src/hotspot/cpu/x86/templateTable_x86.cpp
changeset 47216 71c04702a3d5
parent 46630 75aa3e39d02c
child 47580 96392e113a0a
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "asm/macroAssembler.hpp"
       
    27 #include "interpreter/interpreter.hpp"
       
    28 #include "interpreter/interpreterRuntime.hpp"
       
    29 #include "interpreter/interp_masm.hpp"
       
    30 #include "interpreter/templateTable.hpp"
       
    31 #include "memory/universe.inline.hpp"
       
    32 #include "oops/methodData.hpp"
       
    33 #include "oops/objArrayKlass.hpp"
       
    34 #include "oops/oop.inline.hpp"
       
    35 #include "prims/methodHandles.hpp"
       
    36 #include "runtime/sharedRuntime.hpp"
       
    37 #include "runtime/stubRoutines.hpp"
       
    38 #include "runtime/synchronizer.hpp"
       
    39 #include "utilities/macros.hpp"
       
    40 
       
    41 #define __ _masm->
       
    42 
       
    43 // Global Register Names
       
    44 static const Register rbcp     = LP64_ONLY(r13) NOT_LP64(rsi);
       
    45 static const Register rlocals  = LP64_ONLY(r14) NOT_LP64(rdi);
       
    46 
       
    47 // Platform-dependent initialization
       
    48 void TemplateTable::pd_initialize() {
       
    49   // No x86 specific initialization
       
    50 }
       
    51 
       
    52 // Address Computation: local variables
       
    53 static inline Address iaddress(int n) {
       
    54   return Address(rlocals, Interpreter::local_offset_in_bytes(n));
       
    55 }
       
    56 
       
    57 static inline Address laddress(int n) {
       
    58   return iaddress(n + 1);
       
    59 }
       
    60 
       
    61 #ifndef _LP64
       
    62 static inline Address haddress(int n) {
       
    63   return iaddress(n + 0);
       
    64 }
       
    65 #endif
       
    66 
       
    67 static inline Address faddress(int n) {
       
    68   return iaddress(n);
       
    69 }
       
    70 
       
    71 static inline Address daddress(int n) {
       
    72   return laddress(n);
       
    73 }
       
    74 
       
    75 static inline Address aaddress(int n) {
       
    76   return iaddress(n);
       
    77 }
       
    78 
       
    79 static inline Address iaddress(Register r) {
       
    80   return Address(rlocals, r, Address::times_ptr);
       
    81 }
       
    82 
       
    83 static inline Address laddress(Register r) {
       
    84   return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1));
       
    85 }
       
    86 
       
    87 #ifndef _LP64
       
    88 static inline Address haddress(Register r)       {
       
    89   return Address(rlocals, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
       
    90 }
       
    91 #endif
       
    92 
       
    93 static inline Address faddress(Register r) {
       
    94   return iaddress(r);
       
    95 }
       
    96 
       
    97 static inline Address daddress(Register r) {
       
    98   return laddress(r);
       
    99 }
       
   100 
       
   101 static inline Address aaddress(Register r) {
       
   102   return iaddress(r);
       
   103 }
       
   104 
       
   105 
       
   106 // expression stack
       
   107 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
       
   108 // data beyond the rsp which is potentially unsafe in an MT environment;
       
   109 // an interrupt may overwrite that data.)
       
   110 static inline Address at_rsp   () {
       
   111   return Address(rsp, 0);
       
   112 }
       
   113 
       
   114 // At top of Java expression stack which may be different than esp().  It
       
   115 // isn't for category 1 objects.
       
   116 static inline Address at_tos   () {
       
   117   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
       
   118 }
       
   119 
       
   120 static inline Address at_tos_p1() {
       
   121   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
       
   122 }
       
   123 
       
   124 static inline Address at_tos_p2() {
       
   125   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
       
   126 }
       
   127 
       
   128 // Condition conversion
       
   129 static Assembler::Condition j_not(TemplateTable::Condition cc) {
       
   130   switch (cc) {
       
   131   case TemplateTable::equal        : return Assembler::notEqual;
       
   132   case TemplateTable::not_equal    : return Assembler::equal;
       
   133   case TemplateTable::less         : return Assembler::greaterEqual;
       
   134   case TemplateTable::less_equal   : return Assembler::greater;
       
   135   case TemplateTable::greater      : return Assembler::lessEqual;
       
   136   case TemplateTable::greater_equal: return Assembler::less;
       
   137   }
       
   138   ShouldNotReachHere();
       
   139   return Assembler::zero;
       
   140 }
       
   141 
       
   142 
       
   143 
       
   144 // Miscelaneous helper routines
       
   145 // Store an oop (or NULL) at the address described by obj.
       
   146 // If val == noreg this means store a NULL
       
   147 
       
   148 
       
   149 static void do_oop_store(InterpreterMacroAssembler* _masm,
       
   150                          Address obj,
       
   151                          Register val,
       
   152                          BarrierSet::Name barrier,
       
   153                          bool precise) {
       
   154   assert(val == noreg || val == rax, "parameter is just for looks");
       
   155   switch (barrier) {
       
   156 #if INCLUDE_ALL_GCS
       
   157     case BarrierSet::G1SATBCTLogging:
       
   158       {
       
   159         // flatten object address if needed
       
   160         // We do it regardless of precise because we need the registers
       
   161         if (obj.index() == noreg && obj.disp() == 0) {
       
   162           if (obj.base() != rdx) {
       
   163             __ movptr(rdx, obj.base());
       
   164           }
       
   165         } else {
       
   166           __ lea(rdx, obj);
       
   167         }
       
   168 
       
   169         Register rtmp    = LP64_ONLY(r8)         NOT_LP64(rsi);
       
   170         Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
       
   171 
       
   172         NOT_LP64(__ get_thread(rcx));
       
   173         NOT_LP64(__ save_bcp());
       
   174 
       
   175         __ g1_write_barrier_pre(rdx /* obj */,
       
   176                                 rbx /* pre_val */,
       
   177                                 rthread /* thread */,
       
   178                                 rtmp  /* tmp */,
       
   179                                 val != noreg /* tosca_live */,
       
   180                                 false /* expand_call */);
       
   181         if (val == noreg) {
       
   182           __ store_heap_oop_null(Address(rdx, 0));
       
   183         } else {
       
   184           // G1 barrier needs uncompressed oop for region cross check.
       
   185           Register new_val = val;
       
   186           if (UseCompressedOops) {
       
   187             new_val = rbx;
       
   188             __ movptr(new_val, val);
       
   189           }
       
   190           __ store_heap_oop(Address(rdx, 0), val);
       
   191           __ g1_write_barrier_post(rdx /* store_adr */,
       
   192                                    new_val /* new_val */,
       
   193                                    rthread /* thread */,
       
   194                                    rtmp /* tmp */,
       
   195                                    rbx /* tmp2 */);
       
   196         }
       
   197         NOT_LP64( __ restore_bcp());
       
   198       }
       
   199       break;
       
   200 #endif // INCLUDE_ALL_GCS
       
   201     case BarrierSet::CardTableForRS:
       
   202     case BarrierSet::CardTableExtension:
       
   203       {
       
   204         if (val == noreg) {
       
   205           __ store_heap_oop_null(obj);
       
   206         } else {
       
   207           __ store_heap_oop(obj, val);
       
   208           // flatten object address if needed
       
   209           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
       
   210             __ store_check(obj.base());
       
   211           } else {
       
   212             __ lea(rdx, obj);
       
   213             __ store_check(rdx);
       
   214           }
       
   215         }
       
   216       }
       
   217       break;
       
   218     case BarrierSet::ModRef:
       
   219       if (val == noreg) {
       
   220         __ store_heap_oop_null(obj);
       
   221       } else {
       
   222         __ store_heap_oop(obj, val);
       
   223       }
       
   224       break;
       
   225     default      :
       
   226       ShouldNotReachHere();
       
   227 
       
   228   }
       
   229 }
       
   230 
       
   231 Address TemplateTable::at_bcp(int offset) {
       
   232   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
       
   233   return Address(rbcp, offset);
       
   234 }
       
   235 
       
   236 
       
   237 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
       
   238                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
       
   239                                    int byte_no) {
       
   240   if (!RewriteBytecodes)  return;
       
   241   Label L_patch_done;
       
   242 
       
   243   switch (bc) {
       
   244   case Bytecodes::_fast_aputfield:
       
   245   case Bytecodes::_fast_bputfield:
       
   246   case Bytecodes::_fast_zputfield:
       
   247   case Bytecodes::_fast_cputfield:
       
   248   case Bytecodes::_fast_dputfield:
       
   249   case Bytecodes::_fast_fputfield:
       
   250   case Bytecodes::_fast_iputfield:
       
   251   case Bytecodes::_fast_lputfield:
       
   252   case Bytecodes::_fast_sputfield:
       
   253     {
       
   254       // We skip bytecode quickening for putfield instructions when
       
   255       // the put_code written to the constant pool cache is zero.
       
   256       // This is required so that every execution of this instruction
       
   257       // calls out to InterpreterRuntime::resolve_get_put to do
       
   258       // additional, required work.
       
   259       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
       
   260       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
       
   261       __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
       
   262       __ movl(bc_reg, bc);
       
   263       __ cmpl(temp_reg, (int) 0);
       
   264       __ jcc(Assembler::zero, L_patch_done);  // don't patch
       
   265     }
       
   266     break;
       
   267   default:
       
   268     assert(byte_no == -1, "sanity");
       
   269     // the pair bytecodes have already done the load.
       
   270     if (load_bc_into_bc_reg) {
       
   271       __ movl(bc_reg, bc);
       
   272     }
       
   273   }
       
   274 
       
   275   if (JvmtiExport::can_post_breakpoint()) {
       
   276     Label L_fast_patch;
       
   277     // if a breakpoint is present we can't rewrite the stream directly
       
   278     __ movzbl(temp_reg, at_bcp(0));
       
   279     __ cmpl(temp_reg, Bytecodes::_breakpoint);
       
   280     __ jcc(Assembler::notEqual, L_fast_patch);
       
   281     __ get_method(temp_reg);
       
   282     // Let breakpoint table handling rewrite to quicker bytecode
       
   283     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg);
       
   284 #ifndef ASSERT
       
   285     __ jmpb(L_patch_done);
       
   286 #else
       
   287     __ jmp(L_patch_done);
       
   288 #endif
       
   289     __ bind(L_fast_patch);
       
   290   }
       
   291 
       
   292 #ifdef ASSERT
       
   293   Label L_okay;
       
   294   __ load_unsigned_byte(temp_reg, at_bcp(0));
       
   295   __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
       
   296   __ jcc(Assembler::equal, L_okay);
       
   297   __ cmpl(temp_reg, bc_reg);
       
   298   __ jcc(Assembler::equal, L_okay);
       
   299   __ stop("patching the wrong bytecode");
       
   300   __ bind(L_okay);
       
   301 #endif
       
   302 
       
   303   // patch bytecode
       
   304   __ movb(at_bcp(0), bc_reg);
       
   305   __ bind(L_patch_done);
       
   306 }
       
   307 // Individual instructions
       
   308 
       
   309 
       
   310 void TemplateTable::nop() {
       
   311   transition(vtos, vtos);
       
   312   // nothing to do
       
   313 }
       
   314 
       
   315 void TemplateTable::shouldnotreachhere() {
       
   316   transition(vtos, vtos);
       
   317   __ stop("shouldnotreachhere bytecode");
       
   318 }
       
   319 
       
   320 void TemplateTable::aconst_null() {
       
   321   transition(vtos, atos);
       
   322   __ xorl(rax, rax);
       
   323 }
       
   324 
       
   325 void TemplateTable::iconst(int value) {
       
   326   transition(vtos, itos);
       
   327   if (value == 0) {
       
   328     __ xorl(rax, rax);
       
   329   } else {
       
   330     __ movl(rax, value);
       
   331   }
       
   332 }
       
   333 
       
   334 void TemplateTable::lconst(int value) {
       
   335   transition(vtos, ltos);
       
   336   if (value == 0) {
       
   337     __ xorl(rax, rax);
       
   338   } else {
       
   339     __ movl(rax, value);
       
   340   }
       
   341 #ifndef _LP64
       
   342   assert(value >= 0, "check this code");
       
   343   __ xorptr(rdx, rdx);
       
   344 #endif
       
   345 }
       
   346 
       
   347 
       
   348 
       
   349 void TemplateTable::fconst(int value) {
       
   350   transition(vtos, ftos);
       
   351   if (UseSSE >= 1) {
       
   352     static float one = 1.0f, two = 2.0f;
       
   353     switch (value) {
       
   354     case 0:
       
   355       __ xorps(xmm0, xmm0);
       
   356       break;
       
   357     case 1:
       
   358       __ movflt(xmm0, ExternalAddress((address) &one));
       
   359       break;
       
   360     case 2:
       
   361       __ movflt(xmm0, ExternalAddress((address) &two));
       
   362       break;
       
   363     default:
       
   364       ShouldNotReachHere();
       
   365       break;
       
   366     }
       
   367   } else {
       
   368 #ifdef _LP64
       
   369     ShouldNotReachHere();
       
   370 #else
       
   371            if (value == 0) { __ fldz();
       
   372     } else if (value == 1) { __ fld1();
       
   373     } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
       
   374     } else                 { ShouldNotReachHere();
       
   375     }
       
   376 #endif // _LP64
       
   377   }
       
   378 }
       
   379 
       
   380 void TemplateTable::dconst(int value) {
       
   381   transition(vtos, dtos);
       
   382   if (UseSSE >= 2) {
       
   383     static double one = 1.0;
       
   384     switch (value) {
       
   385     case 0:
       
   386       __ xorpd(xmm0, xmm0);
       
   387       break;
       
   388     case 1:
       
   389       __ movdbl(xmm0, ExternalAddress((address) &one));
       
   390       break;
       
   391     default:
       
   392       ShouldNotReachHere();
       
   393       break;
       
   394     }
       
   395   } else {
       
   396 #ifdef _LP64
       
   397     ShouldNotReachHere();
       
   398 #else
       
   399            if (value == 0) { __ fldz();
       
   400     } else if (value == 1) { __ fld1();
       
   401     } else                 { ShouldNotReachHere();
       
   402     }
       
   403 #endif
       
   404   }
       
   405 }
       
   406 
       
   407 void TemplateTable::bipush() {
       
   408   transition(vtos, itos);
       
   409   __ load_signed_byte(rax, at_bcp(1));
       
   410 }
       
   411 
       
   412 void TemplateTable::sipush() {
       
   413   transition(vtos, itos);
       
   414   __ load_unsigned_short(rax, at_bcp(1));
       
   415   __ bswapl(rax);
       
   416   __ sarl(rax, 16);
       
   417 }
       
   418 
       
   419 void TemplateTable::ldc(bool wide) {
       
   420   transition(vtos, vtos);
       
   421   Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1);
       
   422   Label call_ldc, notFloat, notClass, Done;
       
   423 
       
   424   if (wide) {
       
   425     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
       
   426   } else {
       
   427     __ load_unsigned_byte(rbx, at_bcp(1));
       
   428   }
       
   429 
       
   430   __ get_cpool_and_tags(rcx, rax);
       
   431   const int base_offset = ConstantPool::header_size() * wordSize;
       
   432   const int tags_offset = Array<u1>::base_offset_in_bytes();
       
   433 
       
   434   // get type
       
   435   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
       
   436 
       
   437   // unresolved class - get the resolved class
       
   438   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
       
   439   __ jccb(Assembler::equal, call_ldc);
       
   440 
       
   441   // unresolved class in error state - call into runtime to throw the error
       
   442   // from the first resolution attempt
       
   443   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
       
   444   __ jccb(Assembler::equal, call_ldc);
       
   445 
       
   446   // resolved class - need to call vm to get java mirror of the class
       
   447   __ cmpl(rdx, JVM_CONSTANT_Class);
       
   448   __ jcc(Assembler::notEqual, notClass);
       
   449 
       
   450   __ bind(call_ldc);
       
   451 
       
   452   __ movl(rarg, wide);
       
   453   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg);
       
   454 
       
   455   __ push(atos);
       
   456   __ jmp(Done);
       
   457 
       
   458   __ bind(notClass);
       
   459   __ cmpl(rdx, JVM_CONSTANT_Float);
       
   460   __ jccb(Assembler::notEqual, notFloat);
       
   461 
       
   462   // ftos
       
   463   __ load_float(Address(rcx, rbx, Address::times_ptr, base_offset));
       
   464   __ push(ftos);
       
   465   __ jmp(Done);
       
   466 
       
   467   __ bind(notFloat);
       
   468 #ifdef ASSERT
       
   469   {
       
   470     Label L;
       
   471     __ cmpl(rdx, JVM_CONSTANT_Integer);
       
   472     __ jcc(Assembler::equal, L);
       
   473     // String and Object are rewritten to fast_aldc
       
   474     __ stop("unexpected tag type in ldc");
       
   475     __ bind(L);
       
   476   }
       
   477 #endif
       
   478   // itos JVM_CONSTANT_Integer only
       
   479   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
       
   480   __ push(itos);
       
   481   __ bind(Done);
       
   482 }
       
   483 
       
   484 // Fast path for caching oop constants.
       
   485 void TemplateTable::fast_aldc(bool wide) {
       
   486   transition(vtos, atos);
       
   487 
       
   488   Register result = rax;
       
   489   Register tmp = rdx;
       
   490   int index_size = wide ? sizeof(u2) : sizeof(u1);
       
   491 
       
   492   Label resolved;
       
   493 
       
   494   // We are resolved if the resolved reference cache entry contains a
       
   495   // non-null object (String, MethodType, etc.)
       
   496   assert_different_registers(result, tmp);
       
   497   __ get_cache_index_at_bcp(tmp, 1, index_size);
       
   498   __ load_resolved_reference_at_index(result, tmp);
       
   499   __ testl(result, result);
       
   500   __ jcc(Assembler::notZero, resolved);
       
   501 
       
   502   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
       
   503 
       
   504   // first time invocation - must resolve first
       
   505   __ movl(tmp, (int)bytecode());
       
   506   __ call_VM(result, entry, tmp);
       
   507 
       
   508   __ bind(resolved);
       
   509 
       
   510   if (VerifyOops) {
       
   511     __ verify_oop(result);
       
   512   }
       
   513 }
       
   514 
       
   515 void TemplateTable::ldc2_w() {
       
   516   transition(vtos, vtos);
       
   517   Label Long, Done;
       
   518   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
       
   519 
       
   520   __ get_cpool_and_tags(rcx, rax);
       
   521   const int base_offset = ConstantPool::header_size() * wordSize;
       
   522   const int tags_offset = Array<u1>::base_offset_in_bytes();
       
   523 
       
   524   // get type
       
   525   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
       
   526           JVM_CONSTANT_Double);
       
   527   __ jccb(Assembler::notEqual, Long);
       
   528 
       
   529   // dtos
       
   530   __ load_double(Address(rcx, rbx, Address::times_ptr, base_offset));
       
   531   __ push(dtos);
       
   532 
       
   533   __ jmpb(Done);
       
   534   __ bind(Long);
       
   535 
       
   536   // ltos
       
   537   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
       
   538   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
       
   539   __ push(ltos);
       
   540 
       
   541   __ bind(Done);
       
   542 }
       
   543 
       
   544 void TemplateTable::locals_index(Register reg, int offset) {
       
   545   __ load_unsigned_byte(reg, at_bcp(offset));
       
   546   __ negptr(reg);
       
   547 }
       
   548 
       
   549 void TemplateTable::iload() {
       
   550   iload_internal();
       
   551 }
       
   552 
       
   553 void TemplateTable::nofast_iload() {
       
   554   iload_internal(may_not_rewrite);
       
   555 }
       
   556 
       
   557 void TemplateTable::iload_internal(RewriteControl rc) {
       
   558   transition(vtos, itos);
       
   559   if (RewriteFrequentPairs && rc == may_rewrite) {
       
   560     Label rewrite, done;
       
   561     const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
       
   562     LP64_ONLY(assert(rbx != bc, "register damaged"));
       
   563 
       
   564     // get next byte
       
   565     __ load_unsigned_byte(rbx,
       
   566                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
       
   567     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
       
   568     // last two iloads in a pair.  Comparing against fast_iload means that
       
   569     // the next bytecode is neither an iload or a caload, and therefore
       
   570     // an iload pair.
       
   571     __ cmpl(rbx, Bytecodes::_iload);
       
   572     __ jcc(Assembler::equal, done);
       
   573 
       
   574     __ cmpl(rbx, Bytecodes::_fast_iload);
       
   575     __ movl(bc, Bytecodes::_fast_iload2);
       
   576 
       
   577     __ jccb(Assembler::equal, rewrite);
       
   578 
       
   579     // if _caload, rewrite to fast_icaload
       
   580     __ cmpl(rbx, Bytecodes::_caload);
       
   581     __ movl(bc, Bytecodes::_fast_icaload);
       
   582     __ jccb(Assembler::equal, rewrite);
       
   583 
       
   584     // rewrite so iload doesn't check again.
       
