src/hotspot/cpu/ppc/templateInterpreterGenerator_ppc.cpp
changeset 47216 71c04702a3d5
parent 46960 b498e2123d2f
child 47586 07ad034e0c29
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * Copyright (c) 2014, 2017, Oracle and/or its affiliates. All rights reserved.
       
     3  * Copyright (c) 2015, 2017, SAP SE. All rights reserved.
       
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     5  *
       
     6  * This code is free software; you can redistribute it and/or modify it
       
     7  * under the terms of the GNU General Public License version 2 only, as
       
     8  * published by the Free Software Foundation.
       
     9  *
       
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    13  * version 2 for more details (a copy is included in the LICENSE file that
       
    14  * accompanied this code).
       
    15  *
       
    16  * You should have received a copy of the GNU General Public License version
       
    17  * 2 along with this work; if not, write to the Free Software Foundation,
       
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    19  *
       
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    21  * or visit www.oracle.com if you need additional information or have any
       
    22  * questions.
       
    23  *
       
    24  */
       
    25 
       
    26 #include "precompiled.hpp"
       
    27 #include "asm/macroAssembler.inline.hpp"
       
    28 #include "interpreter/bytecodeHistogram.hpp"
       
    29 #include "interpreter/interpreter.hpp"
       
    30 #include "interpreter/interpreterRuntime.hpp"
       
    31 #include "interpreter/interp_masm.hpp"
       
    32 #include "interpreter/templateInterpreterGenerator.hpp"
       
    33 #include "interpreter/templateTable.hpp"
       
    34 #include "oops/arrayOop.hpp"
       
    35 #include "oops/methodData.hpp"
       
    36 #include "oops/method.hpp"
       
    37 #include "oops/oop.inline.hpp"
       
    38 #include "prims/jvmtiExport.hpp"
       
    39 #include "prims/jvmtiThreadState.hpp"
       
    40 #include "runtime/arguments.hpp"
       
    41 #include "runtime/deoptimization.hpp"
       
    42 #include "runtime/frame.inline.hpp"
       
    43 #include "runtime/sharedRuntime.hpp"
       
    44 #include "runtime/stubRoutines.hpp"
       
    45 #include "runtime/synchronizer.hpp"
       
    46 #include "runtime/timer.hpp"
       
    47 #include "runtime/vframeArray.hpp"
       
    48 #include "utilities/debug.hpp"
       
    49 #include "utilities/macros.hpp"
       
    50 
       
    51 #undef __
       
    52 #define __ _masm->
       
    53 
       
    54 // Size of interpreter code.  Increase if too small.  Interpreter will
       
    55 // fail with a guarantee ("not enough space for interpreter generation");
       
    56 // if too small.
       
    57 // Run with +PrintInterpreter to get the VM to print out the size.
       
    58 // Max size with JVMTI
       
    59 int TemplateInterpreter::InterpreterCodeSize = 256*K;
       
    60 
       
    61 #ifdef PRODUCT
       
    62 #define BLOCK_COMMENT(str) /* nothing */
       
    63 #else
       
    64 #define BLOCK_COMMENT(str) __ block_comment(str)
       
    65 #endif
       
    66 
       
    67 #define BIND(label)        __ bind(label); BLOCK_COMMENT(#label ":")
       
    68 
       
    69 //-----------------------------------------------------------------------------
       
    70 
       
    71 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
       
    72   // Slow_signature handler that respects the PPC C calling conventions.
       
    73   //
       
    74   // We get called by the native entry code with our output register
       
    75   // area == 8. First we call InterpreterRuntime::get_result_handler
       
    76   // to copy the pointer to the signature string temporarily to the
       
    77   // first C-argument and to return the result_handler in
       
    78   // R3_RET. Since native_entry will copy the jni-pointer to the
       
    79   // first C-argument slot later on, it is OK to occupy this slot
       
    80   // temporarilly. Then we copy the argument list on the java
       
    81   // expression stack into native varargs format on the native stack
       
    82   // and load arguments into argument registers. Integer arguments in
       
    83   // the varargs vector will be sign-extended to 8 bytes.
       
    84   //
       
    85   // On entry:
       
    86   //   R3_ARG1        - intptr_t*     Address of java argument list in memory.
       
    87   //   R15_prev_state - BytecodeInterpreter* Address of interpreter state for
       
    88   //     this method
       
    89   //   R19_method
       
    90   //
       
    91   // On exit (just before return instruction):
       
    92   //   R3_RET            - contains the address of the result_handler.
       
    93   //   R4_ARG2           - is not updated for static methods and contains "this" otherwise.
       
    94   //   R5_ARG3-R10_ARG8: - When the (i-2)th Java argument is not of type float or double,
       
    95   //                       ARGi contains this argument. Otherwise, ARGi is not updated.
       
    96   //   F1_ARG1-F13_ARG13 - contain the first 13 arguments of type float or double.
       
    97 
       
    98   const int LogSizeOfTwoInstructions = 3;
       
    99 
       
   100   // FIXME: use Argument:: GL: Argument names different numbers!
       
   101   const int max_fp_register_arguments  = 13;
       
   102   const int max_int_register_arguments = 6;  // first 2 are reserved
       
   103 
       
   104   const Register arg_java       = R21_tmp1;
       
   105   const Register arg_c          = R22_tmp2;
       
   106   const Register signature      = R23_tmp3;  // is string
       
   107   const Register sig_byte       = R24_tmp4;
       
   108   const Register fpcnt          = R25_tmp5;
       
   109   const Register argcnt         = R26_tmp6;
       
   110   const Register intSlot        = R27_tmp7;
       
   111   const Register target_sp      = R28_tmp8;
       
   112   const FloatRegister floatSlot = F0;
       
   113 
       
   114   address entry = __ function_entry();
       
   115 
       
   116   __ save_LR_CR(R0);
       
   117   __ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
       
   118   // We use target_sp for storing arguments in the C frame.
       
   119   __ mr(target_sp, R1_SP);
       
   120   __ push_frame_reg_args_nonvolatiles(0, R11_scratch1);
       
   121 
       
   122   __ mr(arg_java, R3_ARG1);
       
   123 
       
   124   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), R16_thread, R19_method);
       
   125 
       
   126   // Signature is in R3_RET. Signature is callee saved.
       
   127   __ mr(signature, R3_RET);
       
   128 
       
   129   // Get the result handler.
       
   130   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), R16_thread, R19_method);
       
   131 
       
   132   {
       
   133     Label L;
       
   134     // test if static
       
   135     // _access_flags._flags must be at offset 0.
       
   136     // TODO PPC port: requires change in shared code.
       
   137     //assert(in_bytes(AccessFlags::flags_offset()) == 0,
       
   138     //       "MethodDesc._access_flags == MethodDesc._access_flags._flags");
       
   139     // _access_flags must be a 32 bit value.
       
   140     assert(sizeof(AccessFlags) == 4, "wrong size");
       
   141     __ lwa(R11_scratch1/*access_flags*/, method_(access_flags));
       
   142     // testbit with condition register.
       
   143     __ testbitdi(CCR0, R0, R11_scratch1/*access_flags*/, JVM_ACC_STATIC_BIT);
       
   144     __ btrue(CCR0, L);
       
   145     // For non-static functions, pass "this" in R4_ARG2 and copy it
       
   146     // to 2nd C-arg slot.
       
   147     // We need to box the Java object here, so we use arg_java
       
   148     // (address of current Java stack slot) as argument and don't
       
   149     // dereference it as in case of ints, floats, etc.
       
   150     __ mr(R4_ARG2, arg_java);
       
   151     __ addi(arg_java, arg_java, -BytesPerWord);
       
   152     __ std(R4_ARG2, _abi(carg_2), target_sp);
       
   153     __ bind(L);
       
   154   }
       
   155 
       
   156   // Will be incremented directly after loop_start. argcnt=0
       
   157   // corresponds to 3rd C argument.
       
   158   __ li(argcnt, -1);
       
   159   // arg_c points to 3rd C argument
       
   160   __ addi(arg_c, target_sp, _abi(carg_3));
       
   161   // no floating-point args parsed so far
       
   162   __ li(fpcnt, 0);
       
   163 
       
   164   Label move_intSlot_to_ARG, move_floatSlot_to_FARG;
       
   165   Label loop_start, loop_end;
       
   166   Label do_int, do_long, do_float, do_double, do_dontreachhere, do_object, do_array, do_boxed;
       
   167 
       
   168   // signature points to '(' at entry
       
   169 #ifdef ASSERT
       
   170   __ lbz(sig_byte, 0, signature);
       
   171   __ cmplwi(CCR0, sig_byte, '(');
       
   172   __ bne(CCR0, do_dontreachhere);
       
   173 #endif
       
   174 
       
   175   __ bind(loop_start);
       
   176 
       
   177   __ addi(argcnt, argcnt, 1);
       
   178   __ lbzu(sig_byte, 1, signature);
       
   179 
       
   180   __ cmplwi(CCR0, sig_byte, ')'); // end of signature
       
   181   __ beq(CCR0, loop_end);
       
   182 
       
   183   __ cmplwi(CCR0, sig_byte, 'B'); // byte
       
   184   __ beq(CCR0, do_int);
       
   185 
       
   186   __ cmplwi(CCR0, sig_byte, 'C'); // char
       
   187   __ beq(CCR0, do_int);
       
   188 
       
   189   __ cmplwi(CCR0, sig_byte, 'D'); // double
       
   190   __ beq(CCR0, do_double);
       
   191 
       
   192   __ cmplwi(CCR0, sig_byte, 'F'); // float
       
   193   __ beq(CCR0, do_float);
       
   194 
       
   195   __ cmplwi(CCR0, sig_byte, 'I'); // int
       
   196   __ beq(CCR0, do_int);
       
   197 
       
   198   __ cmplwi(CCR0, sig_byte, 'J'); // long
       
   199   __ beq(CCR0, do_long);
       
   200 
       
   201   __ cmplwi(CCR0, sig_byte, 'S'); // short
       
   202   __ beq(CCR0, do_int);
       
   203 
       
   204   __ cmplwi(CCR0, sig_byte, 'Z'); // boolean
       
   205   __ beq(CCR0, do_int);
       
   206 
       
   207   __ cmplwi(CCR0, sig_byte, 'L'); // object
       
   208   __ beq(CCR0, do_object);
       
   209 
       
   210   __ cmplwi(CCR0, sig_byte, '['); // array
       
   211   __ beq(CCR0, do_array);
       
   212 
       
   213   //  __ cmplwi(CCR0, sig_byte, 'V'); // void cannot appear since we do not parse the return type
       
   214   //  __ beq(CCR0, do_void);
       
   215 
       
   216   __ bind(do_dontreachhere);
       
   217 
       
   218   __ unimplemented("ShouldNotReachHere in slow_signature_handler", 120);
       
   219 
       
   220   __ bind(do_array);
       
   221 
       
   222   {
       
   223     Label start_skip, end_skip;
       
   224 
       
   225     __ bind(start_skip);
       
   226     __ lbzu(sig_byte, 1, signature);
       
   227     __ cmplwi(CCR0, sig_byte, '[');
       
   228     __ beq(CCR0, start_skip); // skip further brackets
       
   229     __ cmplwi(CCR0, sig_byte, '9');
       
   230     __ bgt(CCR0, end_skip);   // no optional size
       
   231     __ cmplwi(CCR0, sig_byte, '0');
       
   232     __ bge(CCR0, start_skip); // skip optional size
       
   233     __ bind(end_skip);
       
   234 
       
   235     __ cmplwi(CCR0, sig_byte, 'L');
       
   236     __ beq(CCR0, do_object);  // for arrays of objects, the name of the object must be skipped
       
   237     __ b(do_boxed);          // otherwise, go directly to do_boxed
       
   238   }
       
   239 
       
   240   __ bind(do_object);
       
   241   {
       
   242     Label L;
       
   243     __ bind(L);
       
   244     __ lbzu(sig_byte, 1, signature);
       
   245     __ cmplwi(CCR0, sig_byte, ';');
       
   246     __ bne(CCR0, L);
       
   247    }
       
   248   // Need to box the Java object here, so we use arg_java (address of
       
   249   // current Java stack slot) as argument and don't dereference it as
       
   250   // in case of ints, floats, etc.
       
   251   Label do_null;
       
   252   __ bind(do_boxed);
       
   253   __ ld(R0,0, arg_java);
       
   254   __ cmpdi(CCR0, R0, 0);
       
   255   __ li(intSlot,0);
       
   256   __ beq(CCR0, do_null);
       
   257   __ mr(intSlot, arg_java);
       
   258   __ bind(do_null);
       
   259   __ std(intSlot, 0, arg_c);
       
   260   __ addi(arg_java, arg_java, -BytesPerWord);
       
   261   __ addi(arg_c, arg_c, BytesPerWord);
       
   262   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
       
   263   __ blt(CCR0, move_intSlot_to_ARG);
       
   264   __ b(loop_start);
       
   265 
       
   266   __ bind(do_int);
       
   267   __ lwa(intSlot, 0, arg_java);
       
   268   __ std(intSlot, 0, arg_c);
       
   269   __ addi(arg_java, arg_java, -BytesPerWord);
       
   270   __ addi(arg_c, arg_c, BytesPerWord);
       
   271   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
       
   272   __ blt(CCR0, move_intSlot_to_ARG);
       
   273   __ b(loop_start);
       
   274 
       
   275   __ bind(do_long);
       
   276   __ ld(intSlot, -BytesPerWord, arg_java);
       
   277   __ std(intSlot, 0, arg_c);
       
   278   __ addi(arg_java, arg_java, - 2 * BytesPerWord);
       
   279   __ addi(arg_c, arg_c, BytesPerWord);
       
   280   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
       
   281   __ blt(CCR0, move_intSlot_to_ARG);
       
   282   __ b(loop_start);
       
   283 
       
   284   __ bind(do_float);
       
   285   __ lfs(floatSlot, 0, arg_java);
       
   286 #if defined(LINUX)
       
   287   // Linux uses ELF ABI. Both original ELF and ELFv2 ABIs have float
       
   288   // in the least significant word of an argument slot.
       
   289 #if defined(VM_LITTLE_ENDIAN)
       
   290   __ stfs(floatSlot, 0, arg_c);
       
   291 #else
       
   292   __ stfs(floatSlot, 4, arg_c);
       
   293 #endif
       
   294 #elif defined(AIX)
       
   295   // Although AIX runs on big endian CPU, float is in most significant
       
   296   // word of an argument slot.
       
