src/hotspot/cpu/ppc/interp_masm_ppc_64.cpp
changeset 47216 71c04702a3d5
parent 46961 c9094b1e5f87
child 47634 6a0c42c40cd1
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
       
     3  * Copyright (c) 2012, 2017 SAP SE. All rights reserved.
       
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     5  *
       
     6  * This code is free software; you can redistribute it and/or modify it
       
     7  * under the terms of the GNU General Public License version 2 only, as
       
     8  * published by the Free Software Foundation.
       
     9  *
       
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    13  * version 2 for more details (a copy is included in the LICENSE file that
       
    14  * accompanied this code).
       
    15  *
       
    16  * You should have received a copy of the GNU General Public License version
       
    17  * 2 along with this work; if not, write to the Free Software Foundation,
       
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    19  *
       
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    21  * or visit www.oracle.com if you need additional information or have any
       
    22  * questions.
       
    23  *
       
    24  */
       
    25 
       
    26 
       
    27 #include "precompiled.hpp"
       
    28 #include "asm/macroAssembler.inline.hpp"
       
    29 #include "interp_masm_ppc.hpp"
       
    30 #include "interpreter/interpreterRuntime.hpp"
       
    31 #include "prims/jvmtiThreadState.hpp"
       
    32 #include "runtime/sharedRuntime.hpp"
       
    33 
       
    34 #ifdef PRODUCT
       
    35 #define BLOCK_COMMENT(str) // nothing
       
    36 #else
       
    37 #define BLOCK_COMMENT(str) block_comment(str)
       
    38 #endif
       
    39 
       
    40 void InterpreterMacroAssembler::null_check_throw(Register a, int offset, Register temp_reg) {
       
    41   address exception_entry = Interpreter::throw_NullPointerException_entry();
       
    42   MacroAssembler::null_check_throw(a, offset, temp_reg, exception_entry);
       
    43 }
       
    44 
       
    45 void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) {
       
    46   assert(entry, "Entry must have been generated by now");
       
    47   if (is_within_range_of_b(entry, pc())) {
       
    48     b(entry);
       
    49   } else {
       
    50     load_const_optimized(Rscratch, entry, R0);
       
    51     mtctr(Rscratch);
       
    52     bctr();
       
    53   }
       
    54 }
       
    55 
       
    56 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
       
    57   Register bytecode = R12_scratch2;
       
    58   if (bcp_incr != 0) {
       
    59     lbzu(bytecode, bcp_incr, R14_bcp);
       
    60   } else {
       
    61     lbz(bytecode, 0, R14_bcp);
       
    62   }
       
    63 
       
    64   dispatch_Lbyte_code(state, bytecode, Interpreter::dispatch_table(state));
       
    65 }
       
    66 
       
    67 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
       
    68   // Load current bytecode.
       
    69   Register bytecode = R12_scratch2;
       
    70   lbz(bytecode, 0, R14_bcp);
       
    71   dispatch_Lbyte_code(state, bytecode, table);
       
    72 }
       
    73 
       
    74 // Dispatch code executed in the prolog of a bytecode which does not do it's
       
    75 // own dispatch. The dispatch address is computed and placed in R24_dispatch_addr.
       
    76 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
       
    77   Register bytecode = R12_scratch2;
       
    78   lbz(bytecode, bcp_incr, R14_bcp);
       
    79 
       
    80   load_dispatch_table(R24_dispatch_addr, Interpreter::dispatch_table(state));
       
    81 
       
    82   sldi(bytecode, bytecode, LogBytesPerWord);
       
    83   ldx(R24_dispatch_addr, R24_dispatch_addr, bytecode);
       
    84 }
       
    85 
       
    86 // Dispatch code executed in the epilog of a bytecode which does not do it's
       
    87 // own dispatch. The dispatch address in R24_dispatch_addr is used for the
       
    88 // dispatch.
       
    89 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
       
    90   if (bcp_incr) { addi(R14_bcp, R14_bcp, bcp_incr); }
       
    91   mtctr(R24_dispatch_addr);
       
    92   bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable);
       
    93 }
       
    94 
       
    95 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
       
    96   assert(scratch_reg != R0, "can't use R0 as scratch_reg here");
       
    97   if (JvmtiExport::can_pop_frame()) {
       
    98     Label L;
       
    99 
       
   100     // Check the "pending popframe condition" flag in the current thread.
       
   101     lwz(scratch_reg, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
       
   102 
       
   103     // Initiate popframe handling only if it is not already being
       
   104     // processed. If the flag has the popframe_processing bit set, it
       
   105     // means that this code is called *during* popframe handling - we
       
   106     // don't want to reenter.
       
   107     andi_(R0, scratch_reg, JavaThread::popframe_pending_bit);
       
   108     beq(CCR0, L);
       
   109 
       
   110     andi_(R0, scratch_reg, JavaThread::popframe_processing_bit);
       
   111     bne(CCR0, L);
       
   112 
       
   113     // Call the Interpreter::remove_activation_preserving_args_entry()
       
   114     // func to get the address of the same-named entrypoint in the
       
   115     // generated interpreter code.
       
   116 #if defined(ABI_ELFv2)
       
   117     call_c(CAST_FROM_FN_PTR(address,
       
   118                             Interpreter::remove_activation_preserving_args_entry),
       
   119            relocInfo::none);
       
   120 #else
       
   121     call_c(CAST_FROM_FN_PTR(FunctionDescriptor*,
       
   122                             Interpreter::remove_activation_preserving_args_entry),
       
   123            relocInfo::none);
       
   124 #endif
       
   125 
       
   126     // Jump to Interpreter::_remove_activation_preserving_args_entry.
       
   127     mtctr(R3_RET);
       
   128     bctr();
       
   129 
       
   130     align(32, 12);
       
   131     bind(L);
       
   132   }
       
   133 }
       
   134 
       
   135 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
       
   136   const Register Rthr_state_addr = scratch_reg;
       
   137   if (JvmtiExport::can_force_early_return()) {
       
   138     Label Lno_early_ret;
       
   139     ld(Rthr_state_addr, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
       
   140     cmpdi(CCR0, Rthr_state_addr, 0);
       
   141     beq(CCR0, Lno_early_ret);
       
   142 
       
   143     lwz(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rthr_state_addr);
       
   144     cmpwi(CCR0, R0, JvmtiThreadState::earlyret_pending);
       
   145     bne(CCR0, Lno_early_ret);
       
   146 
       
   147     // Jump to Interpreter::_earlyret_entry.
       
   148     lwz(R3_ARG1, in_bytes(JvmtiThreadState::earlyret_tos_offset()), Rthr_state_addr);
       
   149     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry));
       
   150     mtlr(R3_RET);
       
   151     blr();
       
   152 
       
   153     align(32, 12);
       
   154     bind(Lno_early_ret);
       
   155   }
       
   156 }
       
   157 
       
   158 void InterpreterMacroAssembler::load_earlyret_value(TosState state, Register Rscratch1) {
       
   159   const Register RjvmtiState = Rscratch1;
       
   160   const Register Rscratch2   = R0;
       
   161 
       
   162   ld(RjvmtiState, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
       
   163   li(Rscratch2, 0);
       
   164 
       
   165   switch (state) {
       
   166     case atos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
       
   167                std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
       
   168                break;
       
   169     case ltos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
       
   170                break;
       
   171     case btos: // fall through
       
   172     case ztos: // fall through
       
   173     case ctos: // fall through
       
   174     case stos: // fall through
       
   175     case itos: lwz(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
       
   176                break;
       
   177     case ftos: lfs(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
       
   178                break;
       
   179     case dtos: lfd(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
       
   180                break;
       
   181     case vtos: break;
       
   182     default  : ShouldNotReachHere();
       
   183   }
       
   184 
       
   185   // Clean up tos value in the jvmti thread state.
       
   186   std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
       
   187   // Set tos state field to illegal value.
       
   188   li(Rscratch2, ilgl);
       
   189   stw(Rscratch2, in_bytes(JvmtiThreadState::earlyret_tos_offset()), RjvmtiState);
       
   190 }
       
   191 
       
   192 // Common code to dispatch and dispatch_only.
       
   193 // Dispatch value in Lbyte_code and increment Lbcp.
       
