|
1 /* |
|
2 * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved. |
|
3 * Copyright (c) 2016 SAP SE. All rights reserved. |
|
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
5 * |
|
6 * This code is free software; you can redistribute it and/or modify it |
|
7 * under the terms of the GNU General Public License version 2 only, as |
|
8 * published by the Free Software Foundation. |
|
9 * |
|
10 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13 * version 2 for more details (a copy is included in the LICENSE file that |
|
14 * accompanied this code). |
|
15 * |
|
16 * You should have received a copy of the GNU General Public License version |
|
17 * 2 along with this work; if not, write to the Free Software Foundation, |
|
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
19 * |
|
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
21 * or visit www.oracle.com if you need additional information or have any |
|
22 * questions. |
|
23 * |
|
24 */ |
|
25 |
|
26 #ifndef CPU_S390_VM_REGISTER_S390_HPP |
|
27 #define CPU_S390_VM_REGISTER_S390_HPP |
|
28 |
|
29 #include "asm/register.hpp" |
|
30 #include "vm_version_s390.hpp" |
|
31 |
|
32 class Address; |
|
33 class VMRegImpl; |
|
34 |
|
35 typedef VMRegImpl* VMReg; |
|
36 |
|
37 // Use Register as shortcut. |
|
38 class RegisterImpl; |
|
39 typedef RegisterImpl* Register; |
|
40 |
|
41 // The implementation of integer registers for z/Architecture. |
|
42 |
|
43 // z/Architecture registers, see "LINUX for zSeries ELF ABI Supplement", IBM March 2001 |
|
44 // |
|
45 // r0-r1 General purpose (volatile) |
|
46 // r2 Parameter and return value (volatile) |
|
47 // r3 TOC pointer (volatile) |
|
48 // r3-r5 Parameters (volatile) |
|
49 // r6 Parameter (nonvolatile) |
|
50 // r7-r11 Locals (nonvolatile) |
|
51 // r12 Local, often used as GOT pointer (nonvolatile) |
|
52 // r13 Local, often used as toc (nonvolatile) |
|
53 // r14 return address (volatile) |
|
54 // r15 stack pointer (nonvolatile) |
|
55 // |
|
56 // f0,f2,f4,f6 Parameters (volatile) |
|
57 // f1,f3,f5,f7 General purpose (volatile) |
|
58 // f8-f15 General purpose (nonvolatile) |
|
59 |
|
60 inline Register as_Register(int encoding) { |
|
61 return (Register)(long)encoding; |
|
62 } |
|
63 |
|
64 class RegisterImpl: public AbstractRegisterImpl { |
|
65 public: |
|
66 enum { |
|
67 number_of_registers = 16, |
|
68 number_of_arg_registers = 5 |
|
69 }; |
|
70 |
|
71 // general construction |
|
72 inline friend Register as_Register(int encoding); |
|
73 |
|
74 inline VMReg as_VMReg(); |
|
75 |
|
76 // accessors |
|
77 int encoding() const { assert(is_valid(), "invalid register"); return value(); } |
|
78 const char* name() const; |
|
79 |
|
80 // testers |
|
81 bool is_valid() const { return (0 <= (value()&0x7F) && (value()&0x7F) < number_of_registers); } |
|
82 bool is_even() const { return (encoding() & 1) == 0; } |
|
83 bool is_volatile() const { return (0 <= (value()&0x7F) && (value()&0x7F) <= 5) || (value()&0x7F)==14; } |
|
84 bool is_nonvolatile() const { return is_valid() && !is_volatile(); } |
|
85 |
|
86 public: |
|
87 // derived registers, offsets, and addresses |
|
