   //
       
   701   RESTARTABLE(::unlink(path), result);
       
   702   if (PrintMiscellaneous && Verbose && result == OS_ERR) {
       
   703     if (errno != ENOENT) {
       
   704       warning("Could not unlink shared memory backing"
       
   705               " store file %s : %s\n", path, os::strerror(errno));
       
   706     }
       
   707   }
       
   708 }
       
   709 
       
   710 
       
   711 // cleanup stale shared memory resources
       
   712 //
       
   713 // This method attempts to remove all stale shared memory files in
       
   714 // the named user temporary directory. It scans the named directory
       
   715 // for files matching the pattern ^$[0-9]*$. For each file found, the
       
   716 // process id is extracted from the file name and a test is run to
       
   717 // determine if the process is alive. If the process is not alive,
       
   718 // any stale file resources are removed.
       
   719 //
       
   720 static void cleanup_sharedmem_resources(const char* dirname) {
       
   721 
       
   722   int saved_cwd_fd;
       
   723   // open the directory
       
   724   DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
       
   725   if (dirp == NULL) {
       
   726     // directory doesn't exist or is insecure, so there is nothing to cleanup
       
   727     return;
       
   728   }
       
   729 
       
   730   // for each entry in the directory that matches the expected file
       
   731   // name pattern, determine if the file resources are stale and if
       
   732   // so, remove the file resources. Note, instrumented HotSpot processes
       
   733   // for this user may start and/or terminate during this search and
       
   734   // remove or create new files in this directory. The behavior of this
       
   735   // loop under these conditions is dependent upon the implementation of
       
   736   // opendir/readdir.
       
   737   //
       
   738   struct dirent* entry;
       
   739   char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
       
   740 
       
   741   errno = 0;
       
   742   while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
       
   743 
       
   744     pid_t pid = filename_to_pid(entry->d_name);
       
   745 
       
   746     if (pid == 0) {
       
   747 
       
   748       if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
       
   749 
       
   750         // attempt to remove all unexpected files, except "." and ".."
       
   751         unlink(entry->d_name);
       
   752       }
       
   753 
       
   754       errno = 0;
       
   755       continue;
       
   756     }
       
   757 
       
   758     // we now have a file name that converts to a valid integer
       
   759     // that could represent a process id . if this process id
       
   760     // matches the current process id or the process is not running,
       
   761     // then remove the stale file resources.
       
   762     //
       
   763     // process liveness is detected by sending signal number 0 to
       
   764     // the process id (see kill(2)). if kill determines that the
       
   765     // process does not exist, then the file resources are removed.
       
   766     // if kill determines that that we don't have permission to
       
   767     // signal the process, then the file resources are assumed to
       
   768     // be stale and are removed because the resources for such a
       
   769     // process should be in a different user specific directory.
       
   770     //
       
   771     if ((pid == os::current_process_id()) ||
       
   772         (kill(pid, 0) == OS_ERR && (errno == ESRCH || errno == EPERM))) {
       
   773 
       
   774         unlink(entry->d_name);
       
   775     }
       
   776     errno = 0;
       
   777   }
       
   778 
       
   779   // close the directory and reset the current working directory
       
   780   close_directory_secure_cwd(dirp, saved_cwd_fd);
       
   781 
       
   782   FREE_C_HEAP_ARRAY(char, dbuf);
       
   783 }
       
   784 
       
   785 // make the user specific temporary directory. Returns true if
       
   786 // the directory exists and is secure upon return. Returns false
       
   787 // if the directory exists but is either a symlink, is otherwise
       
   788 // insecure, or if an error occurred.
       
   789 //
       
   790 static bool make_user_tmp_dir(const char* dirname) {
       
   791 
       
   792   // create the directory with 0755 permissions. note that the directory
       
   793   // will be owned by euid::egid, which may not be the same as uid::gid.
       
   794   //
       
   795   if (mkdir(dirname, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) == OS_ERR) {
       
   796     if (errno == EEXIST) {
       
   797       // The directory already exists and was probably created by another
       
   798       // JVM instance. However, this could also be the result of a
       
   799       // deliberate symlink. Verify that the existing directory is safe.
       