   297   __ stfs(floatSlot, 0, arg_c);
       
   298 #else
       
   299 #error "unknown OS"
       
   300 #endif
       
   301   __ addi(arg_java, arg_java, -BytesPerWord);
       
   302   __ addi(arg_c, arg_c, BytesPerWord);
       
   303   __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
       
   304   __ blt(CCR0, move_floatSlot_to_FARG);
       
   305   __ b(loop_start);
       
   306 
       
   307   __ bind(do_double);
       
   308   __ lfd(floatSlot, - BytesPerWord, arg_java);
       
   309   __ stfd(floatSlot, 0, arg_c);
       
   310   __ addi(arg_java, arg_java, - 2 * BytesPerWord);
       
   311   __ addi(arg_c, arg_c, BytesPerWord);
       
   312   __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
       
   313   __ blt(CCR0, move_floatSlot_to_FARG);
       
   314   __ b(loop_start);
       
   315 
       
   316   __ bind(loop_end);
       
   317 
       
   318   __ pop_frame();
       
   319   __ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
       
   320   __ restore_LR_CR(R0);
       
   321 
       
   322   __ blr();
       
   323 
       
   324   Label move_int_arg, move_float_arg;
       
   325   __ bind(move_int_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
       
   326   __ mr(R5_ARG3, intSlot);  __ b(loop_start);
       
   327   __ mr(R6_ARG4, intSlot);  __ b(loop_start);
       
   328   __ mr(R7_ARG5, intSlot);  __ b(loop_start);
       
   329   __ mr(R8_ARG6, intSlot);  __ b(loop_start);
       
   330   __ mr(R9_ARG7, intSlot);  __ b(loop_start);
       
   331   __ mr(R10_ARG8, intSlot); __ b(loop_start);
       
   332 
       
   333   __ bind(move_float_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
       
   334   __ fmr(F1_ARG1, floatSlot);   __ b(loop_start);
       
   335   __ fmr(F2_ARG2, floatSlot);   __ b(loop_start);
       
   336   __ fmr(F3_ARG3, floatSlot);   __ b(loop_start);
       
   337   __ fmr(F4_ARG4, floatSlot);   __ b(loop_start);
       
   338   __ fmr(F5_ARG5, floatSlot);   __ b(loop_start);
       
   339   __ fmr(F6_ARG6, floatSlot);   __ b(loop_start);
       
   340   __ fmr(F7_ARG7, floatSlot);   __ b(loop_start);
       
   341   __ fmr(F8_ARG8, floatSlot);   __ b(loop_start);
       
   342   __ fmr(F9_ARG9, floatSlot);   __ b(loop_start);
       
   343   __ fmr(F10_ARG10, floatSlot); __ b(loop_start);
       
   344   __ fmr(F11_ARG11, floatSlot); __ b(loop_start);
       
   345   __ fmr(F12_ARG12, floatSlot); __ b(loop_start);
       
   346   __ fmr(F13_ARG13, floatSlot); __ b(loop_start);
       
   347 
       
   348   __ bind(move_intSlot_to_ARG);
       
   349   __ sldi(R0, argcnt, LogSizeOfTwoInstructions);
       
   350   __ load_const(R11_scratch1, move_int_arg); // Label must be bound here.
       
   351   __ add(R11_scratch1, R0, R11_scratch1);
       
   352   __ mtctr(R11_scratch1/*branch_target*/);
       
   353   __ bctr();
       
   354   __ bind(move_floatSlot_to_FARG);
       
   355   __ sldi(R0, fpcnt, LogSizeOfTwoInstructions);
       
   356   __ addi(fpcnt, fpcnt, 1);
       
   357   __ load_const(R11_scratch1, move_float_arg); // Label must be bound here.
       
   358   __ add(R11_scratch1, R0, R11_scratch1);
       
   359   __ mtctr(R11_scratch1/*branch_target*/);
       
   360   __ bctr();
       
   361 
       
   362   return entry;
       
   363 }
       
   364 
       
   365 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
       
   366   //
       
   367   // Registers alive
       
   368   //   R3_RET
       
   369   //   LR
       
   370   //
       
   371   // Registers updated
       
   372   //   R3_RET
       
   373   //
       
   374 
       
   375   Label done;
       
   376   address entry = __ pc();
       
   377 
       
   378   switch (type) {
       
   379   case T_BOOLEAN:
       
   380     // convert !=0 to 1
       
   381     __ neg(R0, R3_RET);
       
   382     __ orr(R0, R3_RET, R0);
       
   383     __ srwi(R3_RET, R0, 31);
       
   384     break;
       
   385   case T_BYTE:
       
   386      // sign extend 8 bits
       
   387      __ extsb(R3_RET, R3_RET);
       
   388      break;
       
   389   case T_CHAR:
       
   390      // zero extend 16 bits
       
   391      __ clrldi(R3_RET, R3_RET, 48);
       
   392      break;
       
   393   case T_SHORT:
       
   394      // sign extend 16 bits
       
   395      __ extsh(R3_RET, R3_RET);
       
   396      break;
       
   397   case T_INT:
       
   398      // sign extend 32 bits
       
   399      __ extsw(R3_RET, R3_RET);
       
   400      break;
       
   401   case T_LONG:
       
   402      break;
       
   403   case T_OBJECT:
       
   404     // JNIHandles::resolve result.
       
   405     __ resolve_jobject(R3_RET, R11_scratch1, R12_scratch2, /* needs_frame */ true); // kills R31
       
   406     break;
       
   407   case T_FLOAT:
       
   408      break;
       
   409   case T_DOUBLE:
       
   410      break;
       
   411   case T_VOID:
       
   412      break;
       
   413   default: ShouldNotReachHere();
       
   414   }
       
   415 
       
   416   BIND(done);
       
   417   __ blr();
       
   418 
       
   419   return entry;
       
   420 }
       
   421 
       
   422 // Abstract method entry.
       
   423 //
       
   424 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
       
   425   address entry = __ pc();
       
   426 
       
   427   //
       
   428   // Registers alive
       
   429   //   R16_thread     - JavaThread*
       
   430   //   R19_method     - callee's method (method to be invoked)
       
   431   //   R1_SP          - SP prepared such that caller's outgoing args are near top
       
   432   //   LR             - return address to caller
       
   433   //
       
   434   // Stack layout at this point:
       
   435   //
       
   436   //   0       [TOP_IJAVA_FRAME_ABI]         <-- R1_SP
       
   437   //           alignment (optional)
       
   438   //           [outgoing Java arguments]
       
   439   //           ...
       
   440   //   PARENT  [PARENT_IJAVA_FRAME_ABI]
       
   441   //            ...
       
   442   //
       
   443 
       
   444   // Can't use call_VM here because we have not set up a new
       
   445   // interpreter state. Make the call to the vm and make it look like
       
   446   // our caller set up the JavaFrameAnchor.
       
   447   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
       
   448 
       
   449   // Push a new C frame and save LR.
       
   450   __ save_LR_CR(R0);
       
   451   __ push_frame_reg_args(0, R11_scratch1);
       
   452 
       
   453   // This is not a leaf but we have a JavaFrameAnchor now and we will
       
   454   // check (create) exceptions afterward so this is ok.
       
   455   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError),
       
   456                   R16_thread);
       
   457 
       
   458   // Pop the C frame and restore LR.
       
   459   __ pop_frame();
       
   460   __ restore_LR_CR(R0);
       
   461 
       
   462   // Reset JavaFrameAnchor from call_VM_leaf above.
       
   463   __ reset_last_Java_frame();
       
   464 
       
   465   // We don't know our caller, so jump to the general forward exception stub,
       
   466   // which will also pop our full frame off. Satisfy the interface of
       
   467   // SharedRuntime::generate_forward_exception()
       
   468   __ load_const_optimized(R11_scratch1, StubRoutines::forward_exception_entry(), R0);
       
   469   __ mtctr(R11_scratch1);
       
   470   __ bctr();
       
   471 
       
   472   return entry;
       
   473 }
       
   474 
       
   475 // Interpreter intrinsic for WeakReference.get().
       
   476 // 1. Don't push a full blown frame and go on dispatching, but fetch the value
       
   477 //    into R8 and return quickly
       
   478 // 2. If G1 is active we *must* execute this intrinsic for corrrectness:
       
   479 //    It contains a GC barrier which puts the reference into the satb buffer
       
   480 //    to indicate that someone holds a strong reference to the object the
       
   481 //    weak ref points to!
       
   482 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
       
   483   // Code: _aload_0, _getfield, _areturn
       
   484   // parameter size = 1
       
   485   //
       
   486   // The code that gets generated by this routine is split into 2 parts:
       
   487   //    1. the "intrinsified" code for G1 (or any SATB based GC),
       
   488   //    2. the slow path - which is an expansion of the regular method entry.
       
   489   //
       
   490   // Notes:
       
   491   // * In the G1 code we do not check whether we need to block for
       
   492   //   a safepoint. If G1 is enabled then we must execute the specialized
       
   493   //   code for Reference.get (except when the Reference object is null)
       
   494   //   so that we can log the value in the referent field with an SATB
       
   495   //   update buffer.
       
   496   //   If the code for the getfield template is modified so that the
       
   497   //   G1 pre-barrier code is executed when the current method is
       
   498   //   Reference.get() then going through the normal method entry
       
   499   //   will be fine.
       
   500   // * The G1 code can, however, check the receiver object (the instance
       
   501   //   of java.lang.Reference) and jump to the slow path if null. If the
       
   502   //   Reference object is null then we obviously cannot fetch the referent
       
   503   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
       
   504   //   regular method entry code to generate the NPE.
       
   505   //
       
   506 
       
   507   if (UseG1GC) {
       
   508     address entry = __ pc();
       
   509 
       
   510     const int referent_offset = java_lang_ref_Reference::referent_offset;
       
   511     guarantee(referent_offset > 0, "referent offset not initialized");
       
   512 
       
   513     Label slow_path;
       
   514 
       
   515     // Debugging not possible, so can't use __ skip_if_jvmti_mode(slow_path, GR31_SCRATCH);
       
   516 
       
   517     // In the G1 code we don't check if we need to reach a safepoint. We
       
   518     // continue and the thread will safepoint at the next bytecode dispatch.
       
   519 
       
   520     // If the receiver is null then it is OK to jump to the slow path.
       
   521     __ ld(R3_RET, Interpreter::stackElementSize, R15_esp); // get receiver
       
   522 
       
   523     // Check if receiver == NULL and go the slow path.
       
   524     __ cmpdi(CCR0, R3_RET, 0);
       
   525     __ beq(CCR0, slow_path);
       
   526 
       
   527     // Load the value of the referent field.
       
   528     __ load_heap_oop(R3_RET, referent_offset, R3_RET);
       
   529 
       
   530     // Generate the G1 pre-barrier code to log the value of
       
   531     // the referent field in an SATB buffer. Note with
       
   532     // these parameters the pre-barrier does not generate
       
   533     // the load of the previous value.
       
   534 
       
   535     // Restore caller sp for c2i case.
       
   536 #ifdef ASSERT
       
   537       __ ld(R9_ARG7, 0, R1_SP);
       
   538       __ ld(R10_ARG8, 0, R21_sender_SP);
       
   539       __ cmpd(CCR0, R9_ARG7, R10_ARG8);
       
   540       __ asm_assert_eq("backlink", 0x544);
       
   541 #endif // ASSERT
       
   542     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
       
   543 
       
   544     __ g1_write_barrier_pre(noreg,         // obj
       
   545                             noreg,         // offset
       
   546                             R3_RET,        // pre_val
       
   547                             R11_scratch1,  // tmp
       
   548                             R12_scratch2,  // tmp
       
   549                             true);         // needs_frame
       
   550 
       
   551     __ blr();
       
   552 
       
   553     // Generate regular method entry.
       
   554     __ bind(slow_path);
       
   555     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1);
       
   556     return entry;
       
   557   }
       
   558 
       
   559   return NULL;
       
   560 }
       
   561 
       
   562 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
       
   563   address entry = __ pc();
       
   564 
       
   565   // Expression stack must be empty before entering the VM if an
       
   566   // exception happened.
       
   567   __ empty_expression_stack();
       
   568   // Throw exception.
       
   569   __ call_VM(noreg,
       
   570              CAST_FROM_FN_PTR(address,
       
   571                               InterpreterRuntime::throw_StackOverflowError));
       
   572   return entry;
       
   573 }
       
   574 
       
   575 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
       
   576   address entry = __ pc();
       
   577   __ empty_expression_stack();
       
   578   __ load_const_optimized(R4_ARG2, (address) name);
       
   579   // Index is in R17_tos.
       
   580   __ mr(R5_ARG3, R17_tos);
       
   581   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException));
       
   582   return entry;
       
   583 }
       
   584 
       
   585 #if 0
       
   586 // Call special ClassCastException constructor taking object to cast
       
   587 // and target class as arguments.
       
   588 address TemplateInterpreterGenerator::generate_ClassCastException_verbose_handler() {
       
   589   address entry = __ pc();
       
   590 
       
   591   // Expression stack must be empty before entering the VM if an
       
   592   // exception happened.
       
   593   __ empty_expression_stack();
       
   594 
       
   595   // Thread will be loaded to R3_ARG1.
       
   596   // Target class oop is in register R5_ARG3 by convention!
       
   597   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException_verbose), R17_tos, R5_ARG3);
       
   598   // Above call must not return here since exception pending.
       
   599   DEBUG_ONLY(__ should_not_reach_here();)
       
   600   return entry;
       
   601 }
       
   602 #endif
       
   603 
       
   604 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
       
   605   address entry = __ pc();
       
   606   // Expression stack must be empty before entering the VM if an
       
   607   // exception happened.
       
   608   __ empty_expression_stack();
       
   609 
       
   610   // Load exception object.
       
   611   // Thread will be loaded to R3_ARG1.
       
   612   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), R17_tos);
       
   613 #ifdef ASSERT
       
   614   // Above call must not return here since exception pending.
       
   615   __ should_not_reach_here();
       
   616 #endif
       
   617   return entry;
       
   618 }
       
   619 
       
   620 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
       
   621   address entry = __ pc();
       
   622   //__ untested("generate_exception_handler_common");
       
   623   Register Rexception = R17_tos;
       
   624 
       
   625   // Expression stack must be empty before entering the VM if an exception happened.
       
   626   __ empty_expression_stack();
       
   627 
       
   628   __ load_const_optimized(R4_ARG2, (address) name, R11_scratch1);
       
   629   if (pass_oop) {
       
   630     __ mr(R5_ARG3, Rexception);
       
   631     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), false);
       
   632   } else {
       
   633     __ load_const_optimized(R5_ARG3, (address) message, R11_scratch1);
       
   634     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), false);
       
   635   }
       
   636 
       
   637   // Throw exception.
       
