|
1 /* |
|
2 * Copyright (c) 2002, 2015, Oracle and/or its affiliates. All rights reserved. |
|
3 * Copyright (c) 2012, 2015 SAP SE. All rights reserved. |
|
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
5 * |
|
6 * This code is free software; you can redistribute it and/or modify it |
|
7 * under the terms of the GNU General Public License version 2 only, as |
|
8 * published by the Free Software Foundation. |
|
9 * |
|
10 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13 * version 2 for more details (a copy is included in the LICENSE file that |
|
14 * accompanied this code). |
|
15 * |
|
16 * You should have received a copy of the GNU General Public License version |
|
17 * 2 along with this work; if not, write to the Free Software Foundation, |
|
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
19 * |
|
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
21 * or visit www.oracle.com if you need additional information or have any |
|
22 * questions. |
|
23 * |
|
24 */ |
|
25 |
|
26 #ifndef CPU_PPC_VM_MACROASSEMBLER_PPC_INLINE_HPP |
|
27 #define CPU_PPC_VM_MACROASSEMBLER_PPC_INLINE_HPP |
|
28 |
|
29 #include "asm/assembler.inline.hpp" |
|
30 #include "asm/macroAssembler.hpp" |
|
31 #include "asm/codeBuffer.hpp" |
|
32 #include "code/codeCache.hpp" |
|
33 |
|
34 inline bool MacroAssembler::is_ld_largeoffset(address a) { |
|
35 const int inst1 = *(int *)a; |
|
36 const int inst2 = *(int *)(a+4); |
|
37 return (is_ld(inst1)) || |
|
38 (is_addis(inst1) && is_ld(inst2) && inv_ra_field(inst2) == inv_rt_field(inst1)); |
|
39 } |
|
40 |
|
41 inline int MacroAssembler::get_ld_largeoffset_offset(address a) { |
|
42 assert(MacroAssembler::is_ld_largeoffset(a), "must be ld with large offset"); |
|
43 |
|
44 const int inst1 = *(int *)a; |
|
45 if (is_ld(inst1)) { |
|
46 return inv_d1_field(inst1); |
|
47 } else { |
|
48 const int inst2 = *(int *)(a+4); |
|
49 return (inv_d1_field(inst1) << 16) + inv_d1_field(inst2); |
|
50 } |
|
51 } |
|
52 |
|
53 inline void MacroAssembler::round_to(Register r, int modulus) { |
|
54 assert(is_power_of_2_long((jlong)modulus), "must be power of 2"); |
|
55 addi(r, r, modulus-1); |
|
56 clrrdi(r, r, log2_long((jlong)modulus)); |
|
57 } |
|
58 |
|
59 // Move register if destination register and target register are different. |
|
60 inline void MacroAssembler::mr_if_needed(Register rd, Register rs) { |
|
61 if (rs != rd) mr(rd, rs); |
|
62 } |
|
63 inline void MacroAssembler::fmr_if_needed(FloatRegister rd, FloatRegister rs) { |
|
64 if (rs != rd) fmr(rd, rs); |
|
65 } |
|
66 inline void MacroAssembler::endgroup_if_needed(bool needed) { |
|
67 if (needed) { |
|
68 endgroup(); |
|
69 } |
|
70 } |
|
71 |
|
72 inline void MacroAssembler::membar(int bits) { |
|
73 // Comment: Usage of elemental_membar(bits) is not recommended for Power 8. |
|
74 // If elemental_membar(bits) is used, disable optimization of acquire-release |
|
75 // (Matcher::post_membar_release where we use PPC64_ONLY(xop == Op_MemBarRelease ||))! |
|
76 if (bits & StoreLoad) { sync(); } |
|
77 else if (bits) { lwsync(); } |
|
78 } |
|