   800       //
       
   801       if (!is_directory_secure(dirname)) {
       
   802         // directory is not secure
       
   803         if (PrintMiscellaneous && Verbose) {
       
   804           warning("%s directory is insecure\n", dirname);
       
   805         }
       
   806         return false;
       
   807       }
       
   808     }
       
   809     else {
       
   810       // we encountered some other failure while attempting
       
   811       // to create the directory
       
   812       //
       
   813       if (PrintMiscellaneous && Verbose) {
       
   814         warning("could not create directory %s: %s\n",
       
   815                 dirname, os::strerror(errno));
       
   816       }
       
   817       return false;
       
   818     }
       
   819   }
       
   820   return true;
       
   821 }
       
   822 
       
   823 // create the shared memory file resources
       
   824 //
       
   825 // This method creates the shared memory file with the given size
       
   826 // This method also creates the user specific temporary directory, if
       
   827 // it does not yet exist.
       
   828 //
       
   829 static int create_sharedmem_resources(const char* dirname, const char* filename, size_t size) {
       
   830 
       
   831   // make the user temporary directory
       
   832   if (!make_user_tmp_dir(dirname)) {
       
   833     // could not make/find the directory or the found directory
       
   834     // was not secure
       
   835     return -1;
       
   836   }
       
   837 
       
   838   int saved_cwd_fd;
       
   839   // open the directory and set the current working directory to it
       
   840   DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
       
   841   if (dirp == NULL) {
       
   842     // Directory doesn't exist or is insecure, so cannot create shared
       
   843     // memory file.
       
   844     return -1;
       
   845   }
       
   846 
       
   847   // Open the filename in the current directory.
       
   848   // Cannot use O_TRUNC here; truncation of an existing file has to happen
       
   849   // after the is_file_secure() check below.
       
   850   int result;
       
   851   RESTARTABLE(::open(filename, O_RDWR|O_CREAT|O_NOFOLLOW, S_IREAD|S_IWRITE), result);
       
   852   if (result == OS_ERR) {
       
   853     if (PrintMiscellaneous && Verbose) {
       
   854       if (errno == ELOOP) {
       
   855         warning("file %s is a symlink and is not secure\n", filename);
       
   856       } else {
       
   857         warning("could not create file %s: %s\n", filename, os::strerror(errno));
       
   858       }
       
   859     }
       
   860     // close the directory and reset the current working directory
       
   861     close_directory_secure_cwd(dirp, saved_cwd_fd);
       
   862 
       
   863     return -1;
       
   864   }
       
   865   // close the directory and reset the current working directory
       
   866   close_directory_secure_cwd(dirp, saved_cwd_fd);
       
   867 
       
   868   // save the file descriptor
       
   869   int fd = result;
       
   870 
       
   871   // check to see if the file is secure
       
   872   if (!is_file_secure(fd, filename)) {
       
   873     ::close(fd);
       
   874     return -1;
       
   875   }
       
   876 
       
   877   // truncate the file to get rid of any existing data
       
   878   RESTARTABLE(::ftruncate(fd, (off_t)0), result);
       
   879   if (result == OS_ERR) {
       
   880     if (PrintMiscellaneous && Verbose) {
       
   881       warning("could not truncate shared memory file: %s\n", os::strerror(errno));
       
   882     }
       
   883     ::close(fd);
       
   884     return -1;
       
   885   }
       
   886   // set the file size
       
   887   RESTARTABLE(::ftruncate(fd, (off_t)size), result);
       
   888   if (result == OS_ERR) {
       
   889     if (PrintMiscellaneous && Verbose) {
       
   890       warning("could not set shared memory file size: %s\n", os::strerror(errno));
       
   891     }
       
   892     ::close(fd);
       
   893     return -1;
       
   894   }
       
   895 
       
   896   return fd;
       
   897 }
       
   898 
       
   899 // open the shared memory file for the given user and vmid. returns
       
   900 // the file descriptor for the open file or -1 if the file could not
       
   901 // be opened.
       