   638   __ mr(R3_ARG1, Rexception);
       
   639   __ load_const_optimized(R11_scratch1, Interpreter::throw_exception_entry(), R12_scratch2);
       
   640   __ mtctr(R11_scratch1);
       
   641   __ bctr();
       
   642 
       
   643   return entry;
       
   644 }
       
   645 
       
   646 // This entry is returned to when a call returns to the interpreter.
       
   647 // When we arrive here, we expect that the callee stack frame is already popped.
       
   648 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
       
   649   address entry = __ pc();
       
   650 
       
   651   // Move the value out of the return register back to the TOS cache of current frame.
       
   652   switch (state) {
       
   653     case ltos:
       
   654     case btos:
       
   655     case ztos:
       
   656     case ctos:
       
   657     case stos:
       
   658     case atos:
       
   659     case itos: __ mr(R17_tos, R3_RET); break;   // RET -> TOS cache
       
   660     case ftos:
       
   661     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
       
   662     case vtos: break;                           // Nothing to do, this was a void return.
       
   663     default  : ShouldNotReachHere();
       
   664   }
       
   665 
       
   666   __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
       
   667   __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
       
   668   __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
       
   669 
       
   670   // Compiled code destroys templateTableBase, reload.
       
   671   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2);
       
   672 
       
   673   if (state == atos) {
       
   674     __ profile_return_type(R3_RET, R11_scratch1, R12_scratch2);
       
   675   }
       
   676 
       
   677   const Register cache = R11_scratch1;
       
   678   const Register size  = R12_scratch2;
       
   679   __ get_cache_and_index_at_bcp(cache, 1, index_size);
       
   680 
       
   681   // Get least significant byte of 64 bit value:
       
   682 #if defined(VM_LITTLE_ENDIAN)
       
   683   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()), cache);
       
   684 #else
       
   685   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()) + 7, cache);
       
   686 #endif
       
   687   __ sldi(size, size, Interpreter::logStackElementSize);
       
   688   __ add(R15_esp, R15_esp, size);
       
   689 
       
   690  __ check_and_handle_popframe(R11_scratch1);
       
   691  __ check_and_handle_earlyret(R11_scratch1);
       
   692 
       
   693   __ dispatch_next(state, step);
       
   694   return entry;
       
   695 }
       
   696 
       
   697 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
       
   698   address entry = __ pc();
       
   699   // If state != vtos, we're returning from a native method, which put it's result
       
   700   // into the result register. So move the value out of the return register back
       
   701   // to the TOS cache of current frame.
       
   702 
       
   703   switch (state) {
       
   704     case ltos:
       
   705     case btos:
       
   706     case ztos:
       
   707     case ctos:
       
   708     case stos:
       
   709     case atos:
       
   710     case itos: __ mr(R17_tos, R3_RET); break;   // GR_RET -> TOS cache
       
   711     case ftos:
       
   712     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
       
   713     case vtos: break;                           // Nothing to do, this was a void return.
       
   714     default  : ShouldNotReachHere();
       
   715   }
       
   716 
       
   717   // Load LcpoolCache @@@ should be already set!
       
   718   __ get_constant_pool_cache(R27_constPoolCache);
       
   719 
       
   720   // Handle a pending exception, fall through if none.
       
   721   __ check_and_forward_exception(R11_scratch1, R12_scratch2);
       
   722 
       
   723   // Start executing bytecodes.
       
   724   __ dispatch_next(state, step);
       
   725 
       
   726   return entry;
       
   727 }
       
   728 
       
   729 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
       
   730   address entry = __ pc();
       
   731 
       
   732   __ push(state);
       
   733   __ call_VM(noreg, runtime_entry);
       
   734   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
       
   735 
       
   736   return entry;
       
   737 }
       
   738 
       
   739 // Helpers for commoning out cases in the various type of method entries.
       
   740 
       
   741 // Increment invocation count & check for overflow.
       
   742 //
       
   743 // Note: checking for negative value instead of overflow
       
   744 //       so we have a 'sticky' overflow test.
       
   745 //
       
   746 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
       
   747   // Note: In tiered we increment either counters in method or in MDO depending if we're profiling or not.
       
   748   Register Rscratch1   = R11_scratch1;
       
   749   Register Rscratch2   = R12_scratch2;
       
   750   Register R3_counters = R3_ARG1;
       
   751   Label done;
       
   752 
       
   753   if (TieredCompilation) {
       
   754     const int increment = InvocationCounter::count_increment;
       
   755     Label no_mdo;
       
   756     if (ProfileInterpreter) {
       
   757       const Register Rmdo = R3_counters;
       
   758       // If no method data exists, go to profile_continue.
       
   759       __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
       
   760       __ cmpdi(CCR0, Rmdo, 0);
       
   761       __ beq(CCR0, no_mdo);
       
   762 
       
   763       // Increment invocation counter in the MDO.
       
   764       const int mdo_ic_offs = in_bytes(MethodData::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
       
   765       __ lwz(Rscratch2, mdo_ic_offs, Rmdo);
       
   766       __ lwz(Rscratch1, in_bytes(MethodData::invoke_mask_offset()), Rmdo);
       
   767       __ addi(Rscratch2, Rscratch2, increment);
       
   768       __ stw(Rscratch2, mdo_ic_offs, Rmdo);
       
   769       __ and_(Rscratch1, Rscratch2, Rscratch1);
       
   770       __ bne(CCR0, done);
       
   771       __ b(*overflow);
       
   772     }
       
   773 
       
   774     // Increment counter in MethodCounters*.
       
   775     const int mo_ic_offs = in_bytes(MethodCounters::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
       
   776     __ bind(no_mdo);
       
   777     __ get_method_counters(R19_method, R3_counters, done);
       
   778     __ lwz(Rscratch2, mo_ic_offs, R3_counters);
       
   779     __ lwz(Rscratch1, in_bytes(MethodCounters::invoke_mask_offset()), R3_counters);
       
   780     __ addi(Rscratch2, Rscratch2, increment);
       
   781     __ stw(Rscratch2, mo_ic_offs, R3_counters);
       
   782     __ and_(Rscratch1, Rscratch2, Rscratch1);
       
   783     __ beq(CCR0, *overflow);
       
   784 
       
   785     __ bind(done);
       
   786 
       
   787   } else {
       
   788 
       
   789     // Update standard invocation counters.
       
   790     Register Rsum_ivc_bec = R4_ARG2;
       
   791     __ get_method_counters(R19_method, R3_counters, done);
       
   792     __ increment_invocation_counter(R3_counters, Rsum_ivc_bec, R12_scratch2);
       
   793     // Increment interpreter invocation counter.
       
   794     if (ProfileInterpreter) {  // %%% Merge this into methodDataOop.
       
   795       __ lwz(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
       
   796       __ addi(R12_scratch2, R12_scratch2, 1);
       
   797       __ stw(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
       
   798     }
       
   799     // Check if we must create a method data obj.
       
   800     if (ProfileInterpreter && profile_method != NULL) {
       
   801       const Register profile_limit = Rscratch1;
       
   802       __ lwz(profile_limit, in_bytes(MethodCounters::interpreter_profile_limit_offset()), R3_counters);
       
   803       // Test to see if we should create a method data oop.
       
   804       __ cmpw(CCR0, Rsum_ivc_bec, profile_limit);
       
   805       __ blt(CCR0, *profile_method_continue);
       
   806       // If no method data exists, go to profile_method.
       
   807       __ test_method_data_pointer(*profile_method);
       
   808     }
       
   809     // Finally check for counter overflow.
       
   810     if (overflow) {
       
   811       const Register invocation_limit = Rscratch1;
       
   812       __ lwz(invocation_limit, in_bytes(MethodCounters::interpreter_invocation_limit_offset()), R3_counters);
       
   813       __ cmpw(CCR0, Rsum_ivc_bec, invocation_limit);
       
   814       __ bge(CCR0, *overflow);
       
   815     }
       
   816 
       
   817     __ bind(done);
       
   818   }
       
   819 }
       
   820 
       
   821 // Generate code to initiate compilation on invocation counter overflow.
       
   822 void TemplateInterpreterGenerator::generate_counter_overflow(Label& continue_entry) {
       
   823   // Generate code to initiate compilation on the counter overflow.
       
   824 
       
   825   // InterpreterRuntime::frequency_counter_overflow takes one arguments,
       
   826   // which indicates if the counter overflow occurs at a backwards branch (NULL bcp)
       
   827   // We pass zero in.
       
   828   // The call returns the address of the verified entry point for the method or NULL
       
   829   // if the compilation did not complete (either went background or bailed out).
       
   830   //
       
   831   // Unlike the C++ interpreter above: Check exceptions!
       
   832   // Assumption: Caller must set the flag "do_not_unlock_if_sychronized" if the monitor of a sync'ed
       
   833   // method has not yet been created. Thus, no unlocking of a non-existing monitor can occur.
       
   834 
       
   835   __ li(R4_ARG2, 0);
       
   836   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
       
   837 
       
   838   // Returns verified_entry_point or NULL.
       
   839   // We ignore it in any case.
       
   840   __ b(continue_entry);
       
   841 }
       
   842 
       
   843 // See if we've got enough room on the stack for locals plus overhead below
       
   844 // JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
       
   845 // without going through the signal handler, i.e., reserved and yellow zones
       
   846 // will not be made usable. The shadow zone must suffice to handle the
       
   847 // overflow.
       
   848 //
       
   849 // Kills Rmem_frame_size, Rscratch1.
       
   850 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rmem_frame_size, Register Rscratch1) {
       
   851   Label done;
       
   852   assert_different_registers(Rmem_frame_size, Rscratch1);
       
   853 
       
   854   BLOCK_COMMENT("stack_overflow_check_with_compare {");
       
   855   __ sub(Rmem_frame_size, R1_SP, Rmem_frame_size);
       
   856   __ ld(Rscratch1, thread_(stack_overflow_limit));
       
   857   __ cmpld(CCR0/*is_stack_overflow*/, Rmem_frame_size, Rscratch1);
       
   858   __ bgt(CCR0/*is_stack_overflow*/, done);
       
   859 
       
   860   // The stack overflows. Load target address of the runtime stub and call it.
       
   861   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "generated in wrong order");
       
   862   __ load_const_optimized(Rscratch1, (StubRoutines::throw_StackOverflowError_entry()), R0);
       
   863   __ mtctr(Rscratch1);
       
   864   // Restore caller_sp.
       
   865 #ifdef ASSERT
       
   866   __ ld(Rscratch1, 0, R1_SP);
       
   867   __ ld(R0, 0, R21_sender_SP);
       
   868   __ cmpd(CCR0, R0, Rscratch1);
       
   869   __ asm_assert_eq("backlink", 0x547);
       
   870 #endif // ASSERT
       
   871   __ mr(R1_SP, R21_sender_SP);
       
   872   __ bctr();
       
   873 
       
   874   __ align(32, 12);
       
   875   __ bind(done);
       
   876   BLOCK_COMMENT("} stack_overflow_check_with_compare");
       
   877 }
       
   878 
       
   879 // Lock the current method, interpreter register window must be set up!
       
   880 void TemplateInterpreterGenerator::lock_method(Register Rflags, Register Rscratch1, Register Rscratch2, bool flags_preloaded) {
       
   881   const Register Robj_to_lock = Rscratch2;
       
   882 
       
   883   {
       
   884     if (!flags_preloaded) {
       
   885       __ lwz(Rflags, method_(access_flags));
       
   886     }
       
   887 
       
   888 #ifdef ASSERT
       
   889     // Check if methods needs synchronization.
       
   890     {
       
   891       Label Lok;
       
   892       __ testbitdi(CCR0, R0, Rflags, JVM_ACC_SYNCHRONIZED_BIT);
       
   893       __ btrue(CCR0,Lok);
       
   894       __ stop("method doesn't need synchronization");
       
   895       __ bind(Lok);
       
   896     }
       
   897 #endif // ASSERT
       
   898   }
       
   899 
       
   900   // Get synchronization object to Rscratch2.
       
   901   {
       
   902     Label Lstatic;
       
   903     Label Ldone;
       
   904 
       
   905     __ testbitdi(CCR0, R0, Rflags, JVM_ACC_STATIC_BIT);
       
   906     __ btrue(CCR0, Lstatic);
       
   907 
       
   908     // Non-static case: load receiver obj from stack and we're done.
       
   909     __ ld(Robj_to_lock, R18_locals);
       
   910     __ b(Ldone);
       
   911 
       
   912     __ bind(Lstatic); // Static case: Lock the java mirror
       
   913     // Load mirror from interpreter frame.
       
   914     __ ld(Robj_to_lock, _abi(callers_sp), R1_SP);
       
   915     __ ld(Robj_to_lock, _ijava_state_neg(mirror), Robj_to_lock);
       
   916 
       
   917     __ bind(Ldone);
       
   918     __ verify_oop(Robj_to_lock);
       
   919   }
       
   920 
       
   921   // Got the oop to lock => execute!
       
   922   __ add_monitor_to_stack(true, Rscratch1, R0);
       
   923 
       
   924   __ std(Robj_to_lock, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
       
   925   __ lock_object(R26_monitor, Robj_to_lock);
       
   926 }
       
   927 
       
   928 // Generate a fixed interpreter frame for pure interpreter
       
   929 // and I2N native transition frames.
       
   930 //
       
   931 // Before (stack grows downwards):
       
   932 //
       
   933 //         |  ...         |
       
   934 //         |------------- |
       
   935 //         |  java arg0   |
       
   936 //         |  ...         |
       
   937 //         |  java argn   |
       
   938 //         |              |   <-   R15_esp
       
   939 //         |              |
       
   940 //         |--------------|
       
   941 //         | abi_112      |
       
   942 //         |              |   <-   R1_SP
       
   943 //         |==============|
       
   944 //
       
   945 //
       
   946 // After:
       
   947 //
       
   948 //         |  ...         |
       
   949 //         |  java arg0   |<-   R18_locals
       
   950 //         |  ...         |
       
   951 //         |  java argn   |
       
   952 //         |--------------|
       
   953 //         |              |
       
   954 //         |  java locals |
       
   955 //         |              |
       
   956 //         |--------------|
       
   957 //         |  abi_48      |
       
   958 //         |==============|
       
   959 //         |              |
       
   960 //         |   istate     |
       
   961 //         |              |
       
   962 //         |--------------|
       
   963 //         |   monitor    |<-   R26_monitor
       
   964 //         |--------------|
       
   965 //         |              |<-   R15_esp
       
   966 //         | expression   |
       
   967 //         | stack        |
       
   968 //         |              |
       
   969 //         |--------------|
       
   970 //         |              |
       
   971 //         | abi_112      |<-   R1_SP
       
   972 //         |==============|
       
   973 //
       
   974 // The top most frame needs an abi space of 112 bytes. This space is needed,
       
   975 // since we call to c. The c function may spill their arguments to the caller
       
   976 // frame. When we call to java, we don't need these spill slots. In order to save
       
   977 // space on the stack, we resize the caller. However, java locals reside in
       
   978 // the caller frame and the frame has to be increased. The frame_size for the
       
   979 // current frame was calculated based on max_stack as size for the expression
       
   980 // stack. At the call, just a part of the expression stack might be used.
       