88 Register predecessor() const { return as_Register((encoding()-1) & (number_of_registers-1)); } |
|
89 Register successor() const { return as_Register((encoding() + 1) & (number_of_registers-1)); } |
|
90 }; |
|
91 |
|
92 // The integer registers of the z/Architecture. |
|
93 |
|
94 CONSTANT_REGISTER_DECLARATION(Register, noreg, (-1)); |
|
95 |
|
96 CONSTANT_REGISTER_DECLARATION(Register, Z_R0, (0)); |
|
97 CONSTANT_REGISTER_DECLARATION(Register, Z_R1, (1)); |
|
98 CONSTANT_REGISTER_DECLARATION(Register, Z_R2, (2)); |
|
99 CONSTANT_REGISTER_DECLARATION(Register, Z_R3, (3)); |
|
100 CONSTANT_REGISTER_DECLARATION(Register, Z_R4, (4)); |
|
101 CONSTANT_REGISTER_DECLARATION(Register, Z_R5, (5)); |
|
102 CONSTANT_REGISTER_DECLARATION(Register, Z_R6, (6)); |
|
103 CONSTANT_REGISTER_DECLARATION(Register, Z_R7, (7)); |
|
104 CONSTANT_REGISTER_DECLARATION(Register, Z_R8, (8)); |
|
105 CONSTANT_REGISTER_DECLARATION(Register, Z_R9, (9)); |
|
106 CONSTANT_REGISTER_DECLARATION(Register, Z_R10, (10)); |
|
107 CONSTANT_REGISTER_DECLARATION(Register, Z_R11, (11)); |
|
108 CONSTANT_REGISTER_DECLARATION(Register, Z_R12, (12)); |
|
109 CONSTANT_REGISTER_DECLARATION(Register, Z_R13, (13)); |
|
110 CONSTANT_REGISTER_DECLARATION(Register, Z_R14, (14)); |
|
111 CONSTANT_REGISTER_DECLARATION(Register, Z_R15, (15)); |
|
112 |
|
113 // Use ConditionRegister as shortcut |
|
114 class ConditionRegisterImpl; |
|
115 typedef ConditionRegisterImpl* ConditionRegister; |
|
116 |
|
117 // The implementation of condition register(s) for the z/Architecture. |
|
118 |
|
119 class ConditionRegisterImpl: public AbstractRegisterImpl { |
|
120 public: |
|
121 |
|
122 enum { |
|
123 number_of_registers = 1 |
|
124 }; |
|
125 |
|
126 // accessors |
|
127 int encoding() const { |
|
128 assert(is_valid(), "invalid register"); return value(); |
|
129 } |
|
130 |
|
131 // testers |
|
132 bool is_valid() const { |
|
133 return (0 <= value() && value() < number_of_registers); |
|
134 } |
|
135 bool is_volatile() const { |
|
136 return true; |
|
137 } |
|
138 bool is_nonvolatile() const { |
|
139 return false; |
|
140 } |
|
141 |
|
142 // construction. |
|
143 inline friend ConditionRegister as_ConditionRegister(int encoding); |
|
144 |
|
145 inline VMReg as_VMReg(); |
|
146 }; |
|
147 |
|
148 inline ConditionRegister as_ConditionRegister(int encoding) { |
|
149 assert(encoding >= 0 && encoding < ConditionRegisterImpl::number_of_registers, "bad condition register encoding"); |
|
150 return (ConditionRegister)(long)encoding; |
|
151 } |
|
152 |
|
153 // The condition register of the z/Architecture. |
|
154 |
|
155 CONSTANT_REGISTER_DECLARATION(ConditionRegister, Z_CR, (0)); |
|
156 |
|
157 // Because z/Architecture has so many registers, #define'ing values for them is |
|
158 // beneficial in code size and is worth the cost of some of the |
|
159 // dangers of defines. |
|
160 // If a particular file has a problem with these defines then it's possible |
|
161 // to turn them off in that file by defining |
|
162 // DONT_USE_REGISTER_DEFINES. Register_definition_s390.cpp does that |
|
163 // so that it's able to provide real definitions of these registers |
|
164 // for use in debuggers and such. |