   194 
       
   195 void InterpreterMacroAssembler::load_dispatch_table(Register dst, address* table) {
       
   196   address table_base = (address)Interpreter::dispatch_table((TosState)0);
       
   197   intptr_t table_offs = (intptr_t)table - (intptr_t)table_base;
       
   198   if (is_simm16(table_offs)) {
       
   199     addi(dst, R25_templateTableBase, (int)table_offs);
       
   200   } else {
       
   201     load_const_optimized(dst, table, R0);
       
   202   }
       
   203 }
       
   204 
       
   205 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, Register bytecode,
       
   206                                                     address* table, bool verify) {
       
   207   if (verify) {
       
   208     unimplemented("dispatch_Lbyte_code: verify"); // See Sparc Implementation to implement this
       
   209   }
       
   210 
       
   211   assert_different_registers(bytecode, R11_scratch1);
       
   212 
       
   213   // Calc dispatch table address.
       
   214   load_dispatch_table(R11_scratch1, table);
       
   215 
       
   216   sldi(R12_scratch2, bytecode, LogBytesPerWord);
       
   217   ldx(R11_scratch1, R11_scratch1, R12_scratch2);
       
   218 
       
   219   // Jump off!
       
   220   mtctr(R11_scratch1);
       
   221   bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable);
       
   222 }
       
   223 
       
   224 void InterpreterMacroAssembler::load_receiver(Register Rparam_count, Register Rrecv_dst) {
       
   225   sldi(Rrecv_dst, Rparam_count, Interpreter::logStackElementSize);
       
   226   ldx(Rrecv_dst, Rrecv_dst, R15_esp);
       
   227 }
       
   228 
       
   229 // helpers for expression stack
       
   230 
       
   231 void InterpreterMacroAssembler::pop_i(Register r) {
       
   232   lwzu(r, Interpreter::stackElementSize, R15_esp);
       
   233 }
       
   234 
       
   235 void InterpreterMacroAssembler::pop_ptr(Register r) {
       
   236   ldu(r, Interpreter::stackElementSize, R15_esp);
       
   237 }
       
   238 
       
   239 void InterpreterMacroAssembler::pop_l(Register r) {
       
   240   ld(r, Interpreter::stackElementSize, R15_esp);
       
   241   addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
       
   242 }
       
   243 
       
   244 void InterpreterMacroAssembler::pop_f(FloatRegister f) {
       
   245   lfsu(f, Interpreter::stackElementSize, R15_esp);
       
   246 }
       
   247 
       
   248 void InterpreterMacroAssembler::pop_d(FloatRegister f) {
       
   249   lfd(f, Interpreter::stackElementSize, R15_esp);
       
   250   addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
       
   251 }
       
   252 
       
   253 void InterpreterMacroAssembler::push_i(Register r) {
       
   254   stw(r, 0, R15_esp);
       
   255   addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
       
   256 }
       
   257 
       
   258 void InterpreterMacroAssembler::push_ptr(Register r) {
       
   259   std(r, 0, R15_esp);
       
   260   addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
       
   261 }
       
   262 
       
   263 void InterpreterMacroAssembler::push_l(Register r) {
       
   264   // Clear unused slot.
       
   265   load_const_optimized(R0, 0L);
       
   266   std(R0, 0, R15_esp);
       
   267   std(r, - Interpreter::stackElementSize, R15_esp);
       
   268   addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
       
   269 }
       
   270 
       
   271 void InterpreterMacroAssembler::push_f(FloatRegister f) {
       
   272   stfs(f, 0, R15_esp);
       
   273   addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
       
   274 }
       
   275 
       
   276 void InterpreterMacroAssembler::push_d(FloatRegister f)   {
       
   277   stfd(f, - Interpreter::stackElementSize, R15_esp);
       
   278   addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
       
   279 }
       
   280 
       
   281 void InterpreterMacroAssembler::push_2ptrs(Register first, Register second) {
       
   282   std(first, 0, R15_esp);
       
   283   std(second, -Interpreter::stackElementSize, R15_esp);
       
   284   addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
       
   285 }
       
   286 
       
   287 void InterpreterMacroAssembler::move_l_to_d(Register l, FloatRegister d) {
       
   288   if (VM_Version::has_mtfprd()) {
       
   289     mtfprd(d, l);
       
   290   } else {
       
   291     std(l, 0, R15_esp);
       
   292     lfd(d, 0, R15_esp);
       
   293   }
       
   294 }
       
   295 
       
   296 void InterpreterMacroAssembler::move_d_to_l(FloatRegister d, Register l) {
       
   297   if (VM_Version::has_mtfprd()) {
       
   298     mffprd(l, d);
       
   299   } else {
       
   300     stfd(d, 0, R15_esp);
       
   301     ld(l, 0, R15_esp);
       
   302   }
       
   303 }
       
   304 
       
   305 void InterpreterMacroAssembler::push(TosState state) {
       
   306   switch (state) {
       
   307     case atos: push_ptr();                break;
       
   308     case btos:
       
   309     case ztos:
       
   310     case ctos:
       
   311     case stos:
       
   312     case itos: push_i();                  break;
       
   313     case ltos: push_l();                  break;
       
   314     case ftos: push_f();                  break;
       
   315     case dtos: push_d();                  break;
       
   316     case vtos: /* nothing to do */        break;
       
   317     default  : ShouldNotReachHere();
       
   318   }
       
   319 }
       
   320 
       
   321 void InterpreterMacroAssembler::pop(TosState state) {
       
   322   switch (state) {
       
   323     case atos: pop_ptr();            break;
       
   324     case btos:
       
   325     case ztos:
       
   326     case ctos:
       
   327     case stos:
       
   328     case itos: pop_i();              break;
       
   329     case ltos: pop_l();              break;
       
   330     case ftos: pop_f();              break;
       
   331     case dtos: pop_d();              break;
       
   332     case vtos: /* nothing to do */   break;
       
   333     default  : ShouldNotReachHere();
       
   334   }
       
   335   verify_oop(R17_tos, state);
       
   336 }
       
   337 
       
   338 void InterpreterMacroAssembler::empty_expression_stack() {
       
   339   addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
       
   340 }
       
   341 
       
   342 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(int         bcp_offset,
       
   343                                                           Register    Rdst,
       
   344                                                           signedOrNot is_signed) {
       
   345 #if defined(VM_LITTLE_ENDIAN)
       
   346   if (bcp_offset) {
       
   347     load_const_optimized(Rdst, bcp_offset);
       
   348     lhbrx(Rdst, R14_bcp, Rdst);
       
   349   } else {
       
   350     lhbrx(Rdst, R14_bcp);
       
   351   }
       
   352   if (is_signed == Signed) {
       
   353     extsh(Rdst, Rdst);
       
   354   }
       
   355 #else
       
   356   // Read Java big endian format.
       
   357   if (is_signed == Signed) {
       
   358     lha(Rdst, bcp_offset, R14_bcp);
       
   359   } else {
       
   360     lhz(Rdst, bcp_offset, R14_bcp);
       
   361   }
       
   362 #endif
       
   363 }
       
   364 
       
   365 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(int         bcp_offset,
       
   366                                                           Register    Rdst,
       
   367                                                           signedOrNot is_signed) {
       
   368 #if defined(VM_LITTLE_ENDIAN)
       
   369   if (bcp_offset) {
       
   370     load_const_optimized(Rdst, bcp_offset);
       
   371     lwbrx(Rdst, R14_bcp, Rdst);
       
   372   } else {
       
   373     lwbrx(Rdst, R14_bcp);
       
   374   }
       
   375   if (is_signed == Signed) {
       
   376     extsw(Rdst, Rdst);
       
   377   }
       
   378 #else
       
   379   // Read Java big endian format.
       
   380   if (bcp_offset & 3) { // Offset unaligned?
       
   381     load_const_optimized(Rdst, bcp_offset);
       
   382     if (is_signed == Signed) {
       
   383       lwax(Rdst, R14_bcp, Rdst);
       
   384     } else {
       
   385       lwzx(Rdst, R14_bcp, Rdst);
       
   386     }
       
   387   } else {
       
   388     if (is_signed == Signed) {
       
   389       lwa(Rdst, bcp_offset, R14_bcp);
       
   390     } else {
       
   391       lwz(Rdst, bcp_offset, R14_bcp);
       
   392     }
       
   393   }
       
   394 #endif
       
   395 }
       
   396 
       
   397 
       
   398 // Load the constant pool cache index from the bytecode stream.
       
   399 //
       
   400 // Kills / writes:
       
   401 //   - Rdst, Rscratch
       
   402 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register Rdst, int bcp_offset,
       
   403                                                        size_t index_size) {
       
   404   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
       
   405   // Cache index is always in the native format, courtesy of Rewriter.
       