   981 // We don't want to waste this space and cut the frame back accordingly.
       
   982 // The resulting amount for resizing is calculated as follows:
       
   983 // resize =   (number_of_locals - number_of_arguments) * slot_size
       
   984 //          + (R1_SP - R15_esp) + 48
       
   985 //
       
   986 // The size for the callee frame is calculated:
       
   987 // framesize = 112 + max_stack + monitor + state_size
       
   988 //
       
   989 // maxstack:   Max number of slots on the expression stack, loaded from the method.
       
   990 // monitor:    We statically reserve room for one monitor object.
       
   991 // state_size: We save the current state of the interpreter to this area.
       
   992 //
       
   993 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call, Register Rsize_of_parameters, Register Rsize_of_locals) {
       
   994   Register parent_frame_resize = R6_ARG4, // Frame will grow by this number of bytes.
       
   995            top_frame_size      = R7_ARG5,
       
   996            Rconst_method       = R8_ARG6;
       
   997 
       
   998   assert_different_registers(Rsize_of_parameters, Rsize_of_locals, parent_frame_resize, top_frame_size);
       
   999 
       
  1000   __ ld(Rconst_method, method_(const));
       
  1001   __ lhz(Rsize_of_parameters /* number of params */,
       
  1002          in_bytes(ConstMethod::size_of_parameters_offset()), Rconst_method);
       
  1003   if (native_call) {
       
  1004     // If we're calling a native method, we reserve space for the worst-case signature
       
  1005     // handler varargs vector, which is max(Argument::n_register_parameters, parameter_count+2).
       
  1006     // We add two slots to the parameter_count, one for the jni
       
  1007     // environment and one for a possible native mirror.
       
  1008     Label skip_native_calculate_max_stack;
       
  1009     __ addi(top_frame_size, Rsize_of_parameters, 2);
       
  1010     __ cmpwi(CCR0, top_frame_size, Argument::n_register_parameters);
       
  1011     __ bge(CCR0, skip_native_calculate_max_stack);
       
  1012     __ li(top_frame_size, Argument::n_register_parameters);
       
  1013     __ bind(skip_native_calculate_max_stack);
       
  1014     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
       
  1015     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
       
  1016     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
       
  1017     assert(Rsize_of_locals == noreg, "Rsize_of_locals not initialized"); // Only relevant value is Rsize_of_parameters.
       
  1018   } else {
       
  1019     __ lhz(Rsize_of_locals /* number of params */, in_bytes(ConstMethod::size_of_locals_offset()), Rconst_method);
       
  1020     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
       
  1021     __ sldi(Rsize_of_locals, Rsize_of_locals, Interpreter::logStackElementSize);
       
  1022     __ lhz(top_frame_size, in_bytes(ConstMethod::max_stack_offset()), Rconst_method);
       
  1023     __ sub(R11_scratch1, Rsize_of_locals, Rsize_of_parameters); // >=0
       
  1024     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
       
  1025     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
       
  1026     __ add(parent_frame_resize, parent_frame_resize, R11_scratch1);
       
  1027   }
       
  1028 
       
  1029   // Compute top frame size.
       
  1030   __ addi(top_frame_size, top_frame_size, frame::abi_reg_args_size + frame::ijava_state_size);
       
  1031 
       
  1032   // Cut back area between esp and max_stack.
       
  1033   __ addi(parent_frame_resize, parent_frame_resize, frame::abi_minframe_size - Interpreter::stackElementSize);
       
  1034 
       
  1035   __ round_to(top_frame_size, frame::alignment_in_bytes);
       
  1036   __ round_to(parent_frame_resize, frame::alignment_in_bytes);
       
  1037   // parent_frame_resize = (locals-parameters) - (ESP-SP-ABI48) Rounded to frame alignment size.
       
  1038   // Enlarge by locals-parameters (not in case of native_call), shrink by ESP-SP-ABI48.
       
  1039 
       
  1040   if (!native_call) {
       
  1041     // Stack overflow check.
       
  1042     // Native calls don't need the stack size check since they have no
       
  1043     // expression stack and the arguments are already on the stack and
       
  1044     // we only add a handful of words to the stack.
       
  1045     __ add(R11_scratch1, parent_frame_resize, top_frame_size);
       
  1046     generate_stack_overflow_check(R11_scratch1, R12_scratch2);
       
  1047   }
       
  1048 
       
  1049   // Set up interpreter state registers.
       
  1050 
       
  1051   __ add(R18_locals, R15_esp, Rsize_of_parameters);
       
  1052   __ ld(R27_constPoolCache, in_bytes(ConstMethod::constants_offset()), Rconst_method);
       
  1053   __ ld(R27_constPoolCache, ConstantPool::cache_offset_in_bytes(), R27_constPoolCache);
       
  1054 
       
  1055   // Set method data pointer.
       
  1056   if (ProfileInterpreter) {
       
  1057     Label zero_continue;
       
  1058     __ ld(R28_mdx, method_(method_data));
       
  1059     __ cmpdi(CCR0, R28_mdx, 0);
       
  1060     __ beq(CCR0, zero_continue);
       
  1061     __ addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
       
  1062     __ bind(zero_continue);
       
  1063   }
       
  1064 
       
  1065   if (native_call) {
       
  1066     __ li(R14_bcp, 0); // Must initialize.
       
  1067   } else {
       
  1068     __ add(R14_bcp, in_bytes(ConstMethod::codes_offset()), Rconst_method);
       
  1069   }
       
  1070 
       
  1071   // Resize parent frame.
       
  1072   __ mflr(R12_scratch2);
       
  1073   __ neg(parent_frame_resize, parent_frame_resize);
       
  1074   __ resize_frame(parent_frame_resize, R11_scratch1);
       
  1075   __ std(R12_scratch2, _abi(lr), R1_SP);
       
  1076 
       
  1077   // Get mirror and store it in the frame as GC root for this Method*.
       
  1078   __ load_mirror_from_const_method(R12_scratch2, Rconst_method);
       
  1079 
       
  1080   __ addi(R26_monitor, R1_SP, - frame::ijava_state_size);
       
  1081   __ addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
       
  1082 
       
  1083   // Store values.
       
  1084   // R15_esp, R14_bcp, R26_monitor, R28_mdx are saved at java calls
       
  1085   // in InterpreterMacroAssembler::call_from_interpreter.
       
  1086   __ std(R19_method, _ijava_state_neg(method), R1_SP);
       
  1087   __ std(R12_scratch2, _ijava_state_neg(mirror), R1_SP);
       
  1088   __ std(R21_sender_SP, _ijava_state_neg(sender_sp), R1_SP);
       
  1089   __ std(R27_constPoolCache, _ijava_state_neg(cpoolCache), R1_SP);
       
  1090   __ std(R18_locals, _ijava_state_neg(locals), R1_SP);
       
  1091 
       
  1092   // Note: esp, bcp, monitor, mdx live in registers. Hence, the correct version can only
       
  1093   // be found in the frame after save_interpreter_state is done. This is always true
       
  1094   // for non-top frames. But when a signal occurs, dumping the top frame can go wrong,
       
  1095   // because e.g. frame::interpreter_frame_bcp() will not access the correct value
       
  1096   // (Enhanced Stack Trace).
       
  1097   // The signal handler does not save the interpreter state into the frame.
       
  1098   __ li(R0, 0);
       
  1099 #ifdef ASSERT
       
  1100   // Fill remaining slots with constants.
       
  1101   __ load_const_optimized(R11_scratch1, 0x5afe);
       
  1102   __ load_const_optimized(R12_scratch2, 0xdead);
       
  1103 #endif
       
  1104   // We have to initialize some frame slots for native calls (accessed by GC).
       
  1105   if (native_call) {
       
  1106     __ std(R26_monitor, _ijava_state_neg(monitors), R1_SP);
       
  1107     __ std(R14_bcp, _ijava_state_neg(bcp), R1_SP);
       
  1108     if (ProfileInterpreter) { __ std(R28_mdx, _ijava_state_neg(mdx), R1_SP); }
       
  1109   }
       
  1110 #ifdef ASSERT
       
  1111   else {
       
  1112     __ std(R12_scratch2, _ijava_state_neg(monitors), R1_SP);
       
  1113     __ std(R12_scratch2, _ijava_state_neg(bcp), R1_SP);
       
  1114     __ std(R12_scratch2, _ijava_state_neg(mdx), R1_SP);
       
  1115   }
       
  1116   __ std(R11_scratch1, _ijava_state_neg(ijava_reserved), R1_SP);
       
  1117   __ std(R12_scratch2, _ijava_state_neg(esp), R1_SP);
       
  1118   __ std(R12_scratch2, _ijava_state_neg(lresult), R1_SP);
       
  1119   __ std(R12_scratch2, _ijava_state_neg(fresult), R1_SP);
       
  1120 #endif
       
  1121   __ subf(R12_scratch2, top_frame_size, R1_SP);
       
  1122   __ std(R0, _ijava_state_neg(oop_tmp), R1_SP);
       
  1123   __ std(R12_scratch2, _ijava_state_neg(top_frame_sp), R1_SP);
       
  1124 
       
  1125   // Push top frame.
       
  1126   __ push_frame(top_frame_size, R11_scratch1);
       
  1127 }
       
  1128 
       
  1129 // End of helpers
       
  1130 
       
  1131 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
       
  1132 
       
  1133   // Decide what to do: Use same platform specific instructions and runtime calls as compilers.
       
  1134   bool use_instruction = false;
       
  1135   address runtime_entry = NULL;
       
  1136   int num_args = 1;
       
  1137   bool double_precision = true;
       
  1138 
       
  1139   // PPC64 specific:
       
  1140   switch (kind) {
       
  1141     case Interpreter::java_lang_math_sqrt: use_instruction = VM_Version::has_fsqrt(); break;
       
  1142     case Interpreter::java_lang_math_abs:  use_instruction = true; break;
       
  1143     case Interpreter::java_lang_math_fmaF:
       
  1144     case Interpreter::java_lang_math_fmaD: use_instruction = UseFMA; break;
       
  1145     default: break; // Fall back to runtime call.
       
  1146   }
       
  1147 
       
  1148   switch (kind) {
       
  1149     case Interpreter::java_lang_math_sin  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);   break;
       
  1150     case Interpreter::java_lang_math_cos  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);   break;
       
  1151     case Interpreter::java_lang_math_tan  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);   break;
       
  1152     case Interpreter::java_lang_math_abs  : /* run interpreted */ break;
       
  1153     case Interpreter::java_lang_math_sqrt : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt);  break;
       
  1154     case Interpreter::java_lang_math_log  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);   break;
       
  1155     case Interpreter::java_lang_math_log10: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); break;
       
  1156     case Interpreter::java_lang_math_pow  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); num_args = 2; break;
       
  1157     case Interpreter::java_lang_math_exp  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);   break;
       
  1158     case Interpreter::java_lang_math_fmaF : /* run interpreted */ num_args = 3; double_precision = false; break;
       
  1159     case Interpreter::java_lang_math_fmaD : /* run interpreted */ num_args = 3; break;
       
  1160     default: ShouldNotReachHere();
       
  1161   }
       
  1162 
       
  1163   // Use normal entry if neither instruction nor runtime call is used.
       
  1164   if (!use_instruction && runtime_entry == NULL) return NULL;
       
  1165 
       
  1166   address entry = __ pc();
       
  1167 
       
  1168   // Load arguments
       
  1169   assert(num_args <= 13, "passed in registers");
       
  1170   if (double_precision) {
       
  1171     int offset = (2 * num_args - 1) * Interpreter::stackElementSize;
       
  1172     for (int i = 0; i < num_args; ++i) {
       
  1173       __ lfd(as_FloatRegister(F1_ARG1->encoding() + i), offset, R15_esp);
       
  1174       offset -= 2 * Interpreter::stackElementSize;
       
  1175     }
       
  1176   } else {
       
  1177     int offset = num_args * Interpreter::stackElementSize;
       
  1178     for (int i = 0; i < num_args; ++i) {
       
  1179       __ lfs(as_FloatRegister(F1_ARG1->encoding() + i), offset, R15_esp);
       
  1180       offset -= Interpreter::stackElementSize;
       
  1181     }
       
  1182   }
       
  1183 
       
  1184   // Pop c2i arguments (if any) off when we return.
       
  1185 #ifdef ASSERT
       
  1186   __ ld(R9_ARG7, 0, R1_SP);
       
  1187   __ ld(R10_ARG8, 0, R21_sender_SP);
       
  1188   __ cmpd(CCR0, R9_ARG7, R10_ARG8);
       
  1189   __ asm_assert_eq("backlink", 0x545);
       
  1190 #endif // ASSERT
       
  1191   __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
       
  1192 
       
  1193   if (use_instruction) {
       
  1194     switch (kind) {
       
  1195       case Interpreter::java_lang_math_sqrt: __ fsqrt(F1_RET, F1);          break;
       
  1196       case Interpreter::java_lang_math_abs:  __ fabs(F1_RET, F1);           break;
       
  1197       case Interpreter::java_lang_math_fmaF: __ fmadds(F1_RET, F1, F2, F3); break;
       
  1198       case Interpreter::java_lang_math_fmaD: __ fmadd(F1_RET, F1, F2, F3);  break;
       
  1199       default: ShouldNotReachHere();
       
  1200     }
       
  1201   } else {
       
  1202     // Comment: Can use tail call if the unextended frame is always C ABI compliant:
       
  1203     //__ load_const_optimized(R12_scratch2, runtime_entry, R0);
       
  1204     //__ call_c_and_return_to_caller(R12_scratch2);
       
  1205 
       
  1206     // Push a new C frame and save LR.
       
  1207     __ save_LR_CR(R0);
       
  1208     __ push_frame_reg_args(0, R11_scratch1);
       
  1209 
       
  1210     __ call_VM_leaf(runtime_entry);
       
  1211 
       
  1212     // Pop the C frame and restore LR.
       
  1213     __ pop_frame();
       
  1214     __ restore_LR_CR(R0);
       
  1215   }
       
  1216 
       
  1217   __ blr();
       
  1218 
       
  1219   __ flush();
       
  1220 
       
  1221   return entry;
       
  1222 }
       
  1223 
       
  1224 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
       
  1225   // Quick & dirty stack overflow checking: bang the stack & handle trap.
       