|
165 |
|
166 #ifndef DONT_USE_REGISTER_DEFINES |
|
167 #define noreg ((Register)(noreg_RegisterEnumValue)) |
|
168 |
|
169 #define Z_R0 ((Register)(Z_R0_RegisterEnumValue)) |
|
170 #define Z_R1 ((Register)(Z_R1_RegisterEnumValue)) |
|
171 #define Z_R2 ((Register)(Z_R2_RegisterEnumValue)) |
|
172 #define Z_R3 ((Register)(Z_R3_RegisterEnumValue)) |
|
173 #define Z_R4 ((Register)(Z_R4_RegisterEnumValue)) |
|
174 #define Z_R5 ((Register)(Z_R5_RegisterEnumValue)) |
|
175 #define Z_R6 ((Register)(Z_R6_RegisterEnumValue)) |
|
176 #define Z_R7 ((Register)(Z_R7_RegisterEnumValue)) |
|
177 #define Z_R8 ((Register)(Z_R8_RegisterEnumValue)) |
|
178 #define Z_R9 ((Register)(Z_R9_RegisterEnumValue)) |
|
179 #define Z_R10 ((Register)(Z_R10_RegisterEnumValue)) |
|
180 #define Z_R11 ((Register)(Z_R11_RegisterEnumValue)) |
|
181 #define Z_R12 ((Register)(Z_R12_RegisterEnumValue)) |
|
182 #define Z_R13 ((Register)(Z_R13_RegisterEnumValue)) |
|
183 #define Z_R14 ((Register)(Z_R14_RegisterEnumValue)) |
|
184 #define Z_R15 ((Register)(Z_R15_RegisterEnumValue)) |
|
185 |
|
186 #define Z_CR ((ConditionRegister)(Z_CR_ConditionRegisterEnumValue)) |
|
187 #endif // DONT_USE_REGISTER_DEFINES |
|
188 |
|
189 // Use FloatRegister as shortcut |
|
190 class FloatRegisterImpl; |
|
191 typedef FloatRegisterImpl* FloatRegister; |
|
192 |
|
193 // The implementation of float registers for the z/Architecture. |
|
194 |
|
195 inline FloatRegister as_FloatRegister(int encoding) { |
|
196 return (FloatRegister)(long)encoding; |
|
197 } |
|
198 |
|
199 class FloatRegisterImpl: public AbstractRegisterImpl { |
|
200 public: |
|
201 enum { |
|
202 number_of_registers = 16, |
|
203 number_of_arg_registers = 4 |
|
204 }; |
|
205 |
|
206 // construction |
|
207 inline friend FloatRegister as_FloatRegister(int encoding); |
|
208 |
|
209 inline VMReg as_VMReg(); |
|
210 |
|
211 // accessors |
|
212 int encoding() const { |
|
213 assert(is_valid(), "invalid register"); return value(); |
|
214 } |
|
215 |
|
216 bool is_valid() const { return 0 <= value() && value() < number_of_registers; } |
|
217 bool is_volatile() const { return (0 <= (value()&0x7F) && (value()&0x7F) <= 7); } |
|
218 bool is_nonvolatile() const { return (8 <= (value()&0x7F) && (value()&0x7F) <= 15); } |
|
219 |
|
220 const char* name() const; |
|
221 |
|
222 FloatRegister successor() const { return as_FloatRegister(encoding() + 1); } |
|
223 }; |
|
224 |
|
225 // The float registers of z/Architecture. |
|
226 |
|
227 CONSTANT_REGISTER_DECLARATION(FloatRegister, fnoreg, (-1)); |
|
228 |
|
229 CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F0, (0)); |
|
230 CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F1, (1)); |
|
231 CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F2, (2)); |
|
232 CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F3, (3)); |
|
233 CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F4, (4)); |
|
234 CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F5, (5)); |
|
235 CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F6, (6)); |
|
236 CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F7, (7)); |
|