   406   if (index_size == sizeof(u2)) {
       
   407     lhz(Rdst, bcp_offset, R14_bcp);
       
   408   } else if (index_size == sizeof(u4)) {
       
   409     if (bcp_offset & 3) {
       
   410       load_const_optimized(Rdst, bcp_offset);
       
   411       lwax(Rdst, R14_bcp, Rdst);
       
   412     } else {
       
   413       lwa(Rdst, bcp_offset, R14_bcp);
       
   414     }
       
   415     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
       
   416     nand(Rdst, Rdst, Rdst); // convert to plain index
       
   417   } else if (index_size == sizeof(u1)) {
       
   418     lbz(Rdst, bcp_offset, R14_bcp);
       
   419   } else {
       
   420     ShouldNotReachHere();
       
   421   }
       
   422   // Rdst now contains cp cache index.
       
   423 }
       
   424 
       
   425 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, int bcp_offset,
       
   426                                                            size_t index_size) {
       
   427   get_cache_index_at_bcp(cache, bcp_offset, index_size);
       
   428   sldi(cache, cache, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord));
       
   429   add(cache, R27_constPoolCache, cache);
       
   430 }
       
   431 
       
   432 // Load 4-byte signed or unsigned integer in Java format (that is, big-endian format)
       
   433 // from (Rsrc)+offset.
       
   434 void InterpreterMacroAssembler::get_u4(Register Rdst, Register Rsrc, int offset,
       
   435                                        signedOrNot is_signed) {
       
   436 #if defined(VM_LITTLE_ENDIAN)
       
   437   if (offset) {
       
   438     load_const_optimized(Rdst, offset);
       
   439     lwbrx(Rdst, Rdst, Rsrc);
       
   440   } else {
       
   441     lwbrx(Rdst, Rsrc);
       
   442   }
       
   443   if (is_signed == Signed) {
       
   444     extsw(Rdst, Rdst);
       
   445   }
       
   446 #else
       
   447   if (is_signed == Signed) {
       
   448     lwa(Rdst, offset, Rsrc);
       
   449   } else {
       
   450     lwz(Rdst, offset, Rsrc);
       
   451   }
       
   452 #endif
       
   453 }
       
   454 
       
   455 // Load object from cpool->resolved_references(index).
       
   456 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index, Label *is_null) {
       
   457   assert_different_registers(result, index);
       
   458   get_constant_pool(result);
       
   459 
       
   460   // Convert from field index to resolved_references() index and from
       
   461   // word index to byte offset. Since this is a java object, it can be compressed.
       
   462   Register tmp = index;  // reuse
       
   463   sldi(tmp, index, LogBytesPerHeapOop);
       
   464   // Load pointer for resolved_references[] objArray.
       
   465   ld(result, ConstantPool::cache_offset_in_bytes(), result);
       
   466   ld(result, ConstantPoolCache::resolved_references_offset_in_bytes(), result);
       
   467   resolve_oop_handle(result);
       
   468 #ifdef ASSERT
       
   469   Label index_ok;
       
   470   lwa(R0, arrayOopDesc::length_offset_in_bytes(), result);
       
   471   sldi(R0, R0, LogBytesPerHeapOop);
       
   472   cmpd(CCR0, tmp, R0);
       
   473   blt(CCR0, index_ok);
       
   474   stop("resolved reference index out of bounds", 0x09256);
       
   475   bind(index_ok);
       
   476 #endif
       
   477   // Add in the index.
       
   478   add(result, tmp, result);
       
   479   load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result, is_null);
       
   480 }
       
   481 
       
   482 // load cpool->resolved_klass_at(index)
       
   483 void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register Rcpool, Register Roffset, Register Rklass) {
       
   484   // int value = *(Rcpool->int_at_addr(which));
       
   485   // int resolved_klass_index = extract_low_short_from_int(value);
       
   486   add(Roffset, Rcpool, Roffset);
       
   487 #if defined(VM_LITTLE_ENDIAN)
       
   488   lhz(Roffset, sizeof(ConstantPool), Roffset);     // Roffset = resolved_klass_index
       
   489 #else
       
   490   lhz(Roffset, sizeof(ConstantPool) + 2, Roffset); // Roffset = resolved_klass_index
       
   491 #endif
       
   492 
       
   493   ld(Rklass, ConstantPool::resolved_klasses_offset_in_bytes(), Rcpool); // Rklass = Rcpool->_resolved_klasses
       
   494 
       
   495   sldi(Roffset, Roffset, LogBytesPerWord);
       
   496   addi(Roffset, Roffset, Array<Klass*>::base_offset_in_bytes());
       
   497   isync(); // Order load of instance Klass wrt. tags.
       
   498   ldx(Rklass, Rklass, Roffset);
       
   499 }
       
   500 
       
   501 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
       
   502 // a subtype of super_klass. Blows registers Rsub_klass, tmp1, tmp2.
       
   503 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Register Rsuper_klass, Register Rtmp1,
       
   504                                                   Register Rtmp2, Register Rtmp3, Label &ok_is_subtype) {
       
   505   // Profile the not-null value's klass.
       
   506   profile_typecheck(Rsub_klass, Rtmp1, Rtmp2);
       
   507   check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype);
       
   508   profile_typecheck_failed(Rtmp1, Rtmp2);
       
   509 }
       
   510 
       
   511 // Separate these two to allow for delay slot in middle.
       
   512 // These are used to do a test and full jump to exception-throwing code.
       
   513 
       
   514 // Check that index is in range for array, then shift index by index_shift,
       
   515 // and put arrayOop + shifted_index into res.
       
   516 // Note: res is still shy of address by array offset into object.
       
   517 
       
   518 void InterpreterMacroAssembler::index_check_without_pop(Register Rarray, Register Rindex,
       
   519                                                         int index_shift, Register Rtmp, Register Rres) {
       
   520   // Check that index is in range for array, then shift index by index_shift,
       
   521   // and put arrayOop + shifted_index into res.
       
   522   // Note: res is still shy of address by array offset into object.
       
   523   // Kills:
       
   524   //   - Rindex
       
   525   // Writes:
       
   526   //   - Rres: Address that corresponds to the array index if check was successful.
       
   527   verify_oop(Rarray);
       
   528   const Register Rlength   = R0;
       
   529   const Register RsxtIndex = Rtmp;
       
   530   Label LisNull, LnotOOR;
       
   531 
       
   532   // Array nullcheck
       
   533   if (!ImplicitNullChecks) {
       
   534     cmpdi(CCR0, Rarray, 0);
       
   535     beq(CCR0, LisNull);
       
   536   } else {
       
   537     null_check_throw(Rarray, arrayOopDesc::length_offset_in_bytes(), /*temp*/RsxtIndex);
       
   538   }
       
   539 
       
   540   // Rindex might contain garbage in upper bits (remember that we don't sign extend
       
   541   // during integer arithmetic operations). So kill them and put value into same register
       
   542   // where ArrayIndexOutOfBounds would expect the index in.
       
   543   rldicl(RsxtIndex, Rindex, 0, 32); // zero extend 32 bit -> 64 bit
       
   544 
       
   545   // Index check
       
   546   lwz(Rlength, arrayOopDesc::length_offset_in_bytes(), Rarray);
       
   547   cmplw(CCR0, Rindex, Rlength);
       
   548   sldi(RsxtIndex, RsxtIndex, index_shift);
       
   549   blt(CCR0, LnotOOR);
       
   550   // Index should be in R17_tos, array should be in R4_ARG2.
       