   902 //
       
   903 static int open_sharedmem_file(const char* filename, int oflags, TRAPS) {
       
   904 
       
   905   // open the file
       
   906   int result;
       
   907   RESTARTABLE(::open(filename, oflags), result);
       
   908   if (result == OS_ERR) {
       
   909     if (errno == ENOENT) {
       
   910       THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
       
   911                  "Process not found", OS_ERR);
       
   912     }
       
   913     else if (errno == EACCES) {
       
   914       THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
       
   915                  "Permission denied", OS_ERR);
       
   916     }
       
   917     else {
       
   918       THROW_MSG_(vmSymbols::java_io_IOException(),
       
   919                  os::strerror(errno), OS_ERR);
       
   920     }
       
   921   }
       
   922   int fd = result;
       
   923 
       
   924   // check to see if the file is secure
       
   925   if (!is_file_secure(fd, filename)) {
       
   926     ::close(fd);
       
   927     return -1;
       
   928   }
       
   929 
       
   930   return fd;
       
   931 }
       
   932 
       
   933 // create a named shared memory region. returns the address of the
       
   934 // memory region on success or NULL on failure. A return value of
       
   935 // NULL will ultimately disable the shared memory feature.
       
   936 //
       
   937 // On Solaris, the name space for shared memory objects
       
   938 // is the file system name space.
       
   939 //
       
   940 // A monitoring application attaching to a JVM does not need to know
       
   941 // the file system name of the shared memory object. However, it may
       
   942 // be convenient for applications to discover the existence of newly
       
   943 // created and terminating JVMs by watching the file system name space
       
   944 // for files being created or removed.
       
   945 //
       
   946 static char* mmap_create_shared(size_t size) {
       
   947 
       
   948   int result;
       
   949   int fd;
       
   950   char* mapAddress;
       
   951 
       
   952   int vmid = os::current_process_id();
       
   953 
       
   954   char* user_name = get_user_name(geteuid());
       
   955 
       
   956   if (user_name == NULL)
       
   957     return NULL;
       
   958 
       
   959   char* dirname = get_user_tmp_dir(user_name);
       
   960   char* filename = get_sharedmem_filename(dirname, vmid);
       
   961 
       
   962   // get the short filename
       
   963   char* short_filename = strrchr(filename, '/');
       
   964   if (short_filename == NULL) {
       
   965     short_filename = filename;
       
   966   } else {
       
   967     short_filename++;
       
   968   }
       
   969 
       
   970   // cleanup any stale shared memory files
       
   971   cleanup_sharedmem_resources(dirname);
       
   972 
       
   973   assert(((size > 0) && (size % os::vm_page_size() == 0)),
       
   974          "unexpected PerfMemory region size");
       
   975 
       
   976   fd = create_sharedmem_resources(dirname, short_filename, size);
       
   977 
       
   978   FREE_C_HEAP_ARRAY(char, user_name);
       
   979   FREE_C_HEAP_ARRAY(char, dirname);
       
   980 
       
   981   if (fd == -1) {
       
   982     FREE_C_HEAP_ARRAY(char, filename);
       
   983     return NULL;
       
   984   }
       
   985 
       
   986   mapAddress = (char*)::mmap((char*)0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
       
   987 
       
   988   result = ::close(fd);
       
   989   assert(result != OS_ERR, "could not close file");
       
   990 
       
   991   if (mapAddress == MAP_FAILED) {
       
   992     if (PrintMiscellaneous && Verbose) {
       
   993       warning("mmap failed -  %s\n", os::strerror(errno));
       
   994     }
       
   995     remove_file(filename);
       
   996     FREE_C_HEAP_ARRAY(char, filename);
       
   997     return NULL;
       
   998   }
       
   999 
       
  1000   // save the file name for use in delete_shared_memory()
       
  1001   backing_store_file_name = filename;
       
  1002 
       
  1003   // clear the shared memory region
       
  1004   (void)::memset((void*) mapAddress, 0, size);
       
  1005 
       
  1006   // it does not go through os api, the operation has to record from here
       
  1007   MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress,
       
  1008     size, CURRENT_PC, mtInternal);
       
  1009 
       
  1010   return mapAddress;
       
  1011 }
       
  1012 
       
  1013 // release a named shared memory region
       
  1014 //
       
  1015 static void unmap_shared(char* addr, size_t bytes) {
       
  1016   os::release_memory(addr, bytes);
       
  1017 }
       
  1018 
       
  1019 // create the PerfData memory region in shared memory.
       