  1226   // Note that we do the banging after the frame is setup, since the exception
       
  1227   // handling code expects to find a valid interpreter frame on the stack.
       
  1228   // Doing the banging earlier fails if the caller frame is not an interpreter
       
  1229   // frame.
       
  1230   // (Also, the exception throwing code expects to unlock any synchronized
       
  1231   // method receiever, so do the banging after locking the receiver.)
       
  1232 
       
  1233   // Bang each page in the shadow zone. We can't assume it's been done for
       
  1234   // an interpreter frame with greater than a page of locals, so each page
       
  1235   // needs to be checked.  Only true for non-native.
       
  1236   if (UseStackBanging) {
       
  1237     const int page_size = os::vm_page_size();
       
  1238     const int n_shadow_pages = ((int)JavaThread::stack_shadow_zone_size()) / page_size;
       
  1239     const int start_page = native_call ? n_shadow_pages : 1;
       
  1240     BLOCK_COMMENT("bang_stack_shadow_pages:");
       
  1241     for (int pages = start_page; pages <= n_shadow_pages; pages++) {
       
  1242       __ bang_stack_with_offset(pages*page_size);
       
  1243     }
       
  1244   }
       
  1245 }
       
  1246 
       
  1247 // Interpreter stub for calling a native method. (asm interpreter)
       
  1248 // This sets up a somewhat different looking stack for calling the
       
  1249 // native method than the typical interpreter frame setup.
       
  1250 //
       
  1251 // On entry:
       
  1252 //   R19_method    - method
       
  1253 //   R16_thread    - JavaThread*
       
  1254 //   R15_esp       - intptr_t* sender tos
       
  1255 //
       
  1256 //   abstract stack (grows up)
       
  1257 //     [  IJava (caller of JNI callee)  ]  <-- ASP
       
  1258 //        ...
       
  1259 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
       
  1260 
       
  1261   address entry = __ pc();
       
  1262 
       
  1263   const bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
       
  1264 
       
  1265   // -----------------------------------------------------------------------------
       
  1266   // Allocate a new frame that represents the native callee (i2n frame).
       
  1267   // This is not a full-blown interpreter frame, but in particular, the
       
  1268   // following registers are valid after this:
       
  1269   // - R19_method
       
  1270   // - R18_local (points to start of arguments to native function)
       
  1271   //
       
  1272   //   abstract stack (grows up)
       
  1273   //     [  IJava (caller of JNI callee)  ]  <-- ASP
       
  1274   //        ...
       
  1275 
       
  1276   const Register signature_handler_fd = R11_scratch1;
       
  1277   const Register pending_exception    = R0;
       
  1278   const Register result_handler_addr  = R31;
       
  1279   const Register native_method_fd     = R11_scratch1;
       
  1280   const Register access_flags         = R22_tmp2;
       
  1281   const Register active_handles       = R11_scratch1; // R26_monitor saved to state.
       
  1282   const Register sync_state           = R12_scratch2;
       
  1283   const Register sync_state_addr      = sync_state;   // Address is dead after use.
       
  1284   const Register suspend_flags        = R11_scratch1;
       
  1285 
       
  1286   //=============================================================================
       
  1287   // Allocate new frame and initialize interpreter state.
       
  1288 
       
  1289   Label exception_return;
       
  1290   Label exception_return_sync_check;
       
  1291   Label stack_overflow_return;
       
  1292 
       
  1293   // Generate new interpreter state and jump to stack_overflow_return in case of
       
  1294   // a stack overflow.
       
  1295   //generate_compute_interpreter_state(stack_overflow_return);
       
  1296 
       
  1297   Register size_of_parameters = R22_tmp2;
       
  1298 
       
  1299   generate_fixed_frame(true, size_of_parameters, noreg /* unused */);
       
  1300 
       
  1301   //=============================================================================
       
  1302   // Increment invocation counter. On overflow, entry to JNI method
       
  1303   // will be compiled.
       
  1304   Label invocation_counter_overflow, continue_after_compile;
       
  1305   if (inc_counter) {
       
  1306     if (synchronized) {
       
  1307       // Since at this point in the method invocation the exception handler
       
  1308       // would try to exit the monitor of synchronized methods which hasn't
       
  1309       // been entered yet, we set the thread local variable
       
  1310       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
       
  1311       // runtime, exception handling i.e. unlock_if_synchronized_method will
       
  1312       // check this thread local flag.
       
  1313       // This flag has two effects, one is to force an unwind in the topmost
       
  1314       // interpreter frame and not perform an unlock while doing so.
       
  1315       __ li(R0, 1);
       
  1316       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
       
  1317     }
       
  1318     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
       
  1319 
       
  1320     BIND(continue_after_compile);
       
  1321   }
       
  1322 
       
  1323   bang_stack_shadow_pages(true);
       
  1324 
       
  1325   if (inc_counter) {
       
  1326     // Reset the _do_not_unlock_if_synchronized flag.
       
  1327     if (synchronized) {
       
  1328       __ li(R0, 0);
       
  1329       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
       
  1330     }
       
  1331   }
       
  1332 
       
  1333   // access_flags = method->access_flags();
       
  1334   // Load access flags.
       
  1335   assert(access_flags->is_nonvolatile(),
       
  1336          "access_flags must be in a non-volatile register");
       
  1337   // Type check.
       
  1338   assert(4 == sizeof(AccessFlags), "unexpected field size");
       
  1339   __ lwz(access_flags, method_(access_flags));
       
  1340 
       
  1341   // We don't want to reload R19_method and access_flags after calls
       
  1342   // to some helper functions.
       
  1343   assert(R19_method->is_nonvolatile(),
       
  1344          "R19_method must be a non-volatile register");
       
  1345 
       
  1346   // Check for synchronized methods. Must happen AFTER invocation counter
       
  1347   // check, so method is not locked if counter overflows.
       
  1348 
       
  1349   if (synchronized) {
       
  1350     lock_method(access_flags, R11_scratch1, R12_scratch2, true);
       
  1351 
       
  1352     // Update monitor in state.
       
  1353     __ ld(R11_scratch1, 0, R1_SP);
       
  1354     __ std(R26_monitor, _ijava_state_neg(monitors), R11_scratch1);
       
  1355   }
       
  1356 
       
  1357   // jvmti/jvmpi support
       
  1358   __ notify_method_entry();
       
  1359 
       
  1360   //=============================================================================
       
  1361   // Get and call the signature handler.
       
  1362 
       
  1363   __ ld(signature_handler_fd, method_(signature_handler));
       
  1364   Label call_signature_handler;
       
  1365 
       
  1366   __ cmpdi(CCR0, signature_handler_fd, 0);
       
  1367   __ bne(CCR0, call_signature_handler);
       
  1368 
       
  1369   // Method has never been called. Either generate a specialized
       
  1370   // handler or point to the slow one.
       
  1371   //
       
  1372   // Pass parameter 'false' to avoid exception check in call_VM.
       
  1373   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false);
       
  1374 
       
  1375   // Check for an exception while looking up the target method. If we
       
  1376   // incurred one, bail.
       
  1377   __ ld(pending_exception, thread_(pending_exception));
       
  1378   __ cmpdi(CCR0, pending_exception, 0);
       
  1379   __ bne(CCR0, exception_return_sync_check); // Has pending exception.
       
  1380 
       
  1381   // Reload signature handler, it may have been created/assigned in the meanwhile.
       
  1382   __ ld(signature_handler_fd, method_(signature_handler));
       
  1383   __ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below).
       
  1384 
       
  1385   BIND(call_signature_handler);
       
  1386 
       
  1387   // Before we call the signature handler we push a new frame to
       
  1388   // protect the interpreter frame volatile registers when we return
       
  1389   // from jni but before we can get back to Java.
       
  1390 
       
  1391   // First set the frame anchor while the SP/FP registers are
       
  1392   // convenient and the slow signature handler can use this same frame
       
  1393   // anchor.
       
  1394 
       
  1395   // We have a TOP_IJAVA_FRAME here, which belongs to us.
       
  1396   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
       
  1397 
       
  1398   // Now the interpreter frame (and its call chain) have been
       
  1399   // invalidated and flushed. We are now protected against eager
       
  1400   // being enabled in native code. Even if it goes eager the
       
  1401   // registers will be reloaded as clean and we will invalidate after
       
  1402   // the call so no spurious flush should be possible.
       
  1403 
       
  1404   // Call signature handler and pass locals address.
       
  1405   //
       
  1406   // Our signature handlers copy required arguments to the C stack
       
  1407   // (outgoing C args), R3_ARG1 to R10_ARG8, and FARG1 to FARG13.
       
  1408   __ mr(R3_ARG1, R18_locals);
       
  1409 #if !defined(ABI_ELFv2)
       
  1410   __ ld(signature_handler_fd, 0, signature_handler_fd);
       
  1411 #endif
       
  1412 
       
  1413   __ call_stub(signature_handler_fd);
       
  1414 
       
  1415   // Remove the register parameter varargs slots we allocated in
       
  1416   // compute_interpreter_state. SP+16 ends up pointing to the ABI
       
  1417   // outgoing argument area.
       
  1418   //
       
  1419   // Not needed on PPC64.
       
  1420   //__ add(SP, SP, Argument::n_register_parameters*BytesPerWord);
       
  1421 
       
  1422   assert(result_handler_addr->is_nonvolatile(), "result_handler_addr must be in a non-volatile register");
       
  1423   // Save across call to native method.
       
  1424   __ mr(result_handler_addr, R3_RET);
       
  1425 
       
  1426   __ isync(); // Acquire signature handler before trying to fetch the native entry point and klass mirror.
       
  1427 
       
  1428   // Set up fixed parameters and call the native method.
       
  1429   // If the method is static, get mirror into R4_ARG2.
       
  1430   {
       
  1431     Label method_is_not_static;
       
  1432     // Access_flags is non-volatile and still, no need to restore it.
       
  1433 
       
  1434     // Restore access flags.
       
  1435     __ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT);
       
  1436     __ bfalse(CCR0, method_is_not_static);
       
  1437 
       
  1438     __ ld(R11_scratch1, _abi(callers_sp), R1_SP);
       
  1439     // Load mirror from interpreter frame.
       
  1440     __ ld(R12_scratch2, _ijava_state_neg(mirror), R11_scratch1);
       
  1441     // R4_ARG2 = &state->_oop_temp;
       
  1442     __ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp));
       
  1443     __ std(R12_scratch2/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1);
       
  1444     BIND(method_is_not_static);
       
  1445   }
       
  1446 
       
  1447   // At this point, arguments have been copied off the stack into
       
  1448   // their JNI positions. Oops are boxed in-place on the stack, with
       
  1449   // handles copied to arguments. The result handler address is in a
       
  1450   // register.
       
  1451 
       
  1452   // Pass JNIEnv address as first parameter.
       
  1453   __ addir(R3_ARG1, thread_(jni_environment));
       
  1454 
       
  1455   // Load the native_method entry before we change the thread state.
       
  1456   __ ld(native_method_fd, method_(native_function));
       
  1457 
       
  1458   //=============================================================================
       
  1459   // Transition from _thread_in_Java to _thread_in_native. As soon as
       
  1460   // we make this change the safepoint code needs to be certain that
       
  1461   // the last Java frame we established is good. The pc in that frame
       
  1462   // just needs to be near here not an actual return address.
       
  1463 
       
  1464   // We use release_store_fence to update values like the thread state, where
       
  1465   // we don't want the current thread to continue until all our prior memory
       
  1466   // accesses (including the new thread state) are visible to other threads.
       
  1467   __ li(R0, _thread_in_native);
       
  1468   __ release();
       
  1469 
       
  1470   // TODO PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
       
  1471   __ stw(R0, thread_(thread_state));
       
  1472 
       
  1473   if (UseMembar) {
       
  1474     __ fence();
       
  1475   }
       
  1476 
       
  1477   //=============================================================================
       
  1478   // Call the native method. Argument registers must not have been
       
  1479   // overwritten since "__ call_stub(signature_handler);" (except for
       
  1480   // ARG1 and ARG2 for static methods).
       
  1481   __ call_c(native_method_fd);
       
  1482 
       
  1483   __ li(R0, 0);
       
  1484   __ ld(R11_scratch1, 0, R1_SP);
       
  1485   __ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
       
  1486   __ stfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
       
  1487   __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // reset
       
  1488 
       
  1489   // Note: C++ interpreter needs the following here:
       
  1490   // The frame_manager_lr field, which we use for setting the last
       
  1491   // java frame, gets overwritten by the signature handler. Restore
       
  1492   // it now.
       
  1493   //__ get_PC_trash_LR(R11_scratch1);
       
  1494   //__ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
       
  1495 
       
  1496   // Because of GC R19_method may no longer be valid.
       
  1497 
       
  1498   // Block, if necessary, before resuming in _thread_in_Java state.
       
  1499   // In order for GC to work, don't clear the last_Java_sp until after
       
  1500   // blocking.
       
  1501 
       
  1502   //=============================================================================
       
  1503   // Switch thread to "native transition" state before reading the
       
  1504   // synchronization state. This additional state is necessary
       
  1505   // because reading and testing the synchronization state is not
       
  1506   // atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
       
  1507   // in _thread_in_native state, loads _not_synchronized and is
       
  1508   // preempted. VM thread changes sync state to synchronizing and
       
  1509   // suspends threads for GC. Thread A is resumed to finish this
       
  1510   // native method, but doesn't block here since it didn't see any
       
  1511   // synchronization in progress, and escapes.
       
  1512 
       
  1513   // We use release_store_fence to update values like the thread state, where
       
  1514   // we don't want the current thread to continue until all our prior memory
       
  1515   // accesses (including the new thread state) are visible to other threads.
       
  1516   __ li(R0/*thread_state*/, _thread_in_native_trans);
       
  1517   __ release();
       
  1518   __ stw(R0/*thread_state*/, thread_(thread_state));
       
  1519   if (UseMembar) {
       
  1520     __ fence();
       
  1521   }
       
  1522   // Write serialization page so that the VM thread can do a pseudo remote
       
  1523   // membar. We use the current thread pointer to calculate a thread
       
  1524   // specific offset to write to within the page. This minimizes bus
       
  1525   // traffic due to cache line collision.
       
  1526   else {
       
  1527     __ serialize_memory(R16_thread, R11_scratch1, R12_scratch2);
       
  1528   }
       
  1529 
       
  1530   // Now before we return to java we must look for a current safepoint
       
  1531   // (a new safepoint can not start since we entered native_trans).
       
  1532   // We must check here because a current safepoint could be modifying
       
  1533   // the callers registers right this moment.
       
  1534 
       
  1535   // Acquire isn't strictly necessary here because of the fence, but
       
  1536   // sync_state is declared to be volatile, so we do it anyway
       
  1537   // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path).
       