79 inline void MacroAssembler::release() { membar(LoadStore | StoreStore); } |
|
80 inline void MacroAssembler::acquire() { membar(LoadLoad | LoadStore); } |
|
81 inline void MacroAssembler::fence() { membar(LoadLoad | LoadStore | StoreLoad | StoreStore); } |
|
82 |
|
83 // Address of the global TOC. |
|
84 inline address MacroAssembler::global_toc() { |
|
85 return CodeCache::low_bound(); |
|
86 } |
|
87 |
|
88 // Offset of given address to the global TOC. |
|
89 inline int MacroAssembler::offset_to_global_toc(const address addr) { |
|
90 intptr_t offset = (intptr_t)addr - (intptr_t)MacroAssembler::global_toc(); |
|
91 assert(Assembler::is_uimm((long)offset, 31), "must be in range"); |
|
92 return (int)offset; |
|
93 } |
|
94 |
|
95 // Address of current method's TOC. |
|
96 inline address MacroAssembler::method_toc() { |
|
97 return code()->consts()->start(); |
|
98 } |
|
99 |
|
100 // Offset of given address to current method's TOC. |
|
101 inline int MacroAssembler::offset_to_method_toc(address addr) { |
|
102 intptr_t offset = (intptr_t)addr - (intptr_t)method_toc(); |
|
103 assert(Assembler::is_uimm((long)offset, 31), "must be in range"); |
|
104 return (int)offset; |
|
105 } |
|
106 |
|
107 inline bool MacroAssembler::is_calculate_address_from_global_toc_at(address a, address bound) { |
|
108 const address inst2_addr = a; |
|
109 const int inst2 = *(int *) a; |
|
110 |
|
111 // The relocation points to the second instruction, the addi. |
|
112 if (!is_addi(inst2)) return false; |
|
113 |
|
114 // The addi reads and writes the same register dst. |
|
115 const int dst = inv_rt_field(inst2); |
|
116 if (inv_ra_field(inst2) != dst) return false; |
|
117 |
|
118 // Now, find the preceding addis which writes to dst. |
|
119 int inst1 = 0; |
|
120 address inst1_addr = inst2_addr - BytesPerInstWord; |
|
121 while (inst1_addr >= bound) { |
|
122 inst1 = *(int *) inst1_addr; |
|
123 if (is_addis(inst1) && inv_rt_field(inst1) == dst) { |
|
124 // stop, found the addis which writes dst |
|
125 break; |
|
126 } |
|
127 inst1_addr -= BytesPerInstWord; |
|
128 } |
|
129 |
|
130 if (!(inst1 == 0 || inv_ra_field(inst1) == 29 /* R29 */)) return false; |
|
131 return is_addis(inst1); |
|
132 } |
|
133 |
|
134 #ifdef _LP64 |
|
135 // Detect narrow oop constants. |
|
136 inline bool MacroAssembler::is_set_narrow_oop(address a, address bound) { |
|
137 const address inst2_addr = a; |
|
138 const int inst2 = *(int *)a; |
|
139 // The relocation points to the second instruction, the ori. |
|
140 if (!is_ori(inst2)) return false; |
|
141 |
|
142 // The ori reads and writes the same register dst. |
|
143 const int dst = inv_rta_field(inst2); |
|
144 if (inv_rs_field(inst2) != dst) return false; |
|
145 |
|
146 // Now, find the preceding addis which writes to dst. |
|
147 int inst1 = 0; |
|
148 address inst1_addr = inst2_addr - BytesPerInstWord; |
|
149 while (inst1_addr >= bound) { |
|
150 inst1 = *(int *) inst1_addr; |
|
151 if (is_lis(inst1) && inv_rs_field(inst1) == dst) return true; |
|
152 inst1_addr -= BytesPerInstWord; |
|
153 } |
|
154 return false; |
|
155 } |
|
156 #endif |
|
157 |
|
158 |
|