  1020 //
       
  1021 static char* create_shared_memory(size_t size) {
       
  1022 
       
  1023   // create the shared memory region.
       
  1024   return mmap_create_shared(size);
       
  1025 }
       
  1026 
       
  1027 // delete the shared PerfData memory region
       
  1028 //
       
  1029 static void delete_shared_memory(char* addr, size_t size) {
       
  1030 
       
  1031   // cleanup the persistent shared memory resources. since DestroyJavaVM does
       
  1032   // not support unloading of the JVM, unmapping of the memory resource is
       
  1033   // not performed. The memory will be reclaimed by the OS upon termination of
       
  1034   // the process. The backing store file is deleted from the file system.
       
  1035 
       
  1036   assert(!PerfDisableSharedMem, "shouldn't be here");
       
  1037 
       
  1038   if (backing_store_file_name != NULL) {
       
  1039     remove_file(backing_store_file_name);
       
  1040     // Don't.. Free heap memory could deadlock os::abort() if it is called
       
  1041     // from signal handler. OS will reclaim the heap memory.
       
  1042     // FREE_C_HEAP_ARRAY(char, backing_store_file_name);
       
  1043     backing_store_file_name = NULL;
       
  1044   }
       
  1045 }
       
  1046 
       
  1047 // return the size of the file for the given file descriptor
       
  1048 // or 0 if it is not a valid size for a shared memory file
       
  1049 //
       
  1050 static size_t sharedmem_filesize(int fd, TRAPS) {
       
  1051 
       
  1052   struct stat statbuf;
       
  1053   int result;
       
  1054 
       
  1055   RESTARTABLE(::fstat(fd, &statbuf), result);
       
  1056   if (result == OS_ERR) {
       
  1057     if (PrintMiscellaneous && Verbose) {
       
  1058       warning("fstat failed: %s\n", os::strerror(errno));
       
  1059     }
       
  1060     THROW_MSG_0(vmSymbols::java_io_IOException(),
       
  1061                 "Could not determine PerfMemory size");
       
  1062   }
       
  1063 
       
  1064   if ((statbuf.st_size == 0) ||
       
  1065      ((size_t)statbuf.st_size % os::vm_page_size() != 0)) {
       
  1066     THROW_MSG_0(vmSymbols::java_lang_Exception(),
       
  1067                 "Invalid PerfMemory size");
       
  1068   }
       
  1069 
       
  1070   return (size_t)statbuf.st_size;
       
  1071 }
       
  1072 
       
  1073 // attach to a named shared memory region.
       
  1074 //
       
  1075 static void mmap_attach_shared(const char* user, int vmid, PerfMemory::PerfMemoryMode mode, char** addr, size_t* sizep, TRAPS) {
       
  1076 
       
  1077   char* mapAddress;
       
  1078   int result;
       
  1079   int fd;
       
  1080   size_t size = 0;
       
  1081   const char* luser = NULL;
       
  1082 
       
  1083   int mmap_prot;
       
  1084   int file_flags;
       
  1085 
       
  1086   ResourceMark rm;
       
  1087 
       
  1088   // map the high level access mode to the appropriate permission
       
  1089   // constructs for the file and the shared memory mapping.
       
  1090   if (mode == PerfMemory::PERF_MODE_RO) {
       
  1091     mmap_prot = PROT_READ;
       
  1092     file_flags = O_RDONLY | O_NOFOLLOW;
       
  1093   }
       
  1094   else if (mode == PerfMemory::PERF_MODE_RW) {
       
  1095 #ifdef LATER
       
  1096     mmap_prot = PROT_READ | PROT_WRITE;
       
  1097     file_flags = O_RDWR | O_NOFOLLOW;
       
  1098 #else
       
  1099     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
       
  1100               "Unsupported access mode");
       
  1101 #endif
       
  1102   }
       
  1103   else {
       
  1104     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
       
  1105               "Illegal access mode");
       