   585     __ movl(bc, Bytecodes::_fast_iload);
       
   586 
       
   587     // rewrite
       
   588     // bc: fast bytecode
       
   589     __ bind(rewrite);
       
   590     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
       
   591     __ bind(done);
       
   592   }
       
   593 
       
   594   // Get the local value into tos
       
   595   locals_index(rbx);
       
   596   __ movl(rax, iaddress(rbx));
       
   597 }
       
   598 
       
   599 void TemplateTable::fast_iload2() {
       
   600   transition(vtos, itos);
       
   601   locals_index(rbx);
       
   602   __ movl(rax, iaddress(rbx));
       
   603   __ push(itos);
       
   604   locals_index(rbx, 3);
       
   605   __ movl(rax, iaddress(rbx));
       
   606 }
       
   607 
       
   608 void TemplateTable::fast_iload() {
       
   609   transition(vtos, itos);
       
   610   locals_index(rbx);
       
   611   __ movl(rax, iaddress(rbx));
       
   612 }
       
   613 
       
   614 void TemplateTable::lload() {
       
   615   transition(vtos, ltos);
       
   616   locals_index(rbx);
       
   617   __ movptr(rax, laddress(rbx));
       
   618   NOT_LP64(__ movl(rdx, haddress(rbx)));
       
   619 }
       
   620 
       
   621 void TemplateTable::fload() {
       
   622   transition(vtos, ftos);
       
   623   locals_index(rbx);
       
   624   __ load_float(faddress(rbx));
       
   625 }
       
   626 
       
   627 void TemplateTable::dload() {
       
   628   transition(vtos, dtos);
       
   629   locals_index(rbx);
       
   630   __ load_double(daddress(rbx));
       
   631 }
       
   632 
       
   633 void TemplateTable::aload() {
       
   634   transition(vtos, atos);
       
   635   locals_index(rbx);
       
   636   __ movptr(rax, aaddress(rbx));
       
   637 }
       
   638 
       
   639 void TemplateTable::locals_index_wide(Register reg) {
       
   640   __ load_unsigned_short(reg, at_bcp(2));
       
   641   __ bswapl(reg);
       
   642   __ shrl(reg, 16);
       
   643   __ negptr(reg);
       
   644 }
       
   645 
       
   646 void TemplateTable::wide_iload() {
       
   647   transition(vtos, itos);
       
   648   locals_index_wide(rbx);
       
   649   __ movl(rax, iaddress(rbx));
       
   650 }
       
   651 
       
   652 void TemplateTable::wide_lload() {
       
   653   transition(vtos, ltos);
       
   654   locals_index_wide(rbx);
       
   655   __ movptr(rax, laddress(rbx));
       
   656   NOT_LP64(__ movl(rdx, haddress(rbx)));
       
   657 }
       
   658 
       
   659 void TemplateTable::wide_fload() {
       
   660   transition(vtos, ftos);
       
   661   locals_index_wide(rbx);
       
   662   __ load_float(faddress(rbx));
       
   663 }
       
   664 
       
   665 void TemplateTable::wide_dload() {
       
   666   transition(vtos, dtos);
       
   667   locals_index_wide(rbx);
       
   668   __ load_double(daddress(rbx));
       
   669 }
       
   670 
       
   671 void TemplateTable::wide_aload() {
       
   672   transition(vtos, atos);
       
   673   locals_index_wide(rbx);
       
   674   __ movptr(rax, aaddress(rbx));
       
   675 }
       
   676 
       
   677 void TemplateTable::index_check(Register array, Register index) {
       
   678   // Pop ptr into array
       
   679   __ pop_ptr(array);
       
   680   index_check_without_pop(array, index);
       
   681 }
       
   682 
       
   683 void TemplateTable::index_check_without_pop(Register array, Register index) {
       
   684   // destroys rbx
       
   685   // check array
       
   686   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
       
   687   // sign extend index for use by indexed load
       
   688   __ movl2ptr(index, index);
       
   689   // check index
       
   690   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
       
   691   if (index != rbx) {
       
   692     // ??? convention: move aberrant index into rbx for exception message
       
   693     assert(rbx != array, "different registers");
       
   694     __ movl(rbx, index);
       
   695   }
       
   696   __ jump_cc(Assembler::aboveEqual,
       
   697              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
       
   698 }
       
   699 
       
   700 
       
   701 void TemplateTable::iaload() {
       
   702   transition(itos, itos);
       
   703   // rax: index
       
   704   // rdx: array
       
   705   index_check(rdx, rax); // kills rbx
       
   706   __ movl(rax, Address(rdx, rax,
       
   707                        Address::times_4,
       
   708                        arrayOopDesc::base_offset_in_bytes(T_INT)));
       
   709 }
       
   710 
       
   711 void TemplateTable::laload() {
       
   712   transition(itos, ltos);
       
   713   // rax: index
       
   714   // rdx: array
       
   715   index_check(rdx, rax); // kills rbx
       
   716   NOT_LP64(__ mov(rbx, rax));
       
   717   // rbx,: index
       
   718   __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
       
   719   NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize)));
       
   720 }
       
   721 
       
   722 
       
   723 
       
   724 void TemplateTable::faload() {
       
   725   transition(itos, ftos);
       
   726   // rax: index
       
   727   // rdx: array
       
   728   index_check(rdx, rax); // kills rbx
       
   729   __ load_float(Address(rdx, rax,
       
   730                         Address::times_4,
       
   731                         arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
       
   732 }
       
   733 
       
   734 void TemplateTable::daload() {
       
   735   transition(itos, dtos);
       
   736   // rax: index
       
   737   // rdx: array
       
   738   index_check(rdx, rax); // kills rbx
       
   739   __ load_double(Address(rdx, rax,
       
   740                          Address::times_8,
       
   741                          arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
       
   742 }
       
   743 
       
   744 void TemplateTable::aaload() {
       
   745   transition(itos, atos);
       
   746   // rax: index
       
   747   // rdx: array
       
   748   index_check(rdx, rax); // kills rbx
       
   749   __ load_heap_oop(rax, Address(rdx, rax,
       
   750                                 UseCompressedOops ? Address::times_4 : Address::times_ptr,
       
   751                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
       
   752 }
       
   753 
       
   754 void TemplateTable::baload() {
       
   755   transition(itos, itos);
       
   756   // rax: index
       
   757   // rdx: array
       
   758   index_check(rdx, rax); // kills rbx
       
   759   __ load_signed_byte(rax, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
       
   760 }
       
   761 
       
   762 void TemplateTable::caload() {
       
   763   transition(itos, itos);
       
   764   // rax: index
       
   765   // rdx: array
       
   766   index_check(rdx, rax); // kills rbx
       
   767   __ load_unsigned_short(rax, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
       
   768 }
       
   769 
       
   770 // iload followed by caload frequent pair
       
   771 void TemplateTable::fast_icaload() {
       
   772   transition(vtos, itos);
       
   773   // load index out of locals
       
   774   locals_index(rbx);
       
   775   __ movl(rax, iaddress(rbx));
       
   776 
       
   777   // rax: index
       
   778   // rdx: array
       
   779   index_check(rdx, rax); // kills rbx
       
   780   __ load_unsigned_short(rax,
       
   781                          Address(rdx, rax,
       
   782                                  Address::times_2,
       
   783                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
       
   784 }
       
   785 
       
   786 
       
   787 void TemplateTable::saload() {
       
   788   transition(itos, itos);
       
   789   // rax: index
       
   790   // rdx: array
       
   791   index_check(rdx, rax); // kills rbx
       
   792   __ load_signed_short(rax, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
       
   793 }
       
   794 
       
   795 void TemplateTable::iload(int n) {
       
   796   transition(vtos, itos);
       
   797   __ movl(rax, iaddress(n));
       
   798 }
       
   799 
       
   800 void TemplateTable::lload(int n) {
       
   801   transition(vtos, ltos);
       
   802   __ movptr(rax, laddress(n));
       
   803   NOT_LP64(__ movptr(rdx, haddress(n)));
       
   804 }
       
   805 
       
   806 void TemplateTable::fload(int n) {
       
   807   transition(vtos, ftos);
       
   808   __ load_float(faddress(n));
       
   809 }
       
   810 
       
   811 void TemplateTable::dload(int n) {
       
   812   transition(vtos, dtos);
       
   813   __ load_double(daddress(n));
       
   814 }
       
   815 
       
   816 void TemplateTable::aload(int n) {
       
   817   transition(vtos, atos);
       
   818   __ movptr(rax, aaddress(n));
       
   819 }
       
   820 
       
   821 void TemplateTable::aload_0() {
       
   822   aload_0_internal();
       
   823 }
       
   824 
       
   825 void TemplateTable::nofast_aload_0() {
       
   826   aload_0_internal(may_not_rewrite);
       
   827 }
       
   828 
       
   829 void TemplateTable::aload_0_internal(RewriteControl rc) {
       
   830   transition(vtos, atos);
       
   831   // According to bytecode histograms, the pairs:
       
   832   //
       
   833   // _aload_0, _fast_igetfield
       
   834   // _aload_0, _fast_agetfield
       
   835   // _aload_0, _fast_fgetfield
       
   836   //
       
   837   // occur frequently. If RewriteFrequentPairs is set, the (slow)
       
   838   // _aload_0 bytecode checks if the next bytecode is either
       
   839   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
       
   840   // rewrites the current bytecode into a pair bytecode; otherwise it
       
   841   // rewrites the current bytecode into _fast_aload_0 that doesn't do
       
   842   // the pair check anymore.
       
   843   //
       
   844   // Note: If the next bytecode is _getfield, the rewrite must be
       
   845   //       delayed, otherwise we may miss an opportunity for a pair.
       
   846   //
       
   847   // Also rewrite frequent pairs
       
   848   //   aload_0, aload_1
       
   849   //   aload_0, iload_1
       
   850   // These bytecodes with a small amount of code are most profitable
       
   851   // to rewrite
       
   852   if (RewriteFrequentPairs && rc == may_rewrite) {
       
   853     Label rewrite, done;
       
   854 
       
   855     const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
       
   856     LP64_ONLY(assert(rbx != bc, "register damaged"));
       
   857 
       
   858     // get next byte
       
   859     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
       
   860 
       
   861     // if _getfield then wait with rewrite
       
   862     __ cmpl(rbx, Bytecodes::_getfield);
       
   863     __ jcc(Assembler::equal, done);
       
   864 
       
   865     // if _igetfield then rewrite to _fast_iaccess_0
       
   866     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
       
   867     __ cmpl(rbx, Bytecodes::_fast_igetfield);
       
   868     __ movl(bc, Bytecodes::_fast_iaccess_0);
       
   869     __ jccb(Assembler::equal, rewrite);
       
   870 
       
   871     // if _agetfield then rewrite to _fast_aaccess_0
       
   872     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
       
   873     __ cmpl(rbx, Bytecodes::_fast_agetfield);
       
   874     __ movl(bc, Bytecodes::_fast_aaccess_0);
       
   875     __ jccb(Assembler::equal, rewrite);
       
   876 
       
   877     // if _fgetfield then rewrite to _fast_faccess_0
       
   878     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
       
   879     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
       
   880     __ movl(bc, Bytecodes::_fast_faccess_0);
       
   881     __ jccb(Assembler::equal, rewrite);
       
   882 
       
   883     // else rewrite to _fast_aload0
       
   884     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
       
   885     __ movl(bc, Bytecodes::_fast_aload_0);
       
   886 
       
   887     // rewrite
       
   888     // bc: fast bytecode
       
   889     __ bind(rewrite);
       
   890     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
       
   891 
       
   892     __ bind(done);
       
   893   }
       
   894 
       
   895   // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
       
   896   aload(0);
       
   897 }
       
   898 
       
   899 void TemplateTable::istore() {
       
   900   transition(itos, vtos);
       
   901   locals_index(rbx);
       
   902   __ movl(iaddress(rbx), rax);
       
   903 }
       
   904 
       
   905 
       
   906 void TemplateTable::lstore() {
       
   907   transition(ltos, vtos);
       
   908   locals_index(rbx);
       
   909   __ movptr(laddress(rbx), rax);
       
   910   NOT_LP64(__ movptr(haddress(rbx), rdx));
       
   911 }
       
   912 
       
   913 void TemplateTable::fstore() {
       
   914   transition(ftos, vtos);
       
   915   locals_index(rbx);
       
   916   __ store_float(faddress(rbx));
       
   917 }
       
   918 
       
   919 void TemplateTable::dstore() {
       
   920   transition(dtos, vtos);
       
   921   locals_index(rbx);
       
   922   __ store_double(daddress(rbx));
       
   923 }
       
   924 
       
   925 void TemplateTable::astore() {
       
   926   transition(vtos, vtos);
       
   927   __ pop_ptr(rax);
       
   928   locals_index(rbx);
       
   929   __ movptr(aaddress(rbx), rax);
       
   930 }
       
   931 
       
   932 void TemplateTable::wide_istore() {
       
   933   transition(vtos, vtos);
       
   934   __ pop_i();
       
   935   locals_index_wide(rbx);
       
   936   __ movl(iaddress(rbx), rax);
       
   937 }
       
   938 
       
   939 void TemplateTable::wide_lstore() {
       
   940   transition(vtos, vtos);
       
   941   NOT_LP64(__ pop_l(rax, rdx));
       
   942   LP64_ONLY(__ pop_l());
       
   943   locals_index_wide(rbx);
       
   944   __ movptr(laddress(rbx), rax);
       
   945   NOT_LP64(__ movl(haddress(rbx), rdx));
       
   946 }
       
   947 
       
   948 void TemplateTable::wide_fstore() {
       
   949 #ifdef _LP64
       
   950   transition(vtos, vtos);
       
   951   __ pop_f(xmm0);
       
   952   locals_index_wide(rbx);
       
   953   __ movflt(faddress(rbx), xmm0);
       
   954 #else
       
   955   wide_istore();
       
   956 #endif
       
   957 }
       
   958 
       
   959 void TemplateTable::wide_dstore() {
       
   960 #ifdef _LP64
       
   961   transition(vtos, vtos);
       
   962   __ pop_d(xmm0);
       
   963   locals_index_wide(rbx);
       
   964   __ movdbl(daddress(rbx), xmm0);
       
   965 #else
       
   966   wide_lstore();
       
   967 #endif
       
   968 }
       
   969 
       
   970 void TemplateTable::wide_astore() {
       
   971   transition(vtos, vtos);
       
   972   __ pop_ptr(rax);
       
   973   locals_index_wide(rbx);
       
   974   __ movptr(aaddress(rbx), rax);
       
   975 }
       
   976 
       
   977 void TemplateTable::iastore() {
       
   978   transition(itos, vtos);
       
   979   __ pop_i(rbx);
       
   980   // rax: value
       
   981   // rbx: index
       
   982   // rdx: array
       
   983   index_check(rdx, rbx); // prefer index in rbx
       
   984   __ movl(Address(rdx, rbx,
       
   985                   Address::times_4,
       
   986                   arrayOopDesc::base_offset_in_bytes(T_INT)),
       
   987           rax);
       
   988 }
       
   989 
       
   990 void TemplateTable::lastore() {
       
   991   transition(ltos, vtos);
       
   992   __ pop_i(rbx);
       
   993   // rax,: low(value)
       
   994   // rcx: array
       
   995   // rdx: high(value)
       
   996   index_check(rcx, rbx);  // prefer index in rbx,
       
   997   // rbx,: index
       
   998   __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
       
   999   NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx));
       
  1000 }
       
  1001 
       
  1002 
       
  1003 void TemplateTable::fastore() {
       
  1004   transition(ftos, vtos);
       
  1005   __ pop_i(rbx);
       
  1006   // value is in UseSSE >= 1 ? xmm0 : ST(0)
       
  1007   // rbx:  index
       
  1008   // rdx:  array
       
  1009   index_check(rdx, rbx); // prefer index in rbx
       
  1010   __ store_float(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
       
  1011 }
       
  1012 
       
  1013 void TemplateTable::dastore() {
       
  1014   transition(dtos, vtos);
       
  1015   __ pop_i(rbx);
       
  1016   // value is in UseSSE >= 2 ? xmm0 : ST(0)
       
  1017   // rbx:  index
       
  1018   // rdx:  array
       
  1019   index_check(rdx, rbx); // prefer index in rbx
       
  1020   __ store_double(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
       
  1021 }
       
  1022 
       
  1023 void TemplateTable::aastore() {
       
  1024   Label is_null, ok_is_subtype, done;
       
  1025   transition(vtos, vtos);
       
  1026   // stack: ..., array, index, value
       
  1027   __ movptr(rax, at_tos());    // value
       
  1028   __ movl(rcx, at_tos_p1()); // index
       
  1029   __ movptr(rdx, at_tos_p2()); // array
       
  1030 
       
  1031   Address element_address(rdx, rcx,
       
  1032                           UseCompressedOops? Address::times_4 : Address::times_ptr,
       
  1033                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
       
  1034 
       
  1035   index_check_without_pop(rdx, rcx);     // kills rbx
       
  1036   __ testptr(rax, rax);
       
  1037   __ jcc(Assembler::zero, is_null);
       
  1038 
       
  1039   // Move subklass into rbx
       
  1040   __ load_klass(rbx, rax);
       
  1041   // Move superklass into rax
       
  1042   __ load_klass(rax, rdx);
       
  1043   __ movptr(rax, Address(rax,
       
  1044                          ObjArrayKlass::element_klass_offset()));
       
  1045   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
       
  1046   __ lea(rdx, element_address);
       
  1047 
       
  1048   // Generate subtype check.  Blows rcx, rdi
       
  1049   // Superklass in rax.  Subklass in rbx.
       
  1050   __ gen_subtype_check(rbx, ok_is_subtype);
       
  1051 
       
  1052   // Come here on failure
       
  1053   // object is at TOS
       
  1054   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
       
  1055 
       
  1056   // Come here on success
       
  1057   __ bind(ok_is_subtype);
       
  1058 
       
  1059   // Get the value we will store
       
  1060   __ movptr(rax, at_tos());
       
  1061   // Now store using the appropriate barrier
       
  1062   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
       
  1063   __ jmp(done);
       
  1064 
       
  1065   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
       
  1066   __ bind(is_null);
       
  1067   __ profile_null_seen(rbx);
       
  1068 
       
  1069   // Store a NULL
       
  1070   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
       
  1071 
       
  1072   // Pop stack arguments
       
  1073   __ bind(done);
       
  1074   __ addptr(rsp, 3 * Interpreter::stackElementSize);
       
  1075 }
       
  1076 
       
  1077 void TemplateTable::bastore() {
       
  1078   transition(itos, vtos);
       
  1079   __ pop_i(rbx);
       
  1080   // rax: value
       
  1081   // rbx: index
       
  1082   // rdx: array
       
  1083   index_check(rdx, rbx); // prefer index in rbx
       
  1084   // Need to check whether array is boolean or byte
       
  1085   // since both types share the bastore bytecode.
       
  1086   __ load_klass(rcx, rdx);
       
  1087   __ movl(rcx, Address(rcx, Klass::layout_helper_offset()));
       
  1088   int diffbit = Klass::layout_helper_boolean_diffbit();
       
  1089   __ testl(rcx, diffbit);
       
  1090   Label L_skip;
       
  1091   __ jccb(Assembler::zero, L_skip);
       
  1092   __ andl(rax, 1);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
       
  1093   __ bind(L_skip);
       
  1094   __ movb(Address(rdx, rbx,
       
  1095                   Address::times_1,
       
  1096                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
       
  1097           rax);
       
  1098 }
       
  1099 
       
  1100 void TemplateTable::castore() {
       
  1101   transition(itos, vtos);
       
  1102   __ pop_i(rbx);
       
  1103   // rax: value
       
  1104   // rbx: index
       
  1105   // rdx: array
       
  1106   index_check(rdx, rbx);  // prefer index in rbx
       
  1107   __ movw(Address(rdx, rbx,
       
  1108                   Address::times_2,
       
  1109                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
       
  1110           rax);
       
  1111 }
       
  1112 
       
  1113 
       
  1114 void TemplateTable::sastore() {
       
  1115   castore();
       
  1116 }
       
  1117 
       
  1118 void TemplateTable::istore(int n) {
       
  1119   transition(itos, vtos);
       
  1120   __ movl(iaddress(n), rax);
       
  1121 }
       
  1122 
       
  1123 void TemplateTable::lstore(int n) {
       
  1124   transition(ltos, vtos);
       
  1125   __ movptr(laddress(n), rax);
       
  1126   NOT_LP64(__ movptr(haddress(n), rdx));
       
  1127 }
       
  1128 
       
  1129 void TemplateTable::fstore(int n) {
       
  1130   transition(ftos, vtos);
       
  1131   __ store_float(faddress(n));
       
  1132 }
       
  1133 
       
  1134 void TemplateTable::dstore(int n) {
       
  1135   transition(dtos, vtos);
       
  1136   __ store_double(daddress(n));
       
  1137 }
       
  1138 
       
  1139 
       
  1140 void TemplateTable::astore(int n) {
       
  1141   transition(vtos, vtos);
       
  1142   __ pop_ptr(rax);
       
  1143   __ movptr(aaddress(n), rax);
       
  1144 }
       
  1145 
       
  1146 void TemplateTable::pop() {
       
  1147   transition(vtos, vtos);
       
  1148   __ addptr(rsp, Interpreter::stackElementSize);
       
  1149 }
       
  1150 
       
  1151 void TemplateTable::pop2() {
       
  1152   transition(vtos, vtos);
       
  1153   __ addptr(rsp, 2 * Interpreter::stackElementSize);
       
  1154 }
       
  1155 
       
  1156 
       
  1157 void TemplateTable::dup() {
       
  1158   transition(vtos, vtos);
       
  1159   __ load_ptr(0, rax);
       
  1160   __ push_ptr(rax);
       
  1161   // stack: ..., a, a
       
  1162 }
       
  1163 
       
  1164 void TemplateTable::dup_x1() {
       
  1165   transition(vtos, vtos);
       
  1166   // stack: ..., a, b
       
  1167   __ load_ptr( 0, rax);  // load b
       
  1168   __ load_ptr( 1, rcx);  // load a
       
  1169   __ store_ptr(1, rax);  // store b
       
  1170   __ store_ptr(0, rcx);  // store a
       
  1171   __ push_ptr(rax);      // push b
       
  1172   // stack: ..., b, a, b
       
  1173 }
       
  1174 
       
  1175 void TemplateTable::dup_x2() {
       
  1176   transition(vtos, vtos);
       
  1177   // stack: ..., a, b, c
       
  1178   __ load_ptr( 0, rax);  // load c
       
  1179   __ load_ptr( 2, rcx);  // load a
       
  1180   __ store_ptr(2, rax);  // store c in a
       
  1181   __ push_ptr(rax);      // push c
       
  1182   // stack: ..., c, b, c, c
       
  1183   __ load_ptr( 2, rax);  // load b
       
  1184   __ store_ptr(2, rcx);  // store a in b
       
  1185   // stack: ..., c, a, c, c
       
  1186   __ store_ptr(1, rax);  // store b in c
       
  1187   // stack: ..., c, a, b, c
       
  1188 }
       
  1189 
       
  1190 void TemplateTable::dup2() {
       
  1191   transition(vtos, vtos);
       
  1192   // stack: ..., a, b
       
  1193   __ load_ptr(1, rax);  // load a
       
  1194   __ push_ptr(rax);     // push a
       
  1195   __ load_ptr(1, rax);  // load b
       
  1196   __ push_ptr(rax);     // push b
       
  1197   // stack: ..., a, b, a, b
       
  1198 }
       
  1199 
       
  1200 
       
  1201 void TemplateTable::dup2_x1() {
       
  1202   transition(vtos, vtos);
       