237 CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F8, (8)); |
|
238 CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F9, (9)); |
|
239 CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F10, (10)); |
|
240 CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F11, (11)); |
|
241 CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F12, (12)); |
|
242 CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F13, (13)); |
|
243 CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F14, (14)); |
|
244 CONSTANT_REGISTER_DECLARATION(FloatRegister, Z_F15, (15)); |
|
245 |
|
246 #ifndef DONT_USE_REGISTER_DEFINES |
|
247 #define fnoreg ((FloatRegister)(fnoreg_FloatRegisterEnumValue)) |
|
248 #define Z_F0 ((FloatRegister)( Z_F0_FloatRegisterEnumValue)) |
|
249 #define Z_F1 ((FloatRegister)( Z_F1_FloatRegisterEnumValue)) |
|
250 #define Z_F2 ((FloatRegister)( Z_F2_FloatRegisterEnumValue)) |
|
251 #define Z_F3 ((FloatRegister)( Z_F3_FloatRegisterEnumValue)) |
|
252 #define Z_F4 ((FloatRegister)( Z_F4_FloatRegisterEnumValue)) |
|
253 #define Z_F5 ((FloatRegister)( Z_F5_FloatRegisterEnumValue)) |
|
254 #define Z_F6 ((FloatRegister)( Z_F6_FloatRegisterEnumValue)) |
|
255 #define Z_F7 ((FloatRegister)( Z_F7_FloatRegisterEnumValue)) |
|
256 #define Z_F8 ((FloatRegister)( Z_F8_FloatRegisterEnumValue)) |
|
257 #define Z_F9 ((FloatRegister)( Z_F9_FloatRegisterEnumValue)) |
|
258 #define Z_F10 ((FloatRegister)( Z_F10_FloatRegisterEnumValue)) |
|
259 #define Z_F11 ((FloatRegister)( Z_F11_FloatRegisterEnumValue)) |
|
260 #define Z_F12 ((FloatRegister)( Z_F12_FloatRegisterEnumValue)) |
|
261 #define Z_F13 ((FloatRegister)( Z_F13_FloatRegisterEnumValue)) |
|
262 #define Z_F14 ((FloatRegister)( Z_F14_FloatRegisterEnumValue)) |
|
263 #define Z_F15 ((FloatRegister)( Z_F15_FloatRegisterEnumValue)) |
|
264 #endif // DONT_USE_REGISTER_DEFINES |
|
265 |
|
266 // Need to know the total number of registers of all sorts for SharedInfo. |
|
267 // Define a class that exports it. |
|
268 |
|
269 class ConcreteRegisterImpl : public AbstractRegisterImpl { |
|
270 public: |
|
271 enum { |
|
272 number_of_registers = |
|
273 (RegisterImpl::number_of_registers + |
|
274 FloatRegisterImpl::number_of_registers) |
|
275 * 2 // register halves |
|
276 + 1 // condition code register |
|
277 }; |
|
278 static const int max_gpr; |
|
279 static const int max_fpr; |
|
280 }; |
|
281 |
|
282 // Single, Double and Quad fp reg classes. These exist to map the ADLC |
|
283 // encoding for a floating point register, to the FloatRegister number |
|
284 // desired by the macroassembler. A FloatRegister is a number between |
|
285 // 0 and 31 passed around as a pointer. For ADLC, an fp register encoding |
|
286 // is the actual bit encoding used by the z/Architecture hardware. When ADLC used |
|
287 // the macroassembler to generate an instruction that references, e.g., a |
|
288 // double fp reg, it passed the bit encoding to the macroassembler via |
|
289 // as_FloatRegister, which, for double regs > 30, returns an illegal |
|
290 // register number. |
|
291 // |
|
292 // Therefore we provide the following classes for use by ADLC. Their |
|