159 inline bool MacroAssembler::is_load_const_at(address a) { |
|
160 const int* p_inst = (int *) a; |
|
161 bool b = is_lis(*p_inst++); |
|
162 if (is_ori(*p_inst)) { |
|
163 p_inst++; |
|
164 b = b && is_rldicr(*p_inst++); // TODO: could be made more precise: `sldi'! |
|
165 b = b && is_oris(*p_inst++); |
|
166 b = b && is_ori(*p_inst); |
|
167 } else if (is_lis(*p_inst)) { |
|
168 p_inst++; |
|
169 b = b && is_ori(*p_inst++); |
|
170 b = b && is_ori(*p_inst); |
|
171 // TODO: could enhance reliability by adding is_insrdi |
|
172 } else return false; |
|
173 return b; |
|
174 } |
|
175 |
|
176 inline void MacroAssembler::set_oop_constant(jobject obj, Register d) { |
|
177 set_oop(constant_oop_address(obj), d); |
|
178 } |
|
179 |
|
180 inline void MacroAssembler::set_oop(AddressLiteral obj_addr, Register d) { |
|
181 assert(obj_addr.rspec().type() == relocInfo::oop_type, "must be an oop reloc"); |
|
182 load_const(d, obj_addr); |
|
183 } |
|
184 |
|
185 inline void MacroAssembler::pd_patch_instruction(address branch, address target) { |
|
186 jint& stub_inst = *(jint*) branch; |
|
187 stub_inst = patched_branch(target - branch, stub_inst, 0); |
|
188 } |
|
189 |
|
190 // Relocation of conditional far branches. |
|
191 inline bool MacroAssembler::is_bc_far_variant1_at(address instruction_addr) { |
|
192 // Variant 1, the 1st instruction contains the destination address: |
|
193 // |
|
194 // bcxx DEST |
|
195 // nop |
|
196 // |
|
197 const int instruction_1 = *(int*)(instruction_addr); |
|
198 const int instruction_2 = *(int*)(instruction_addr + 4); |
|
199 return is_bcxx(instruction_1) && |
|
200 (inv_bd_field(instruction_1, (intptr_t)instruction_addr) != (intptr_t)(instruction_addr + 2*4)) && |
|
201 is_nop(instruction_2); |
|
202 } |
|
203 |
|
204 // Relocation of conditional far branches. |
|
205 inline bool MacroAssembler::is_bc_far_variant2_at(address instruction_addr) { |
|
206 // Variant 2, the 2nd instruction contains the destination address: |
|
207 // |
|
208 // b!cxx SKIP |
|
209 // bxx DEST |
|
210 // SKIP: |
|
211 // |
|
212 const int instruction_1 = *(int*)(instruction_addr); |
|
213 const int instruction_2 = *(int*)(instruction_addr + 4); |
|
214 return is_bcxx(instruction_1) && |
|
215 (inv_bd_field(instruction_1, (intptr_t)instruction_addr) == (intptr_t)(instruction_addr + 2*4)) && |
|
216 is_bxx(instruction_2); |
|
217 } |
|
218 |
|
219 // Relocation for conditional branches |
|
220 inline bool MacroAssembler::is_bc_far_variant3_at(address instruction_addr) { |
|
221 // Variant 3, far cond branch to the next instruction, already patched to nops: |
|
222 // |
|
223 // nop |
|
224 // endgroup |
|
225 // SKIP/DEST: |
|
226 // |
|
227 const int instruction_1 = *(int*)(instruction_addr); |
|
228 const int instruction_2 = *(int*)(instruction_addr + 4); |
|
229 return is_nop(instruction_1) && |
|
230 is_endgroup(instruction_2); |
|
231 } |
|
232 |
|
233 |
|
234 // Convenience bc_far versions |
|
235 inline void MacroAssembler::blt_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs1, bi0(crx, less), L, optimize); } |
|