   551   mr_if_needed(R17_tos, Rindex);
       
   552   mr_if_needed(R4_ARG2, Rarray);
       
   553   load_dispatch_table(Rtmp, (address*)Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
       
   554   mtctr(Rtmp);
       
   555   bctr();
       
   556 
       
   557   if (!ImplicitNullChecks) {
       
   558     bind(LisNull);
       
   559     load_dispatch_table(Rtmp, (address*)Interpreter::_throw_NullPointerException_entry);
       
   560     mtctr(Rtmp);
       
   561     bctr();
       
   562   }
       
   563 
       
   564   align(32, 16);
       
   565   bind(LnotOOR);
       
   566 
       
   567   // Calc address
       
   568   add(Rres, RsxtIndex, Rarray);
       
   569 }
       
   570 
       
   571 void InterpreterMacroAssembler::index_check(Register array, Register index,
       
   572                                             int index_shift, Register tmp, Register res) {
       
   573   // pop array
       
   574   pop_ptr(array);
       
   575 
       
   576   // check array
       
   577   index_check_without_pop(array, index, index_shift, tmp, res);
       
   578 }
       
   579 
       
   580 void InterpreterMacroAssembler::get_const(Register Rdst) {
       
   581   ld(Rdst, in_bytes(Method::const_offset()), R19_method);
       
   582 }
       
   583 
       
   584 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
       
   585   get_const(Rdst);
       
   586   ld(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
       
   587 }
       
   588 
       
   589 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
       
   590   get_constant_pool(Rdst);
       
   591   ld(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
       
   592 }
       
   593 
       
   594 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
       
   595   get_constant_pool(Rcpool);
       
   596   ld(Rtags, ConstantPool::tags_offset_in_bytes(), Rcpool);
       
   597 }
       
   598 
       
   599 // Unlock if synchronized method.
       
   600 //
       
   601 // Unlock the receiver if this is a synchronized method.
       
   602 // Unlock any Java monitors from synchronized blocks.
       
   603 //
       
   604 // If there are locked Java monitors
       
   605 //   If throw_monitor_exception
       
   606 //     throws IllegalMonitorStateException
       
   607 //   Else if install_monitor_exception
       
   608 //     installs IllegalMonitorStateException
       
   609 //   Else
       
   610 //     no error processing
       
   611 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
       
   612                                                               bool throw_monitor_exception,
       
   613                                                               bool install_monitor_exception) {
       
   614   Label Lunlocked, Lno_unlock;
       
   615   {
       
   616     Register Rdo_not_unlock_flag = R11_scratch1;
       
   617     Register Raccess_flags       = R12_scratch2;
       
   618 
       
   619     // Check if synchronized method or unlocking prevented by
       
   620     // JavaThread::do_not_unlock_if_synchronized flag.
       
   621     lbz(Rdo_not_unlock_flag, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
       
   622     lwz(Raccess_flags, in_bytes(Method::access_flags_offset()), R19_method);
       
   623     li(R0, 0);
       
   624     stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); // reset flag
       
   625 
       
   626     push(state);
       
   627 
       
   628     // Skip if we don't have to unlock.
       
   629     rldicl_(R0, Raccess_flags, 64-JVM_ACC_SYNCHRONIZED_BIT, 63); // Extract bit and compare to 0.
       
   630     beq(CCR0, Lunlocked);
       
   631 
       
   632     cmpwi(CCR0, Rdo_not_unlock_flag, 0);
       
   633     bne(CCR0, Lno_unlock);
       
   634   }
       
   635 
       
   636   // Unlock
       
   637   {
       
   638     Register Rmonitor_base = R11_scratch1;
       
   639 
       
   640     Label Lunlock;
       
   641     // If it's still locked, everything is ok, unlock it.
       
   642     ld(Rmonitor_base, 0, R1_SP);
       
   643     addi(Rmonitor_base, Rmonitor_base,
       
   644          -(frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base
       
   645 
       
   646     ld(R0, BasicObjectLock::obj_offset_in_bytes(), Rmonitor_base);
       
   647     cmpdi(CCR0, R0, 0);
       
   648     bne(CCR0, Lunlock);
       
   649 
       
   650     // If it's already unlocked, throw exception.
       
   651     if (throw_monitor_exception) {
       
   652       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
       
   653       should_not_reach_here();
       
   654     } else {
       
   655       if (install_monitor_exception) {
       
   656         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
       
   657         b(Lunlocked);
       
   658       }
       
   659     }
       
   660 
       
   661     bind(Lunlock);
       
   662     unlock_object(Rmonitor_base);
       
   663   }
       
   664 
       
   665   // Check that all other monitors are unlocked. Throw IllegelMonitorState exception if not.
       
   666   bind(Lunlocked);
       
   667   {
       
   668     Label Lexception, Lrestart;
       
   669     Register Rcurrent_obj_addr = R11_scratch1;
       
   670     const int delta = frame::interpreter_frame_monitor_size_in_bytes();
       
   671     assert((delta & LongAlignmentMask) == 0, "sizeof BasicObjectLock must be even number of doublewords");
       
   672 
       
   673     bind(Lrestart);
       
   674     // Set up search loop: Calc num of iterations.
       
   675     {
       
   676       Register Riterations = R12_scratch2;
       
   677       Register Rmonitor_base = Rcurrent_obj_addr;
       
   678       ld(Rmonitor_base, 0, R1_SP);
       
   679       addi(Rmonitor_base, Rmonitor_base, - frame::ijava_state_size);  // Monitor base
       
   680 
       
   681       subf_(Riterations, R26_monitor, Rmonitor_base);
       
   682       ble(CCR0, Lno_unlock);
       
   683 
       
   684       addi(Rcurrent_obj_addr, Rmonitor_base,
       
   685            BasicObjectLock::obj_offset_in_bytes() - frame::interpreter_frame_monitor_size_in_bytes());
       
   686       // Check if any monitor is on stack, bail out if not
       
   687       srdi(Riterations, Riterations, exact_log2(delta));
       
   688       mtctr(Riterations);
       
   689     }
       
   690 
       
   691     // The search loop: Look for locked monitors.
       
   692     {
       
   693       const Register Rcurrent_obj = R0;
       
   694       Label Lloop;
       
   695 
       
   696       ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
       
   697       addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
       
   698       bind(Lloop);
       
   699 
       
   700       // Check if current entry is used.
       
   701       cmpdi(CCR0, Rcurrent_obj, 0);
       
   702       bne(CCR0, Lexception);
       
   703       // Preload next iteration's compare value.
       
   704       ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
       
   705       addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
       
   706       bdnz(Lloop);
       
   707     }
       
   708     // Fell through: Everything's unlocked => finish.
       
   709     b(Lno_unlock);
       
   710 
       
   711     // An object is still locked => need to throw exception.
       
   712     bind(Lexception);
       
   713     if (throw_monitor_exception) {
       
   714       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
       
   715       should_not_reach_here();
       
   716     } else {
       
   717       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
       
   718       // Unlock does not block, so don't have to worry about the frame.
       
   719       Register Rmonitor_addr = R11_scratch1;
       
   720       addi(Rmonitor_addr, Rcurrent_obj_addr, -BasicObjectLock::obj_offset_in_bytes() + delta);
       
   721       unlock_object(Rmonitor_addr);
       
   722       if (install_monitor_exception) {
       
   723         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
       
   724       }
       
   725       b(Lrestart);
       
   726     }
       
   727   }
       
   728 
       
   729   align(32, 12);
       
   730   bind(Lno_unlock);
       
   731   pop(state);
       
   732 }
       
   733 
       
   734 // Support function for remove_activation & Co.
       
   735 void InterpreterMacroAssembler::merge_frames(Register Rsender_sp, Register return_pc,
       
   736                                              Register Rscratch1, Register Rscratch2) {
       
   737   // Pop interpreter frame.
       
   738   ld(Rscratch1, 0, R1_SP); // *SP
       
   739   ld(Rsender_sp, _ijava_state_neg(sender_sp), Rscratch1); // top_frame_sp
       
   740   ld(Rscratch2, 0, Rscratch1); // **SP
       
   741 #ifdef ASSERT
       
   742   {
       
   743     Label Lok;
       
   744     ld(R0, _ijava_state_neg(ijava_reserved), Rscratch1);
       
   745     cmpdi(CCR0, R0, 0x5afe);
       
   746     beq(CCR0, Lok);
       
   747     stop("frame corrupted (remove activation)", 0x5afe);
       
   748     bind(Lok);
       
   749   }
       
   750 #endif
       
   751   if (return_pc!=noreg) {
       
   752     ld(return_pc, _abi(lr), Rscratch1); // LR
       
   753   }
       
   754 
       
   755   // Merge top frames.
       