  1203   // stack: ..., a, b, c
       
  1204   __ load_ptr( 0, rcx);  // load c
       
  1205   __ load_ptr( 1, rax);  // load b
       
  1206   __ push_ptr(rax);      // push b
       
  1207   __ push_ptr(rcx);      // push c
       
  1208   // stack: ..., a, b, c, b, c
       
  1209   __ store_ptr(3, rcx);  // store c in b
       
  1210   // stack: ..., a, c, c, b, c
       
  1211   __ load_ptr( 4, rcx);  // load a
       
  1212   __ store_ptr(2, rcx);  // store a in 2nd c
       
  1213   // stack: ..., a, c, a, b, c
       
  1214   __ store_ptr(4, rax);  // store b in a
       
  1215   // stack: ..., b, c, a, b, c
       
  1216 }
       
  1217 
       
  1218 void TemplateTable::dup2_x2() {
       
  1219   transition(vtos, vtos);
       
  1220   // stack: ..., a, b, c, d
       
  1221   __ load_ptr( 0, rcx);  // load d
       
  1222   __ load_ptr( 1, rax);  // load c
       
  1223   __ push_ptr(rax);      // push c
       
  1224   __ push_ptr(rcx);      // push d
       
  1225   // stack: ..., a, b, c, d, c, d
       
  1226   __ load_ptr( 4, rax);  // load b
       
  1227   __ store_ptr(2, rax);  // store b in d
       
  1228   __ store_ptr(4, rcx);  // store d in b
       
  1229   // stack: ..., a, d, c, b, c, d
       
  1230   __ load_ptr( 5, rcx);  // load a
       
  1231   __ load_ptr( 3, rax);  // load c
       
  1232   __ store_ptr(3, rcx);  // store a in c
       
  1233   __ store_ptr(5, rax);  // store c in a
       
  1234   // stack: ..., c, d, a, b, c, d
       
  1235 }
       
  1236 
       
  1237 void TemplateTable::swap() {
       
  1238   transition(vtos, vtos);
       
  1239   // stack: ..., a, b
       
  1240   __ load_ptr( 1, rcx);  // load a
       
  1241   __ load_ptr( 0, rax);  // load b
       
  1242   __ store_ptr(0, rcx);  // store a in b
       
  1243   __ store_ptr(1, rax);  // store b in a
       
  1244   // stack: ..., b, a
       
  1245 }
       
  1246 
       
  1247 void TemplateTable::iop2(Operation op) {
       
  1248   transition(itos, itos);
       
  1249   switch (op) {
       
  1250   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
       
  1251   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
       
  1252   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
       
  1253   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
       
  1254   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
       
  1255   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
       
  1256   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
       
  1257   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
       
  1258   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
       
  1259   default   : ShouldNotReachHere();
       
  1260   }
       
  1261 }
       
  1262 
       
  1263 void TemplateTable::lop2(Operation op) {
       
  1264   transition(ltos, ltos);
       
  1265 #ifdef _LP64
       
  1266   switch (op) {
       
  1267   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
       
  1268   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
       
  1269   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
       
  1270   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
       
  1271   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
       
  1272   default   : ShouldNotReachHere();
       
  1273   }
       
  1274 #else
       
  1275   __ pop_l(rbx, rcx);
       
  1276   switch (op) {
       
  1277     case add  : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
       
  1278     case sub  : __ subl(rbx, rax); __ sbbl(rcx, rdx);
       
  1279                 __ mov (rax, rbx); __ mov (rdx, rcx); break;
       
  1280     case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
       
  1281     case _or  : __ orl (rax, rbx); __ orl (rdx, rcx); break;
       
  1282     case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
       
  1283     default   : ShouldNotReachHere();
       
  1284   }
       
  1285 #endif
       
  1286 }
       
  1287 
       
  1288 void TemplateTable::idiv() {
       
  1289   transition(itos, itos);
       
  1290   __ movl(rcx, rax);
       
  1291   __ pop_i(rax);
       
  1292   // Note: could xor rax and ecx and compare with (-1 ^ min_int). If
       
  1293   //       they are not equal, one could do a normal division (no correction
       
  1294   //       needed), which may speed up this implementation for the common case.
       
  1295   //       (see also JVM spec., p.243 & p.271)
       
  1296   __ corrected_idivl(rcx);
       
  1297 }
       
  1298 
       
  1299 void TemplateTable::irem() {
       
  1300   transition(itos, itos);
       
  1301   __ movl(rcx, rax);
       
  1302   __ pop_i(rax);
       
  1303   // Note: could xor rax and ecx and compare with (-1 ^ min_int). If
       
  1304   //       they are not equal, one could do a normal division (no correction
       
  1305   //       needed), which may speed up this implementation for the common case.
       
  1306   //       (see also JVM spec., p.243 & p.271)
       
  1307   __ corrected_idivl(rcx);
       
  1308   __ movl(rax, rdx);
       
  1309 }
       
  1310 
       
  1311 void TemplateTable::lmul() {
       
  1312   transition(ltos, ltos);
       
  1313 #ifdef _LP64
       
  1314   __ pop_l(rdx);
       
  1315   __ imulq(rax, rdx);
       
  1316 #else
       
  1317   __ pop_l(rbx, rcx);
       
  1318   __ push(rcx); __ push(rbx);
       
  1319   __ push(rdx); __ push(rax);
       
  1320   __ lmul(2 * wordSize, 0);
       
  1321   __ addptr(rsp, 4 * wordSize);  // take off temporaries
       
  1322 #endif
       
  1323 }
       
  1324 
       
  1325 void TemplateTable::ldiv() {
       
  1326   transition(ltos, ltos);
       
  1327 #ifdef _LP64
       
  1328   __ mov(rcx, rax);
       
  1329   __ pop_l(rax);
       
  1330   // generate explicit div0 check
       
  1331   __ testq(rcx, rcx);
       
  1332   __ jump_cc(Assembler::zero,
       
  1333              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
       
  1334   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
       
  1335   //       they are not equal, one could do a normal division (no correction
       
  1336   //       needed), which may speed up this implementation for the common case.
       
  1337   //       (see also JVM spec., p.243 & p.271)
       
  1338   __ corrected_idivq(rcx); // kills rbx
       
  1339 #else
       
  1340   __ pop_l(rbx, rcx);
       
  1341   __ push(rcx); __ push(rbx);
       
  1342   __ push(rdx); __ push(rax);
       
  1343   // check if y = 0
       
  1344   __ orl(rax, rdx);
       
  1345   __ jump_cc(Assembler::zero,
       
  1346              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
       
  1347   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
       
  1348   __ addptr(rsp, 4 * wordSize);  // take off temporaries
       
  1349 #endif
       
  1350 }
       
  1351 
       
  1352 void TemplateTable::lrem() {
       
  1353   transition(ltos, ltos);
       
  1354 #ifdef _LP64
       
  1355   __ mov(rcx, rax);
       
  1356   __ pop_l(rax);
       
  1357   __ testq(rcx, rcx);
       
  1358   __ jump_cc(Assembler::zero,
       
  1359              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
       
  1360   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
       
  1361   //       they are not equal, one could do a normal division (no correction
       
  1362   //       needed), which may speed up this implementation for the common case.
       
  1363   //       (see also JVM spec., p.243 & p.271)
       
  1364   __ corrected_idivq(rcx); // kills rbx
       
  1365   __ mov(rax, rdx);
       
  1366 #else
       
  1367   __ pop_l(rbx, rcx);
       
  1368   __ push(rcx); __ push(rbx);
       
  1369   __ push(rdx); __ push(rax);
       
  1370   // check if y = 0
       
  1371   __ orl(rax, rdx);
       
  1372   __ jump_cc(Assembler::zero,
       
  1373              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
       
  1374   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
       
  1375   __ addptr(rsp, 4 * wordSize);
       
  1376 #endif
       
  1377 }
       
  1378 
       
  1379 void TemplateTable::lshl() {
       
  1380   transition(itos, ltos);
       
  1381   __ movl(rcx, rax);                             // get shift count
       
  1382   #ifdef _LP64
       
  1383   __ pop_l(rax);                                 // get shift value
       
  1384   __ shlq(rax);
       
  1385 #else
       
  1386   __ pop_l(rax, rdx);                            // get shift value
       
  1387   __ lshl(rdx, rax);
       
  1388 #endif
       
  1389 }
       
  1390 
       
  1391 void TemplateTable::lshr() {
       
  1392 #ifdef _LP64
       
  1393   transition(itos, ltos);
       
  1394   __ movl(rcx, rax);                             // get shift count
       
  1395   __ pop_l(rax);                                 // get shift value
       
  1396   __ sarq(rax);
       
  1397 #else
       
  1398   transition(itos, ltos);
       
  1399   __ mov(rcx, rax);                              // get shift count
       
  1400   __ pop_l(rax, rdx);                            // get shift value
       
  1401   __ lshr(rdx, rax, true);
       
  1402 #endif
       
  1403 }
       
  1404 
       
  1405 void TemplateTable::lushr() {
       
  1406   transition(itos, ltos);
       
  1407 #ifdef _LP64
       
  1408   __ movl(rcx, rax);                             // get shift count
       
  1409   __ pop_l(rax);                                 // get shift value
       
  1410   __ shrq(rax);
       
  1411 #else
       
  1412   __ mov(rcx, rax);                              // get shift count
       
  1413   __ pop_l(rax, rdx);                            // get shift value
       
  1414   __ lshr(rdx, rax);
       
  1415 #endif
       
  1416 }
       
  1417 
       
  1418 void TemplateTable::fop2(Operation op) {
       
  1419   transition(ftos, ftos);
       
  1420 
       
  1421   if (UseSSE >= 1) {
       
  1422     switch (op) {
       
  1423     case add:
       
  1424       __ addss(xmm0, at_rsp());
       
  1425       __ addptr(rsp, Interpreter::stackElementSize);
       
  1426       break;
       
  1427     case sub:
       
  1428       __ movflt(xmm1, xmm0);
       
  1429       __ pop_f(xmm0);
       
  1430       __ subss(xmm0, xmm1);
       
  1431       break;
       
  1432     case mul:
       
  1433       __ mulss(xmm0, at_rsp());
       
  1434       __ addptr(rsp, Interpreter::stackElementSize);
       
  1435       break;
       
  1436     case div:
       
  1437       __ movflt(xmm1, xmm0);
       
  1438       __ pop_f(xmm0);
       
  1439       __ divss(xmm0, xmm1);
       
  1440       break;
       
  1441     case rem:
       
  1442       // On x86_64 platforms the SharedRuntime::frem method is called to perform the
       
  1443       // modulo operation. The frem method calls the function
       
  1444       // double fmod(double x, double y) in math.h. The documentation of fmod states:
       
  1445       // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN
       
  1446       // (signalling or quiet) is returned.
       
  1447       //
       
  1448       // On x86_32 platforms the FPU is used to perform the modulo operation. The
       
  1449       // reason is that on 32-bit Windows the sign of modulo operations diverges from
       
  1450       // what is considered the standard (e.g., -0.0f % -3.14f is 0.0f (and not -0.0f).
       
  1451       // The fprem instruction used on x86_32 is functionally equivalent to
       
  1452       // SharedRuntime::frem in that it returns a NaN.
       
  1453 #ifdef _LP64
       
  1454       __ movflt(xmm1, xmm0);
       
  1455       __ pop_f(xmm0);
       
  1456       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
       
  1457 #else
       
  1458       __ push_f(xmm0);
       
  1459       __ pop_f();
       
  1460       __ fld_s(at_rsp());
       
  1461       __ fremr(rax);
       
  1462       __ f2ieee();
       
  1463       __ pop(rax);  // pop second operand off the stack
       
  1464       __ push_f();
       
  1465       __ pop_f(xmm0);
       
  1466 #endif
       
  1467       break;
       
  1468     default:
       
  1469       ShouldNotReachHere();
       
  1470       break;
       
  1471     }
       
  1472   } else {
       
  1473 #ifdef _LP64
       
  1474     ShouldNotReachHere();
       
  1475 #else
       
  1476     switch (op) {
       
  1477     case add: __ fadd_s (at_rsp());                break;
       
  1478     case sub: __ fsubr_s(at_rsp());                break;
       
  1479     case mul: __ fmul_s (at_rsp());                break;
       
  1480     case div: __ fdivr_s(at_rsp());                break;
       
  1481     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
       
  1482     default : ShouldNotReachHere();
       
  1483     }
       
  1484     __ f2ieee();
       
  1485     __ pop(rax);  // pop second operand off the stack
       
  1486 #endif // _LP64
       
  1487   }
       
  1488 }
       
  1489 
       
  1490 void TemplateTable::dop2(Operation op) {
       
  1491   transition(dtos, dtos);
       
  1492   if (UseSSE >= 2) {
       
  1493     switch (op) {
       
  1494     case add:
       
  1495       __ addsd(xmm0, at_rsp());
       
  1496       __ addptr(rsp, 2 * Interpreter::stackElementSize);
       
  1497       break;
       
  1498     case sub:
       
  1499       __ movdbl(xmm1, xmm0);
       
  1500       __ pop_d(xmm0);
       
  1501       __ subsd(xmm0, xmm1);
       
  1502       break;
       
  1503     case mul:
       
  1504       __ mulsd(xmm0, at_rsp());
       
  1505       __ addptr(rsp, 2 * Interpreter::stackElementSize);
       
  1506       break;
       
  1507     case div:
       
  1508       __ movdbl(xmm1, xmm0);
       
  1509       __ pop_d(xmm0);
       
  1510       __ divsd(xmm0, xmm1);
       
  1511       break;
       
  1512     case rem:
       
  1513       // Similar to fop2(), the modulo operation is performed using the
       
  1514       // SharedRuntime::drem method (on x86_64 platforms) or using the
       
  1515       // FPU (on x86_32 platforms) for the same reasons as mentioned in fop2().
       
  1516 #ifdef _LP64
       
  1517       __ movdbl(xmm1, xmm0);
       
  1518       __ pop_d(xmm0);
       
  1519       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
       
  1520 #else
       
  1521       __ push_d(xmm0);
       
  1522       __ pop_d();
       
  1523       __ fld_d(at_rsp());
       
  1524       __ fremr(rax);
       
  1525       __ d2ieee();
       
  1526       __ pop(rax);
       
  1527       __ pop(rdx);
       
  1528       __ push_d();
       
  1529       __ pop_d(xmm0);
       
  1530 #endif
       
  1531       break;
       
  1532     default:
       
  1533       ShouldNotReachHere();
       
  1534       break;
       
  1535     }
       
  1536   } else {
       
  1537 #ifdef _LP64
       
  1538     ShouldNotReachHere();
       
  1539 #else
       
  1540     switch (op) {
       
  1541     case add: __ fadd_d (at_rsp());                break;
       
  1542     case sub: __ fsubr_d(at_rsp());                break;
       
  1543     case mul: {
       
  1544       Label L_strict;
       
  1545       Label L_join;
       
  1546       const Address access_flags      (rcx, Method::access_flags_offset());
       
  1547       __ get_method(rcx);
       
  1548       __ movl(rcx, access_flags);
       
  1549       __ testl(rcx, JVM_ACC_STRICT);
       
  1550       __ jccb(Assembler::notZero, L_strict);
       
  1551       __ fmul_d (at_rsp());
       
  1552       __ jmpb(L_join);
       
  1553       __ bind(L_strict);
       
  1554       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
       
  1555       __ fmulp();
       
  1556       __ fmul_d (at_rsp());
       
  1557       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
       
  1558       __ fmulp();
       
  1559       __ bind(L_join);
       
  1560       break;
       
  1561     }
       
  1562     case div: {
       
  1563       Label L_strict;
       
  1564       Label L_join;
       
  1565       const Address access_flags      (rcx, Method::access_flags_offset());
       
  1566       __ get_method(rcx);
       
  1567       __ movl(rcx, access_flags);
       
  1568       __ testl(rcx, JVM_ACC_STRICT);
       
  1569       __ jccb(Assembler::notZero, L_strict);
       
  1570       __ fdivr_d(at_rsp());
       
  1571       __ jmp(L_join);
       
  1572       __ bind(L_strict);
       
  1573       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
       
  1574       __ fmul_d (at_rsp());
       
  1575       __ fdivrp();
       
  1576       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
       
  1577       __ fmulp();
       
  1578       __ bind(L_join);
       
  1579       break;
       
  1580     }
       
  1581     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
       
  1582     default : ShouldNotReachHere();
       
  1583     }
       
  1584     __ d2ieee();
       
  1585     // Pop double precision number from rsp.
       
  1586     __ pop(rax);
       
  1587     __ pop(rdx);
       
  1588 #endif
       
  1589   }
       
  1590 }
       
  1591 
       
  1592 void TemplateTable::ineg() {
       
  1593   transition(itos, itos);
       
  1594   __ negl(rax);
       
  1595 }
       
  1596 
       
  1597 void TemplateTable::lneg() {
       
  1598   transition(ltos, ltos);
       
  1599   LP64_ONLY(__ negq(rax));
       
  1600   NOT_LP64(__ lneg(rdx, rax));
       
  1601 }
       
  1602 
       
  1603 // Note: 'double' and 'long long' have 32-bits alignment on x86.
       
  1604 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
       
  1605   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
       
  1606   // of 128-bits operands for SSE instructions.
       
  1607   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
       
  1608   // Store the value to a 128-bits operand.
       
  1609   operand[0] = lo;
       
  1610   operand[1] = hi;
       
  1611   return operand;
       
  1612 }
       
  1613 
       
  1614 // Buffer for 128-bits masks used by SSE instructions.
       
  1615 static jlong float_signflip_pool[2*2];
       
  1616 static jlong double_signflip_pool[2*2];
       
  1617 
       
  1618 void TemplateTable::fneg() {
       
  1619   transition(ftos, ftos);
       
  1620   if (UseSSE >= 1) {
       
  1621     static jlong *float_signflip  = double_quadword(&float_signflip_pool[1],  CONST64(0x8000000080000000),  CONST64(0x8000000080000000));
       
  1622     __ xorps(xmm0, ExternalAddress((address) float_signflip));
       
  1623   } else {
       
  1624     LP64_ONLY(ShouldNotReachHere());
       
  1625     NOT_LP64(__ fchs());
       
  1626   }
       
  1627 }
       
  1628 
       
  1629 void TemplateTable::dneg() {
       
  1630   transition(dtos, dtos);
       
  1631   if (UseSSE >= 2) {
       
  1632     static jlong *double_signflip =
       
  1633       double_quadword(&double_signflip_pool[1], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
       
  1634     __ xorpd(xmm0, ExternalAddress((address) double_signflip));
       
  1635   } else {
       
  1636 #ifdef _LP64
       
  1637     ShouldNotReachHere();
       
  1638 #else
       
  1639     __ fchs();
       
  1640 #endif
       
  1641   }
       
  1642 }
       
  1643 
       
  1644 void TemplateTable::iinc() {
       
  1645   transition(vtos, vtos);
       
  1646   __ load_signed_byte(rdx, at_bcp(2)); // get constant
       
  1647   locals_index(rbx);
       
  1648   __ addl(iaddress(rbx), rdx);
       
  1649 }
       
  1650 
       
  1651 void TemplateTable::wide_iinc() {
       
  1652   transition(vtos, vtos);
       
  1653   __ movl(rdx, at_bcp(4)); // get constant
       
  1654   locals_index_wide(rbx);
       
  1655   __ bswapl(rdx); // swap bytes & sign-extend constant
       
  1656   __ sarl(rdx, 16);
       
  1657   __ addl(iaddress(rbx), rdx);
       
  1658   // Note: should probably use only one movl to get both
       
  1659   //       the index and the constant -> fix this
       
  1660 }
       
  1661 
       
  1662 void TemplateTable::convert() {
       
  1663 #ifdef _LP64
       
  1664   // Checking
       
  1665 #ifdef ASSERT
       
  1666   {
       
  1667     TosState tos_in  = ilgl;
       
  1668     TosState tos_out = ilgl;
       
  1669     switch (bytecode()) {
       
  1670     case Bytecodes::_i2l: // fall through
       
  1671     case Bytecodes::_i2f: // fall through
       
  1672     case Bytecodes::_i2d: // fall through
       
  1673     case Bytecodes::_i2b: // fall through
       
  1674     case Bytecodes::_i2c: // fall through
       
  1675     case Bytecodes::_i2s: tos_in = itos; break;
       
  1676     case Bytecodes::_l2i: // fall through
       
  1677     case Bytecodes::_l2f: // fall through
       
  1678     case Bytecodes::_l2d: tos_in = ltos; break;
       
  1679     case Bytecodes::_f2i: // fall through
       
  1680     case Bytecodes::_f2l: // fall through
       
  1681     case Bytecodes::_f2d: tos_in = ftos; break;
       
  1682     case Bytecodes::_d2i: // fall through
       
  1683     case Bytecodes::_d2l: // fall through
       
  1684     case Bytecodes::_d2f: tos_in = dtos; break;
       
  1685     default             : ShouldNotReachHere();
       
  1686     }
       
  1687     switch (bytecode()) {
       
  1688     case Bytecodes::_l2i: // fall through
       
  1689     case Bytecodes::_f2i: // fall through
       
  1690     case Bytecodes::_d2i: // fall through
       
  1691     case Bytecodes::_i2b: // fall through
       
  1692     case Bytecodes::_i2c: // fall through
       
  1693     case Bytecodes::_i2s: tos_out = itos; break;
       
  1694     case Bytecodes::_i2l: // fall through
       
  1695     case Bytecodes::_f2l: // fall through
       
  1696     case Bytecodes::_d2l: tos_out = ltos; break;
       
  1697     case Bytecodes::_i2f: // fall through
       
  1698     case Bytecodes::_l2f: // fall through
       
  1699     case Bytecodes::_d2f: tos_out = ftos; break;
       
  1700     case Bytecodes::_i2d: // fall through
       
  1701     case Bytecodes::_l2d: // fall through
       
  1702     case Bytecodes::_f2d: tos_out = dtos; break;
       
  1703     default             : ShouldNotReachHere();
       
  1704     }
       
  1705     transition(tos_in, tos_out);
       
  1706   }
       
  1707 #endif // ASSERT
       
  1708 
       
  1709   static const int64_t is_nan = 0x8000000000000000L;
       
  1710 
       
  1711   // Conversion
       
  1712   switch (bytecode()) {
       
  1713   case Bytecodes::_i2l:
       
  1714     __ movslq(rax, rax);
       
  1715     break;
       
  1716   case Bytecodes::_i2f:
       
  1717     __ cvtsi2ssl(xmm0, rax);
       
  1718     break;
       
  1719   case Bytecodes::_i2d:
       
  1720     __ cvtsi2sdl(xmm0, rax);
       
  1721     break;
       
  1722   case Bytecodes::_i2b:
       
  1723     __ movsbl(rax, rax);
       
  1724     break;
       
  1725   case Bytecodes::_i2c:
       
  1726     __ movzwl(rax, rax);
       
  1727     break;
       
  1728   case Bytecodes::_i2s:
       
  1729     __ movswl(rax, rax);
       
  1730     break;
       
  1731   case Bytecodes::_l2i:
       
  1732     __ movl(rax, rax);
       
  1733     break;
       
  1734   case Bytecodes::_l2f:
       
  1735     __ cvtsi2ssq(xmm0, rax);
       
  1736     break;
       
  1737   case Bytecodes::_l2d:
       
  1738     __ cvtsi2sdq(xmm0, rax);
       
  1739     break;
       
  1740   case Bytecodes::_f2i:
       
  1741   {
       
  1742     Label L;
       
  1743     __ cvttss2sil(rax, xmm0);
       
  1744     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
       
  1745     __ jcc(Assembler::notEqual, L);
       
  1746     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
       
  1747     __ bind(L);
       
  1748   }
       
  1749     break;
       
  1750   case Bytecodes::_f2l:
       
  1751   {
       
  1752     Label L;
       
  1753     __ cvttss2siq(rax, xmm0);
       
  1754     // NaN or overflow/underflow?
       