  1538   int sync_state_offs = __ load_const_optimized(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
       
  1539 
       
  1540   // TODO PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size");
       
  1541   __ lwz(sync_state, sync_state_offs, sync_state_addr);
       
  1542 
       
  1543   // TODO PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
       
  1544   __ lwz(suspend_flags, thread_(suspend_flags));
       
  1545 
       
  1546   Label sync_check_done;
       
  1547   Label do_safepoint;
       
  1548   // No synchronization in progress nor yet synchronized.
       
  1549   __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
       
  1550   // Not suspended.
       
  1551   __ cmpwi(CCR1, suspend_flags, 0);
       
  1552 
       
  1553   __ bne(CCR0, do_safepoint);
       
  1554   __ beq(CCR1, sync_check_done);
       
  1555   __ bind(do_safepoint);
       
  1556   __ isync();
       
  1557   // Block. We do the call directly and leave the current
       
  1558   // last_Java_frame setup undisturbed. We must save any possible
       
  1559   // native result across the call. No oop is present.
       
  1560 
       
  1561   __ mr(R3_ARG1, R16_thread);
       
  1562 #if defined(ABI_ELFv2)
       
  1563   __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
       
  1564             relocInfo::none);
       
  1565 #else
       
  1566   __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, JavaThread::check_special_condition_for_native_trans),
       
  1567             relocInfo::none);
       
  1568 #endif
       
  1569 
       
  1570   __ bind(sync_check_done);
       
  1571 
       
  1572   //=============================================================================
       
  1573   // <<<<<< Back in Interpreter Frame >>>>>
       
  1574 
       
  1575   // We are in thread_in_native_trans here and back in the normal
       
  1576   // interpreter frame. We don't have to do anything special about
       
  1577   // safepoints and we can switch to Java mode anytime we are ready.
       
  1578 
       
  1579   // Note: frame::interpreter_frame_result has a dependency on how the
       
  1580   // method result is saved across the call to post_method_exit. For
       
  1581   // native methods it assumes that the non-FPU/non-void result is
       
  1582   // saved in _native_lresult and a FPU result in _native_fresult. If
       
  1583   // this changes then the interpreter_frame_result implementation
       
  1584   // will need to be updated too.
       
  1585 
       
  1586   // On PPC64, we have stored the result directly after the native call.
       
  1587 
       
  1588   //=============================================================================
       
  1589   // Back in Java
       
  1590 
       
  1591   // We use release_store_fence to update values like the thread state, where
       
  1592   // we don't want the current thread to continue until all our prior memory
       
  1593   // accesses (including the new thread state) are visible to other threads.
       
  1594   __ li(R0/*thread_state*/, _thread_in_Java);
       
  1595   __ release();
       
  1596   __ stw(R0/*thread_state*/, thread_(thread_state));
       
  1597   if (UseMembar) {
       
  1598     __ fence();
       
  1599   }
       
  1600 
       
  1601   if (CheckJNICalls) {
       
  1602     // clear_pending_jni_exception_check
       
  1603     __ load_const_optimized(R0, 0L);
       
  1604     __ st_ptr(R0, JavaThread::pending_jni_exception_check_fn_offset(), R16_thread);
       
  1605   }
       
  1606 
       
  1607   __ reset_last_Java_frame();
       
  1608 
       
  1609   // Jvmdi/jvmpi support. Whether we've got an exception pending or
       
  1610   // not, and whether unlocking throws an exception or not, we notify
       
  1611   // on native method exit. If we do have an exception, we'll end up
       
  1612   // in the caller's context to handle it, so if we don't do the
       
  1613   // notify here, we'll drop it on the floor.
       
  1614   __ notify_method_exit(true/*native method*/,
       
  1615                         ilgl /*illegal state (not used for native methods)*/,
       
  1616                         InterpreterMacroAssembler::NotifyJVMTI,
       
  1617                         false /*check_exceptions*/);
       
  1618 
       
  1619   //=============================================================================
       
  1620   // Handle exceptions
       
  1621 
       
  1622   if (synchronized) {
       
  1623     // Don't check for exceptions since we're still in the i2n frame. Do that
       
  1624     // manually afterwards.
       
  1625     __ unlock_object(R26_monitor, false); // Can also unlock methods.
       
  1626   }
       
  1627 
       
  1628   // Reset active handles after returning from native.
       
  1629   // thread->active_handles()->clear();
       
  1630   __ ld(active_handles, thread_(active_handles));
       
  1631   // TODO PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
       
  1632   __ li(R0, 0);
       
  1633   __ stw(R0, JNIHandleBlock::top_offset_in_bytes(), active_handles);
       
  1634 
       
  1635   Label exception_return_sync_check_already_unlocked;
       
  1636   __ ld(R0/*pending_exception*/, thread_(pending_exception));
       
  1637   __ cmpdi(CCR0, R0/*pending_exception*/, 0);
       
  1638   __ bne(CCR0, exception_return_sync_check_already_unlocked);
       
  1639 
       
  1640   //-----------------------------------------------------------------------------
       
  1641   // No exception pending.
       
  1642 
       
  1643   // Move native method result back into proper registers and return.
       
  1644   // Invoke result handler (may unbox/promote).
       
  1645   __ ld(R11_scratch1, 0, R1_SP);
       
  1646   __ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
       
  1647   __ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
       
  1648   __ call_stub(result_handler_addr);
       
  1649 
       
  1650   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
       
  1651 
       
  1652   // Must use the return pc which was loaded from the caller's frame
       
  1653   // as the VM uses return-pc-patching for deoptimization.
       
  1654   __ mtlr(R0);
       
  1655   __ blr();
       
  1656 
       
  1657   //-----------------------------------------------------------------------------
       
  1658   // An exception is pending. We call into the runtime only if the
       
  1659   // caller was not interpreted. If it was interpreted the
       
  1660   // interpreter will do the correct thing. If it isn't interpreted
       
  1661   // (call stub/compiled code) we will change our return and continue.
       
  1662 
       
  1663   BIND(exception_return_sync_check);
       
  1664 
       
  1665   if (synchronized) {
       
  1666     // Don't check for exceptions since we're still in the i2n frame. Do that
       
  1667     // manually afterwards.
       
  1668     __ unlock_object(R26_monitor, false); // Can also unlock methods.
       
  1669   }
       
  1670   BIND(exception_return_sync_check_already_unlocked);
       
  1671 
       
  1672   const Register return_pc = R31;
       
  1673 
       
  1674   __ ld(return_pc, 0, R1_SP);
       
  1675   __ ld(return_pc, _abi(lr), return_pc);
       
  1676 
       
  1677   // Get the address of the exception handler.
       
  1678   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
       
  1679                   R16_thread,
       
  1680                   return_pc /* return pc */);
       
  1681   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2);
       
  1682 
       
  1683   // Load the PC of the the exception handler into LR.
       
  1684   __ mtlr(R3_RET);
       
  1685 
       
  1686   // Load exception into R3_ARG1 and clear pending exception in thread.
       
  1687   __ ld(R3_ARG1/*exception*/, thread_(pending_exception));
       
  1688   __ li(R4_ARG2, 0);
       
  1689   __ std(R4_ARG2, thread_(pending_exception));
       
  1690 
       
  1691   // Load the original return pc into R4_ARG2.
       
  1692   __ mr(R4_ARG2/*issuing_pc*/, return_pc);
       
  1693 
       
  1694   // Return to exception handler.
       
  1695   __ blr();
       
  1696 
       
  1697   //=============================================================================
       
  1698   // Counter overflow.
       
  1699 
       
  1700   if (inc_counter) {
       
  1701     // Handle invocation counter overflow.
       
  1702     __ bind(invocation_counter_overflow);
       
  1703 
       
  1704     generate_counter_overflow(continue_after_compile);
       
  1705   }
       
  1706 
       
  1707   return entry;
       
  1708 }
       
  1709 
       
  1710 // Generic interpreted method entry to (asm) interpreter.
       
  1711 //
       
  1712 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
       
  1713   bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
       
  1714   address entry = __ pc();
       
  1715   // Generate the code to allocate the interpreter stack frame.
       
  1716   Register Rsize_of_parameters = R4_ARG2, // Written by generate_fixed_frame.
       
  1717            Rsize_of_locals     = R5_ARG3; // Written by generate_fixed_frame.
       
  1718 
       
  1719   // Does also a stack check to assure this frame fits on the stack.
       
  1720   generate_fixed_frame(false, Rsize_of_parameters, Rsize_of_locals);
       
  1721 
       
  1722   // --------------------------------------------------------------------------
       
  1723   // Zero out non-parameter locals.
       
  1724   // Note: *Always* zero out non-parameter locals as Sparc does. It's not
       
  1725   // worth to ask the flag, just do it.
       
  1726   Register Rslot_addr = R6_ARG4,
       
  1727            Rnum       = R7_ARG5;
       
  1728   Label Lno_locals, Lzero_loop;
       
  1729 
       
  1730   // Set up the zeroing loop.
       
  1731   __ subf(Rnum, Rsize_of_parameters, Rsize_of_locals);
       
  1732   __ subf(Rslot_addr, Rsize_of_parameters, R18_locals);
       
  1733   __ srdi_(Rnum, Rnum, Interpreter::logStackElementSize);
       
  1734   __ beq(CCR0, Lno_locals);
       
  1735   __ li(R0, 0);
       
  1736   __ mtctr(Rnum);
       
  1737 
       
  1738   // The zero locals loop.
       
  1739   __ bind(Lzero_loop);
       
  1740   __ std(R0, 0, Rslot_addr);
       
  1741   __ addi(Rslot_addr, Rslot_addr, -Interpreter::stackElementSize);
       
  1742   __ bdnz(Lzero_loop);
       
  1743 
       
  1744   __ bind(Lno_locals);
       
  1745 
       
  1746   // --------------------------------------------------------------------------
       
  1747   // Counter increment and overflow check.
       
  1748   Label invocation_counter_overflow,
       
  1749         profile_method,
       
  1750         profile_method_continue;
       
  1751   if (inc_counter || ProfileInterpreter) {
       
  1752 
       
  1753     Register Rdo_not_unlock_if_synchronized_addr = R11_scratch1;
       
  1754     if (synchronized) {
       
  1755       // Since at this point in the method invocation the exception handler
       
  1756       // would try to exit the monitor of synchronized methods which hasn't
       
  1757       // been entered yet, we set the thread local variable
       
  1758       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
       
  1759       // runtime, exception handling i.e. unlock_if_synchronized_method will
       
  1760       // check this thread local flag.
       
  1761       // This flag has two effects, one is to force an unwind in the topmost
       
  1762       // interpreter frame and not perform an unlock while doing so.
       
  1763       __ li(R0, 1);
       
  1764       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
       
  1765     }
       
  1766 
       
  1767     // Argument and return type profiling.
       
  1768     __ profile_parameters_type(R3_ARG1, R4_ARG2, R5_ARG3, R6_ARG4);
       
  1769 
       
  1770     // Increment invocation counter and check for overflow.
       
  1771     if (inc_counter) {
       
  1772       generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
       
  1773     }
       
  1774 
       
  1775     __ bind(profile_method_continue);
       
  1776   }
       
  1777 
       
  1778   bang_stack_shadow_pages(false);
       
  1779 
       
  1780   if (inc_counter || ProfileInterpreter) {
       
  1781     // Reset the _do_not_unlock_if_synchronized flag.
       
  1782     if (synchronized) {
       
  1783       __ li(R0, 0);
       
  1784       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
       
  1785     }
       
  1786   }
       
  1787 
       
  1788   // --------------------------------------------------------------------------
       
  1789   // Locking of synchronized methods. Must happen AFTER invocation_counter
       
  1790   // check and stack overflow check, so method is not locked if overflows.
       
  1791   if (synchronized) {
       
  1792     lock_method(R3_ARG1, R4_ARG2, R5_ARG3);
       
  1793   }
       
  1794 #ifdef ASSERT
       
  1795   else {
       
  1796     Label Lok;
       
  1797     __ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method);
       
  1798     __ andi_(R0, R0, JVM_ACC_SYNCHRONIZED);
       
  1799     __ asm_assert_eq("method needs synchronization", 0x8521);
       
  1800     __ bind(Lok);
       
  1801   }
       
  1802 #endif // ASSERT
       
  1803 
       
  1804   __ verify_thread();
       
  1805 
       
  1806   // --------------------------------------------------------------------------
       
  1807   // JVMTI support
       
  1808   __ notify_method_entry();
       
  1809 
       
  1810   // --------------------------------------------------------------------------
       
  1811   // Start executing instructions.
       
  1812   __ dispatch_next(vtos);
       
  1813 
       
  1814   // --------------------------------------------------------------------------
       
  1815   // Out of line counter overflow and MDO creation code.
       
  1816   if (ProfileInterpreter) {
       
  1817     // We have decided to profile this method in the interpreter.
       
  1818     __ bind(profile_method);
       
  1819     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
       
  1820     __ set_method_data_pointer_for_bcp();
       
  1821     __ b(profile_method_continue);
       
  1822   }
       
  1823 
       
  1824   if (inc_counter) {
       
  1825     // Handle invocation counter overflow.
       
  1826     __ bind(invocation_counter_overflow);
       
  1827     generate_counter_overflow(profile_method_continue);
       
  1828   }
       
  1829   return entry;
       
  1830 }
       
  1831 
       
  1832 // CRC32 Intrinsics.
       
  1833 //
       
  1834 // Contract on scratch and work registers.
       
  1835 // =======================================
       
  1836 //
       
  1837 // On ppc, the register set {R2..R12} is available in the interpreter as scratch/work registers.
       
  1838 // You should, however, keep in mind that {R3_ARG1..R10_ARG8} is the C-ABI argument register set.
       
  1839 // You can't rely on these registers across calls.
       
  1840 //
       
  1841 // The generators for CRC32_update and for CRC32_updateBytes use the
       
  1842 // scratch/work register set internally, passing the work registers
       
  1843 // as arguments to the MacroAssembler emitters as required.
       
  1844 //
       
  1845 // R3_ARG1..R6_ARG4 are preset to hold the incoming java arguments.
       
  1846 // Their contents is not constant but may change according to the requirements
       
  1847 // of the emitted code.
       
  1848 //
       
  1849 // All other registers from the scratch/work register set are used "internally"
       
  1850 // and contain garbage (i.e. unpredictable values) once blr() is reached.
       
  1851 // Basically, only R3_RET contains a defined value which is the function result.
       
  1852 //
       
  1853 /**
       
  1854  * Method entry for static native methods:
       
  1855  *   int java.util.zip.CRC32.update(int crc, int b)
       
  1856  */
       
  1857 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
       
  1858   if (UseCRC32Intrinsics) {
       
  1859     address start = __ pc();  // Remember stub start address (is rtn value).
       