293 // sole purpose is to convert from z/Architecture register encodings to FloatRegisters. |
|
294 // At some future time, we might replace FloatRegister with these classes, |
|
295 // hence the definitions of as_xxxFloatRegister as class methods rather |
|
296 // than as external inline routines. |
|
297 |
|
298 class SingleFloatRegisterImpl; |
|
299 typedef SingleFloatRegisterImpl *SingleFloatRegister; |
|
300 |
|
301 class SingleFloatRegisterImpl { |
|
302 public: |
|
303 friend FloatRegister as_SingleFloatRegister(int encoding) { |
|
304 assert(encoding < 32, "bad single float register encoding"); |
|
305 return as_FloatRegister(encoding); |
|
306 } |
|
307 }; |
|
308 |
|
309 class DoubleFloatRegisterImpl; |
|
310 typedef DoubleFloatRegisterImpl *DoubleFloatRegister; |
|
311 |
|
312 class DoubleFloatRegisterImpl { |
|
313 public: |
|
314 friend FloatRegister as_DoubleFloatRegister(int encoding) { |
|
315 assert(encoding < 32, "bad double float register encoding"); |
|
316 return as_FloatRegister(((encoding & 1) << 5) | (encoding & 0x1e)); |
|
317 } |
|
318 }; |
|
319 |
|
320 class QuadFloatRegisterImpl; |
|
321 typedef QuadFloatRegisterImpl *QuadFloatRegister; |
|
322 |
|
323 class QuadFloatRegisterImpl { |
|
324 public: |
|
325 friend FloatRegister as_QuadFloatRegister(int encoding) { |
|
326 assert(encoding < 32 && ((encoding & 2) == 0), "bad quad float register encoding"); |
|
327 return as_FloatRegister(((encoding & 1) << 5) | (encoding & 0x1c)); |
|
328 } |
|
329 }; |
|
330 |
|
331 |
|
332 // Common register declarations used in assembler code. |
|
333 REGISTER_DECLARATION(Register, Z_EXC_OOP, Z_R2); |
|
334 REGISTER_DECLARATION(Register, Z_EXC_PC, Z_R3); |
|
335 REGISTER_DECLARATION(Register, Z_RET, Z_R2); |
|
336 REGISTER_DECLARATION(Register, Z_ARG1, Z_R2); |
|
337 REGISTER_DECLARATION(Register, Z_ARG2, Z_R3); |
|
338 REGISTER_DECLARATION(Register, Z_ARG3, Z_R4); |
|
339 REGISTER_DECLARATION(Register, Z_ARG4, Z_R5); |
|
340 REGISTER_DECLARATION(Register, Z_ARG5, Z_R6); |
|
341 REGISTER_DECLARATION(Register, Z_SP, Z_R15); |
|
342 REGISTER_DECLARATION(FloatRegister, Z_FRET, Z_F0); |
|
343 REGISTER_DECLARATION(FloatRegister, Z_FARG1, Z_F0); |
|
344 REGISTER_DECLARATION(FloatRegister, Z_FARG2, Z_F2); |
|
345 REGISTER_DECLARATION(FloatRegister, Z_FARG3, Z_F4); |
|
346 REGISTER_DECLARATION(FloatRegister, Z_FARG4, Z_F6); |
|
347 |
|
348 #ifndef DONT_USE_REGISTER_DEFINES |
|
349 #define Z_EXC_OOP AS_REGISTER(Register, Z_R2) |
|
350 #define Z_EXC_PC AS_REGISTER(Register, Z_R3) |
|
351 #define Z_RET AS_REGISTER(Register, Z_R2) |
|
352 #define Z_ARG1 AS_REGISTER(Register, Z_R2) |
|
353 #define Z_ARG2 AS_REGISTER(Register, Z_R3) |
|
354 #define Z_ARG3 AS_REGISTER(Register, Z_R4) |
|
355 #define Z_ARG4 AS_REGISTER(Register, Z_R5) |
|
356 #define Z_ARG5 AS_REGISTER(Register, Z_R6) |
|
357 #define Z_SP AS_REGISTER(Register, Z_R15) |
|
358 #define Z_FRET AS_REGISTER(FloatRegister, Z_F0) |
|
359 #define Z_FARG1 AS_REGISTER(FloatRegister, Z_F0) |
|
360 #define Z_FARG2 AS_REGISTER(FloatRegister, Z_F2) |
|
361 #define Z_FARG3 AS_REGISTER(FloatRegister, Z_F4) |
|
362 #define Z_FARG4 AS_REGISTER(FloatRegister, Z_F6) |
|
363 #endif |
|
364 |
|