   756   subf(Rscratch1, R1_SP, Rsender_sp); // top_frame_sp - SP
       
   757   stdux(Rscratch2, R1_SP, Rscratch1); // atomically set *(SP = top_frame_sp) = **SP
       
   758 }
       
   759 
       
   760 void InterpreterMacroAssembler::narrow(Register result) {
       
   761   Register ret_type = R11_scratch1;
       
   762   ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
       
   763   lbz(ret_type, in_bytes(ConstMethod::result_type_offset()), R11_scratch1);
       
   764 
       
   765   Label notBool, notByte, notChar, done;
       
   766 
       
   767   // common case first
       
   768   cmpwi(CCR0, ret_type, T_INT);
       
   769   beq(CCR0, done);
       
   770 
       
   771   cmpwi(CCR0, ret_type, T_BOOLEAN);
       
   772   bne(CCR0, notBool);
       
   773   andi(result, result, 0x1);
       
   774   b(done);
       
   775 
       
   776   bind(notBool);
       
   777   cmpwi(CCR0, ret_type, T_BYTE);
       
   778   bne(CCR0, notByte);
       
   779   extsb(result, result);
       
   780   b(done);
       
   781 
       
   782   bind(notByte);
       
   783   cmpwi(CCR0, ret_type, T_CHAR);
       
   784   bne(CCR0, notChar);
       
   785   andi(result, result, 0xffff);
       
   786   b(done);
       
   787 
       
   788   bind(notChar);
       
   789   // cmpwi(CCR0, ret_type, T_SHORT);  // all that's left
       
   790   // bne(CCR0, done);
       
   791   extsh(result, result);
       
   792 
       
   793   // Nothing to do for T_INT
       
   794   bind(done);
       
   795 }
       
   796 
       
   797 // Remove activation.
       
   798 //
       
   799 // Unlock the receiver if this is a synchronized method.
       
   800 // Unlock any Java monitors from synchronized blocks.
       
   801 // Remove the activation from the stack.
       
   802 //
       
   803 // If there are locked Java monitors
       
   804 //    If throw_monitor_exception
       
   805 //       throws IllegalMonitorStateException
       
   806 //    Else if install_monitor_exception
       
   807 //       installs IllegalMonitorStateException
       
   808 //    Else
       
   809 //       no error processing
       
   810 void InterpreterMacroAssembler::remove_activation(TosState state,
       
   811                                                   bool throw_monitor_exception,
       
   812                                                   bool install_monitor_exception) {
       
   813   BLOCK_COMMENT("remove_activation {");
       
   814   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
       
   815 
       
   816   // Save result (push state before jvmti call and pop it afterwards) and notify jvmti.
       
   817   notify_method_exit(false, state, NotifyJVMTI, true);
       
   818 
       
   819   BLOCK_COMMENT("reserved_stack_check:");
       
   820   if (StackReservedPages > 0) {
       
   821     // Test if reserved zone needs to be enabled.
       
   822     Label no_reserved_zone_enabling;
       
   823 
       
   824     // Compare frame pointers. There is no good stack pointer, as with stack
       
   825     // frame compression we can get different SPs when we do calls. A subsequent
       
   826     // call could have a smaller SP, so that this compare succeeds for an
       
   827     // inner call of the method annotated with ReservedStack.
       
   828     ld_ptr(R0, JavaThread::reserved_stack_activation_offset(), R16_thread);
       
   829     ld_ptr(R11_scratch1, _abi(callers_sp), R1_SP); // Load frame pointer.
       
   830     cmpld(CCR0, R11_scratch1, R0);
       
   831     blt_predict_taken(CCR0, no_reserved_zone_enabling);
       
   832 
       
   833     // Enable reserved zone again, throw stack overflow exception.
       
   834     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), R16_thread);
       
   835     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError));
       
   836 
       
   837     should_not_reach_here();
       
   838 
       
   839     bind(no_reserved_zone_enabling);
       
   840   }
       
   841 
       
   842   verify_oop(R17_tos, state);
       
   843   verify_thread();
       
   844 
       
   845   merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
       
   846   mtlr(R0);
       
   847   BLOCK_COMMENT("} remove_activation");
       
   848 }
       
   849 
       
   850 // Lock object
       
   851 //
       
   852 // Registers alive
       
   853 //   monitor - Address of the BasicObjectLock to be used for locking,
       
   854 //             which must be initialized with the object to lock.
       
   855 //   object  - Address of the object to be locked.
       
   856 //
       
   857 void InterpreterMacroAssembler::lock_object(Register monitor, Register object) {
       
   858   if (UseHeavyMonitors) {
       
   859     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
       
   860             monitor, /*check_for_exceptions=*/true);
       
   861   } else {
       
   862     // template code:
       
   863     //
       
   864     // markOop displaced_header = obj->mark().set_unlocked();
       
   865     // monitor->lock()->set_displaced_header(displaced_header);
       
   866     // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
       
   867     //   // We stored the monitor address into the object's mark word.
       
   868     // } else if (THREAD->is_lock_owned((address)displaced_header))
       
   869     //   // Simple recursive case.
       
   870     //   monitor->lock()->set_displaced_header(NULL);
       
   871     // } else {
       
   872     //   // Slow path.
       
   873     //   InterpreterRuntime::monitorenter(THREAD, monitor);
       
   874     // }
       
   875 
       
   876     const Register displaced_header = R7_ARG5;
       
   877     const Register object_mark_addr = R8_ARG6;
       
   878     const Register current_header   = R9_ARG7;
       
   879     const Register tmp              = R10_ARG8;
       
   880 
       
   881     Label done;
       
   882     Label cas_failed, slow_case;
       
   883 
       
   884     assert_different_registers(displaced_header, object_mark_addr, current_header, tmp);
       
   885 
       
   886     // markOop displaced_header = obj->mark().set_unlocked();
       
   887 
       
   888     // Load markOop from object into displaced_header.
       
   889     ld(displaced_header, oopDesc::mark_offset_in_bytes(), object);
       
   890 
       
   891     if (UseBiasedLocking) {
       
   892       biased_locking_enter(CCR0, object, displaced_header, tmp, current_header, done, &slow_case);
       
   893     }
       
   894 
       
   895     // Set displaced_header to be (markOop of object | UNLOCK_VALUE).
       
   896     ori(displaced_header, displaced_header, markOopDesc::unlocked_value);
       
   897 
       
   898     // monitor->lock()->set_displaced_header(displaced_header);
       
   899 
       
   900     // Initialize the box (Must happen before we update the object mark!).
       
   901     std(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
       
   902         BasicLock::displaced_header_offset_in_bytes(), monitor);
       
   903 
       
   904     // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
       
   905 
       
   906     // Store stack address of the BasicObjectLock (this is monitor) into object.
       
   907     addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
       
   908 
       
   909     // Must fence, otherwise, preceding store(s) may float below cmpxchg.
       
   910     // CmpxchgX sets CCR0 to cmpX(current, displaced).
       
   911     cmpxchgd(/*flag=*/CCR0,
       
   912              /*current_value=*/current_header,
       
   913              /*compare_value=*/displaced_header, /*exchange_value=*/monitor,
       
   914              /*where=*/object_mark_addr,
       
   915              MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
       
   916              MacroAssembler::cmpxchgx_hint_acquire_lock(),
       
   917              noreg,
       
   918              &cas_failed,
       
   919              /*check without membar and ldarx first*/true);
       
   920 
       
   921     // If the compare-and-exchange succeeded, then we found an unlocked
       
   922     // object and we have now locked it.
       
   923     b(done);
       
   924     bind(cas_failed);
       
   925 
       
   926     // } else if (THREAD->is_lock_owned((address)displaced_header))
       
   927     //   // Simple recursive case.
       
   928     //   monitor->lock()->set_displaced_header(NULL);
       
   929 
       
   930     // We did not see an unlocked object so try the fast recursive case.
       
   931 
       
   932     // Check if owner is self by comparing the value in the markOop of object
       
   933     // (current_header) with the stack pointer.
       
   934     sub(current_header, current_header, R1_SP);
       
   935 
       
   936     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
       
   937     load_const_optimized(tmp, ~(os::vm_page_size()-1) | markOopDesc::lock_mask_in_place);
       
   938 
       
   939     and_(R0/*==0?*/, current_header, tmp);
       
   940     // If condition is true we are done and hence we can store 0 in the displaced
       
   941     // header indicating it is a recursive lock.
       
   942     bne(CCR0, slow_case);
       
   943     std(R0/*==0!*/, BasicObjectLock::lock_offset_in_bytes() +
       
   944         BasicLock::displaced_header_offset_in_bytes(), monitor);
       
   945     b(done);
       
   946 
       
   947     // } else {
       
   948     //   // Slow path.
       
   949     //   InterpreterRuntime::monitorenter(THREAD, monitor);
       
   950 
       
   951     // None of the above fast optimizations worked so we have to get into the
       
   952     // slow case of monitor enter.
       