  1755     __ cmp64(rax, ExternalAddress((address) &is_nan));
       
  1756     __ jcc(Assembler::notEqual, L);
       
  1757     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
       
  1758     __ bind(L);
       
  1759   }
       
  1760     break;
       
  1761   case Bytecodes::_f2d:
       
  1762     __ cvtss2sd(xmm0, xmm0);
       
  1763     break;
       
  1764   case Bytecodes::_d2i:
       
  1765   {
       
  1766     Label L;
       
  1767     __ cvttsd2sil(rax, xmm0);
       
  1768     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
       
  1769     __ jcc(Assembler::notEqual, L);
       
  1770     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
       
  1771     __ bind(L);
       
  1772   }
       
  1773     break;
       
  1774   case Bytecodes::_d2l:
       
  1775   {
       
  1776     Label L;
       
  1777     __ cvttsd2siq(rax, xmm0);
       
  1778     // NaN or overflow/underflow?
       
  1779     __ cmp64(rax, ExternalAddress((address) &is_nan));
       
  1780     __ jcc(Assembler::notEqual, L);
       
  1781     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
       
  1782     __ bind(L);
       
  1783   }
       
  1784     break;
       
  1785   case Bytecodes::_d2f:
       
  1786     __ cvtsd2ss(xmm0, xmm0);
       
  1787     break;
       
  1788   default:
       
  1789     ShouldNotReachHere();
       
  1790   }
       
  1791 #else
       
  1792   // Checking
       
  1793 #ifdef ASSERT
       
  1794   { TosState tos_in  = ilgl;
       
  1795     TosState tos_out = ilgl;
       
  1796     switch (bytecode()) {
       
  1797       case Bytecodes::_i2l: // fall through
       
  1798       case Bytecodes::_i2f: // fall through
       
  1799       case Bytecodes::_i2d: // fall through
       
  1800       case Bytecodes::_i2b: // fall through
       
  1801       case Bytecodes::_i2c: // fall through
       
  1802       case Bytecodes::_i2s: tos_in = itos; break;
       
  1803       case Bytecodes::_l2i: // fall through
       
  1804       case Bytecodes::_l2f: // fall through
       
  1805       case Bytecodes::_l2d: tos_in = ltos; break;
       
  1806       case Bytecodes::_f2i: // fall through
       
  1807       case Bytecodes::_f2l: // fall through
       
  1808       case Bytecodes::_f2d: tos_in = ftos; break;
       
  1809       case Bytecodes::_d2i: // fall through
       
  1810       case Bytecodes::_d2l: // fall through
       
  1811       case Bytecodes::_d2f: tos_in = dtos; break;
       
  1812       default             : ShouldNotReachHere();
       
  1813     }
       
  1814     switch (bytecode()) {
       
  1815       case Bytecodes::_l2i: // fall through
       
  1816       case Bytecodes::_f2i: // fall through
       
  1817       case Bytecodes::_d2i: // fall through
       
  1818       case Bytecodes::_i2b: // fall through
       
  1819       case Bytecodes::_i2c: // fall through
       
  1820       case Bytecodes::_i2s: tos_out = itos; break;
       
  1821       case Bytecodes::_i2l: // fall through
       
  1822       case Bytecodes::_f2l: // fall through
       
  1823       case Bytecodes::_d2l: tos_out = ltos; break;
       
  1824       case Bytecodes::_i2f: // fall through
       
  1825       case Bytecodes::_l2f: // fall through
       
  1826       case Bytecodes::_d2f: tos_out = ftos; break;
       
  1827       case Bytecodes::_i2d: // fall through
       
  1828       case Bytecodes::_l2d: // fall through
       
  1829       case Bytecodes::_f2d: tos_out = dtos; break;
       
  1830       default             : ShouldNotReachHere();
       
  1831     }
       
  1832     transition(tos_in, tos_out);
       
  1833   }
       
  1834 #endif // ASSERT
       
  1835 
       
  1836   // Conversion
       
  1837   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
       
  1838   switch (bytecode()) {
       
  1839     case Bytecodes::_i2l:
       
  1840       __ extend_sign(rdx, rax);
       
  1841       break;
       
  1842     case Bytecodes::_i2f:
       
  1843       if (UseSSE >= 1) {
       
  1844         __ cvtsi2ssl(xmm0, rax);
       
  1845       } else {
       
  1846         __ push(rax);          // store int on tos
       
  1847         __ fild_s(at_rsp());   // load int to ST0
       
  1848         __ f2ieee();           // truncate to float size
       
  1849         __ pop(rcx);           // adjust rsp
       
  1850       }
       
  1851       break;
       
  1852     case Bytecodes::_i2d:
       
  1853       if (UseSSE >= 2) {
       
  1854         __ cvtsi2sdl(xmm0, rax);
       
  1855       } else {
       
  1856       __ push(rax);          // add one slot for d2ieee()
       
  1857       __ push(rax);          // store int on tos
       
  1858       __ fild_s(at_rsp());   // load int to ST0
       
  1859       __ d2ieee();           // truncate to double size
       
  1860       __ pop(rcx);           // adjust rsp
       
  1861       __ pop(rcx);
       
  1862       }
       
  1863       break;
       
  1864     case Bytecodes::_i2b:
       
  1865       __ shll(rax, 24);      // truncate upper 24 bits
       
  1866       __ sarl(rax, 24);      // and sign-extend byte
       
  1867       LP64_ONLY(__ movsbl(rax, rax));
       
  1868       break;
       
  1869     case Bytecodes::_i2c:
       
  1870       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
       
  1871       LP64_ONLY(__ movzwl(rax, rax));
       
  1872       break;
       
  1873     case Bytecodes::_i2s:
       
  1874       __ shll(rax, 16);      // truncate upper 16 bits
       
  1875       __ sarl(rax, 16);      // and sign-extend short
       
  1876       LP64_ONLY(__ movswl(rax, rax));
       
  1877       break;
       
  1878     case Bytecodes::_l2i:
       
  1879       /* nothing to do */
       
  1880       break;
       
  1881     case Bytecodes::_l2f:
       
  1882       // On 64-bit platforms, the cvtsi2ssq instruction is used to convert
       
  1883       // 64-bit long values to floats. On 32-bit platforms it is not possible
       
  1884       // to use that instruction with 64-bit operands, therefore the FPU is
       
  1885       // used to perform the conversion.
       
  1886       __ push(rdx);          // store long on tos
       
  1887       __ push(rax);
       
  1888       __ fild_d(at_rsp());   // load long to ST0
       
  1889       __ f2ieee();           // truncate to float size
       
  1890       __ pop(rcx);           // adjust rsp
       
  1891       __ pop(rcx);
       
  1892       if (UseSSE >= 1) {
       
  1893         __ push_f();
       
  1894         __ pop_f(xmm0);
       
  1895       }
       
  1896       break;
       
  1897     case Bytecodes::_l2d:
       
  1898       // On 32-bit platforms the FPU is used for conversion because on
       
  1899       // 32-bit platforms it is not not possible to use the cvtsi2sdq
       
  1900       // instruction with 64-bit operands.
       
  1901       __ push(rdx);          // store long on tos
       
  1902       __ push(rax);
       
  1903       __ fild_d(at_rsp());   // load long to ST0
       
  1904       __ d2ieee();           // truncate to double size
       
  1905       __ pop(rcx);           // adjust rsp
       
  1906       __ pop(rcx);
       
  1907       if (UseSSE >= 2) {
       
  1908         __ push_d();
       
  1909         __ pop_d(xmm0);
       
  1910       }
       
  1911       break;
       
  1912     case Bytecodes::_f2i:
       
  1913       // SharedRuntime::f2i does not differentiate between sNaNs and qNaNs
       
  1914       // as it returns 0 for any NaN.
       
  1915       if (UseSSE >= 1) {
       
  1916         __ push_f(xmm0);
       
  1917       } else {
       
  1918         __ push(rcx);          // reserve space for argument
       
  1919         __ fstp_s(at_rsp());   // pass float argument on stack
       
  1920       }
       
  1921       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
       
  1922       break;
       
  1923     case Bytecodes::_f2l:
       
  1924       // SharedRuntime::f2l does not differentiate between sNaNs and qNaNs
       
  1925       // as it returns 0 for any NaN.
       
  1926       if (UseSSE >= 1) {
       
  1927        __ push_f(xmm0);
       
  1928       } else {
       
  1929         __ push(rcx);          // reserve space for argument
       
  1930         __ fstp_s(at_rsp());   // pass float argument on stack
       
  1931       }
       
  1932       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
       
  1933       break;
       
  1934     case Bytecodes::_f2d:
       
  1935       if (UseSSE < 1) {
       
  1936         /* nothing to do */
       
  1937       } else if (UseSSE == 1) {
       
  1938         __ push_f(xmm0);
       
  1939         __ pop_f();
       
  1940       } else { // UseSSE >= 2
       
  1941         __ cvtss2sd(xmm0, xmm0);
       
  1942       }
       
  1943       break;
       
  1944     case Bytecodes::_d2i:
       
  1945       if (UseSSE >= 2) {
       
  1946         __ push_d(xmm0);
       
  1947       } else {
       
  1948         __ push(rcx);          // reserve space for argument
       
  1949         __ push(rcx);
       
  1950         __ fstp_d(at_rsp());   // pass double argument on stack
       
  1951       }
       
  1952       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
       
  1953       break;
       
  1954     case Bytecodes::_d2l:
       
  1955       if (UseSSE >= 2) {
       
  1956         __ push_d(xmm0);
       
  1957       } else {
       
  1958         __ push(rcx);          // reserve space for argument
       
  1959         __ push(rcx);
       
  1960         __ fstp_d(at_rsp());   // pass double argument on stack
       
  1961       }
       
  1962       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
       
  1963       break;
       
  1964     case Bytecodes::_d2f:
       
  1965       if (UseSSE <= 1) {
       
  1966         __ push(rcx);          // reserve space for f2ieee()
       
  1967         __ f2ieee();           // truncate to float size
       
  1968         __ pop(rcx);           // adjust rsp
       
  1969         if (UseSSE == 1) {
       
  1970           // The cvtsd2ss instruction is not available if UseSSE==1, therefore
       
  1971           // the conversion is performed using the FPU in this case.
       
  1972           __ push_f();
       
  1973           __ pop_f(xmm0);
       
  1974         }
       
  1975       } else { // UseSSE >= 2
       
  1976         __ cvtsd2ss(xmm0, xmm0);
       
  1977       }
       
  1978       break;
       
  1979     default             :
       
  1980       ShouldNotReachHere();
       
  1981   }
       
  1982 #endif
       
  1983 }
       
  1984 
       
  1985 void TemplateTable::lcmp() {
       
  1986   transition(ltos, itos);
       
  1987 #ifdef _LP64
       
  1988   Label done;
       
  1989   __ pop_l(rdx);
       
  1990   __ cmpq(rdx, rax);
       
  1991   __ movl(rax, -1);
       
  1992   __ jccb(Assembler::less, done);
       
  1993   __ setb(Assembler::notEqual, rax);
       
  1994   __ movzbl(rax, rax);
       
  1995   __ bind(done);
       
  1996 #else
       
  1997 
       
  1998   // y = rdx:rax
       
  1999   __ pop_l(rbx, rcx);             // get x = rcx:rbx
       
  2000   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
       
  2001   __ mov(rax, rcx);
       
  2002 #endif
       
  2003 }
       
  2004 
       
  2005 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
       
  2006   if ((is_float && UseSSE >= 1) ||
       
  2007       (!is_float && UseSSE >= 2)) {
       
  2008     Label done;
       
  2009     if (is_float) {
       
  2010       // XXX get rid of pop here, use ... reg, mem32
       
  2011       __ pop_f(xmm1);
       
  2012       __ ucomiss(xmm1, xmm0);
       
  2013     } else {
       
  2014       // XXX get rid of pop here, use ... reg, mem64
       
  2015       __ pop_d(xmm1);
       
  2016       __ ucomisd(xmm1, xmm0);
       
  2017     }
       
  2018     if (unordered_result < 0) {
       
  2019       __ movl(rax, -1);
       
  2020       __ jccb(Assembler::parity, done);
       
  2021       __ jccb(Assembler::below, done);
       
  2022       __ setb(Assembler::notEqual, rdx);
       
  2023       __ movzbl(rax, rdx);
       
  2024     } else {
       
  2025       __ movl(rax, 1);
       
  2026       __ jccb(Assembler::parity, done);
       
  2027       __ jccb(Assembler::above, done);
       
  2028       __ movl(rax, 0);
       
  2029       __ jccb(Assembler::equal, done);
       
  2030       __ decrementl(rax);
       
  2031     }
       
  2032     __ bind(done);
       
  2033   } else {
       
  2034 #ifdef _LP64
       
  2035     ShouldNotReachHere();
       
  2036 #else
       
  2037     if (is_float) {
       
  2038       __ fld_s(at_rsp());
       
  2039     } else {
       
  2040       __ fld_d(at_rsp());
       
  2041       __ pop(rdx);
       
  2042     }
       
  2043     __ pop(rcx);
       
  2044     __ fcmp2int(rax, unordered_result < 0);
       
  2045 #endif // _LP64
       
  2046   }
       
  2047 }
       
  2048 
       
  2049 void TemplateTable::branch(bool is_jsr, bool is_wide) {
       
  2050   __ get_method(rcx); // rcx holds method
       
  2051   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
       
  2052                                      // holds bumped taken count
       
  2053 
       
  2054   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
       
  2055                              InvocationCounter::counter_offset();
       
  2056   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
       
  2057                               InvocationCounter::counter_offset();
       
  2058 
       
  2059   // Load up edx with the branch displacement
       
  2060   if (is_wide) {
       
  2061     __ movl(rdx, at_bcp(1));
       
  2062   } else {
       
  2063     __ load_signed_short(rdx, at_bcp(1));
       
  2064   }
       
  2065   __ bswapl(rdx);
       
  2066 
       
  2067   if (!is_wide) {
       
  2068     __ sarl(rdx, 16);
       
  2069   }
       
  2070   LP64_ONLY(__ movl2ptr(rdx, rdx));
       
  2071 
       
  2072   // Handle all the JSR stuff here, then exit.
       
  2073   // It's much shorter and cleaner than intermingling with the non-JSR
       
  2074   // normal-branch stuff occurring below.
       
  2075   if (is_jsr) {
       
  2076     // Pre-load the next target bytecode into rbx
       
  2077     __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0));
       
  2078 
       
  2079     // compute return address as bci in rax
       
  2080     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
       
  2081                         in_bytes(ConstMethod::codes_offset())));
       
  2082     __ subptr(rax, Address(rcx, Method::const_offset()));
       
  2083     // Adjust the bcp in r13 by the displacement in rdx
       
  2084     __ addptr(rbcp, rdx);
       
  2085     // jsr returns atos that is not an oop
       
  2086     __ push_i(rax);
       
  2087     __ dispatch_only(vtos);
       
  2088     return;
       
  2089   }
       
  2090 
       
  2091   // Normal (non-jsr) branch handling
       
  2092 
       
  2093   // Adjust the bcp in r13 by the displacement in rdx
       
  2094   __ addptr(rbcp, rdx);
       
  2095 
       
  2096   assert(UseLoopCounter || !UseOnStackReplacement,
       
  2097          "on-stack-replacement requires loop counters");
       
  2098   Label backedge_counter_overflow;
       
  2099   Label profile_method;
       
  2100   Label dispatch;
       
  2101   if (UseLoopCounter) {
       
  2102     // increment backedge counter for backward branches
       
  2103     // rax: MDO
       
  2104     // rbx: MDO bumped taken-count
       
  2105     // rcx: method
       
  2106     // rdx: target offset
       
  2107     // r13: target bcp
       
  2108     // r14: locals pointer
       
  2109     __ testl(rdx, rdx);             // check if forward or backward branch
       
  2110     __ jcc(Assembler::positive, dispatch); // count only if backward branch
       
  2111 
       
  2112     // check if MethodCounters exists
       
  2113     Label has_counters;
       
  2114     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
       
  2115     __ testptr(rax, rax);
       
  2116     __ jcc(Assembler::notZero, has_counters);
       
  2117     __ push(rdx);
       
  2118     __ push(rcx);
       
  2119     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
       
  2120                rcx);
       
  2121     __ pop(rcx);
       
  2122     __ pop(rdx);
       
  2123     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
       
  2124     __ testptr(rax, rax);
       
  2125     __ jcc(Assembler::zero, dispatch);
       
  2126     __ bind(has_counters);
       
  2127 
       
  2128     if (TieredCompilation) {
       
  2129       Label no_mdo;
       
  2130       int increment = InvocationCounter::count_increment;
       
  2131       if (ProfileInterpreter) {
       
  2132         // Are we profiling?
       
  2133         __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
       
  2134         __ testptr(rbx, rbx);
       
  2135         __ jccb(Assembler::zero, no_mdo);
       
  2136         // Increment the MDO backedge counter
       
  2137         const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
       
  2138                                            in_bytes(InvocationCounter::counter_offset()));
       
  2139         const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset()));
       
  2140         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
       
  2141                                    rax, false, Assembler::zero, &backedge_counter_overflow);
       
  2142         __ jmp(dispatch);
       
  2143       }
       
  2144       __ bind(no_mdo);
       
  2145       // Increment backedge counter in MethodCounters*
       
  2146       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
       
  2147       const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset()));
       
  2148       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
       
  2149                                  rax, false, Assembler::zero, &backedge_counter_overflow);
       
  2150     } else { // not TieredCompilation
       
  2151       // increment counter
       
  2152       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
       
  2153       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
       
  2154       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
       
  2155       __ movl(Address(rcx, be_offset), rax);        // store counter
       
  2156 
       
  2157       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
       
  2158 
       
  2159       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
       
  2160       __ addl(rax, Address(rcx, be_offset));        // add both counters
       
  2161 
       
  2162       if (ProfileInterpreter) {
       
  2163         // Test to see if we should create a method data oop
       
  2164         __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_profile_limit_offset())));
       
  2165         __ jcc(Assembler::less, dispatch);
       
  2166 
       
  2167         // if no method data exists, go to profile method
       
  2168         __ test_method_data_pointer(rax, profile_method);
       
  2169 
       
  2170         if (UseOnStackReplacement) {
       
  2171           // check for overflow against rbx which is the MDO taken count
       
  2172           __ cmp32(rbx, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
       
  2173           __ jcc(Assembler::below, dispatch);
       
  2174 
       
  2175           // When ProfileInterpreter is on, the backedge_count comes
       
  2176           // from the MethodData*, which value does not get reset on
       
  2177           // the call to frequency_counter_overflow().  To avoid
       
  2178           // excessive calls to the overflow routine while the method is
       
  2179           // being compiled, add a second test to make sure the overflow
       
  2180           // function is called only once every overflow_frequency.
       
  2181           const int overflow_frequency = 1024;
       
  2182           __ andl(rbx, overflow_frequency - 1);
       
  2183           __ jcc(Assembler::zero, backedge_counter_overflow);
       
  2184 
       
  2185         }
       
  2186       } else {
       
  2187         if (UseOnStackReplacement) {
       
  2188           // check for overflow against rax, which is the sum of the
       
  2189           // counters
       
  2190           __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset())));
       
  2191           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
       
  2192 
       
  2193         }
       
  2194       }
       
  2195     }
       
  2196     __ bind(dispatch);
       
  2197   }
       
  2198 
       
  2199   // Pre-load the next target bytecode into rbx
       
  2200   __ load_unsigned_byte(rbx, Address(rbcp, 0));
       
  2201 
       
  2202   // continue with the bytecode @ target
       
  2203   // rax: return bci for jsr's, unused otherwise
       
  2204   // rbx: target bytecode
       
  2205   // r13: target bcp
       
  2206   __ dispatch_only(vtos);
       
  2207 
       
  2208   if (UseLoopCounter) {
       
  2209     if (ProfileInterpreter) {
       
  2210       // Out-of-line code to allocate method data oop.
       
  2211       __ bind(profile_method);
       
  2212       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
       
  2213       __ set_method_data_pointer_for_bcp();
       
  2214       __ jmp(dispatch);
       
  2215     }
       
  2216 
       
  2217     if (UseOnStackReplacement) {
       
  2218       // invocation counter overflow
       
  2219       __ bind(backedge_counter_overflow);
       
  2220       __ negptr(rdx);
       
  2221       __ addptr(rdx, rbcp); // branch bcp
       
  2222       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
       
  2223       __ call_VM(noreg,
       
  2224                  CAST_FROM_FN_PTR(address,
       
  2225                                   InterpreterRuntime::frequency_counter_overflow),
       
  2226                  rdx);
       
  2227 
       
  2228       // rax: osr nmethod (osr ok) or NULL (osr not possible)
       
  2229       // rdx: scratch
       
  2230       // r14: locals pointer
       
  2231       // r13: bcp
       
  2232       __ testptr(rax, rax);                        // test result
       
  2233       __ jcc(Assembler::zero, dispatch);         // no osr if null
       
  2234       // nmethod may have been invalidated (VM may block upon call_VM return)
       
  2235       __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use);
       
  2236       __ jcc(Assembler::notEqual, dispatch);
       
  2237 
       
  2238       // We have the address of an on stack replacement routine in rax.
       