  1106   }
       
  1107 
       
  1108   if (user == NULL || strlen(user) == 0) {
       
  1109     luser = get_user_name(vmid, CHECK);
       
  1110   }
       
  1111   else {
       
  1112     luser = user;
       
  1113   }
       
  1114 
       
  1115   if (luser == NULL) {
       
  1116     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
       
  1117               "Could not map vmid to user Name");
       
  1118   }
       
  1119 
       
  1120   char* dirname = get_user_tmp_dir(luser);
       
  1121 
       
  1122   // since we don't follow symbolic links when creating the backing
       
  1123   // store file, we don't follow them when attaching either.
       
  1124   //
       
  1125   if (!is_directory_secure(dirname)) {
       
  1126     FREE_C_HEAP_ARRAY(char, dirname);
       
  1127     if (luser != user) {
       
  1128       FREE_C_HEAP_ARRAY(char, luser);
       
  1129     }
       
  1130     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
       
  1131               "Process not found");
       
  1132   }
       
  1133 
       
  1134   char* filename = get_sharedmem_filename(dirname, vmid);
       
  1135 
       
  1136   // copy heap memory to resource memory. the open_sharedmem_file
       
  1137   // method below need to use the filename, but could throw an
       
  1138   // exception. using a resource array prevents the leak that
       
  1139   // would otherwise occur.
       
  1140   char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
       
  1141   strcpy(rfilename, filename);
       
  1142 
       
  1143   // free the c heap resources that are no longer needed
       
  1144   if (luser != user) FREE_C_HEAP_ARRAY(char, luser);
       
  1145   FREE_C_HEAP_ARRAY(char, dirname);
       
  1146   FREE_C_HEAP_ARRAY(char, filename);
       
  1147 
       
  1148   // open the shared memory file for the give vmid
       
  1149   fd = open_sharedmem_file(rfilename, file_flags, THREAD);
       
  1150 
       
  1151   if (fd == OS_ERR) {
       
  1152     return;
       
  1153   }
       
  1154 
       
  1155   if (HAS_PENDING_EXCEPTION) {
       
  1156     ::close(fd);
       
  1157     return;
       
  1158   }
       
  1159 
       
  1160   if (*sizep == 0) {
       
  1161     size = sharedmem_filesize(fd, CHECK);
       
  1162   } else {
       
  1163     size = *sizep;
       
  1164   }
       
  1165 
       
  1166   assert(size > 0, "unexpected size <= 0");
       
  1167 
       
  1168   mapAddress = (char*)::mmap((char*)0, size, mmap_prot, MAP_SHARED, fd, 0);
       
  1169 
       
  1170   result = ::close(fd);
       
  1171   assert(result != OS_ERR, "could not close file");
       
  1172 
       
  1173   if (mapAddress == MAP_FAILED) {
       
  1174     if (PrintMiscellaneous && Verbose) {
       
  1175       warning("mmap failed: %s\n", os::strerror(errno));
       
  1176     }
       
  1177     THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
       
  1178               "Could not map PerfMemory");
       
  1179   }
       
  1180 
       
  1181   // it does not go through os api, the operation has to record from here
       
  1182   MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress,
       
  1183     size, CURRENT_PC, mtInternal);
       
  1184 
       
  1185   *addr = mapAddress;
       
  1186   *sizep = size;
       
  1187 
       
  1188   log_debug(perf, memops)("mapped " SIZE_FORMAT " bytes for vmid %d at "
       
  1189                           INTPTR_FORMAT "\n", size, vmid, (void*)mapAddress);
       
  1190 }
       
  1191 
       
  1192 // create the PerfData memory region
       
  1193 //
       
  1194 // This method creates the memory region used to store performance
       
  1195 // data for the JVM. The memory may be created in standard or
       
  1196 // shared memory.
       
  1197 //
       
  1198 void PerfMemory::create_memory_region(size_t size) {
       
  1199 
       
  1200   if (PerfDisableSharedMem) {
       
  1201     // do not share the memory for the performance data.
       