236 inline void MacroAssembler::bgt_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs1, bi0(crx, greater), L, optimize); } |
|
237 inline void MacroAssembler::beq_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs1, bi0(crx, equal), L, optimize); } |
|
238 inline void MacroAssembler::bso_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs1, bi0(crx, summary_overflow), L, optimize); } |
|
239 inline void MacroAssembler::bge_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs0, bi0(crx, less), L, optimize); } |
|
240 inline void MacroAssembler::ble_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs0, bi0(crx, greater), L, optimize); } |
|
241 inline void MacroAssembler::bne_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs0, bi0(crx, equal), L, optimize); } |
|
242 inline void MacroAssembler::bns_far(ConditionRegister crx, Label& L, int optimize) { MacroAssembler::bc_far(bcondCRbiIs0, bi0(crx, summary_overflow), L, optimize); } |
|
243 |
|
244 inline address MacroAssembler::call_stub(Register function_entry) { |
|
245 mtctr(function_entry); |
|
246 bctrl(); |
|
247 return pc(); |
|
248 } |
|
249 |
|
250 inline void MacroAssembler::call_stub_and_return_to(Register function_entry, Register return_pc) { |
|
251 assert_different_registers(function_entry, return_pc); |
|
252 mtlr(return_pc); |
|
253 mtctr(function_entry); |
|
254 bctr(); |
|
255 } |
|
256 |
|
257 // Get the pc where the last emitted call will return to. |
|
258 inline address MacroAssembler::last_calls_return_pc() { |
|
259 return _last_calls_return_pc; |
|
260 } |
|
261 |
|
262 // Read from the polling page, its address is already in a register. |
|
263 inline void MacroAssembler::load_from_polling_page(Register polling_page_address, int offset) { |
|
264 ld(R0, offset, polling_page_address); |
|
265 } |
|
266 |
|
267 // Trap-instruction-based checks. |
|
268 |
|
269 inline void MacroAssembler::trap_null_check(Register a, trap_to_bits cmp) { |
|
270 assert(TrapBasedNullChecks, "sanity"); |
|
271 tdi(cmp, a/*reg a*/, 0); |
|
272 } |
|
273 inline void MacroAssembler::trap_zombie_not_entrant() { |
|
274 tdi(traptoUnconditional, 0/*reg 0*/, 1); |
|
275 } |
|
276 inline void MacroAssembler::trap_should_not_reach_here() { |
|
277 tdi_unchecked(traptoUnconditional, 0/*reg 0*/, 2); |
|
278 } |
|
279 |
|
280 inline void MacroAssembler::trap_ic_miss_check(Register a, Register b) { |
|
281 td(traptoGreaterThanUnsigned | traptoLessThanUnsigned, a, b); |
|
282 } |
|
283 |
|
284 // Do an explicit null check if access to a+offset will not raise a SIGSEGV. |
|
285 // Either issue a trap instruction that raises SIGTRAP, or do a compare that |
|
286 // branches to exception_entry. |
|
287 // No support for compressed oops (base page of heap). Does not distinguish |
|
288 // loads and stores. |
|
289 inline void MacroAssembler::null_check_throw(Register a, int offset, Register temp_reg, |
|
290 address exception_entry) { |
|
291 if (!ImplicitNullChecks || needs_explicit_null_check(offset) || !os::zero_page_read_protected()) { |
|
292 if (TrapBasedNullChecks) { |
|
293 assert(UseSIGTRAP, "sanity"); |
|
294 trap_null_check(a); |
|
295 } else { |
|