   953     bind(slow_case);
       
   954     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
       
   955             monitor, /*check_for_exceptions=*/true);
       
   956     // }
       
   957     align(32, 12);
       
   958     bind(done);
       
   959   }
       
   960 }
       
   961 
       
   962 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
       
   963 //
       
   964 // Registers alive
       
   965 //   monitor - Address of the BasicObjectLock to be used for locking,
       
   966 //             which must be initialized with the object to lock.
       
   967 //
       
   968 // Throw IllegalMonitorException if object is not locked by current thread.
       
   969 void InterpreterMacroAssembler::unlock_object(Register monitor, bool check_for_exceptions) {
       
   970   if (UseHeavyMonitors) {
       
   971     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
       
   972             monitor, check_for_exceptions);
       
   973   } else {
       
   974 
       
   975     // template code:
       
   976     //
       
   977     // if ((displaced_header = monitor->displaced_header()) == NULL) {
       
   978     //   // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL.
       
   979     //   monitor->set_obj(NULL);
       
   980     // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
       
   981     //   // We swapped the unlocked mark in displaced_header into the object's mark word.
       
   982     //   monitor->set_obj(NULL);
       
   983     // } else {
       
   984     //   // Slow path.
       
   985     //   InterpreterRuntime::monitorexit(THREAD, monitor);
       
   986     // }
       
   987 
       
   988     const Register object           = R7_ARG5;
       
   989     const Register displaced_header = R8_ARG6;
       
   990     const Register object_mark_addr = R9_ARG7;
       
   991     const Register current_header   = R10_ARG8;
       
   992 
       
   993     Label free_slot;
       
   994     Label slow_case;
       
   995 
       
   996     assert_different_registers(object, displaced_header, object_mark_addr, current_header);
       
   997 
       
   998     if (UseBiasedLocking) {
       
   999       // The object address from the monitor is in object.
       
  1000       ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor);
       
  1001       assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
       
  1002       biased_locking_exit(CCR0, object, displaced_header, free_slot);
       
  1003     }
       
  1004 
       
  1005     // Test first if we are in the fast recursive case.
       
  1006     ld(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
       
  1007            BasicLock::displaced_header_offset_in_bytes(), monitor);
       
  1008 
       
  1009     // If the displaced header is zero, we have a recursive unlock.
       
  1010     cmpdi(CCR0, displaced_header, 0);
       
  1011     beq(CCR0, free_slot); // recursive unlock
       
  1012 
       
  1013     // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
       
  1014     //   // We swapped the unlocked mark in displaced_header into the object's mark word.
       
  1015     //   monitor->set_obj(NULL);
       
  1016 
       
  1017     // If we still have a lightweight lock, unlock the object and be done.
       
  1018 
       
  1019     // The object address from the monitor is in object.
       
  1020     if (!UseBiasedLocking) { ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor); }
       
  1021     addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
       
  1022 
       
  1023     // We have the displaced header in displaced_header. If the lock is still
       
  1024     // lightweight, it will contain the monitor address and we'll store the
       
  1025     // displaced header back into the object's mark word.
       
  1026     // CmpxchgX sets CCR0 to cmpX(current, monitor).
       
  1027     cmpxchgd(/*flag=*/CCR0,
       
  1028              /*current_value=*/current_header,
       
  1029              /*compare_value=*/monitor, /*exchange_value=*/displaced_header,
       
  1030              /*where=*/object_mark_addr,
       
  1031              MacroAssembler::MemBarRel,
       
  1032              MacroAssembler::cmpxchgx_hint_release_lock(),
       
  1033              noreg,
       
  1034              &slow_case);
       
  1035     b(free_slot);
       
  1036 
       
  1037     // } else {
       
  1038     //   // Slow path.
       
  1039     //   InterpreterRuntime::monitorexit(THREAD, monitor);
       
  1040 
       
  1041     // The lock has been converted into a heavy lock and hence
       
  1042     // we need to get into the slow case.
       
  1043     bind(slow_case);
       
  1044     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
       
  1045             monitor, check_for_exceptions);
       
  1046     // }
       
  1047 
       
  1048     Label done;
       
  1049     b(done); // Monitor register may be overwritten! Runtime has already freed the slot.
       
  1050 
       
  1051     // Exchange worked, do monitor->set_obj(NULL);
       
  1052     align(32, 12);
       
  1053     bind(free_slot);
       
  1054     li(R0, 0);
       
  1055     std(R0, BasicObjectLock::obj_offset_in_bytes(), monitor);
       
  1056     bind(done);
       
  1057   }
       
  1058 }
       
  1059 
       
  1060 // Load compiled (i2c) or interpreter entry when calling from interpreted and
       
  1061 // do the call. Centralized so that all interpreter calls will do the same actions.
       
  1062 // If jvmti single stepping is on for a thread we must not call compiled code.
       
  1063 //
       
  1064 // Input:
       
  1065 //   - Rtarget_method: method to call
       
  1066 //   - Rret_addr:      return address
       
  1067 //   - 2 scratch regs
       
  1068 //
       
  1069 void InterpreterMacroAssembler::call_from_interpreter(Register Rtarget_method, Register Rret_addr,
       
  1070                                                       Register Rscratch1, Register Rscratch2) {
       
  1071   assert_different_registers(Rscratch1, Rscratch2, Rtarget_method, Rret_addr);
       
  1072   // Assume we want to go compiled if available.
       
  1073   const Register Rtarget_addr = Rscratch1;
       
  1074   const Register Rinterp_only = Rscratch2;
       
  1075 
       
  1076   ld(Rtarget_addr, in_bytes(Method::from_interpreted_offset()), Rtarget_method);
       
  1077 
       
  1078   if (JvmtiExport::can_post_interpreter_events()) {
       
  1079     lwz(Rinterp_only, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
       
  1080 
       
  1081     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
       
  1082     // compiled code in threads for which the event is enabled. Check here for
       
  1083     // interp_only_mode if these events CAN be enabled.
       
  1084     Label done;
       
  1085     verify_thread();
       
  1086     cmpwi(CCR0, Rinterp_only, 0);
       
  1087     beq(CCR0, done);
       
  1088     ld(Rtarget_addr, in_bytes(Method::interpreter_entry_offset()), Rtarget_method);
       
  1089     align(32, 12);
       
  1090     bind(done);
       
  1091   }
       
  1092 
       
  1093 #ifdef ASSERT
       
  1094   {
       
  1095     Label Lok;
       
  1096     cmpdi(CCR0, Rtarget_addr, 0);
       
  1097     bne(CCR0, Lok);
       
  1098     stop("null entry point");
       
  1099     bind(Lok);
       
  1100   }
       
  1101 #endif // ASSERT
       
  1102 
       
  1103   mr(R21_sender_SP, R1_SP);
       
  1104 
       
  1105   // Calc a precise SP for the call. The SP value we calculated in
       
  1106   // generate_fixed_frame() is based on the max_stack() value, so we would waste stack space
       
  1107   // if esp is not max. Also, the i2c adapter extends the stack space without restoring
       
  1108   // our pre-calced value, so repeating calls via i2c would result in stack overflow.
       
  1109   // Since esp already points to an empty slot, we just have to sub 1 additional slot
       
  1110   // to meet the abi scratch requirements.
       
  1111   // The max_stack pointer will get restored by means of the GR_Lmax_stack local in
       
  1112   // the return entry of the interpreter.
       
  1113   addi(Rscratch2, R15_esp, Interpreter::stackElementSize - frame::abi_reg_args_size);
       
  1114   clrrdi(Rscratch2, Rscratch2, exact_log2(frame::alignment_in_bytes)); // round towards smaller address
       
  1115   resize_frame_absolute(Rscratch2, Rscratch2, R0);
       
  1116 
       
  1117   mr_if_needed(R19_method, Rtarget_method);
       
  1118   mtctr(Rtarget_addr);
       
  1119   mtlr(Rret_addr);
       
  1120 
       
  1121   save_interpreter_state(Rscratch2);
       
  1122 #ifdef ASSERT
       
  1123   ld(Rscratch1, _ijava_state_neg(top_frame_sp), Rscratch2); // Rscratch2 contains fp
       
  1124   cmpd(CCR0, R21_sender_SP, Rscratch1);
       
  1125   asm_assert_eq("top_frame_sp incorrect", 0x951);
       
  1126 #endif
       
  1127 
       
  1128   bctr();
       
  1129 }
       
  1130 
       
  1131 // Set the method data pointer for the current bcp.
       