  1202     _start = create_standard_memory(size);
       
  1203   }
       
  1204   else {
       
  1205     _start = create_shared_memory(size);
       
  1206     if (_start == NULL) {
       
  1207 
       
  1208       // creation of the shared memory region failed, attempt
       
  1209       // to create a contiguous, non-shared memory region instead.
       
  1210       //
       
  1211       if (PrintMiscellaneous && Verbose) {
       
  1212         warning("Reverting to non-shared PerfMemory region.\n");
       
  1213       }
       
  1214       PerfDisableSharedMem = true;
       
  1215       _start = create_standard_memory(size);
       
  1216     }
       
  1217   }
       
  1218 
       
  1219   if (_start != NULL) _capacity = size;
       
  1220 
       
  1221 }
       
  1222 
       
  1223 // delete the PerfData memory region
       
  1224 //
       
  1225 // This method deletes the memory region used to store performance
       
  1226 // data for the JVM. The memory region indicated by the <address, size>
       
  1227 // tuple will be inaccessible after a call to this method.
       
  1228 //
       
  1229 void PerfMemory::delete_memory_region() {
       
  1230 
       
  1231   assert((start() != NULL && capacity() > 0), "verify proper state");
       
  1232 
       
  1233   // If user specifies PerfDataSaveFile, it will save the performance data
       
  1234   // to the specified file name no matter whether PerfDataSaveToFile is specified
       
  1235   // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
       
  1236   // -XX:+PerfDataSaveToFile.
       
  1237   if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
       
  1238     save_memory_to_file(start(), capacity());
       
  1239   }
       
  1240 
       
  1241   if (PerfDisableSharedMem) {
       
  1242     delete_standard_memory(start(), capacity());
       
  1243   }
       
  1244   else {
       
  1245     delete_shared_memory(start(), capacity());
       
  1246   }
       
  1247 }
       
  1248 
       
  1249 // attach to the PerfData memory region for another JVM
       
  1250 //
       
  1251 // This method returns an <address, size> tuple that points to
       
  1252 // a memory buffer that is kept reasonably synchronized with
       
  1253 // the PerfData memory region for the indicated JVM. This
       
  1254 // buffer may be kept in synchronization via shared memory
       
  1255 // or some other mechanism that keeps the buffer updated.
       
  1256 //
       
  1257 // If the JVM chooses not to support the attachability feature,
       
  1258 // this method should throw an UnsupportedOperation exception.
       
  1259 //
       
  1260 // This implementation utilizes named shared memory to map
       
  1261 // the indicated process's PerfData memory region into this JVMs
       
  1262 // address space.
       
  1263 //
       
  1264 void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode, char** addrp, size_t* sizep, TRAPS) {
       
  1265 
       
  1266   if (vmid == 0 || vmid == os::current_process_id()) {
       
  1267      *addrp = start();
       
  1268      *sizep = capacity();
       
  1269      return;
       
  1270   }
       
  1271 
       
  1272   mmap_attach_shared(user, vmid, mode, addrp, sizep, CHECK);
       
  1273 }
       
  1274 
       
  1275 // detach from the PerfData memory region of another JVM
       
  1276 //
       
  1277 // This method detaches the PerfData memory region of another
       
  1278 // JVM, specified as an <address, size> tuple of a buffer
       
  1279 // in this process's address space. This method may perform
       
  1280 // arbitrary actions to accomplish the detachment. The memory
       
  1281 // region specified by <address, size> will be inaccessible after
       
  1282 // a call to this method.
       
  1283 //
       
  1284 // If the JVM chooses not to support the attachability feature,
       
  1285 // this method should throw an UnsupportedOperation exception.
       
  1286 //
       
  1287 // This implementation utilizes named shared memory to detach
       
  1288 // the indicated process's PerfData memory region from this
       
  1289 // process's address space.
       
  1290 //
       
  1291 void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
       
  1292 
       
  1293   assert(addr != 0, "address sanity check");
       
  1294   assert(bytes > 0, "capacity sanity check");
       
  1295 
       
  1296   if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
       
  1297     // prevent accidental detachment of this process's PerfMemory region
       
  1298     return;
       
  1299   }
       
  1300 
       
  1301   unmap_shared(addr, bytes);
       
  1302 }