  2239       // In preparation of invoking it, first we must migrate the locals
       
  2240       // and monitors from off the interpreter frame on the stack.
       
  2241       // Ensure to save the osr nmethod over the migration call,
       
  2242       // it will be preserved in rbx.
       
  2243       __ mov(rbx, rax);
       
  2244 
       
  2245       NOT_LP64(__ get_thread(rcx));
       
  2246 
       
  2247       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
       
  2248 
       
  2249       // rax is OSR buffer, move it to expected parameter location
       
  2250       LP64_ONLY(__ mov(j_rarg0, rax));
       
  2251       NOT_LP64(__ mov(rcx, rax));
       
  2252       // We use j_rarg definitions here so that registers don't conflict as parameter
       
  2253       // registers change across platforms as we are in the midst of a calling
       
  2254       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
       
  2255 
       
  2256       const Register retaddr   = LP64_ONLY(j_rarg2) NOT_LP64(rdi);
       
  2257       const Register sender_sp = LP64_ONLY(j_rarg1) NOT_LP64(rdx);
       
  2258 
       
  2259       // pop the interpreter frame
       
  2260       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
       
  2261       __ leave();                                // remove frame anchor
       
  2262       __ pop(retaddr);                           // get return address
       
  2263       __ mov(rsp, sender_sp);                   // set sp to sender sp
       
  2264       // Ensure compiled code always sees stack at proper alignment
       
  2265       __ andptr(rsp, -(StackAlignmentInBytes));
       
  2266 
       
  2267       // unlike x86 we need no specialized return from compiled code
       
  2268       // to the interpreter or the call stub.
       
  2269 
       
  2270       // push the return address
       
  2271       __ push(retaddr);
       
  2272 
       
  2273       // and begin the OSR nmethod
       
  2274       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
       
  2275     }
       
  2276   }
       
  2277 }
       
  2278 
       
  2279 void TemplateTable::if_0cmp(Condition cc) {
       
  2280   transition(itos, vtos);
       
  2281   // assume branch is more often taken than not (loops use backward branches)
       
  2282   Label not_taken;
       
  2283   __ testl(rax, rax);
       
  2284   __ jcc(j_not(cc), not_taken);
       
  2285   branch(false, false);
       
  2286   __ bind(not_taken);
       
  2287   __ profile_not_taken_branch(rax);
       
  2288 }
       
  2289 
       
  2290 void TemplateTable::if_icmp(Condition cc) {
       
  2291   transition(itos, vtos);
       
  2292   // assume branch is more often taken than not (loops use backward branches)
       
  2293   Label not_taken;
       
  2294   __ pop_i(rdx);
       
  2295   __ cmpl(rdx, rax);
       
  2296   __ jcc(j_not(cc), not_taken);
       
  2297   branch(false, false);
       
  2298   __ bind(not_taken);
       
  2299   __ profile_not_taken_branch(rax);
       
  2300 }
       
  2301 
       
  2302 void TemplateTable::if_nullcmp(Condition cc) {
       
  2303   transition(atos, vtos);
       
  2304   // assume branch is more often taken than not (loops use backward branches)
       
  2305   Label not_taken;
       
  2306   __ testptr(rax, rax);
       
  2307   __ jcc(j_not(cc), not_taken);
       
  2308   branch(false, false);
       
  2309   __ bind(not_taken);
       
  2310   __ profile_not_taken_branch(rax);
       
  2311 }
       
  2312 
       
  2313 void TemplateTable::if_acmp(Condition cc) {
       
  2314   transition(atos, vtos);
       
  2315   // assume branch is more often taken than not (loops use backward branches)
       
  2316   Label not_taken;
       
  2317   __ pop_ptr(rdx);
       
  2318   __ cmpptr(rdx, rax);
       
  2319   __ jcc(j_not(cc), not_taken);
       
  2320   branch(false, false);
       
  2321   __ bind(not_taken);
       
  2322   __ profile_not_taken_branch(rax);
       
  2323 }
       
  2324 
       
  2325 void TemplateTable::ret() {
       
  2326   transition(vtos, vtos);
       
  2327   locals_index(rbx);
       
  2328   LP64_ONLY(__ movslq(rbx, iaddress(rbx))); // get return bci, compute return bcp
       
  2329   NOT_LP64(__ movptr(rbx, iaddress(rbx)));
       
  2330   __ profile_ret(rbx, rcx);
       
  2331   __ get_method(rax);
       
  2332   __ movptr(rbcp, Address(rax, Method::const_offset()));
       
  2333   __ lea(rbcp, Address(rbcp, rbx, Address::times_1,
       
  2334                       ConstMethod::codes_offset()));
       
  2335   __ dispatch_next(vtos);
       
  2336 }
       
  2337 
       
  2338 void TemplateTable::wide_ret() {
       
  2339   transition(vtos, vtos);
       
  2340   locals_index_wide(rbx);
       
  2341   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
       
  2342   __ profile_ret(rbx, rcx);
       
  2343   __ get_method(rax);
       
  2344   __ movptr(rbcp, Address(rax, Method::const_offset()));
       
  2345   __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset()));
       
  2346   __ dispatch_next(vtos);
       
  2347 }
       
  2348 
       
  2349 void TemplateTable::tableswitch() {
       
  2350   Label default_case, continue_execution;
       
  2351   transition(itos, vtos);
       
  2352 
       
  2353   // align r13/rsi
       
  2354   __ lea(rbx, at_bcp(BytesPerInt));
       
  2355   __ andptr(rbx, -BytesPerInt);
       
  2356   // load lo & hi
       
  2357   __ movl(rcx, Address(rbx, BytesPerInt));
       
  2358   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
       
  2359   __ bswapl(rcx);
       
  2360   __ bswapl(rdx);
       
  2361   // check against lo & hi
       
  2362   __ cmpl(rax, rcx);
       
  2363   __ jcc(Assembler::less, default_case);
       
  2364   __ cmpl(rax, rdx);
       
  2365   __ jcc(Assembler::greater, default_case);
       
  2366   // lookup dispatch offset
       
  2367   __ subl(rax, rcx);
       
  2368   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
       
  2369   __ profile_switch_case(rax, rbx, rcx);
       
  2370   // continue execution
       
  2371   __ bind(continue_execution);
       
  2372   __ bswapl(rdx);
       
  2373   LP64_ONLY(__ movl2ptr(rdx, rdx));
       
  2374   __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
       
  2375   __ addptr(rbcp, rdx);
       
  2376   __ dispatch_only(vtos);
       
  2377   // handle default
       
  2378   __ bind(default_case);
       
  2379   __ profile_switch_default(rax);
       
  2380   __ movl(rdx, Address(rbx, 0));
       
  2381   __ jmp(continue_execution);
       
  2382 }
       
  2383 
       
  2384 void TemplateTable::lookupswitch() {
       
  2385   transition(itos, itos);
       
  2386   __ stop("lookupswitch bytecode should have been rewritten");
       
  2387 }
       
  2388 
       
  2389 void TemplateTable::fast_linearswitch() {
       
  2390   transition(itos, vtos);
       
  2391   Label loop_entry, loop, found, continue_execution;
       
  2392   // bswap rax so we can avoid bswapping the table entries
       
  2393   __ bswapl(rax);
       
  2394   // align r13
       
  2395   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
       
  2396                                     // this instruction (change offsets
       
  2397                                     // below)
       
  2398   __ andptr(rbx, -BytesPerInt);
       
  2399   // set counter
       
  2400   __ movl(rcx, Address(rbx, BytesPerInt));
       
  2401   __ bswapl(rcx);
       
  2402   __ jmpb(loop_entry);
       
  2403   // table search
       
  2404   __ bind(loop);
       
  2405   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
       
  2406   __ jcc(Assembler::equal, found);
       
  2407   __ bind(loop_entry);
       
  2408   __ decrementl(rcx);
       
  2409   __ jcc(Assembler::greaterEqual, loop);
       
  2410   // default case
       
  2411   __ profile_switch_default(rax);
       
  2412   __ movl(rdx, Address(rbx, 0));
       
  2413   __ jmp(continue_execution);
       
  2414   // entry found -> get offset
       
  2415   __ bind(found);
       
  2416   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
       
  2417   __ profile_switch_case(rcx, rax, rbx);
       
  2418   // continue execution
       
  2419   __ bind(continue_execution);
       
  2420   __ bswapl(rdx);
       
  2421   __ movl2ptr(rdx, rdx);
       
  2422   __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1));
       
  2423   __ addptr(rbcp, rdx);
       
  2424   __ dispatch_only(vtos);
       
  2425 }
       
  2426 
       
  2427 void TemplateTable::fast_binaryswitch() {
       
  2428   transition(itos, vtos);
       
  2429   // Implementation using the following core algorithm:
       
  2430   //
       
  2431   // int binary_search(int key, LookupswitchPair* array, int n) {
       
  2432   //   // Binary search according to "Methodik des Programmierens" by
       
  2433   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
       
  2434   //   int i = 0;
       
  2435   //   int j = n;
       
  2436   //   while (i+1 < j) {
       
  2437   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
       
  2438   //     // with      Q: for all i: 0 <= i < n: key < a[i]
       
  2439   //     // where a stands for the array and assuming that the (inexisting)
       
  2440   //     // element a[n] is infinitely big.
       
  2441   //     int h = (i + j) >> 1;
       
  2442   //     // i < h < j
       
  2443   //     if (key < array[h].fast_match()) {
       
  2444   //       j = h;
       
  2445   //     } else {
       
  2446   //       i = h;
       
  2447   //     }
       
  2448   //   }
       
  2449   //   // R: a[i] <= key < a[i+1] or Q
       
  2450   //   // (i.e., if key is within array, i is the correct index)
       
  2451   //   return i;
       
  2452   // }
       
  2453 
       
  2454   // Register allocation
       
  2455   const Register key   = rax; // already set (tosca)
       
  2456   const Register array = rbx;
       
  2457   const Register i     = rcx;
       
  2458   const Register j     = rdx;
       
  2459   const Register h     = rdi;
       
  2460   const Register temp  = rsi;
       
  2461 
       
  2462   // Find array start
       
  2463   NOT_LP64(__ save_bcp());
       
  2464 
       
  2465   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
       
  2466                                           // get rid of this
       
  2467                                           // instruction (change
       
  2468                                           // offsets below)
       
  2469   __ andptr(array, -BytesPerInt);
       
  2470 
       
  2471   // Initialize i & j
       
  2472   __ xorl(i, i);                            // i = 0;
       
  2473   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
       
  2474 
       
  2475   // Convert j into native byteordering
       
  2476   __ bswapl(j);
       
  2477 
       
  2478   // And start
       
  2479   Label entry;
       
  2480   __ jmp(entry);
       
  2481 
       
  2482   // binary search loop
       
  2483   {
       
  2484     Label loop;
       
  2485     __ bind(loop);
       
  2486     // int h = (i + j) >> 1;
       
  2487     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
       
  2488     __ sarl(h, 1);                               // h = (i + j) >> 1;
       
  2489     // if (key < array[h].fast_match()) {
       
  2490     //   j = h;
       
  2491     // } else {
       
  2492     //   i = h;
       
  2493     // }
       
  2494     // Convert array[h].match to native byte-ordering before compare
       
  2495     __ movl(temp, Address(array, h, Address::times_8));
       
  2496     __ bswapl(temp);
       
  2497     __ cmpl(key, temp);
       
  2498     // j = h if (key <  array[h].fast_match())
       
  2499     __ cmov32(Assembler::less, j, h);
       
  2500     // i = h if (key >= array[h].fast_match())
       
  2501     __ cmov32(Assembler::greaterEqual, i, h);
       
  2502     // while (i+1 < j)
       
  2503     __ bind(entry);
       
  2504     __ leal(h, Address(i, 1)); // i+1
       
  2505     __ cmpl(h, j);             // i+1 < j
       
  2506     __ jcc(Assembler::less, loop);
       
  2507   }
       
  2508 
       
  2509   // end of binary search, result index is i (must check again!)
       
  2510   Label default_case;
       
  2511   // Convert array[i].match to native byte-ordering before compare
       
  2512   __ movl(temp, Address(array, i, Address::times_8));
       
  2513   __ bswapl(temp);
       
  2514   __ cmpl(key, temp);
       
  2515   __ jcc(Assembler::notEqual, default_case);
       
  2516 
       
  2517   // entry found -> j = offset
       
  2518   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
       
  2519   __ profile_switch_case(i, key, array);
       
  2520   __ bswapl(j);
       
  2521   LP64_ONLY(__ movslq(j, j));
       
  2522 
       
  2523   NOT_LP64(__ restore_bcp());
       
  2524   NOT_LP64(__ restore_locals());                           // restore rdi
       
  2525 
       
  2526   __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
       
  2527   __ addptr(rbcp, j);
       
  2528   __ dispatch_only(vtos);
       
  2529 
       
  2530   // default case -> j = default offset
       
  2531   __ bind(default_case);
       
  2532   __ profile_switch_default(i);
       
  2533   __ movl(j, Address(array, -2 * BytesPerInt));
       
  2534   __ bswapl(j);
       
  2535   LP64_ONLY(__ movslq(j, j));
       
  2536 
       
  2537   NOT_LP64(__ restore_bcp());
       
  2538   NOT_LP64(__ restore_locals());
       
  2539 
       
  2540   __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1));
       
  2541   __ addptr(rbcp, j);
       
  2542   __ dispatch_only(vtos);
       
  2543 }
       
  2544 
       
  2545 void TemplateTable::_return(TosState state) {
       
  2546   transition(state, state);
       
  2547 
       
  2548   assert(_desc->calls_vm(),
       
  2549          "inconsistent calls_vm information"); // call in remove_activation
       
  2550 
       
  2551   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
       
  2552     assert(state == vtos, "only valid state");
       
  2553     Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rax);
       
  2554     __ movptr(robj, aaddress(0));
       
  2555     __ load_klass(rdi, robj);
       
  2556     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
       
  2557     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
       
  2558     Label skip_register_finalizer;
       
  2559     __ jcc(Assembler::zero, skip_register_finalizer);
       
  2560 
       
  2561     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj);
       
  2562 
       
  2563     __ bind(skip_register_finalizer);
       
  2564   }
       
  2565 
       
  2566   // Narrow result if state is itos but result type is smaller.
       
  2567   // Need to narrow in the return bytecode rather than in generate_return_entry
       
  2568   // since compiled code callers expect the result to already be narrowed.
       
  2569   if (state == itos) {
       
  2570     __ narrow(rax);
       
  2571   }
       
  2572   __ remove_activation(state, rbcp);
       
  2573 
       
  2574   __ jmp(rbcp);
       
  2575 }
       
  2576 
       
  2577 // ----------------------------------------------------------------------------
       
  2578 // Volatile variables demand their effects be made known to all CPU's
       
  2579 // in order.  Store buffers on most chips allow reads & writes to
       
  2580 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
       
  2581 // without some kind of memory barrier (i.e., it's not sufficient that
       
  2582 // the interpreter does not reorder volatile references, the hardware
       
  2583 // also must not reorder them).
       
  2584 //
       
  2585 // According to the new Java Memory Model (JMM):
       
  2586 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
       
  2587 //     writes act as aquire & release, so:
       
  2588 // (2) A read cannot let unrelated NON-volatile memory refs that
       
  2589 //     happen after the read float up to before the read.  It's OK for
       
  2590 //     non-volatile memory refs that happen before the volatile read to
       
  2591 //     float down below it.
       
  2592 // (3) Similar a volatile write cannot let unrelated NON-volatile
       
  2593 //     memory refs that happen BEFORE the write float down to after the
       
  2594 //     write.  It's OK for non-volatile memory refs that happen after the
       
  2595 //     volatile write to float up before it.
       
  2596 //
       
  2597 // We only put in barriers around volatile refs (they are expensive),
       
  2598 // not _between_ memory refs (that would require us to track the
       
  2599 // flavor of the previous memory refs).  Requirements (2) and (3)
       
  2600 // require some barriers before volatile stores and after volatile
       
  2601 // loads.  These nearly cover requirement (1) but miss the
       
  2602 // volatile-store-volatile-load case.  This final case is placed after
       
  2603 // volatile-stores although it could just as well go before
       
  2604 // volatile-loads.
       
  2605 
       
  2606 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
       
  2607   // Helper function to insert a is-volatile test and memory barrier
       
  2608   if(!os::is_MP()) return;    // Not needed on single CPU
       
  2609   __ membar(order_constraint);
       
  2610 }
       
  2611 
       
  2612 void TemplateTable::resolve_cache_and_index(int byte_no,
       
  2613                                             Register Rcache,
       
  2614                                             Register index,
       
  2615                                             size_t index_size) {
       
  2616   const Register temp = rbx;
       
  2617   assert_different_registers(Rcache, index, temp);
       
  2618 
       
  2619   Label resolved;
       
  2620 
       
  2621   Bytecodes::Code code = bytecode();
       
  2622   switch (code) {
       
  2623   case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
       
  2624   case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
       
  2625   default: break;
       
  2626   }
       
  2627 
       
  2628   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
       
  2629   __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
       
  2630   __ cmpl(temp, code);  // have we resolved this bytecode?
       
  2631   __ jcc(Assembler::equal, resolved);
       
  2632 
       
  2633   // resolve first time through
       
  2634   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
       
  2635   __ movl(temp, code);
       
  2636   __ call_VM(noreg, entry, temp);
       
  2637   // Update registers with resolved info
       
  2638   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
       
  2639   __ bind(resolved);
       
  2640 }
       
  2641 
       
  2642 // The cache and index registers must be set before call
       
  2643 void TemplateTable::load_field_cp_cache_entry(Register obj,
       
  2644                                               Register cache,
       
  2645                                               Register index,
       
  2646                                               Register off,
       
  2647                                               Register flags,
       
  2648                                               bool is_static = false) {
       
  2649   assert_different_registers(cache, index, flags, off);
       
  2650 
       
  2651   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
       
  2652   // Field offset
       
  2653   __ movptr(off, Address(cache, index, Address::times_ptr,
       
  2654                          in_bytes(cp_base_offset +
       
  2655                                   ConstantPoolCacheEntry::f2_offset())));
       
  2656   // Flags
       
  2657   __ movl(flags, Address(cache, index, Address::times_ptr,
       
  2658                          in_bytes(cp_base_offset +
       
  2659                                   ConstantPoolCacheEntry::flags_offset())));
       
  2660 
       
  2661   // klass overwrite register
       
  2662   if (is_static) {
       
  2663     __ movptr(obj, Address(cache, index, Address::times_ptr,
       
  2664                            in_bytes(cp_base_offset +
       
  2665                                     ConstantPoolCacheEntry::f1_offset())));
       
  2666     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
       
  2667     __ movptr(obj, Address(obj, mirror_offset));
       
  2668   }
       
  2669 }
       
  2670 
       
  2671 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
       
  2672                                                Register method,
       
  2673                                                Register itable_index,
       
  2674                                                Register flags,
       
  2675                                                bool is_invokevirtual,
       
  2676                                                bool is_invokevfinal, /*unused*/
       
  2677                                                bool is_invokedynamic) {
       
  2678   // setup registers
       
  2679   const Register cache = rcx;
       
  2680   const Register index = rdx;
       
  2681   assert_different_registers(method, flags);
       
  2682   assert_different_registers(method, cache, index);
       
  2683   assert_different_registers(itable_index, flags);
       
  2684   assert_different_registers(itable_index, cache, index);
       
  2685   // determine constant pool cache field offsets
       
  2686   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
       
  2687   const int method_offset = in_bytes(
       
  2688     ConstantPoolCache::base_offset() +
       
  2689       ((byte_no == f2_byte)
       
  2690        ? ConstantPoolCacheEntry::f2_offset()
       
  2691        : ConstantPoolCacheEntry::f1_offset()));
       
  2692   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
       
  2693                                     ConstantPoolCacheEntry::flags_offset());
       
  2694   // access constant pool cache fields
       
  2695   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
       
  2696                                     ConstantPoolCacheEntry::f2_offset());
       
  2697 
       
  2698   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
       
  2699   resolve_cache_and_index(byte_no, cache, index, index_size);
       
  2700     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
       
  2701 
       
  2702   if (itable_index != noreg) {
       
  2703     // pick up itable or appendix index from f2 also:
       
  2704     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
       
  2705   }
       
  2706   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
       
  2707 }
       
  2708 
       
  2709 // The registers cache and index expected to be set before call.
       
  2710 // Correct values of the cache and index registers are preserved.
       
  2711 void TemplateTable::jvmti_post_field_access(Register cache,
       
  2712                                             Register index,
       
  2713                                             bool is_static,
       
  2714                                             bool has_tos) {
       
  2715   if (JvmtiExport::can_post_field_access()) {
       
  2716     // Check to see if a field access watch has been set before we take
       
  2717     // the time to call into the VM.
       
  2718     Label L1;
       
  2719     assert_different_registers(cache, index, rax);
       
  2720     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
       
  2721     __ testl(rax,rax);
       
  2722     __ jcc(Assembler::zero, L1);
       
  2723 
       
  2724     // cache entry pointer
       
  2725     __ addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
       
  2726     __ shll(index, LogBytesPerWord);
       
  2727     __ addptr(cache, index);
       
  2728     if (is_static) {
       
  2729       __ xorptr(rax, rax);      // NULL object reference
       
  2730     } else {
       
  2731       __ pop(atos);         // Get the object
       
  2732       __ verify_oop(rax);
       
  2733       __ push(atos);        // Restore stack state
       
  2734     }
       
  2735     // rax,:   object pointer or NULL
       
  2736     // cache: cache entry pointer
       
  2737     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
       
  2738                rax, cache);
       
  2739     __ get_cache_and_index_at_bcp(cache, index, 1);
       
  2740     __ bind(L1);
       
  2741   }
       
  2742 }
       
  2743 
       
  2744 void TemplateTable::pop_and_check_object(Register r) {
       
  2745   __ pop_ptr(r);
       
  2746   __ null_check(r);  // for field access must check obj.
       