  1860     Label slow_path;
       
  1861 
       
  1862     // Safepoint check
       
  1863     const Register sync_state = R11_scratch1;
       
  1864     int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
       
  1865     __ lwz(sync_state, sync_state_offs, sync_state);
       
  1866     __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
       
  1867     __ bne(CCR0, slow_path);
       
  1868 
       
  1869     // We don't generate local frame and don't align stack because
       
  1870     // we not even call stub code (we generate the code inline)
       
  1871     // and there is no safepoint on this path.
       
  1872 
       
  1873     // Load java parameters.
       
  1874     // R15_esp is callers operand stack pointer, i.e. it points to the parameters.
       
  1875     const Register argP    = R15_esp;
       
  1876     const Register crc     = R3_ARG1;  // crc value
       
  1877     const Register data    = R4_ARG2;  // address of java byte value (kernel_crc32 needs address)
       
  1878     const Register dataLen = R5_ARG3;  // source data len (1 byte). Not used because calling the single-byte emitter.
       
  1879     const Register table   = R6_ARG4;  // address of crc32 table
       
  1880     const Register tmp     = dataLen;  // Reuse unused len register to show we don't actually need a separate tmp here.
       
  1881 
       
  1882     BLOCK_COMMENT("CRC32_update {");
       
  1883 
       
  1884     // Arguments are reversed on java expression stack
       
  1885 #ifdef VM_LITTLE_ENDIAN
       
  1886     __ addi(data, argP, 0+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
       
  1887                                        // Being passed as an int, the single byte is at offset +0.
       
  1888 #else
       
  1889     __ addi(data, argP, 3+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
       
  1890                                        // Being passed from java as an int, the single byte is at offset +3.
       
  1891 #endif
       
  1892     __ lwz(crc,  2*wordSize, argP);    // Current crc state, zero extend to 64 bit to have a clean register.
       
  1893 
       
  1894     StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
       
  1895     __ kernel_crc32_singleByte(crc, data, dataLen, table, tmp, true);
       
  1896 
       
  1897     // Restore caller sp for c2i case and return.
       
  1898     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
       
  1899     __ blr();
       
  1900 
       
  1901     // Generate a vanilla native entry as the slow path.
       
  1902     BLOCK_COMMENT("} CRC32_update");
       
  1903     BIND(slow_path);
       
  1904     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
       
  1905     return start;
       
  1906   }
       
  1907 
       
  1908   return NULL;
       
  1909 }
       
  1910 
       
  1911 
       
  1912 /**
       
  1913  * Method entry for static native methods:
       
  1914  *   int java.util.zip.CRC32.updateBytes(     int crc, byte[] b,  int off, int len)
       
  1915  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len)
       
  1916  */
       
  1917 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
       
  1918   if (UseCRC32Intrinsics) {
       
  1919     address start = __ pc();  // Remember stub start address (is rtn value).
       
  1920     Label slow_path;
       
  1921 
       
  1922     // Safepoint check
       
  1923     const Register sync_state = R11_scratch1;
       
  1924     int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
       
  1925     __ lwz(sync_state, sync_state_offs, sync_state);
       
  1926     __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
       
  1927     __ bne(CCR0, slow_path);
       
  1928 
       
  1929     // We don't generate local frame and don't align stack because
       
  1930     // we not even call stub code (we generate the code inline)
       
  1931     // and there is no safepoint on this path.
       
  1932 
       
  1933     // Load parameters.
       
  1934     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
       
  1935     const Register argP    = R15_esp;
       
  1936     const Register crc     = R3_ARG1;  // crc value
       
  1937     const Register data    = R4_ARG2;  // address of java byte array
       
  1938     const Register dataLen = R5_ARG3;  // source data len
       
  1939     const Register table   = R6_ARG4;  // address of crc32 table
       
  1940 
       
  1941     const Register t0      = R9;       // scratch registers for crc calculation
       
  1942     const Register t1      = R10;
       
  1943     const Register t2      = R11;
       
  1944     const Register t3      = R12;
       
  1945 
       
  1946     const Register tc0     = R2;       // registers to hold pre-calculated column addresses
       
  1947     const Register tc1     = R7;
       
  1948     const Register tc2     = R8;
       
  1949     const Register tc3     = table;    // table address is reconstructed at the end of kernel_crc32_* emitters
       
  1950 
       
  1951     const Register tmp     = t0;       // Only used very locally to calculate byte buffer address.
       
  1952 
       
  1953     // Arguments are reversed on java expression stack.
       
  1954     // Calculate address of start element.
       
  1955     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct".
       
  1956       BLOCK_COMMENT("CRC32_updateByteBuffer {");
       
  1957       // crc     @ (SP + 5W) (32bit)
       
  1958       // buf     @ (SP + 3W) (64bit ptr to long array)
       
  1959       // off     @ (SP + 2W) (32bit)
       
  1960       // dataLen @ (SP + 1W) (32bit)
       
  1961       // data = buf + off
       
  1962       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
       
  1963       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
       
  1964       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
       
  1965       __ lwz( crc,     5*wordSize, argP);  // current crc state
       
  1966       __ add( data, data, tmp);            // Add byte buffer offset.
       
  1967     } else {                                                         // Used for "updateBytes update".
       
  1968       BLOCK_COMMENT("CRC32_updateBytes {");
       
  1969       // crc     @ (SP + 4W) (32bit)
       
  1970       // buf     @ (SP + 3W) (64bit ptr to byte array)
       
  1971       // off     @ (SP + 2W) (32bit)
       
  1972       // dataLen @ (SP + 1W) (32bit)
       
  1973       // data = buf + off + base_offset
       
  1974       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
       
  1975       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
       
  1976       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
       
  1977       __ add( data, data, tmp);            // add byte buffer offset
       
  1978       __ lwz( crc,     4*wordSize, argP);  // current crc state
       
  1979       __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
       
  1980     }
       
  1981 
       
  1982     StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
       
  1983 
       
  1984     // Performance measurements show the 1word and 2word variants to be almost equivalent,
       
  1985     // with very light advantages for the 1word variant. We chose the 1word variant for
       
  1986     // code compactness.
       
  1987     __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, tc0, tc1, tc2, tc3, true);
       
  1988 
       
  1989     // Restore caller sp for c2i case and return.
       
  1990     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
       
  1991     __ blr();
       
  1992 
       
  1993     // Generate a vanilla native entry as the slow path.
       
  1994     BLOCK_COMMENT("} CRC32_updateBytes(Buffer)");
       
  1995     BIND(slow_path);
       
  1996     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
       
  1997     return start;
       
  1998   }
       
  1999 
       
  2000   return NULL;
       
  2001 }
       
  2002 
       
  2003 
       
  2004 /**
       
  2005  * Method entry for intrinsic-candidate (non-native) methods:
       
  2006  *   int java.util.zip.CRC32C.updateBytes(           int crc, byte[] b,  int off, int end)
       
  2007  *   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long* buf, int off, int end)
       
  2008  * Unlike CRC32, CRC32C does not have any methods marked as native
       
  2009  * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
       
  2010  **/
       
  2011 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
       
  2012   if (UseCRC32CIntrinsics) {
       
  2013     address start = __ pc();  // Remember stub start address (is rtn value).
       
  2014 
       
  2015     // We don't generate local frame and don't align stack because
       
  2016     // we not even call stub code (we generate the code inline)
       
  2017     // and there is no safepoint on this path.
       
  2018 
       
  2019     // Load parameters.
       
  2020     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
       
  2021     const Register argP    = R15_esp;
       
  2022     const Register crc     = R3_ARG1;  // crc value
       
  2023     const Register data    = R4_ARG2;  // address of java byte array
       
  2024     const Register dataLen = R5_ARG3;  // source data len
       
  2025     const Register table   = R6_ARG4;  // address of crc32c table
       
  2026 
       
  2027     const Register t0      = R9;       // scratch registers for crc calculation
       
  2028     const Register t1      = R10;
       
  2029     const Register t2      = R11;
       
  2030     const Register t3      = R12;
       
  2031 
       
  2032     const Register tc0     = R2;       // registers to hold pre-calculated column addresses
       
  2033     const Register tc1     = R7;
       
  2034     const Register tc2     = R8;
       
  2035     const Register tc3     = table;    // table address is reconstructed at the end of kernel_crc32_* emitters
       
  2036 
       
  2037     const Register tmp     = t0;       // Only used very locally to calculate byte buffer address.
       
  2038 
       
  2039     // Arguments are reversed on java expression stack.
       
  2040     // Calculate address of start element.
       
  2041     if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { // Used for "updateDirectByteBuffer".
       
  2042       BLOCK_COMMENT("CRC32C_updateDirectByteBuffer {");
       
  2043       // crc     @ (SP + 5W) (32bit)
       
  2044       // buf     @ (SP + 3W) (64bit ptr to long array)
       
  2045       // off     @ (SP + 2W) (32bit)
       
  2046       // dataLen @ (SP + 1W) (32bit)
       
  2047       // data = buf + off
       
  2048       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
       
  2049       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
       
  2050       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
       
  2051       __ lwz( crc,     5*wordSize, argP);  // current crc state
       
  2052       __ add( data, data, tmp);            // Add byte buffer offset.
       
  2053       __ sub( dataLen, dataLen, tmp);      // (end_index - offset)
       
  2054     } else {                                                         // Used for "updateBytes update".
       
  2055       BLOCK_COMMENT("CRC32C_updateBytes {");
       
  2056       // crc     @ (SP + 4W) (32bit)
       
  2057       // buf     @ (SP + 3W) (64bit ptr to byte array)
       
  2058       // off     @ (SP + 2W) (32bit)
       
  2059       // dataLen @ (SP + 1W) (32bit)
       
  2060       // data = buf + off + base_offset
       
  2061       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
       
  2062       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
       
  2063       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
       
  2064       __ add( data, data, tmp);            // add byte buffer offset
       
  2065       __ sub( dataLen, dataLen, tmp);      // (end_index - offset)
       
  2066       __ lwz( crc,     4*wordSize, argP);  // current crc state
       
  2067       __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
       
  2068     }
       
  2069 
       
  2070     StubRoutines::ppc64::generate_load_crc32c_table_addr(_masm, table);
       
  2071 
       
  2072     // Performance measurements show the 1word and 2word variants to be almost equivalent,
       
  2073     // with very light advantages for the 1word variant. We chose the 1word variant for
       
  2074     // code compactness.
       
  2075     __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, tc0, tc1, tc2, tc3, false);
       
  2076 
       
  2077     // Restore caller sp for c2i case and return.
       
  2078     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
       
  2079     __ blr();
       
  2080 
       
  2081     BLOCK_COMMENT("} CRC32C_update{Bytes|DirectByteBuffer}");
       
  2082     return start;
       
  2083   }
       
  2084 
       
  2085   return NULL;
       
  2086 }
       
  2087 
       
  2088 // =============================================================================
       
  2089 // Exceptions
       
  2090 
       
  2091 void TemplateInterpreterGenerator::generate_throw_exception() {
       
  2092   Register Rexception    = R17_tos,
       
  2093            Rcontinuation = R3_RET;
       
  2094 
       
  2095   // --------------------------------------------------------------------------
       
  2096   // Entry point if an method returns with a pending exception (rethrow).
       
  2097   Interpreter::_rethrow_exception_entry = __ pc();
       
  2098   {
       
  2099     __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
       
  2100     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
       
  2101     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
       
  2102 
       
  2103     // Compiled code destroys templateTableBase, reload.
       
  2104     __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
       
  2105   }
       
  2106 
       
  2107   // Entry point if a interpreted method throws an exception (throw).
       
  2108   Interpreter::_throw_exception_entry = __ pc();
       
  2109   {
       
  2110     __ mr(Rexception, R3_RET);
       
  2111 
       
  2112     __ verify_thread();
       
  2113     __ verify_oop(Rexception);
       
  2114 
       
  2115     // Expression stack must be empty before entering the VM in case of an exception.
       
  2116     __ empty_expression_stack();
       
  2117     // Find exception handler address and preserve exception oop.
       
  2118     // Call C routine to find handler and jump to it.
       
  2119     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Rexception);
       
  2120     __ mtctr(Rcontinuation);
       
  2121     // Push exception for exception handler bytecodes.
       
  2122     __ push_ptr(Rexception);
       
  2123 
       
  2124     // Jump to exception handler (may be remove activation entry!).
       
  2125     __ bctr();
       
  2126   }
       
  2127 
       
  2128   // If the exception is not handled in the current frame the frame is
       
  2129   // removed and the exception is rethrown (i.e. exception
       
  2130   // continuation is _rethrow_exception).
       
  2131   //
       
  2132   // Note: At this point the bci is still the bxi for the instruction
       
  2133   // which caused the exception and the expression stack is
       
  2134   // empty. Thus, for any VM calls at this point, GC will find a legal
       
  2135   // oop map (with empty expression stack).
       
  2136 
       
  2137   // In current activation
       
  2138   // tos: exception
       
  2139   // bcp: exception bcp
       
  2140 
       
  2141   // --------------------------------------------------------------------------
       
  2142   // JVMTI PopFrame support
       
  2143 
       
  2144   Interpreter::_remove_activation_preserving_args_entry = __ pc();
       
  2145   {
       
  2146     // Set the popframe_processing bit in popframe_condition indicating that we are
       
  2147     // currently handling popframe, so that call_VMs that may happen later do not
       
  2148     // trigger new popframe handling cycles.
       
  2149     __ lwz(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
       
  2150     __ ori(R11_scratch1, R11_scratch1, JavaThread::popframe_processing_bit);
       
  2151     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
       
  2152 
       
  2153     // Empty the expression stack, as in normal exception handling.
       
  2154     __ empty_expression_stack();
       
  2155     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
       
  2156 
       
  2157     // Check to see whether we are returning to a deoptimized frame.
       
  2158     // (The PopFrame call ensures that the caller of the popped frame is
       
  2159     // either interpreted or compiled and deoptimizes it if compiled.)
       
  2160     // Note that we don't compare the return PC against the
       
  2161     // deoptimization blob's unpack entry because of the presence of
       
  2162     // adapter frames in C2.
       
  2163     Label Lcaller_not_deoptimized;
       
  2164     Register return_pc = R3_ARG1;
       
  2165     __ ld(return_pc, 0, R1_SP);
       
  2166     __ ld(return_pc, _abi(lr), return_pc);
       
  2167     __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), return_pc);
       
  2168     __ cmpdi(CCR0, R3_RET, 0);
       
  2169     __ bne(CCR0, Lcaller_not_deoptimized);
       
  2170 
       
  2171     // The deoptimized case.
       