  1132 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
       
  1133   assert(ProfileInterpreter, "must be profiling interpreter");
       
  1134   Label get_continue;
       
  1135   ld(R28_mdx, in_bytes(Method::method_data_offset()), R19_method);
       
  1136   test_method_data_pointer(get_continue);
       
  1137   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R19_method, R14_bcp);
       
  1138 
       
  1139   addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
       
  1140   add(R28_mdx, R28_mdx, R3_RET);
       
  1141   bind(get_continue);
       
  1142 }
       
  1143 
       
  1144 // Test ImethodDataPtr. If it is null, continue at the specified label.
       
  1145 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
       
  1146   assert(ProfileInterpreter, "must be profiling interpreter");
       
  1147   cmpdi(CCR0, R28_mdx, 0);
       
  1148   beq(CCR0, zero_continue);
       
  1149 }
       
  1150 
       
  1151 void InterpreterMacroAssembler::verify_method_data_pointer() {
       
  1152   assert(ProfileInterpreter, "must be profiling interpreter");
       
  1153 #ifdef ASSERT
       
  1154   Label verify_continue;
       
  1155   test_method_data_pointer(verify_continue);
       
  1156 
       
  1157   // If the mdp is valid, it will point to a DataLayout header which is
       
  1158   // consistent with the bcp. The converse is highly probable also.
       
  1159   lhz(R11_scratch1, in_bytes(DataLayout::bci_offset()), R28_mdx);
       
  1160   ld(R12_scratch2, in_bytes(Method::const_offset()), R19_method);
       
  1161   addi(R11_scratch1, R11_scratch1, in_bytes(ConstMethod::codes_offset()));
       
  1162   add(R11_scratch1, R12_scratch2, R12_scratch2);
       
  1163   cmpd(CCR0, R11_scratch1, R14_bcp);
       
  1164   beq(CCR0, verify_continue);
       
  1165 
       
  1166   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp ), R19_method, R14_bcp, R28_mdx);
       
  1167 
       
  1168   bind(verify_continue);
       
  1169 #endif
       
  1170 }
       
  1171 
       
  1172 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
       
  1173                                                                 Register method_counters,
       
  1174                                                                 Register Rscratch,
       
  1175                                                                 Label &profile_continue) {
       
  1176   assert(ProfileInterpreter, "must be profiling interpreter");
       
  1177   // Control will flow to "profile_continue" if the counter is less than the
       
  1178   // limit or if we call profile_method().
       
  1179   Label done;
       
  1180 
       
  1181   // If no method data exists, and the counter is high enough, make one.
       
  1182   lwz(Rscratch, in_bytes(MethodCounters::interpreter_profile_limit_offset()), method_counters);
       
  1183 
       
  1184   cmpdi(CCR0, R28_mdx, 0);
       
  1185   // Test to see if we should create a method data oop.
       
  1186   cmpd(CCR1, Rscratch, invocation_count);
       
  1187   bne(CCR0, done);
       
  1188   bge(CCR1, profile_continue);
       
  1189 
       
  1190   // Build it now.
       
  1191   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
       
  1192   set_method_data_pointer_for_bcp();
       
  1193   b(profile_continue);
       
  1194 
       
  1195   align(32, 12);
       
  1196   bind(done);
       
  1197 }
       
  1198 
       
  1199 void InterpreterMacroAssembler::test_backedge_count_for_osr(Register backedge_count, Register method_counters,
       
  1200                                                             Register target_bcp, Register disp, Register Rtmp) {
       
  1201   assert_different_registers(backedge_count, target_bcp, disp, Rtmp, R4_ARG2);
       
  1202   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
       
  1203 
       
  1204   Label did_not_overflow;
       
  1205   Label overflow_with_error;
       
  1206 
       
  1207   lwz(Rtmp, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()), method_counters);
       
  1208   cmpw(CCR0, backedge_count, Rtmp);
       
  1209 
       
  1210   blt(CCR0, did_not_overflow);
       
  1211 
       
  1212   // When ProfileInterpreter is on, the backedge_count comes from the
       
  1213   // methodDataOop, which value does not get reset on the call to
       
  1214   // frequency_counter_overflow(). To avoid excessive calls to the overflow
       
  1215   // routine while the method is being compiled, add a second test to make sure
       
  1216   // the overflow function is called only once every overflow_frequency.
       
  1217   if (ProfileInterpreter) {
       
  1218     const int overflow_frequency = 1024;
       
  1219     andi_(Rtmp, backedge_count, overflow_frequency-1);
       
  1220     bne(CCR0, did_not_overflow);
       
  1221   }
       
  1222 
       
  1223   // Overflow in loop, pass branch bytecode.
       
  1224   subf(R4_ARG2, disp, target_bcp); // Compute branch bytecode (previous bcp).
       
  1225   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
       
  1226 
       
  1227   // Was an OSR adapter generated?
       
  1228   cmpdi(CCR0, R3_RET, 0);
       
  1229   beq(CCR0, overflow_with_error);
       
  1230 
       
  1231   // Has the nmethod been invalidated already?
       
  1232   lbz(Rtmp, nmethod::state_offset(), R3_RET);
       
  1233   cmpwi(CCR0, Rtmp, nmethod::in_use);
       
  1234   bne(CCR0, overflow_with_error);
       
  1235 
       
  1236   // Migrate the interpreter frame off of the stack.
       
  1237   // We can use all registers because we will not return to interpreter from this point.
       
  1238 
       
  1239   // Save nmethod.
       
  1240   const Register osr_nmethod = R31;
       
  1241   mr(osr_nmethod, R3_RET);
       
  1242   set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1);
       
  1243   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread);
       
  1244   reset_last_Java_frame();
       
  1245   // OSR buffer is in ARG1
       
  1246 
       
  1247   // Remove the interpreter frame.
       
  1248   merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
       
  1249 
       
  1250   // Jump to the osr code.
       
  1251   ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod);
       
  1252   mtlr(R0);
       
  1253   mtctr(R11_scratch1);
       
  1254   bctr();
       
  1255 
       
  1256   align(32, 12);
       
  1257   bind(overflow_with_error);
       
  1258   bind(did_not_overflow);
       
  1259 }
       
  1260 
       
  1261 // Store a value at some constant offset from the method data pointer.
       
  1262 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
       
  1263   assert(ProfileInterpreter, "must be profiling interpreter");
       
  1264 
       
  1265   std(value, constant, R28_mdx);
       
  1266 }
       
  1267 
       
  1268 // Increment the value at some constant offset from the method data pointer.
       
  1269 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
       
  1270                                                       Register counter_addr,
       
  1271                                                       Register Rbumped_count,
       
  1272                                                       bool decrement) {
       
  1273   // Locate the counter at a fixed offset from the mdp:
       
  1274   addi(counter_addr, R28_mdx, constant);
       
  1275   increment_mdp_data_at(counter_addr, Rbumped_count, decrement);
       
  1276 }
       
  1277 
       
  1278 // Increment the value at some non-fixed (reg + constant) offset from
       
  1279 // the method data pointer.
       
  1280 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
       
  1281                                                       int constant,
       
  1282                                                       Register scratch,
       
  1283                                                       Register Rbumped_count,
       
  1284                                                       bool decrement) {
       
  1285   // Add the constant to reg to get the offset.
       
  1286   add(scratch, R28_mdx, reg);
       
  1287   // Then calculate the counter address.
       
  1288   addi(scratch, scratch, constant);
       
  1289   increment_mdp_data_at(scratch, Rbumped_count, decrement);
       
  1290 }
       
  1291 
       
  1292 void InterpreterMacroAssembler::increment_mdp_data_at(Register counter_addr,
       
  1293                                                       Register Rbumped_count,
       
  1294                                                       bool decrement) {
       
  1295   assert(ProfileInterpreter, "must be profiling interpreter");
       
  1296 
       
  1297   // Load the counter.
       
  1298   ld(Rbumped_count, 0, counter_addr);
       
  1299 
       
  1300   if (decrement) {
       
  1301     // Decrement the register. Set condition codes.
       
  1302     addi(Rbumped_count, Rbumped_count, - DataLayout::counter_increment);
       
  1303     // Store the decremented counter, if it is still negative.
       
  1304     std(Rbumped_count, 0, counter_addr);
       
  1305     // Note: add/sub overflow check are not ported, since 64 bit
       
  1306     // calculation should never overflow.
       
  1307   } else {
       
  1308     // Increment the register. Set carry flag.
       