  2747   __ verify_oop(r);
       
  2748 }
       
  2749 
       
  2750 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
       
  2751   transition(vtos, vtos);
       
  2752 
       
  2753   const Register cache = rcx;
       
  2754   const Register index = rdx;
       
  2755   const Register obj   = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
       
  2756   const Register off   = rbx;
       
  2757   const Register flags = rax;
       
  2758   const Register bc    = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // uses same reg as obj, so don't mix them
       
  2759 
       
  2760   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
       
  2761   jvmti_post_field_access(cache, index, is_static, false);
       
  2762   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
       
  2763 
       
  2764   if (!is_static) pop_and_check_object(obj);
       
  2765 
       
  2766   const Address field(obj, off, Address::times_1, 0*wordSize);
       
  2767   NOT_LP64(const Address hi(obj, off, Address::times_1, 1*wordSize));
       
  2768 
       
  2769   Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
       
  2770 
       
  2771   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
       
  2772   // Make sure we don't need to mask edx after the above shift
       
  2773   assert(btos == 0, "change code, btos != 0");
       
  2774 
       
  2775   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
       
  2776 
       
  2777   __ jcc(Assembler::notZero, notByte);
       
  2778   // btos
       
  2779   __ load_signed_byte(rax, field);
       
  2780   __ push(btos);
       
  2781   // Rewrite bytecode to be faster
       
  2782   if (!is_static && rc == may_rewrite) {
       
  2783     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
       
  2784   }
       
  2785   __ jmp(Done);
       
  2786 
       
  2787   __ bind(notByte);
       
  2788   __ cmpl(flags, ztos);
       
  2789   __ jcc(Assembler::notEqual, notBool);
       
  2790 
       
  2791   // ztos (same code as btos)
       
  2792   __ load_signed_byte(rax, field);
       
  2793   __ push(ztos);
       
  2794   // Rewrite bytecode to be faster
       
  2795   if (!is_static && rc == may_rewrite) {
       
  2796     // use btos rewriting, no truncating to t/f bit is needed for getfield.
       
  2797     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
       
  2798   }
       
  2799   __ jmp(Done);
       
  2800 
       
  2801   __ bind(notBool);
       
  2802   __ cmpl(flags, atos);
       
  2803   __ jcc(Assembler::notEqual, notObj);
       
  2804   // atos
       
  2805   __ load_heap_oop(rax, field);
       
  2806   __ push(atos);
       
  2807   if (!is_static && rc == may_rewrite) {
       
  2808     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
       
  2809   }
       
  2810   __ jmp(Done);
       
  2811 
       
  2812   __ bind(notObj);
       
  2813   __ cmpl(flags, itos);
       
  2814   __ jcc(Assembler::notEqual, notInt);
       
  2815   // itos
       
  2816   __ movl(rax, field);
       
  2817   __ push(itos);
       
  2818   // Rewrite bytecode to be faster
       
  2819   if (!is_static && rc == may_rewrite) {
       
  2820     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
       
  2821   }
       
  2822   __ jmp(Done);
       
  2823 
       
  2824   __ bind(notInt);
       
  2825   __ cmpl(flags, ctos);
       
  2826   __ jcc(Assembler::notEqual, notChar);
       
  2827   // ctos
       
  2828   __ load_unsigned_short(rax, field);
       
  2829   __ push(ctos);
       
  2830   // Rewrite bytecode to be faster
       
  2831   if (!is_static && rc == may_rewrite) {
       
  2832     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
       
  2833   }
       
  2834   __ jmp(Done);
       
  2835 
       
  2836   __ bind(notChar);
       
  2837   __ cmpl(flags, stos);
       
  2838   __ jcc(Assembler::notEqual, notShort);
       
  2839   // stos
       
  2840   __ load_signed_short(rax, field);
       
  2841   __ push(stos);
       
  2842   // Rewrite bytecode to be faster
       
  2843   if (!is_static && rc == may_rewrite) {
       
  2844     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
       
  2845   }
       
  2846   __ jmp(Done);
       
  2847 
       
  2848   __ bind(notShort);
       
  2849   __ cmpl(flags, ltos);
       
  2850   __ jcc(Assembler::notEqual, notLong);
       
  2851   // ltos
       
  2852 
       
  2853 #ifndef _LP64
       
  2854   // Generate code as if volatile.  There just aren't enough registers to
       
  2855   // save that information and this code is faster than the test.
       
  2856   __ fild_d(field);                // Must load atomically
       
  2857   __ subptr(rsp,2*wordSize);    // Make space for store
       
  2858   __ fistp_d(Address(rsp,0));
       
  2859   __ pop(rax);
       
  2860   __ pop(rdx);
       
  2861 #else
       
  2862   __ movq(rax, field);
       
  2863 #endif
       
  2864 
       
  2865   __ push(ltos);
       
  2866   // Rewrite bytecode to be faster
       
  2867   LP64_ONLY(if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx));
       
  2868   __ jmp(Done);
       
  2869 
       
  2870   __ bind(notLong);
       
  2871   __ cmpl(flags, ftos);
       
  2872   __ jcc(Assembler::notEqual, notFloat);
       
  2873   // ftos
       
  2874 
       
  2875   __ load_float(field);
       
  2876   __ push(ftos);
       
  2877   // Rewrite bytecode to be faster
       
  2878   if (!is_static && rc == may_rewrite) {
       
  2879     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
       
  2880   }
       
  2881   __ jmp(Done);
       
  2882 
       
  2883   __ bind(notFloat);
       
  2884 #ifdef ASSERT
       
  2885   __ cmpl(flags, dtos);
       
  2886   __ jcc(Assembler::notEqual, notDouble);
       
  2887 #endif
       
  2888   // dtos
       
  2889   __ load_double(field);
       
  2890   __ push(dtos);
       
  2891   // Rewrite bytecode to be faster
       
  2892   if (!is_static && rc == may_rewrite) {
       
  2893     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
       
  2894   }
       
  2895 #ifdef ASSERT
       
  2896   __ jmp(Done);
       
  2897 
       
  2898 
       
  2899   __ bind(notDouble);
       
  2900   __ stop("Bad state");
       
  2901 #endif
       
  2902 
       
  2903   __ bind(Done);
       
  2904   // [jk] not needed currently
       
  2905   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
       
  2906   //                                              Assembler::LoadStore));
       
  2907 }
       
  2908 
       
  2909 void TemplateTable::getfield(int byte_no) {
       
  2910   getfield_or_static(byte_no, false);
       
  2911 }
       
  2912 
       
  2913 void TemplateTable::nofast_getfield(int byte_no) {
       
  2914   getfield_or_static(byte_no, false, may_not_rewrite);
       
  2915 }
       
  2916 
       
  2917 void TemplateTable::getstatic(int byte_no) {
       
  2918   getfield_or_static(byte_no, true);
       
  2919 }
       
  2920 
       
  2921 
       
  2922 // The registers cache and index expected to be set before call.
       
  2923 // The function may destroy various registers, just not the cache and index registers.
       
  2924 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
       
  2925 
       
  2926   const Register robj = LP64_ONLY(c_rarg2)   NOT_LP64(rax);
       
  2927   const Register RBX  = LP64_ONLY(c_rarg1)   NOT_LP64(rbx);
       
  2928   const Register RCX  = LP64_ONLY(c_rarg3)   NOT_LP64(rcx);
       
  2929   const Register RDX  = LP64_ONLY(rscratch1) NOT_LP64(rdx);
       
  2930 
       
  2931   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
       
  2932 
       
  2933   if (JvmtiExport::can_post_field_modification()) {
       
  2934     // Check to see if a field modification watch has been set before
       
  2935     // we take the time to call into the VM.
       
  2936     Label L1;
       
  2937     assert_different_registers(cache, index, rax);
       
  2938     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
       
  2939     __ testl(rax, rax);
       
  2940     __ jcc(Assembler::zero, L1);
       
  2941 
       
  2942     __ get_cache_and_index_at_bcp(robj, RDX, 1);
       
  2943 
       
  2944 
       
  2945     if (is_static) {
       
  2946       // Life is simple.  Null out the object pointer.
       
  2947       __ xorl(RBX, RBX);
       
  2948 
       
  2949     } else {
       
  2950       // Life is harder. The stack holds the value on top, followed by
       
  2951       // the object.  We don't know the size of the value, though; it
       
  2952       // could be one or two words depending on its type. As a result,
       
  2953       // we must find the type to determine where the object is.
       
  2954 #ifndef _LP64
       
  2955       Label two_word, valsize_known;
       
  2956 #endif
       
  2957       __ movl(RCX, Address(robj, RDX,
       
  2958                            Address::times_ptr,
       
  2959                            in_bytes(cp_base_offset +
       
  2960                                      ConstantPoolCacheEntry::flags_offset())));
       
  2961       NOT_LP64(__ mov(rbx, rsp));
       
  2962       __ shrl(RCX, ConstantPoolCacheEntry::tos_state_shift);
       
  2963 
       
  2964       // Make sure we don't need to mask rcx after the above shift
       
  2965       ConstantPoolCacheEntry::verify_tos_state_shift();
       
  2966 #ifdef _LP64
       
  2967       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
       
  2968       __ cmpl(c_rarg3, ltos);
       
  2969       __ cmovptr(Assembler::equal,
       
  2970                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
       
  2971       __ cmpl(c_rarg3, dtos);
       
  2972       __ cmovptr(Assembler::equal,
       
  2973                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
       
  2974 #else
       
  2975       __ cmpl(rcx, ltos);
       
  2976       __ jccb(Assembler::equal, two_word);
       
  2977       __ cmpl(rcx, dtos);
       
  2978       __ jccb(Assembler::equal, two_word);
       
  2979       __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
       
  2980       __ jmpb(valsize_known);
       
  2981 
       
  2982       __ bind(two_word);
       
  2983       __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
       
  2984 
       
  2985       __ bind(valsize_known);
       
  2986       // setup object pointer
       
  2987       __ movptr(rbx, Address(rbx, 0));
       
  2988 #endif
       
  2989     }
       
  2990     // cache entry pointer
       
  2991     __ addptr(robj, in_bytes(cp_base_offset));
       
  2992     __ shll(RDX, LogBytesPerWord);
       
  2993     __ addptr(robj, RDX);
       
  2994     // object (tos)
       
  2995     __ mov(RCX, rsp);
       
  2996     // c_rarg1: object pointer set up above (NULL if static)
       
  2997     // c_rarg2: cache entry pointer
       
  2998     // c_rarg3: jvalue object on the stack
       
  2999     __ call_VM(noreg,
       
  3000                CAST_FROM_FN_PTR(address,
       
  3001                                 InterpreterRuntime::post_field_modification),
       
  3002                RBX, robj, RCX);
       
  3003     __ get_cache_and_index_at_bcp(cache, index, 1);
       
  3004     __ bind(L1);
       
  3005   }
       
  3006 }
       
  3007 
       
  3008 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
       
  3009   transition(vtos, vtos);
       
  3010 
       
  3011   const Register cache = rcx;
       
  3012   const Register index = rdx;
       
  3013   const Register obj   = rcx;
       
  3014   const Register off   = rbx;
       
  3015   const Register flags = rax;
       
  3016   const Register bc    = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
       
  3017 
       
  3018   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
       
  3019   jvmti_post_field_mod(cache, index, is_static);
       
  3020   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
       
  3021 
       
  3022   // [jk] not needed currently
       
  3023   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
       
  3024   //                                              Assembler::StoreStore));
       
  3025 
       
  3026   Label notVolatile, Done;
       
  3027   __ movl(rdx, flags);
       
  3028   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
       
  3029   __ andl(rdx, 0x1);
       
  3030 
       
  3031   // field addresses
       
  3032   const Address field(obj, off, Address::times_1, 0*wordSize);
       
  3033   NOT_LP64( const Address hi(obj, off, Address::times_1, 1*wordSize);)
       
  3034 
       
  3035   Label notByte, notBool, notInt, notShort, notChar,
       
  3036         notLong, notFloat, notObj, notDouble;
       
  3037 
       
  3038   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
       
  3039 
       
  3040   assert(btos == 0, "change code, btos != 0");
       
  3041   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
       
  3042   __ jcc(Assembler::notZero, notByte);
       
  3043 
       
  3044   // btos
       
  3045   {
       
  3046     __ pop(btos);
       
  3047     if (!is_static) pop_and_check_object(obj);
       
  3048     __ movb(field, rax);
       
  3049     if (!is_static && rc == may_rewrite) {
       
  3050       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
       
  3051     }
       
  3052     __ jmp(Done);
       
  3053   }
       
  3054 
       
  3055   __ bind(notByte);
       
  3056   __ cmpl(flags, ztos);
       
  3057   __ jcc(Assembler::notEqual, notBool);
       
  3058 
       
  3059   // ztos
       
  3060   {
       
  3061     __ pop(ztos);
       
  3062     if (!is_static) pop_and_check_object(obj);
       
  3063     __ andl(rax, 0x1);
       
  3064     __ movb(field, rax);
       
  3065     if (!is_static && rc == may_rewrite) {
       
  3066       patch_bytecode(Bytecodes::_fast_zputfield, bc, rbx, true, byte_no);
       
  3067     }
       
  3068     __ jmp(Done);
       
  3069   }
       
  3070 
       
  3071   __ bind(notBool);
       
  3072   __ cmpl(flags, atos);
       
  3073   __ jcc(Assembler::notEqual, notObj);
       
  3074 
       
  3075   // atos
       
  3076   {
       
  3077     __ pop(atos);
       
  3078     if (!is_static) pop_and_check_object(obj);
       
  3079     // Store into the field
       
  3080     do_oop_store(_masm, field, rax, _bs->kind(), false);
       
  3081     if (!is_static && rc == may_rewrite) {
       
  3082       patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
       
  3083     }
       
  3084     __ jmp(Done);
       
  3085   }
       
  3086 
       
  3087   __ bind(notObj);
       
  3088   __ cmpl(flags, itos);
       
  3089   __ jcc(Assembler::notEqual, notInt);
       
  3090 
       
  3091   // itos
       
  3092   {
       
  3093     __ pop(itos);
       
  3094     if (!is_static) pop_and_check_object(obj);
       
  3095     __ movl(field, rax);
       
  3096     if (!is_static && rc == may_rewrite) {
       
  3097       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
       
  3098     }
       
  3099     __ jmp(Done);
       
  3100   }
       
  3101 
       
  3102   __ bind(notInt);
       
  3103   __ cmpl(flags, ctos);
       
  3104   __ jcc(Assembler::notEqual, notChar);
       
  3105 
       
  3106   // ctos
       
  3107   {
       
  3108     __ pop(ctos);
       
  3109     if (!is_static) pop_and_check_object(obj);
       
  3110     __ movw(field, rax);
       
  3111     if (!is_static && rc == may_rewrite) {
       
  3112       patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
       
  3113     }
       
  3114     __ jmp(Done);
       
  3115   }
       
  3116 
       
  3117   __ bind(notChar);
       
  3118   __ cmpl(flags, stos);
       
  3119   __ jcc(Assembler::notEqual, notShort);
       
  3120 
       
  3121   // stos
       
  3122   {
       
  3123     __ pop(stos);
       
  3124     if (!is_static) pop_and_check_object(obj);
       
  3125     __ movw(field, rax);
       
  3126     if (!is_static && rc == may_rewrite) {
       
  3127       patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
       
  3128     }
       
  3129     __ jmp(Done);
       
  3130   }
       
  3131 
       
  3132   __ bind(notShort);
       
  3133   __ cmpl(flags, ltos);
       
  3134   __ jcc(Assembler::notEqual, notLong);
       
  3135 
       
  3136   // ltos
       
  3137 #ifdef _LP64
       
  3138   {
       
  3139     __ pop(ltos);
       
  3140     if (!is_static) pop_and_check_object(obj);
       
  3141     __ movq(field, rax);
       
  3142     if (!is_static && rc == may_rewrite) {
       
  3143       patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
       
  3144     }
       
  3145     __ jmp(Done);
       
  3146   }
       
  3147 #else
       
  3148   {
       
  3149     Label notVolatileLong;
       
  3150     __ testl(rdx, rdx);
       
  3151     __ jcc(Assembler::zero, notVolatileLong);
       
  3152 
       
  3153     __ pop(ltos);  // overwrites rdx, do this after testing volatile.
       
  3154     if (!is_static) pop_and_check_object(obj);
       
  3155 
       
  3156     // Replace with real volatile test
       
  3157     __ push(rdx);
       
  3158     __ push(rax);                 // Must update atomically with FIST
       
  3159     __ fild_d(Address(rsp,0));    // So load into FPU register
       
  3160     __ fistp_d(field);            // and put into memory atomically
       
  3161     __ addptr(rsp, 2*wordSize);
       
  3162     // volatile_barrier();
       
  3163     volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
       
  3164                                                  Assembler::StoreStore));
       
  3165     // Don't rewrite volatile version
       
  3166     __ jmp(notVolatile);
       
  3167 
       
  3168     __ bind(notVolatileLong);
       
  3169 
       
  3170     __ pop(ltos);  // overwrites rdx
       
  3171     if (!is_static) pop_and_check_object(obj);
       
  3172     __ movptr(hi, rdx);
       
  3173     __ movptr(field, rax);
       
  3174     // Don't rewrite to _fast_lputfield for potential volatile case.
       
  3175     __ jmp(notVolatile);
       
  3176   }
       
  3177 #endif // _LP64
       
  3178 
       
  3179   __ bind(notLong);
       
  3180   __ cmpl(flags, ftos);
       
  3181   __ jcc(Assembler::notEqual, notFloat);
       
  3182 
       
  3183   // ftos
       
  3184   {
       
  3185     __ pop(ftos);
       
  3186     if (!is_static) pop_and_check_object(obj);
       
  3187     __ store_float(field);
       
  3188     if (!is_static && rc == may_rewrite) {
       
  3189       patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
       
  3190     }
       
  3191     __ jmp(Done);
       
  3192   }
       
  3193 
       
  3194   __ bind(notFloat);
       
  3195 #ifdef ASSERT
       
  3196   __ cmpl(flags, dtos);
       
  3197   __ jcc(Assembler::notEqual, notDouble);
       
  3198 #endif
       
  3199 
       
  3200   // dtos
       
  3201   {
       
  3202     __ pop(dtos);
       
  3203     if (!is_static) pop_and_check_object(obj);
       
  3204     __ store_double(field);
       
  3205     if (!is_static && rc == may_rewrite) {
       
  3206       patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
       
  3207     }
       
  3208   }
       
  3209 
       
  3210 #ifdef ASSERT
       
  3211   __ jmp(Done);
       
  3212 
       
  3213   __ bind(notDouble);
       
  3214   __ stop("Bad state");
       
  3215 #endif
       
  3216 
       
  3217   __ bind(Done);
       
  3218 
       
  3219   // Check for volatile store
       
  3220   __ testl(rdx, rdx);
       
  3221   __ jcc(Assembler::zero, notVolatile);
       
  3222   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
       
  3223                                                Assembler::StoreStore));
       
  3224   __ bind(notVolatile);
       
  3225 }
       
  3226 
       
  3227 void TemplateTable::putfield(int byte_no) {
       
  3228   putfield_or_static(byte_no, false);
       
  3229 }
       
  3230 
       
  3231 void TemplateTable::nofast_putfield(int byte_no) {
       
  3232   putfield_or_static(byte_no, false, may_not_rewrite);
       
  3233 }
       
  3234 
       
  3235 void TemplateTable::putstatic(int byte_no) {
       
  3236   putfield_or_static(byte_no, true);
       
  3237 }
       
  3238 
       
  3239 void TemplateTable::jvmti_post_fast_field_mod() {
       
  3240 
       
  3241   const Register scratch = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
       
  3242 
       
  3243   if (JvmtiExport::can_post_field_modification()) {
       
  3244     // Check to see if a field modification watch has been set before
       
  3245     // we take the time to call into the VM.
       
  3246     Label L2;
       
  3247     __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
       
  3248     __ testl(scratch, scratch);
       
  3249     __ jcc(Assembler::zero, L2);
       
  3250     __ pop_ptr(rbx);                  // copy the object pointer from tos
       
  3251     __ verify_oop(rbx);
       
  3252     __ push_ptr(rbx);                 // put the object pointer back on tos
       
  3253     // Save tos values before call_VM() clobbers them. Since we have
       
  3254     // to do it for every data type, we use the saved values as the
       
  3255     // jvalue object.
       
  3256     switch (bytecode()) {          // load values into the jvalue object
       
  3257     case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
       
  3258     case Bytecodes::_fast_bputfield: // fall through
       
  3259     case Bytecodes::_fast_zputfield: // fall through
       
  3260     case Bytecodes::_fast_sputfield: // fall through
       
  3261     case Bytecodes::_fast_cputfield: // fall through
       
  3262     case Bytecodes::_fast_iputfield: __ push_i(rax); break;
       
  3263     case Bytecodes::_fast_dputfield: __ push(dtos); break;
       
  3264     case Bytecodes::_fast_fputfield: __ push(ftos); break;
       
  3265     case Bytecodes::_fast_lputfield: __ push_l(rax); break;
       
  3266 
       
  3267     default:
       
  3268       ShouldNotReachHere();
       
  3269     }
       
  3270     __ mov(scratch, rsp);             // points to jvalue on the stack
       
  3271     // access constant pool cache entry
       
  3272     LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1));
       
  3273     NOT_LP64(__ get_cache_entry_pointer_at_bcp(rax, rdx, 1));
       
  3274     __ verify_oop(rbx);
       
  3275     // rbx: object pointer copied above
       
  3276     // c_rarg2: cache entry pointer
       
  3277     // c_rarg3: jvalue object on the stack
       
  3278     LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3));
       
  3279     NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx));
       
  3280 
       
  3281     switch (bytecode()) {             // restore tos values
       
  3282     case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
       
  3283     case Bytecodes::_fast_bputfield: // fall through
       
  3284     case Bytecodes::_fast_zputfield: // fall through
       
  3285     case Bytecodes::_fast_sputfield: // fall through
       
  3286     case Bytecodes::_fast_cputfield: // fall through
       
  3287     case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
       
  3288     case Bytecodes::_fast_dputfield: __ pop(dtos); break;
       
  3289     case Bytecodes::_fast_fputfield: __ pop(ftos); break;
       
  3290     case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
       
  3291     default: break;
       
  3292     }
       
  3293     __ bind(L2);
       
  3294   }
       
  3295 }
       
  3296 
       
  3297 void TemplateTable::fast_storefield(TosState state) {
       
  3298   transition(state, vtos);
       
  3299 
       
  3300   ByteSize base = ConstantPoolCache::base_offset();
       
  3301 
       
  3302   jvmti_post_fast_field_mod();
       
  3303 
       
  3304   // access constant pool cache
       
  3305   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
       
  3306 
       
  3307   // test for volatile with rdx but rdx is tos register for lputfield.
       