296 Label ok; |
|
297 cmpdi(CCR0, a, 0); |
|
298 bne(CCR0, ok); |
|
299 load_const_optimized(temp_reg, exception_entry); |
|
300 mtctr(temp_reg); |
|
301 bctr(); |
|
302 bind(ok); |
|
303 } |
|
304 } |
|
305 } |
|
306 |
|
307 inline void MacroAssembler::null_check(Register a, int offset, Label *Lis_null) { |
|
308 if (!ImplicitNullChecks || needs_explicit_null_check(offset) || !os::zero_page_read_protected()) { |
|
309 if (TrapBasedNullChecks) { |
|
310 assert(UseSIGTRAP, "sanity"); |
|
311 trap_null_check(a); |
|
312 } else if (Lis_null){ |
|
313 Label ok; |
|
314 cmpdi(CCR0, a, 0); |
|
315 beq(CCR0, *Lis_null); |
|
316 } |
|
317 } |
|
318 } |
|
319 |
|
320 inline void MacroAssembler::load_heap_oop_not_null(Register d, RegisterOrConstant offs, Register s1, Register tmp) { |
|
321 if (UseCompressedOops) { |
|
322 // In disjoint mode decoding can save a cycle if src != dst. |
|
323 Register narrowOop = (tmp != noreg && Universe::narrow_oop_base_disjoint()) ? tmp : d; |
|
324 lwz(narrowOop, offs, s1); |
|
325 // Attention: no null check here! |
|
326 Register res = decode_heap_oop_not_null(d, narrowOop); |
|
327 assert(res == d, "caller will not consume loaded value"); |
|
328 } else { |
|
329 ld(d, offs, s1); |
|
330 } |
|
331 } |
|
332 |
|
333 inline void MacroAssembler::store_heap_oop_not_null(Register d, RegisterOrConstant offs, Register s1, Register tmp) { |
|
334 if (UseCompressedOops) { |
|
335 Register compressedOop = encode_heap_oop_not_null((tmp != noreg) ? tmp : d, d); |
|
336 stw(compressedOop, offs, s1); |
|
337 } else { |
|
338 std(d, offs, s1); |
|
339 } |
|
340 } |
|
341 |
|
342 inline void MacroAssembler::load_heap_oop(Register d, RegisterOrConstant offs, Register s1, Label *is_null) { |
|
343 if (UseCompressedOops) { |
|
344 lwz(d, offs, s1); |
|
345 if (is_null != NULL) { |
|
346 cmpwi(CCR0, d, 0); |
|
347 beq(CCR0, *is_null); |
|
348 decode_heap_oop_not_null(d); |
|
349 } else { |
|
350 decode_heap_oop(d); |
|
351 } |
|
352 } else { |
|
353 ld(d, offs, s1); |
|
354 if (is_null != NULL) { |
|
355 cmpdi(CCR0, d, 0); |
|
356 beq(CCR0, *is_null); |
|
357 } |
|
358 } |
|
359 } |
|
360 |
|
361 inline Register MacroAssembler::encode_heap_oop_not_null(Register d, Register src) { |
|
362 Register current = (src != noreg) ? src : d; // Oop to be compressed is in d if no src provided. |
|
363 if (Universe::narrow_oop_base_overlaps()) { |
|
364 sub_const_optimized(d, current, Universe::narrow_oop_base(), R0); |
|
365 current = d; |
|
366 } |
|
367 if (Universe::narrow_oop_shift() != 0) { |
|
368 rldicl(d, current, 64-Universe::narrow_oop_shift(), 32); // Clears the upper bits. |
|
369 current = d; |
|
370 } |
|
371 return current; // Encoded oop is in this register. |
|
372 } |
|
373 |
|
374 inline Register MacroAssembler::encode_heap_oop(Register d, Register src) { |
|
375 if (Universe::narrow_oop_base() != NULL) { |
|
376 if (VM_Version::has_isel()) { |
|
377 cmpdi(CCR0, src, 0); |
|
378 Register co = encode_heap_oop_not_null(d, src); |
|
379 assert(co == d, "sanity"); |
|
380 isel_0(d, CCR0, Assembler::equal); |
|
381 } else { |
|
382 Label isNull; |
|