  2172     // In this case, we can't call dispatch_next() after the frame is
       
  2173     // popped, but instead must save the incoming arguments and restore
       
  2174     // them after deoptimization has occurred.
       
  2175     __ ld(R4_ARG2, in_bytes(Method::const_offset()), R19_method);
       
  2176     __ lhz(R4_ARG2 /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), R4_ARG2);
       
  2177     __ slwi(R4_ARG2, R4_ARG2, Interpreter::logStackElementSize);
       
  2178     __ addi(R5_ARG3, R18_locals, Interpreter::stackElementSize);
       
  2179     __ subf(R5_ARG3, R4_ARG2, R5_ARG3);
       
  2180     // Save these arguments.
       
  2181     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R16_thread, R4_ARG2, R5_ARG3);
       
  2182 
       
  2183     // Inform deoptimization that it is responsible for restoring these arguments.
       
  2184     __ load_const_optimized(R11_scratch1, JavaThread::popframe_force_deopt_reexecution_bit);
       
  2185     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
       
  2186 
       
  2187     // Return from the current method into the deoptimization blob. Will eventually
       
  2188     // end up in the deopt interpeter entry, deoptimization prepared everything that
       
  2189     // we will reexecute the call that called us.
       
  2190     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*reload return_pc*/ return_pc, R11_scratch1, R12_scratch2);
       
  2191     __ mtlr(return_pc);
       
  2192     __ blr();
       
  2193 
       
  2194     // The non-deoptimized case.
       
  2195     __ bind(Lcaller_not_deoptimized);
       
  2196 
       
  2197     // Clear the popframe condition flag.
       
  2198     __ li(R0, 0);
       
  2199     __ stw(R0, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
       
  2200 
       
  2201     // Get out of the current method and re-execute the call that called us.
       
  2202     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
       
  2203     __ restore_interpreter_state(R11_scratch1);
       
  2204     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
       
  2205     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
       
  2206     if (ProfileInterpreter) {
       
  2207       __ set_method_data_pointer_for_bcp();
       
  2208       __ ld(R11_scratch1, 0, R1_SP);
       
  2209       __ std(R28_mdx, _ijava_state_neg(mdx), R11_scratch1);
       
  2210     }
       
  2211 #if INCLUDE_JVMTI
       
  2212     Label L_done;
       
  2213 
       
  2214     __ lbz(R11_scratch1, 0, R14_bcp);
       
  2215     __ cmpwi(CCR0, R11_scratch1, Bytecodes::_invokestatic);
       
  2216     __ bne(CCR0, L_done);
       
  2217 
       
  2218     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
       
  2219     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
       
  2220     __ ld(R4_ARG2, 0, R18_locals);
       
  2221     __ MacroAssembler::call_VM(R4_ARG2, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R4_ARG2, R19_method, R14_bcp, false);
       
  2222     __ restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
       
  2223     __ cmpdi(CCR0, R4_ARG2, 0);
       
  2224     __ beq(CCR0, L_done);
       
  2225     __ std(R4_ARG2, wordSize, R15_esp);
       
  2226     __ bind(L_done);
       
  2227 #endif // INCLUDE_JVMTI
       
  2228     __ dispatch_next(vtos);
       
  2229   }
       
  2230   // end of JVMTI PopFrame support
       
  2231 
       
  2232   // --------------------------------------------------------------------------
       
  2233   // Remove activation exception entry.
       
  2234   // This is jumped to if an interpreted method can't handle an exception itself
       
  2235   // (we come from the throw/rethrow exception entry above). We're going to call
       
  2236   // into the VM to find the exception handler in the caller, pop the current
       
  2237   // frame and return the handler we calculated.
       
  2238   Interpreter::_remove_activation_entry = __ pc();
       
  2239   {
       
  2240     __ pop_ptr(Rexception);
       
  2241     __ verify_thread();
       
  2242     __ verify_oop(Rexception);
       
  2243     __ std(Rexception, in_bytes(JavaThread::vm_result_offset()), R16_thread);
       
  2244 
       
  2245     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, true);
       
  2246     __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI, false);
       
  2247 
       
  2248     __ get_vm_result(Rexception);
       
  2249 
       
  2250     // We are done with this activation frame; find out where to go next.
       
  2251     // The continuation point will be an exception handler, which expects
       
  2252     // the following registers set up:
       
  2253     //
       
  2254     // RET:  exception oop
       
  2255     // ARG2: Issuing PC (see generate_exception_blob()), only used if the caller is compiled.
       
  2256 
       
  2257     Register return_pc = R31; // Needs to survive the runtime call.
       
  2258     __ ld(return_pc, 0, R1_SP);
       
  2259     __ ld(return_pc, _abi(lr), return_pc);
       
  2260     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc);
       
  2261 
       
  2262     // Remove the current activation.
       
  2263     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
       
  2264 
       
  2265     __ mr(R4_ARG2, return_pc);
       
  2266     __ mtlr(R3_RET);
       
  2267     __ mr(R3_RET, Rexception);
       
  2268     __ blr();
       
  2269   }
       
  2270 }
       
  2271 
       
  2272 // JVMTI ForceEarlyReturn support.
       
  2273 // Returns "in the middle" of a method with a "fake" return value.
       
  2274 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
       
  2275 
       
  2276   Register Rscratch1 = R11_scratch1,
       
  2277            Rscratch2 = R12_scratch2;
       
  2278 
       
  2279   address entry = __ pc();
       
  2280   __ empty_expression_stack();
       
  2281 
       
  2282   __ load_earlyret_value(state, Rscratch1);
       
  2283 
       
  2284   __ ld(Rscratch1, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
       
  2285   // Clear the earlyret state.
       
  2286   __ li(R0, 0);
       
  2287   __ stw(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rscratch1);
       
  2288 
       
  2289   __ remove_activation(state, false, false);
       
  2290   // Copied from TemplateTable::_return.
       
  2291   // Restoration of lr done by remove_activation.
       
  2292   switch (state) {
       
  2293     // Narrow result if state is itos but result type is smaller.
       
  2294     case btos:
       
  2295     case ztos:
       
  2296     case ctos:
       
  2297     case stos:
       
  2298     case itos: __ narrow(R17_tos); /* fall through */
       
  2299     case ltos:
       
  2300     case atos: __ mr(R3_RET, R17_tos); break;
       
  2301     case ftos:
       
  2302     case dtos: __ fmr(F1_RET, F15_ftos); break;
       
  2303     case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
       
  2304                // to get visible before the reference to the object gets stored anywhere.
       
  2305                __ membar(Assembler::StoreStore); break;
       
  2306     default  : ShouldNotReachHere();
       
  2307   }
       
  2308   __ blr();
       
  2309 
       
  2310   return entry;
       
  2311 } // end of ForceEarlyReturn support
       
  2312 
       
  2313 //-----------------------------------------------------------------------------
       
  2314 // Helper for vtos entry point generation
       
  2315 
       
  2316 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
       
  2317                                                          address& bep,
       
  2318                                                          address& cep,
       
  2319                                                          address& sep,
       
  2320                                                          address& aep,
       
  2321                                                          address& iep,
       
  2322                                                          address& lep,
       
  2323                                                          address& fep,
       
  2324                                                          address& dep,
       
  2325                                                          address& vep) {
       
  2326   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
       
  2327   Label L;
       
  2328 
       
  2329   aep = __ pc();  __ push_ptr();  __ b(L);
       
  2330   fep = __ pc();  __ push_f();    __ b(L);
       
  2331   dep = __ pc();  __ push_d();    __ b(L);
       
  2332   lep = __ pc();  __ push_l();    __ b(L);
       
  2333   __ align(32, 12, 24); // align L
       
  2334   bep = cep = sep =
       
  2335   iep = __ pc();  __ push_i();
       
  2336   vep = __ pc();
       
  2337   __ bind(L);
       
  2338   generate_and_dispatch(t);
       
  2339 }
       
  2340 
       
  2341 //-----------------------------------------------------------------------------
       
  2342 
       
  2343 // Non-product code
       
  2344 #ifndef PRODUCT
       
  2345 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
       
  2346   //__ flush_bundle();
       
  2347   address entry = __ pc();
       
  2348 
       
  2349   const char *bname = NULL;
       
  2350   uint tsize = 0;
       
  2351   switch(state) {
       
  2352   case ftos:
       
  2353     bname = "trace_code_ftos {";
       
  2354     tsize = 2;
       
  2355     break;
       
  2356   case btos:
       
  2357     bname = "trace_code_btos {";
       
  2358     tsize = 2;
       
  2359     break;
       
  2360   case ztos:
       
  2361     bname = "trace_code_ztos {";
       
  2362     tsize = 2;
       
  2363     break;
       
  2364   case ctos:
       
  2365     bname = "trace_code_ctos {";
       
  2366     tsize = 2;
       
  2367     break;
       
  2368   case stos:
       
  2369     bname = "trace_code_stos {";
       
  2370     tsize = 2;
       
  2371     break;
       
  2372   case itos:
       
  2373     bname = "trace_code_itos {";
       
  2374     tsize = 2;
       
  2375     break;
       
  2376   case ltos:
       
  2377     bname = "trace_code_ltos {";
       
  2378     tsize = 3;
       
  2379     break;
       
  2380   case atos:
       
  2381     bname = "trace_code_atos {";
       
  2382     tsize = 2;
       
  2383     break;
       
  2384   case vtos:
       
  2385     // Note: In case of vtos, the topmost of stack value could be a int or doubl
       
  2386     // In case of a double (2 slots) we won't see the 2nd stack value.
       
  2387     // Maybe we simply should print the topmost 3 stack slots to cope with the problem.
       
  2388     bname = "trace_code_vtos {";
       
  2389     tsize = 2;
       
  2390 
       
  2391     break;
       
  2392   case dtos:
       
  2393     bname = "trace_code_dtos {";
       
  2394     tsize = 3;
       
  2395     break;
       
  2396   default:
       
  2397     ShouldNotReachHere();
       
  2398   }
       
  2399   BLOCK_COMMENT(bname);
       
  2400 
       
  2401   // Support short-cut for TraceBytecodesAt.
       
  2402   // Don't call into the VM if we don't want to trace to speed up things.
       
  2403   Label Lskip_vm_call;
       
  2404   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
       
  2405     int offs1 = __ load_const_optimized(R11_scratch1, (address) &TraceBytecodesAt, R0, true);
       
  2406     int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
       
  2407     __ ld(R11_scratch1, offs1, R11_scratch1);
       
  2408     __ lwa(R12_scratch2, offs2, R12_scratch2);
       
  2409     __ cmpd(CCR0, R12_scratch2, R11_scratch1);
       
  2410     __ blt(CCR0, Lskip_vm_call);
       
  2411   }
       
  2412 
       
  2413   __ push(state);
       
  2414   // Load 2 topmost expression stack values.
       
  2415   __ ld(R6_ARG4, tsize*Interpreter::stackElementSize, R15_esp);
       
  2416   __ ld(R5_ARG3, Interpreter::stackElementSize, R15_esp);
       
  2417   __ mflr(R31);
       
  2418   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), /* unused */ R4_ARG2, R5_ARG3, R6_ARG4, false);
       
  2419   __ mtlr(R31);
       
  2420   __ pop(state);
       
  2421 
       
  2422   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
       
  2423     __ bind(Lskip_vm_call);
       
  2424   }
       
  2425   __ blr();
       
  2426   BLOCK_COMMENT("} trace_code");
       
  2427   return entry;
       
  2428 }
       
  2429 
       
  2430 void TemplateInterpreterGenerator::count_bytecode() {
       
  2431   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeCounter::_counter_value, R12_scratch2, true);
       
  2432   __ lwz(R12_scratch2, offs, R11_scratch1);
       
  2433   __ addi(R12_scratch2, R12_scratch2, 1);
       
  2434   __ stw(R12_scratch2, offs, R11_scratch1);
       
  2435 }
       
  2436 
       
  2437 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
       
  2438   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeHistogram::_counters[t->bytecode()], R12_scratch2, true);
       
  2439   __ lwz(R12_scratch2, offs, R11_scratch1);
       
  2440   __ addi(R12_scratch2, R12_scratch2, 1);
       
  2441   __ stw(R12_scratch2, offs, R11_scratch1);
       
  2442 }
       
  2443 
       
  2444 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
       
  2445   const Register addr = R11_scratch1,
       
  2446                  tmp  = R12_scratch2;
       
  2447   // Get index, shift out old bytecode, bring in new bytecode, and store it.
       
  2448   // _index = (_index >> log2_number_of_codes) |
       
  2449   //          (bytecode << log2_number_of_codes);
       
  2450   int offs1 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_index, tmp, true);
       
  2451   __ lwz(tmp, offs1, addr);
       
  2452   __ srwi(tmp, tmp, BytecodePairHistogram::log2_number_of_codes);
       
  2453   __ ori(tmp, tmp, ((int) t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
       
  2454   __ stw(tmp, offs1, addr);
       
  2455 
       
  2456   // Bump bucket contents.
       
  2457   // _counters[_index] ++;
       
  2458   int offs2 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_counters, R0, true);
       
  2459   __ sldi(tmp, tmp, LogBytesPerInt);
       
  2460   __ add(addr, tmp, addr);
       
  2461   __ lwz(tmp, offs2, addr);
       
  2462   __ addi(tmp, tmp, 1);
       
  2463   __ stw(tmp, offs2, addr);
       
  2464 }
       
  2465 
       
  2466 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
       
  2467   // Call a little run-time stub to avoid blow-up for each bytecode.
       
  2468   // The run-time runtime saves the right registers, depending on
       
  2469   // the tosca in-state for the given template.
       
  2470 
       
  2471   assert(Interpreter::trace_code(t->tos_in()) != NULL,
       
  2472          "entry must have been generated");
       
  2473 
       
  2474   // Note: we destroy LR here.
       
  2475   __ bl(Interpreter::trace_code(t->tos_in()));
       
  2476 }
       
  2477 
       
  2478 void TemplateInterpreterGenerator::stop_interpreter_at() {
       
  2479   Label L;
       
  2480   int offs1 = __ load_const_optimized(R11_scratch1, (address) &StopInterpreterAt, R0, true);
       
  2481   int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
       
  2482   __ ld(R11_scratch1, offs1, R11_scratch1);
       
  2483   __ lwa(R12_scratch2, offs2, R12_scratch2);
       
  2484   __ cmpd(CCR0, R12_scratch2, R11_scratch1);
       
  2485   __ bne(CCR0, L);
       
  2486   __ illtrap();
       
  2487   __ bind(L);
       
  2488 }
       
  2489 
       
  2490 #endif // !PRODUCT