  3308   __ movl(rdx, Address(rcx, rbx, Address::times_ptr,
       
  3309                        in_bytes(base +
       
  3310                                 ConstantPoolCacheEntry::flags_offset())));
       
  3311 
       
  3312   // replace index with field offset from cache entry
       
  3313   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr,
       
  3314                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
       
  3315 
       
  3316   // [jk] not needed currently
       
  3317   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
       
  3318   //                                              Assembler::StoreStore));
       
  3319 
       
  3320   Label notVolatile;
       
  3321   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
       
  3322   __ andl(rdx, 0x1);
       
  3323 
       
  3324   // Get object from stack
       
  3325   pop_and_check_object(rcx);
       
  3326 
       
  3327   // field address
       
  3328   const Address field(rcx, rbx, Address::times_1);
       
  3329 
       
  3330   // access field
       
  3331   switch (bytecode()) {
       
  3332   case Bytecodes::_fast_aputfield:
       
  3333     do_oop_store(_masm, field, rax, _bs->kind(), false);
       
  3334     break;
       
  3335   case Bytecodes::_fast_lputfield:
       
  3336 #ifdef _LP64
       
  3337   __ movq(field, rax);
       
  3338 #else
       
  3339   __ stop("should not be rewritten");
       
  3340 #endif
       
  3341     break;
       
  3342   case Bytecodes::_fast_iputfield:
       
  3343     __ movl(field, rax);
       
  3344     break;
       
  3345   case Bytecodes::_fast_zputfield:
       
  3346     __ andl(rax, 0x1);  // boolean is true if LSB is 1
       
  3347     // fall through to bputfield
       
  3348   case Bytecodes::_fast_bputfield:
       
  3349     __ movb(field, rax);
       
  3350     break;
       
  3351   case Bytecodes::_fast_sputfield:
       
  3352     // fall through
       
  3353   case Bytecodes::_fast_cputfield:
       
  3354     __ movw(field, rax);
       
  3355     break;
       
  3356   case Bytecodes::_fast_fputfield:
       
  3357     __ store_float(field);
       
  3358     break;
       
  3359   case Bytecodes::_fast_dputfield:
       
  3360     __ store_double(field);
       
  3361     break;
       
  3362   default:
       
  3363     ShouldNotReachHere();
       
  3364   }
       
  3365 
       
  3366   // Check for volatile store
       
  3367   __ testl(rdx, rdx);
       
  3368   __ jcc(Assembler::zero, notVolatile);
       
  3369   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
       
  3370                                                Assembler::StoreStore));
       
  3371   __ bind(notVolatile);
       
  3372 }
       
  3373 
       
  3374 void TemplateTable::fast_accessfield(TosState state) {
       
  3375   transition(atos, state);
       
  3376 
       
  3377   // Do the JVMTI work here to avoid disturbing the register state below
       
  3378   if (JvmtiExport::can_post_field_access()) {
       
  3379     // Check to see if a field access watch has been set before we
       
  3380     // take the time to call into the VM.
       
  3381     Label L1;
       
  3382     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
       
  3383     __ testl(rcx, rcx);
       
  3384     __ jcc(Assembler::zero, L1);
       
  3385     // access constant pool cache entry
       
  3386     LP64_ONLY(__ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1));
       
  3387     NOT_LP64(__ get_cache_entry_pointer_at_bcp(rcx, rdx, 1));
       
  3388     __ verify_oop(rax);
       
  3389     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
       
  3390     LP64_ONLY(__ mov(c_rarg1, rax));
       
  3391     // c_rarg1: object pointer copied above
       
  3392     // c_rarg2: cache entry pointer
       
  3393     LP64_ONLY(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2));
       
  3394     NOT_LP64(__ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx));
       
  3395     __ pop_ptr(rax); // restore object pointer
       
  3396     __ bind(L1);
       
  3397   }
       
  3398 
       
  3399   // access constant pool cache
       
  3400   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
       
  3401   // replace index with field offset from cache entry
       
  3402   // [jk] not needed currently
       
  3403   // if (os::is_MP()) {
       
  3404   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
       
  3405   //                        in_bytes(ConstantPoolCache::base_offset() +
       
  3406   //                                 ConstantPoolCacheEntry::flags_offset())));
       
  3407   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
       
  3408   //   __ andl(rdx, 0x1);
       
  3409   // }
       
  3410   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr,
       
  3411                          in_bytes(ConstantPoolCache::base_offset() +
       
  3412                                   ConstantPoolCacheEntry::f2_offset())));
       
  3413 
       
  3414   // rax: object
       
  3415   __ verify_oop(rax);
       
  3416   __ null_check(rax);
       
  3417   Address field(rax, rbx, Address::times_1);
       
  3418 
       
  3419   // access field
       
  3420   switch (bytecode()) {
       
  3421   case Bytecodes::_fast_agetfield:
       
  3422     __ load_heap_oop(rax, field);
       
  3423     __ verify_oop(rax);
       
  3424     break;
       
  3425   case Bytecodes::_fast_lgetfield:
       
  3426 #ifdef _LP64
       
  3427   __ movq(rax, field);
       
  3428 #else
       
  3429   __ stop("should not be rewritten");
       
  3430 #endif
       
  3431     break;
       
  3432   case Bytecodes::_fast_igetfield:
       
  3433     __ movl(rax, field);
       
  3434     break;
       
  3435   case Bytecodes::_fast_bgetfield:
       
  3436     __ movsbl(rax, field);
       
  3437     break;
       
  3438   case Bytecodes::_fast_sgetfield:
       
  3439     __ load_signed_short(rax, field);
       
  3440     break;
       
  3441   case Bytecodes::_fast_cgetfield:
       
  3442     __ load_unsigned_short(rax, field);
       
  3443     break;
       
  3444   case Bytecodes::_fast_fgetfield:
       
  3445     __ load_float(field);
       
  3446     break;
       
  3447   case Bytecodes::_fast_dgetfield:
       
  3448     __ load_double(field);
       
  3449     break;
       
  3450   default:
       
  3451     ShouldNotReachHere();
       
  3452   }
       
  3453   // [jk] not needed currently
       
  3454   // if (os::is_MP()) {
       
  3455   //   Label notVolatile;
       
  3456   //   __ testl(rdx, rdx);
       
  3457   //   __ jcc(Assembler::zero, notVolatile);
       
  3458   //   __ membar(Assembler::LoadLoad);
       
  3459   //   __ bind(notVolatile);
       
  3460   //};
       
  3461 }
       
  3462 
       
  3463 void TemplateTable::fast_xaccess(TosState state) {
       
  3464   transition(vtos, state);
       
  3465 
       
  3466   // get receiver
       
  3467   __ movptr(rax, aaddress(0));
       
  3468   // access constant pool cache
       
  3469   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
       
  3470   __ movptr(rbx,
       
  3471             Address(rcx, rdx, Address::times_ptr,
       
  3472                     in_bytes(ConstantPoolCache::base_offset() +
       
  3473                              ConstantPoolCacheEntry::f2_offset())));
       
  3474   // make sure exception is reported in correct bcp range (getfield is
       
  3475   // next instruction)
       
  3476   __ increment(rbcp);
       
  3477   __ null_check(rax);
       
  3478   const Address field = Address(rax, rbx, Address::times_1, 0*wordSize);
       
  3479   switch (state) {
       
  3480   case itos:
       
  3481     __ movl(rax, field);
       
  3482     break;
       
  3483   case atos:
       
  3484     __ load_heap_oop(rax, field);
       
  3485     __ verify_oop(rax);
       
  3486     break;
       
  3487   case ftos:
       
  3488     __ load_float(field);
       
  3489     break;
       
  3490   default:
       
  3491     ShouldNotReachHere();
       
  3492   }
       
  3493 
       
  3494   // [jk] not needed currently
       
  3495   // if (os::is_MP()) {
       
  3496   //   Label notVolatile;
       
  3497   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
       
  3498   //                        in_bytes(ConstantPoolCache::base_offset() +
       
  3499   //                                 ConstantPoolCacheEntry::flags_offset())));
       
  3500   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
       
  3501   //   __ testl(rdx, 0x1);
       
  3502   //   __ jcc(Assembler::zero, notVolatile);
       
  3503   //   __ membar(Assembler::LoadLoad);
       
  3504   //   __ bind(notVolatile);
       
  3505   // }
       
  3506 
       
  3507   __ decrement(rbcp);
       
  3508 }
       
  3509 
       
  3510 //-----------------------------------------------------------------------------
       
  3511 // Calls
       
  3512 
       
  3513 void TemplateTable::count_calls(Register method, Register temp) {
       
  3514   // implemented elsewhere
       
  3515   ShouldNotReachHere();
       
  3516 }
       
  3517 
       
  3518 void TemplateTable::prepare_invoke(int byte_no,
       
  3519                                    Register method,  // linked method (or i-klass)
       
  3520                                    Register index,   // itable index, MethodType, etc.
       
  3521                                    Register recv,    // if caller wants to see it
       
  3522                                    Register flags    // if caller wants to test it
       
  3523                                    ) {
       
  3524   // determine flags
       
  3525   const Bytecodes::Code code = bytecode();
       
  3526   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
       
  3527   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
       
  3528   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
       
  3529   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
       
  3530   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
       
  3531   const bool load_receiver       = (recv  != noreg);
       
  3532   const bool save_flags          = (flags != noreg);
       
  3533   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
       
  3534   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
       
  3535   assert(flags == noreg || flags == rdx, "");
       
  3536   assert(recv  == noreg || recv  == rcx, "");
       
  3537 
       
  3538   // setup registers & access constant pool cache
       
  3539   if (recv  == noreg)  recv  = rcx;
       
  3540   if (flags == noreg)  flags = rdx;
       
  3541   assert_different_registers(method, index, recv, flags);
       
  3542 
       
  3543   // save 'interpreter return address'
       
  3544   __ save_bcp();
       
  3545 
       
  3546   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
       
  3547 
       
  3548   // maybe push appendix to arguments (just before return address)
       
  3549   if (is_invokedynamic || is_invokehandle) {
       
  3550     Label L_no_push;
       
  3551     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
       
  3552     __ jcc(Assembler::zero, L_no_push);
       
  3553     // Push the appendix as a trailing parameter.
       
  3554     // This must be done before we get the receiver,
       
  3555     // since the parameter_size includes it.
       
  3556     __ push(rbx);
       
  3557     __ mov(rbx, index);
       
  3558     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
       
  3559     __ load_resolved_reference_at_index(index, rbx);
       
  3560     __ pop(rbx);
       
  3561     __ push(index);  // push appendix (MethodType, CallSite, etc.)
       
  3562     __ bind(L_no_push);
       
  3563   }
       
  3564 
       
  3565   // load receiver if needed (after appendix is pushed so parameter size is correct)
       
  3566   // Note: no return address pushed yet
       
  3567   if (load_receiver) {
       
  3568     __ movl(recv, flags);
       
  3569     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
       
  3570     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
       
  3571     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
       
  3572     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
       
  3573     __ movptr(recv, recv_addr);
       
  3574     __ verify_oop(recv);
       
  3575   }
       
  3576 
       
  3577   if (save_flags) {
       
  3578     __ movl(rbcp, flags);
       
  3579   }
       
  3580 
       
  3581   // compute return type
       
  3582   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
       
  3583   // Make sure we don't need to mask flags after the above shift
       
  3584   ConstantPoolCacheEntry::verify_tos_state_shift();
       
  3585   // load return address
       
  3586   {
       
  3587     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
       
  3588     ExternalAddress table(table_addr);
       
  3589     LP64_ONLY(__ lea(rscratch1, table));
       
  3590     LP64_ONLY(__ movptr(flags, Address(rscratch1, flags, Address::times_ptr)));
       
  3591     NOT_LP64(__ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr))));
       
  3592   }
       
  3593 
       
  3594   // push return address
       
  3595   __ push(flags);
       
  3596 
       
  3597   // Restore flags value from the constant pool cache, and restore rsi
       
  3598   // for later null checks.  r13 is the bytecode pointer
       
  3599   if (save_flags) {
       
  3600     __ movl(flags, rbcp);
       
  3601     __ restore_bcp();
       
  3602   }
       
  3603 }
       
  3604 
       
  3605 void TemplateTable::invokevirtual_helper(Register index,
       
  3606                                          Register recv,
       
  3607                                          Register flags) {
       
  3608   // Uses temporary registers rax, rdx
       
  3609   assert_different_registers(index, recv, rax, rdx);
       
  3610   assert(index == rbx, "");
       
  3611   assert(recv  == rcx, "");
       
  3612 
       
  3613   // Test for an invoke of a final method
       
  3614   Label notFinal;
       
  3615   __ movl(rax, flags);
       
  3616   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
       
  3617   __ jcc(Assembler::zero, notFinal);
       
  3618 
       
  3619   const Register method = index;  // method must be rbx
       
  3620   assert(method == rbx,
       
  3621          "Method* must be rbx for interpreter calling convention");
       
  3622 
       
  3623   // do the call - the index is actually the method to call
       
  3624   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
       
  3625 
       
  3626   // It's final, need a null check here!
       
  3627   __ null_check(recv);
       
  3628 
       
  3629   // profile this call
       
  3630   __ profile_final_call(rax);
       
  3631   __ profile_arguments_type(rax, method, rbcp, true);
       
  3632 
       
  3633   __ jump_from_interpreted(method, rax);
       
  3634 
       
  3635   __ bind(notFinal);
       
  3636 
       
  3637   // get receiver klass
       
  3638   __ null_check(recv, oopDesc::klass_offset_in_bytes());
       
  3639   __ load_klass(rax, recv);
       
  3640 
       
  3641   // profile this call
       
  3642   __ profile_virtual_call(rax, rlocals, rdx);
       
  3643   // get target Method* & entry point
       
  3644   __ lookup_virtual_method(rax, index, method);
       
  3645   __ profile_called_method(method, rdx, rbcp);
       
  3646 
       
  3647   __ profile_arguments_type(rdx, method, rbcp, true);
       
  3648   __ jump_from_interpreted(method, rdx);
       
  3649 }
       
  3650 
       
  3651 void TemplateTable::invokevirtual(int byte_no) {
       
  3652   transition(vtos, vtos);
       
  3653   assert(byte_no == f2_byte, "use this argument");
       
  3654   prepare_invoke(byte_no,
       
  3655                  rbx,    // method or vtable index
       
  3656                  noreg,  // unused itable index
       
  3657                  rcx, rdx); // recv, flags
       
  3658 
       
  3659   // rbx: index
       
  3660   // rcx: receiver
       
  3661   // rdx: flags
       
  3662 
       
  3663   invokevirtual_helper(rbx, rcx, rdx);
       
  3664 }
       
  3665 
       
  3666 void TemplateTable::invokespecial(int byte_no) {
       
  3667   transition(vtos, vtos);
       
  3668   assert(byte_no == f1_byte, "use this argument");
       
  3669   prepare_invoke(byte_no, rbx, noreg,  // get f1 Method*
       
  3670                  rcx);  // get receiver also for null check
       
  3671   __ verify_oop(rcx);
       
  3672   __ null_check(rcx);
       
  3673   // do the call
       
  3674   __ profile_call(rax);
       
  3675   __ profile_arguments_type(rax, rbx, rbcp, false);
       
  3676   __ jump_from_interpreted(rbx, rax);
       
  3677 }
       
  3678 
       
  3679 void TemplateTable::invokestatic(int byte_no) {
       
  3680   transition(vtos, vtos);
       
  3681   assert(byte_no == f1_byte, "use this argument");
       
  3682   prepare_invoke(byte_no, rbx);  // get f1 Method*
       
  3683   // do the call
       
  3684   __ profile_call(rax);
       
  3685   __ profile_arguments_type(rax, rbx, rbcp, false);
       
  3686   __ jump_from_interpreted(rbx, rax);
       
  3687 }
       
  3688 
       
  3689 
       
  3690 void TemplateTable::fast_invokevfinal(int byte_no) {
       
  3691   transition(vtos, vtos);
       
  3692   assert(byte_no == f2_byte, "use this argument");
       
  3693   __ stop("fast_invokevfinal not used on x86");
       
  3694 }
       
  3695 
       
  3696 
       
  3697 void TemplateTable::invokeinterface(int byte_no) {
       
  3698   transition(vtos, vtos);
       
  3699   assert(byte_no == f1_byte, "use this argument");
       
  3700   prepare_invoke(byte_no, rax, rbx,  // get f1 Klass*, f2 itable index
       
  3701                  rcx, rdx); // recv, flags
       
  3702 
       
  3703   // rax: interface klass (from f1)
       
  3704   // rbx: itable index (from f2)
       
  3705   // rcx: receiver
       
  3706   // rdx: flags
       
  3707 
       
  3708   // Special case of invokeinterface called for virtual method of
       
  3709   // java.lang.Object.  See cpCacheOop.cpp for details.
       
  3710   // This code isn't produced by javac, but could be produced by
       
  3711   // another compliant java compiler.
       
  3712   Label notMethod;
       
  3713   __ movl(rlocals, rdx);
       
  3714   __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
       
  3715 
       
  3716   __ jcc(Assembler::zero, notMethod);
       
  3717 
       
  3718   invokevirtual_helper(rbx, rcx, rdx);
       
  3719   __ bind(notMethod);
       
  3720 
       
  3721   // Get receiver klass into rdx - also a null check
       
  3722   __ restore_locals();  // restore r14
       
  3723   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
       
  3724   __ load_klass(rdx, rcx);
       
  3725 
       
  3726   // profile this call
       
  3727   __ profile_virtual_call(rdx, rbcp, rlocals);
       
  3728 
       
  3729   Label no_such_interface, no_such_method;
       
  3730 
       
  3731   __ lookup_interface_method(// inputs: rec. class, interface, itable index
       
  3732                              rdx, rax, rbx,
       
  3733                              // outputs: method, scan temp. reg
       
  3734                              rbx, rbcp,
       
  3735                              no_such_interface);
       
  3736 
       
  3737   // rbx: Method* to call
       
  3738   // rcx: receiver
       
  3739   // Check for abstract method error
       
  3740   // Note: This should be done more efficiently via a throw_abstract_method_error
       
  3741   //       interpreter entry point and a conditional jump to it in case of a null
       
  3742   //       method.
       
  3743   __ testptr(rbx, rbx);
       
  3744   __ jcc(Assembler::zero, no_such_method);
       
  3745 
       
  3746   __ profile_called_method(rbx, rbcp, rdx);
       
  3747   __ profile_arguments_type(rdx, rbx, rbcp, true);
       
  3748 
       
  3749   // do the call
       
  3750   // rcx: receiver
       
  3751   // rbx,: Method*
       
  3752   __ jump_from_interpreted(rbx, rdx);
       
  3753   __ should_not_reach_here();
       
  3754 
       
  3755   // exception handling code follows...
       
  3756   // note: must restore interpreter registers to canonical
       
  3757   //       state for exception handling to work correctly!
       
  3758 
       
  3759   __ bind(no_such_method);
       
  3760   // throw exception
       
  3761   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
       
  3762   __ restore_bcp();      // rbcp must be correct for exception handler   (was destroyed)
       
  3763   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
       
  3764   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
       
  3765   // the call_VM checks for exception, so we should never return here.
       
  3766   __ should_not_reach_here();
       
  3767 
       
  3768   __ bind(no_such_interface);
       
  3769   // throw exception
       
  3770   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
       
  3771   __ restore_bcp();      // rbcp must be correct for exception handler   (was destroyed)
       
  3772   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
       
  3773   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
       
  3774                    InterpreterRuntime::throw_IncompatibleClassChangeError));
       
  3775   // the call_VM checks for exception, so we should never return here.
       
  3776   __ should_not_reach_here();
       
  3777 }
       
  3778 
       
  3779 void TemplateTable::invokehandle(int byte_no) {
       
  3780   transition(vtos, vtos);
       
  3781   assert(byte_no == f1_byte, "use this argument");
       
  3782   const Register rbx_method = rbx;
       
  3783   const Register rax_mtype  = rax;
       
  3784   const Register rcx_recv   = rcx;
       
  3785   const Register rdx_flags  = rdx;
       
  3786 
       
  3787   prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
       
  3788   __ verify_method_ptr(rbx_method);
       
  3789   __ verify_oop(rcx_recv);
       
  3790   __ null_check(rcx_recv);
       
  3791 
       
  3792   // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
       
  3793   // rbx: MH.invokeExact_MT method (from f2)
       
  3794 
       
  3795   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
       
  3796 
       
  3797   // FIXME: profile the LambdaForm also
       
  3798   __ profile_final_call(rax);
       
  3799   __ profile_arguments_type(rdx, rbx_method, rbcp, true);
       
  3800 
       
  3801   __ jump_from_interpreted(rbx_method, rdx);
       
  3802 }
       
  3803 
       
  3804 void TemplateTable::invokedynamic(int byte_no) {
       
  3805   transition(vtos, vtos);
       
  3806   assert(byte_no == f1_byte, "use this argument");
       
  3807 
       
  3808   const Register rbx_method   = rbx;
       
  3809   const Register rax_callsite = rax;
       
  3810 
       
  3811   prepare_invoke(byte_no, rbx_method, rax_callsite);
       
  3812 
       
  3813   // rax: CallSite object (from cpool->resolved_references[f1])
       
  3814   // rbx: MH.linkToCallSite method (from f2)
       
  3815 
       
  3816   // Note:  rax_callsite is already pushed by prepare_invoke
       
  3817 
       
  3818   // %%% should make a type profile for any invokedynamic that takes a ref argument
       
  3819   // profile this call
       
  3820   __ profile_call(rbcp);
       
  3821   __ profile_arguments_type(rdx, rbx_method, rbcp, false);
       
  3822 
       
  3823   __ verify_oop(rax_callsite);
       
  3824 
       
  3825   __ jump_from_interpreted(rbx_method, rdx);
       
  3826 }
       
  3827 
       
  3828 //-----------------------------------------------------------------------------
       
  3829 // Allocation
       
  3830 
       
  3831 void TemplateTable::_new() {
       
  3832   transition(vtos, atos);
       
  3833   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
       
  3834   Label slow_case;
       
  3835   Label slow_case_no_pop;
       
  3836   Label done;
       
  3837   Label initialize_header;
       
  3838   Label initialize_object;  // including clearing the fields
       
  3839   Label allocate_shared;
       
  3840 
       
  3841   __ get_cpool_and_tags(rcx, rax);
       
  3842 
       
  3843   // Make sure the class we're about to instantiate has been resolved.
       