365 // Register declarations to be used in frame manager assembly code. |
|
366 // Use only non-volatile registers in order to keep values across C-calls. |
|
367 |
|
368 // Register to cache the integer value on top of the operand stack. |
|
369 REGISTER_DECLARATION(Register, Z_tos, Z_R2); |
|
370 // Register to cache the fp value on top of the operand stack. |
|
371 REGISTER_DECLARATION(FloatRegister, Z_ftos, Z_F0); |
|
372 // Expression stack pointer in interpreted java frame. |
|
373 REGISTER_DECLARATION(Register, Z_esp, Z_R7); |
|
374 // Address of current thread. |
|
375 REGISTER_DECLARATION(Register, Z_thread, Z_R8); |
|
376 // Address of current method. only valid in interpreter_entry. |
|
377 REGISTER_DECLARATION(Register, Z_method, Z_R9); |
|
378 // Inline cache register. used by c1 and c2. |
|
379 REGISTER_DECLARATION(Register, Z_inline_cache,Z_R9); |
|
380 // Frame pointer of current interpreter frame. only valid while |
|
381 // executing bytecodes. |
|
382 REGISTER_DECLARATION(Register, Z_fp, Z_R9); |
|
383 // Address of the locals array in an interpreted java frame. |
|
384 REGISTER_DECLARATION(Register, Z_locals, Z_R12); |
|
385 // Bytecode pointer. |
|
386 REGISTER_DECLARATION(Register, Z_bcp, Z_R13); |
|
387 // Bytecode which is dispatched (short lived!). |
|
388 REGISTER_DECLARATION(Register, Z_bytecode, Z_R14); |
|
389 #ifndef DONT_USE_REGISTER_DEFINES |
|
390 #define Z_tos AS_REGISTER(Register, Z_R2) |
|
391 #define Z_ftos AS_REGISTER(FloatRegister, Z_F0) |
|
392 #define Z_esp AS_REGISTER(Register, Z_R7) |
|
393 #define Z_thread AS_REGISTER(Register, Z_R8) |
|
394 #define Z_method AS_REGISTER(Register, Z_R9) |
|
395 #define Z_inline_cache AS_REGISTER(Register, Z_R9) |
|
396 #define Z_fp AS_REGISTER(Register, Z_R9) |
|
397 #define Z_locals AS_REGISTER(Register, Z_R12) |
|
398 #define Z_bcp AS_REGISTER(Register, Z_R13) |
|
399 #define Z_bytecode AS_REGISTER(Register, Z_R14) |
|
400 #endif |
|
401 |
|
402 // Temporary registers to be used within frame manager. We can use |
|
403 // the nonvolatiles because the call stub has saved them. |
|
404 // Use only non-volatile registers in order to keep values across C-calls. |
|
405 REGISTER_DECLARATION(Register, Z_tmp_1, Z_R10); |
|
406 REGISTER_DECLARATION(Register, Z_tmp_2, Z_R11); |
|
407 REGISTER_DECLARATION(Register, Z_tmp_3, Z_R12); |
|
408 REGISTER_DECLARATION(Register, Z_tmp_4, Z_R13); |
|
409 #ifndef DONT_USE_REGISTER_DEFINES |
|
410 #define Z_tmp_1 AS_REGISTER(Register, Z_R10) |
|
411 #define Z_tmp_2 AS_REGISTER(Register, Z_R11) |
|
412 #define Z_tmp_3 AS_REGISTER(Register, Z_R12) |
|
413 #define Z_tmp_4 AS_REGISTER(Register, Z_R13) |
|
414 #endif |
|
415 |
|
416 // Scratch registers are volatile. |
|
417 REGISTER_DECLARATION(Register, Z_R0_scratch, Z_R0); |
|
418 REGISTER_DECLARATION(Register, Z_R1_scratch, Z_R1); |
|
419 REGISTER_DECLARATION(FloatRegister, Z_fscratch_1, Z_F1); |
|
420 #ifndef DONT_USE_REGISTER_DEFINES |
|
421 #define Z_R0_scratch AS_REGISTER(Register, Z_R0) |
|
422 #define Z_R1_scratch AS_REGISTER(Register, Z_R1) |
|
423 #define Z_fscratch_1 AS_REGISTER(FloatRegister, Z_F1) |
|
424 #endif |
|
425 |
|
426 |
|
427 #endif // CPU_S390_VM_REGISTER_S390_HPP |