383 or_(d, src, src); // move and compare 0 |
|
384 beq(CCR0, isNull); |
|
385 encode_heap_oop_not_null(d, src); |
|
386 bind(isNull); |
|
387 } |
|
388 return d; |
|
389 } else { |
|
390 return encode_heap_oop_not_null(d, src); |
|
391 } |
|
392 } |
|
393 |
|
394 inline Register MacroAssembler::decode_heap_oop_not_null(Register d, Register src) { |
|
395 if (Universe::narrow_oop_base_disjoint() && src != noreg && src != d && |
|
396 Universe::narrow_oop_shift() != 0) { |
|
397 load_const_optimized(d, Universe::narrow_oop_base(), R0); |
|
398 rldimi(d, src, Universe::narrow_oop_shift(), 32-Universe::narrow_oop_shift()); |
|
399 return d; |
|
400 } |
|
401 |
|
402 Register current = (src != noreg) ? src : d; // Compressed oop is in d if no src provided. |
|
403 if (Universe::narrow_oop_shift() != 0) { |
|
404 sldi(d, current, Universe::narrow_oop_shift()); |
|
405 current = d; |
|
406 } |
|
407 if (Universe::narrow_oop_base() != NULL) { |
|
408 add_const_optimized(d, current, Universe::narrow_oop_base(), R0); |
|
409 current = d; |
|
410 } |
|
411 return current; // Decoded oop is in this register. |
|
412 } |
|
413 |
|
414 inline void MacroAssembler::decode_heap_oop(Register d) { |
|
415 Label isNull; |
|
416 bool use_isel = false; |
|
417 if (Universe::narrow_oop_base() != NULL) { |
|
418 cmpwi(CCR0, d, 0); |
|
419 if (VM_Version::has_isel()) { |
|
420 use_isel = true; |
|
421 } else { |
|
422 beq(CCR0, isNull); |
|
423 } |
|
424 } |
|
425 decode_heap_oop_not_null(d); |
|
426 if (use_isel) { |
|
427 isel_0(d, CCR0, Assembler::equal); |
|
428 } |
|
429 bind(isNull); |
|
430 } |
|
431 |
|
432 // SIGTRAP-based range checks for arrays. |
|
433 inline void MacroAssembler::trap_range_check_l(Register a, Register b) { |
|
434 tw (traptoLessThanUnsigned, a/*reg a*/, b/*reg b*/); |
|
435 } |
|
436 inline void MacroAssembler::trap_range_check_l(Register a, int si16) { |
|
437 twi(traptoLessThanUnsigned, a/*reg a*/, si16); |
|
438 } |
|
439 inline void MacroAssembler::trap_range_check_le(Register a, int si16) { |
|
440 twi(traptoEqual | traptoLessThanUnsigned, a/*reg a*/, si16); |
|
441 } |
|
442 inline void MacroAssembler::trap_range_check_g(Register a, int si16) { |
|
443 twi(traptoGreaterThanUnsigned, a/*reg a*/, si16); |
|
444 } |
|
445 inline void MacroAssembler::trap_range_check_ge(Register a, Register b) { |
|
446 tw (traptoEqual | traptoGreaterThanUnsigned, a/*reg a*/, b/*reg b*/); |
|
447 } |
|
448 inline void MacroAssembler::trap_range_check_ge(Register a, int si16) { |
|
449 twi(traptoEqual | traptoGreaterThanUnsigned, a/*reg a*/, si16); |
|
450 } |
|
451 |
|
452 // unsigned integer multiplication 64*64 -> 128 bits |
|
453 inline void MacroAssembler::multiply64(Register dest_hi, Register dest_lo, |
|
454 Register x, Register y) { |
|
455 mulld(dest_lo, x, y); |
|
456 mulhdu(dest_hi, x, y); |
|
457 } |
|
458 |
|
459 #if defined(ABI_ELFv2) |
|
460 inline address MacroAssembler::function_entry() { return pc(); } |
|
461 #else |
|
462 inline address MacroAssembler::function_entry() { return emit_fd(); } |
|
463 #endif |
|
464 |
|
465 #endif // CPU_PPC_VM_MACROASSEMBLER_PPC_INLINE_HPP |