  3844   // This is done before loading InstanceKlass to be consistent with the order
       
  3845   // how Constant Pool is updated (see ConstantPool::klass_at_put)
       
  3846   const int tags_offset = Array<u1>::base_offset_in_bytes();
       
  3847   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
       
  3848   __ jcc(Assembler::notEqual, slow_case_no_pop);
       
  3849 
       
  3850   // get InstanceKlass
       
  3851   __ load_resolved_klass_at_index(rcx, rdx, rcx);
       
  3852   __ push(rcx);  // save the contexts of klass for initializing the header
       
  3853 
       
  3854   // make sure klass is initialized & doesn't have finalizer
       
  3855   // make sure klass is fully initialized
       
  3856   __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
       
  3857   __ jcc(Assembler::notEqual, slow_case);
       
  3858 
       
  3859   // get instance_size in InstanceKlass (scaled to a count of bytes)
       
  3860   __ movl(rdx, Address(rcx, Klass::layout_helper_offset()));
       
  3861   // test to see if it has a finalizer or is malformed in some way
       
  3862   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
       
  3863   __ jcc(Assembler::notZero, slow_case);
       
  3864 
       
  3865   //
       
  3866   // Allocate the instance
       
  3867   // 1) Try to allocate in the TLAB
       
  3868   // 2) if fail and the object is large allocate in the shared Eden
       
  3869   // 3) if the above fails (or is not applicable), go to a slow case
       
  3870   // (creates a new TLAB, etc.)
       
  3871 
       
  3872   const bool allow_shared_alloc =
       
  3873     Universe::heap()->supports_inline_contig_alloc();
       
  3874 
       
  3875   const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
       
  3876 #ifndef _LP64
       
  3877   if (UseTLAB || allow_shared_alloc) {
       
  3878     __ get_thread(thread);
       
  3879   }
       
  3880 #endif // _LP64
       
  3881 
       
  3882   if (UseTLAB) {
       
  3883     __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
       
  3884     __ lea(rbx, Address(rax, rdx, Address::times_1));
       
  3885     __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
       
  3886     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
       
  3887     __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
       
  3888     if (ZeroTLAB) {
       
  3889       // the fields have been already cleared
       
  3890       __ jmp(initialize_header);
       
  3891     } else {
       
  3892       // initialize both the header and fields
       
  3893       __ jmp(initialize_object);
       
  3894     }
       
  3895   }
       
  3896 
       
  3897   // Allocation in the shared Eden, if allowed.
       
  3898   //
       
  3899   // rdx: instance size in bytes
       
  3900   if (allow_shared_alloc) {
       
  3901     __ bind(allocate_shared);
       
  3902 
       
  3903     ExternalAddress heap_top((address)Universe::heap()->top_addr());
       
  3904     ExternalAddress heap_end((address)Universe::heap()->end_addr());
       
  3905 
       
  3906     Label retry;
       
  3907     __ bind(retry);
       
  3908     __ movptr(rax, heap_top);
       
  3909     __ lea(rbx, Address(rax, rdx, Address::times_1));
       
  3910     __ cmpptr(rbx, heap_end);
       
  3911     __ jcc(Assembler::above, slow_case);
       
  3912 
       
  3913     // Compare rax, with the top addr, and if still equal, store the new
       
  3914     // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
       
  3915     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
       
  3916     //
       
  3917     // rax,: object begin
       
  3918     // rbx,: object end
       
  3919     // rdx: instance size in bytes
       
  3920     __ locked_cmpxchgptr(rbx, heap_top);
       
  3921 
       
  3922     // if someone beat us on the allocation, try again, otherwise continue
       
  3923     __ jcc(Assembler::notEqual, retry);
       
  3924 
       
  3925     __ incr_allocated_bytes(thread, rdx, 0);
       
  3926   }
       
  3927 
       
  3928   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
       
  3929     // The object is initialized before the header.  If the object size is
       
  3930     // zero, go directly to the header initialization.
       
  3931     __ bind(initialize_object);
       
  3932     __ decrement(rdx, sizeof(oopDesc));
       
  3933     __ jcc(Assembler::zero, initialize_header);
       
  3934 
       
  3935     // Initialize topmost object field, divide rdx by 8, check if odd and
       
  3936     // test if zero.
       
  3937     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
       
  3938     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
       
  3939 
       
  3940     // rdx must have been multiple of 8
       
  3941 #ifdef ASSERT
       
  3942     // make sure rdx was multiple of 8
       
  3943     Label L;
       
  3944     // Ignore partial flag stall after shrl() since it is debug VM
       
  3945     __ jccb(Assembler::carryClear, L);
       
  3946     __ stop("object size is not multiple of 2 - adjust this code");
       
  3947     __ bind(L);
       
  3948     // rdx must be > 0, no extra check needed here
       
  3949 #endif
       
  3950 
       
  3951     // initialize remaining object fields: rdx was a multiple of 8
       
  3952     { Label loop;
       
  3953     __ bind(loop);
       
  3954     __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
       
  3955     NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
       
  3956     __ decrement(rdx);
       
  3957     __ jcc(Assembler::notZero, loop);
       
  3958     }
       
  3959 
       
  3960     // initialize object header only.
       
  3961     __ bind(initialize_header);
       
  3962     if (UseBiasedLocking) {
       
  3963       __ pop(rcx);   // get saved klass back in the register.
       
  3964       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset()));
       
  3965       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
       
  3966     } else {
       
  3967       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
       
  3968                 (intptr_t)markOopDesc::prototype()); // header
       
  3969       __ pop(rcx);   // get saved klass back in the register.
       
  3970     }
       
  3971 #ifdef _LP64
       
  3972     __ xorl(rsi, rsi); // use zero reg to clear memory (shorter code)
       
  3973     __ store_klass_gap(rax, rsi);  // zero klass gap for compressed oops
       
  3974 #endif
       
  3975     __ store_klass(rax, rcx);  // klass
       
  3976 
       
  3977     {
       
  3978       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
       
  3979       // Trigger dtrace event for fastpath
       
  3980       __ push(atos);
       
  3981       __ call_VM_leaf(
       
  3982            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
       
  3983       __ pop(atos);
       
  3984     }
       
  3985 
       
  3986     __ jmp(done);
       
  3987   }
       
  3988 
       
  3989   // slow case
       
  3990   __ bind(slow_case);
       
  3991   __ pop(rcx);   // restore stack pointer to what it was when we came in.
       
  3992   __ bind(slow_case_no_pop);
       
  3993 
       
  3994   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rax);
       
  3995   Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
       
  3996 
       
  3997   __ get_constant_pool(rarg1);
       
  3998   __ get_unsigned_2_byte_index_at_bcp(rarg2, 1);
       
  3999   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rarg1, rarg2);
       
  4000    __ verify_oop(rax);
       
  4001 
       
  4002   // continue
       
  4003   __ bind(done);
       
  4004 }
       
  4005 
       
  4006 void TemplateTable::newarray() {
       
  4007   transition(itos, atos);
       
  4008   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
       
  4009   __ load_unsigned_byte(rarg1, at_bcp(1));
       
  4010   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
       
  4011           rarg1, rax);
       
  4012 }
       
  4013 
       
  4014 void TemplateTable::anewarray() {
       
  4015   transition(itos, atos);
       
  4016 
       
  4017   Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
       
  4018   Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
       
  4019 
       
  4020   __ get_unsigned_2_byte_index_at_bcp(rarg2, 1);
       
  4021   __ get_constant_pool(rarg1);
       
  4022   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
       
  4023           rarg1, rarg2, rax);
       
  4024 }
       
  4025 
       
  4026 void TemplateTable::arraylength() {
       
  4027   transition(atos, itos);
       
  4028   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
       
  4029   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
       
  4030 }
       
  4031 
       
  4032 void TemplateTable::checkcast() {
       
  4033   transition(atos, atos);
       
  4034   Label done, is_null, ok_is_subtype, quicked, resolved;
       
  4035   __ testptr(rax, rax); // object is in rax
       
  4036   __ jcc(Assembler::zero, is_null);
       
  4037 
       
  4038   // Get cpool & tags index
       
  4039   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
       
  4040   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
       
  4041   // See if bytecode has already been quicked
       
  4042   __ cmpb(Address(rdx, rbx,
       
  4043                   Address::times_1,
       
  4044                   Array<u1>::base_offset_in_bytes()),
       
  4045           JVM_CONSTANT_Class);
       
  4046   __ jcc(Assembler::equal, quicked);
       
  4047   __ push(atos); // save receiver for result, and for GC
       
  4048   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
       
  4049 
       
  4050   // vm_result_2 has metadata result
       
  4051 #ifndef _LP64
       
  4052   // borrow rdi from locals
       
  4053   __ get_thread(rdi);
       
  4054   __ get_vm_result_2(rax, rdi);
       
  4055   __ restore_locals();
       
  4056 #else
       
  4057   __ get_vm_result_2(rax, r15_thread);
       
  4058 #endif
       
  4059 
       
  4060   __ pop_ptr(rdx); // restore receiver
       
  4061   __ jmpb(resolved);
       
  4062 
       
  4063   // Get superklass in rax and subklass in rbx
       
  4064   __ bind(quicked);
       
  4065   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
       
  4066   __ load_resolved_klass_at_index(rcx, rbx, rax);
       
  4067 
       
  4068   __ bind(resolved);
       
  4069   __ load_klass(rbx, rdx);
       
  4070 
       
  4071   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
       
  4072   // Superklass in rax.  Subklass in rbx.
       
  4073   __ gen_subtype_check(rbx, ok_is_subtype);
       
  4074 
       
  4075   // Come here on failure
       
  4076   __ push_ptr(rdx);
       
  4077   // object is at TOS
       
  4078   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
       
  4079 
       
  4080   // Come here on success
       
  4081   __ bind(ok_is_subtype);
       
  4082   __ mov(rax, rdx); // Restore object in rdx
       
  4083 
       
  4084   // Collect counts on whether this check-cast sees NULLs a lot or not.
       
  4085   if (ProfileInterpreter) {
       
  4086     __ jmp(done);
       
  4087     __ bind(is_null);
       
  4088     __ profile_null_seen(rcx);
       
  4089   } else {
       
  4090     __ bind(is_null);   // same as 'done'
       
  4091   }
       
  4092   __ bind(done);
       
  4093 }
       
  4094 
       
  4095 void TemplateTable::instanceof() {
       
  4096   transition(atos, itos);
       
  4097   Label done, is_null, ok_is_subtype, quicked, resolved;
       
  4098   __ testptr(rax, rax);
       
  4099   __ jcc(Assembler::zero, is_null);
       
  4100 
       
  4101   // Get cpool & tags index
       
  4102   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
       
  4103   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
       
  4104   // See if bytecode has already been quicked
       
  4105   __ cmpb(Address(rdx, rbx,
       
  4106                   Address::times_1,
       
  4107                   Array<u1>::base_offset_in_bytes()),
       
  4108           JVM_CONSTANT_Class);
       
  4109   __ jcc(Assembler::equal, quicked);
       
  4110 
       
  4111   __ push(atos); // save receiver for result, and for GC
       
  4112   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
       
  4113   // vm_result_2 has metadata result
       
  4114 
       
  4115 #ifndef _LP64
       
  4116   // borrow rdi from locals
       
  4117   __ get_thread(rdi);
       
  4118   __ get_vm_result_2(rax, rdi);
       
  4119   __ restore_locals();
       
  4120 #else
       
  4121   __ get_vm_result_2(rax, r15_thread);
       
  4122 #endif
       
  4123 
       
  4124   __ pop_ptr(rdx); // restore receiver
       
  4125   __ verify_oop(rdx);
       
  4126   __ load_klass(rdx, rdx);
       
  4127   __ jmpb(resolved);
       
  4128 
       
  4129   // Get superklass in rax and subklass in rdx
       
  4130   __ bind(quicked);
       
  4131   __ load_klass(rdx, rax);
       
  4132   __ load_resolved_klass_at_index(rcx, rbx, rax);
       
  4133 
       
  4134   __ bind(resolved);
       
  4135 
       
  4136   // Generate subtype check.  Blows rcx, rdi
       
  4137   // Superklass in rax.  Subklass in rdx.
       
  4138   __ gen_subtype_check(rdx, ok_is_subtype);
       
  4139 
       
  4140   // Come here on failure
       
  4141   __ xorl(rax, rax);
       
  4142   __ jmpb(done);
       
  4143   // Come here on success
       
  4144   __ bind(ok_is_subtype);
       
  4145   __ movl(rax, 1);
       
  4146 
       
  4147   // Collect counts on whether this test sees NULLs a lot or not.
       
  4148   if (ProfileInterpreter) {
       
  4149     __ jmp(done);
       
  4150     __ bind(is_null);
       
  4151     __ profile_null_seen(rcx);
       
  4152   } else {
       
  4153     __ bind(is_null);   // same as 'done'
       
  4154   }
       
  4155   __ bind(done);
       
  4156   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
       
  4157   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
       
  4158 }
       
  4159 
       
  4160 
       
  4161 //----------------------------------------------------------------------------------------------------
       
  4162 // Breakpoints
       
  4163 void TemplateTable::_breakpoint() {
       
  4164   // Note: We get here even if we are single stepping..
       
  4165   // jbug insists on setting breakpoints at every bytecode
       
  4166   // even if we are in single step mode.
       
  4167 
       
  4168   transition(vtos, vtos);
       
  4169 
       
  4170   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
       
  4171 
       
  4172   // get the unpatched byte code
       
  4173   __ get_method(rarg);
       
  4174   __ call_VM(noreg,
       
  4175              CAST_FROM_FN_PTR(address,
       
  4176                               InterpreterRuntime::get_original_bytecode_at),
       
  4177              rarg, rbcp);
       
  4178   __ mov(rbx, rax);  // why?
       
  4179 
       
  4180   // post the breakpoint event
       
  4181   __ get_method(rarg);
       
  4182   __ call_VM(noreg,
       
  4183              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
       
  4184              rarg, rbcp);
       
  4185 
       
  4186   // complete the execution of original bytecode
       
  4187   __ dispatch_only_normal(vtos);
       
  4188 }
       
  4189 
       
  4190 //-----------------------------------------------------------------------------
       
  4191 // Exceptions
       
  4192 
       
  4193 void TemplateTable::athrow() {
       
  4194   transition(atos, vtos);
       
  4195   __ null_check(rax);
       
  4196   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
       
  4197 }
       
  4198 
       
  4199 //-----------------------------------------------------------------------------
       
  4200 // Synchronization
       
  4201 //
       
  4202 // Note: monitorenter & exit are symmetric routines; which is reflected
       
  4203 //       in the assembly code structure as well
       
  4204 //
       
  4205 // Stack layout:
       
  4206 //
       
  4207 // [expressions  ] <--- rsp               = expression stack top
       
  4208 // ..
       
  4209 // [expressions  ]
       
  4210 // [monitor entry] <--- monitor block top = expression stack bot
       
  4211 // ..
       
  4212 // [monitor entry]
       
  4213 // [frame data   ] <--- monitor block bot
       
  4214 // ...
       
  4215 // [saved rbp    ] <--- rbp
       
  4216 void TemplateTable::monitorenter() {
       
  4217   transition(atos, vtos);
       
  4218 
       
  4219   // check for NULL object
       
  4220   __ null_check(rax);
       
  4221 
       
  4222   const Address monitor_block_top(
       
  4223         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
       
  4224   const Address monitor_block_bot(
       
  4225         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
       
  4226   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
       
  4227 
       
  4228   Label allocated;
       
  4229 
       
  4230   Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
       
  4231   Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx);
       
  4232   Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
       
  4233 
       
  4234   // initialize entry pointer
       
  4235   __ xorl(rmon, rmon); // points to free slot or NULL
       
  4236 
       
  4237   // find a free slot in the monitor block (result in rmon)
       
  4238   {
       
  4239     Label entry, loop, exit;
       
  4240     __ movptr(rtop, monitor_block_top); // points to current entry,
       
  4241                                         // starting with top-most entry
       
  4242     __ lea(rbot, monitor_block_bot);    // points to word before bottom
       
  4243                                         // of monitor block
       
  4244     __ jmpb(entry);
       
  4245 
       
  4246     __ bind(loop);
       
  4247     // check if current entry is used
       
  4248     __ cmpptr(Address(rtop, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
       
  4249     // if not used then remember entry in rmon
       
  4250     __ cmovptr(Assembler::equal, rmon, rtop);   // cmov => cmovptr
       
  4251     // check if current entry is for same object
       
  4252     __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes()));
       
  4253     // if same object then stop searching
       
  4254     __ jccb(Assembler::equal, exit);
       
  4255     // otherwise advance to next entry
       
  4256     __ addptr(rtop, entry_size);
       
  4257     __ bind(entry);
       
  4258     // check if bottom reached
       
  4259     __ cmpptr(rtop, rbot);
       
  4260     // if not at bottom then check this entry
       
  4261     __ jcc(Assembler::notEqual, loop);
       
  4262     __ bind(exit);
       
  4263   }
       
  4264 
       
  4265   __ testptr(rmon, rmon); // check if a slot has been found
       
  4266   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
       
  4267 
       
  4268   // allocate one if there's no free slot
       
  4269   {
       
  4270     Label entry, loop;
       
  4271     // 1. compute new pointers          // rsp: old expression stack top
       
  4272     __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom
       
  4273     __ subptr(rsp, entry_size);         // move expression stack top
       
  4274     __ subptr(rmon, entry_size);        // move expression stack bottom
       
  4275     __ mov(rtop, rsp);                  // set start value for copy loop
       
  4276     __ movptr(monitor_block_bot, rmon); // set new monitor block bottom
       
  4277     __ jmp(entry);
       
  4278     // 2. move expression stack contents
       
  4279     __ bind(loop);
       
  4280     __ movptr(rbot, Address(rtop, entry_size)); // load expression stack
       
  4281                                                 // word from old location
       
  4282     __ movptr(Address(rtop, 0), rbot);          // and store it at new location
       
  4283     __ addptr(rtop, wordSize);                  // advance to next word
       
  4284     __ bind(entry);
       
  4285     __ cmpptr(rtop, rmon);                      // check if bottom reached
       
  4286     __ jcc(Assembler::notEqual, loop);          // if not at bottom then
       
  4287                                                 // copy next word
       
  4288   }
       
  4289 
       
  4290   // call run-time routine
       
  4291   // rmon: points to monitor entry
       
  4292   __ bind(allocated);
       
  4293 
       
  4294   // Increment bcp to point to the next bytecode, so exception
       
  4295   // handling for async. exceptions work correctly.
       
  4296   // The object has already been poped from the stack, so the
       
  4297   // expression stack looks correct.
       
  4298   __ increment(rbcp);
       
  4299 
       
  4300   // store object
       
  4301   __ movptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), rax);
       
  4302   __ lock_object(rmon);
       
  4303 
       
  4304   // check to make sure this monitor doesn't cause stack overflow after locking
       
  4305   __ save_bcp();  // in case of exception
       
  4306   __ generate_stack_overflow_check(0);
       
  4307 
       
  4308   // The bcp has already been incremented. Just need to dispatch to
       
  4309   // next instruction.
       
  4310   __ dispatch_next(vtos);
       
  4311 }
       
  4312 
       
  4313 void TemplateTable::monitorexit() {
       
  4314   transition(atos, vtos);
       
  4315 
       
  4316   // check for NULL object
       
  4317   __ null_check(rax);
       
  4318 
       
  4319   const Address monitor_block_top(
       
  4320         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
       
  4321   const Address monitor_block_bot(
       
  4322         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
       
  4323   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
       
  4324 
       
  4325   Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
       
  4326   Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx);
       
  4327 
       
  4328   Label found;
       
  4329 
       
  4330   // find matching slot
       
  4331   {
       
  4332     Label entry, loop;
       
  4333     __ movptr(rtop, monitor_block_top); // points to current entry,
       
  4334                                         // starting with top-most entry
       
  4335     __ lea(rbot, monitor_block_bot);    // points to word before bottom
       
  4336                                         // of monitor block
       
  4337     __ jmpb(entry);
       
  4338 
       
  4339     __ bind(loop);
       
  4340     // check if current entry is for same object
       
  4341     __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes()));
       
  4342     // if same object then stop searching
       
  4343     __ jcc(Assembler::equal, found);
       
  4344     // otherwise advance to next entry
       
  4345     __ addptr(rtop, entry_size);
       
  4346     __ bind(entry);
       
  4347     // check if bottom reached
       
  4348     __ cmpptr(rtop, rbot);
       
  4349     // if not at bottom then check this entry
       
  4350     __ jcc(Assembler::notEqual, loop);
       
  4351   }
       
  4352 
       
  4353   // error handling. Unlocking was not block-structured
       
  4354   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
       
  4355                    InterpreterRuntime::throw_illegal_monitor_state_exception));
       
  4356   __ should_not_reach_here();
       
  4357 
       
  4358   // call run-time routine
       
  4359   __ bind(found);
       
  4360   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
       
  4361   __ unlock_object(rtop);
       
  4362   __ pop_ptr(rax); // discard object
       
  4363 }
       
  4364 
       
  4365 // Wide instructions
       
  4366 void TemplateTable::wide() {
       
  4367   transition(vtos, vtos);
       
  4368   __ load_unsigned_byte(rbx, at_bcp(1));
       
  4369   ExternalAddress wtable((address)Interpreter::_wentry_point);
       
  4370   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
       
  4371   // Note: the rbcp increment step is part of the individual wide bytecode implementations
       
  4372 }
       
  4373 
       
  4374 // Multi arrays
       
  4375 void TemplateTable::multianewarray() {
       
  4376   transition(vtos, atos);
       
  4377 
       
  4378   Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rax);
       
  4379   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
       
  4380   // last dim is on top of stack; we want address of first one:
       
  4381   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
       
  4382   // the latter wordSize to point to the beginning of the array.
       
  4383   __ lea(rarg, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
       
  4384   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rarg);
       
  4385   __ load_unsigned_byte(rbx, at_bcp(3));
       
  4386   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
       
  4387 }