  1309     addi(Rbumped_count, Rbumped_count, DataLayout::counter_increment);
       
  1310     // Store the incremented counter.
       
  1311     std(Rbumped_count, 0, counter_addr);
       
  1312   }
       
  1313 }
       
  1314 
       
  1315 // Set a flag value at the current method data pointer position.
       
  1316 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
       
  1317                                                 Register scratch) {
       
  1318   assert(ProfileInterpreter, "must be profiling interpreter");
       
  1319   // Load the data header.
       
  1320   lbz(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
       
  1321   // Set the flag.
       
  1322   ori(scratch, scratch, flag_constant);
       
  1323   // Store the modified header.
       
  1324   stb(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
       
  1325 }
       
  1326 
       
  1327 // Test the location at some offset from the method data pointer.
       
  1328 // If it is not equal to value, branch to the not_equal_continue Label.
       
  1329 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
       
  1330                                                  Register value,
       
  1331                                                  Label& not_equal_continue,
       
  1332                                                  Register test_out) {
       
  1333   assert(ProfileInterpreter, "must be profiling interpreter");
       
  1334 
       
  1335   ld(test_out, offset, R28_mdx);
       
  1336   cmpd(CCR0,  value, test_out);
       
  1337   bne(CCR0, not_equal_continue);
       
  1338 }
       
  1339 
       
  1340 // Update the method data pointer by the displacement located at some fixed
       
  1341 // offset from the method data pointer.
       
  1342 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
       
  1343                                                      Register scratch) {
       
  1344   assert(ProfileInterpreter, "must be profiling interpreter");
       
  1345 
       
  1346   ld(scratch, offset_of_disp, R28_mdx);
       
  1347   add(R28_mdx, scratch, R28_mdx);
       
  1348 }
       
  1349 
       
  1350 // Update the method data pointer by the displacement located at the
       
  1351 // offset (reg + offset_of_disp).
       
  1352 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
       
  1353                                                      int offset_of_disp,
       
  1354                                                      Register scratch) {
       
  1355   assert(ProfileInterpreter, "must be profiling interpreter");
       
  1356 
       
  1357   add(scratch, reg, R28_mdx);
       
  1358   ld(scratch, offset_of_disp, scratch);
       
  1359   add(R28_mdx, scratch, R28_mdx);
       
  1360 }
       
  1361 
       
  1362 // Update the method data pointer by a simple constant displacement.
       
  1363 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
       
  1364   assert(ProfileInterpreter, "must be profiling interpreter");
       
  1365   addi(R28_mdx, R28_mdx, constant);
       
  1366 }
       
  1367 
       
  1368 // Update the method data pointer for a _ret bytecode whose target
       
  1369 // was not among our cached targets.
       
  1370 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
       
  1371                                                    Register return_bci) {
       
  1372   assert(ProfileInterpreter, "must be profiling interpreter");
       
  1373 
       
  1374   push(state);
       
  1375   assert(return_bci->is_nonvolatile(), "need to protect return_bci");
       
  1376   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
       
  1377   pop(state);
       
  1378 }
       
  1379 
       
  1380 // Increments the backedge counter.
       
  1381 // Returns backedge counter + invocation counter in Rdst.
       
  1382 void InterpreterMacroAssembler::increment_backedge_counter(const Register Rcounters, const Register Rdst,
       
  1383                                                            const Register Rtmp1, Register Rscratch) {
       
  1384   assert(UseCompiler, "incrementing must be useful");
       
  1385   assert_different_registers(Rdst, Rtmp1);
       
  1386   const Register invocation_counter = Rtmp1;
       
  1387   const Register counter = Rdst;
       
  1388   // TODO: PPC port: assert(4 == InvocationCounter::sz_counter(), "unexpected field size.");
       
  1389 
       
  1390   // Load backedge counter.
       
  1391   lwz(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
       
  1392                in_bytes(InvocationCounter::counter_offset()), Rcounters);
       
  1393   // Load invocation counter.
       
  1394   lwz(invocation_counter, in_bytes(MethodCounters::invocation_counter_offset()) +
       
  1395                           in_bytes(InvocationCounter::counter_offset()), Rcounters);
       
  1396 
       
  1397   // Add the delta to the backedge counter.
       
  1398   addi(counter, counter, InvocationCounter::count_increment);
       
  1399 
       
  1400   // Mask the invocation counter.
       
  1401   andi(invocation_counter, invocation_counter, InvocationCounter::count_mask_value);
       
  1402 
       
  1403   // Store new counter value.
       
  1404   stw(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
       
  1405                in_bytes(InvocationCounter::counter_offset()), Rcounters);
       
  1406   // Return invocation counter + backedge counter.
       
  1407   add(counter, counter, invocation_counter);
       
  1408 }
       
  1409 
       
  1410 // Count a taken branch in the bytecodes.
       
  1411 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
       
  1412   if (ProfileInterpreter) {
       
  1413     Label profile_continue;
       
  1414 
       
  1415     // If no method data exists, go to profile_continue.
       
  1416     test_method_data_pointer(profile_continue);
       
  1417 
       
  1418     // We are taking a branch. Increment the taken count.
       
  1419     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), scratch, bumped_count);
       
  1420 
       
  1421     // The method data pointer needs to be updated to reflect the new target.
       
  1422     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
       
  1423     bind (profile_continue);
       
  1424   }
       
  1425 }
       
  1426 
       
  1427 // Count a not-taken branch in the bytecodes.
       
  1428 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch1, Register scratch2) {
       
  1429   if (ProfileInterpreter) {
       
  1430     Label profile_continue;
       
  1431 
       
  1432     // If no method data exists, go to profile_continue.
       
  1433     test_method_data_pointer(profile_continue);
       
  1434 
       
  1435     // We are taking a branch. Increment the not taken count.
       
  1436     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch1, scratch2);
       
  1437 
       
  1438     // The method data pointer needs to be updated to correspond to the
       
  1439     // next bytecode.
       
  1440     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
       
  1441     bind (profile_continue);
       
  1442   }
       
  1443 }
       
  1444 
       
  1445 // Count a non-virtual call in the bytecodes.
       
  1446 void InterpreterMacroAssembler::profile_call(Register scratch1, Register scratch2) {
       
  1447   if (ProfileInterpreter) {
       
  1448     Label profile_continue;
       
  1449 
       
  1450     // If no method data exists, go to profile_continue.
       
  1451     test_method_data_pointer(profile_continue);
       
  1452 
       
  1453     // We are making a call. Increment the count.
       
  1454     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
       
  1455 
       
  1456     // The method data pointer needs to be updated to reflect the new target.
       
  1457     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
       
  1458     bind (profile_continue);
       
  1459   }
       
  1460 }
       
  1461 
       
  1462 // Count a final call in the bytecodes.
       
  1463 void InterpreterMacroAssembler::profile_final_call(Register scratch1, Register scratch2) {
       
  1464   if (ProfileInterpreter) {
       
  1465     Label profile_continue;
       
  1466 
       
  1467     // If no method data exists, go to profile_continue.
       
  1468     test_method_data_pointer(profile_continue);
       
  1469 
       
  1470     // We are making a call. Increment the count.
       
  1471     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
       
  1472 
       
  1473     // The method data pointer needs to be updated to reflect the new target.
       
  1474     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
       
  1475     bind (profile_continue);
       
  1476   }
       
  1477 }
       
  1478 
       
  1479 // Count a virtual call in the bytecodes.
       
  1480 void InterpreterMacroAssembler::profile_virtual_call(Register Rreceiver,
       
  1481                                                      Register Rscratch1,
       
  1482                                                      Register Rscratch2,
       
  1483                                                      bool receiver_can_be_null) {
       
  1484   if (!ProfileInterpreter) { return; }
       
  1485   Label profile_continue;
       
  1486 
       
  1487   // If no method data exists, go to profile_continue.
       
  1488   test_method_data_pointer(profile_continue);
       
  1489 
       
  1490   Label skip_receiver_profile;
       
  1491   if (receiver_can_be_null) {
       
  1492     Label not_null;
       
  1493     cmpdi(CCR0, Rreceiver, 0);
       
  1494     bne(CCR0, not_null);
       
  1495     // We are making a call. Increment the count for null receiver.
       
  1496     increment_mdp_data_at(in_bytes(CounterData::count_offset()), Rscratch1, Rscratch2);
       
  1497     b(skip_receiver_profile);
       
  1498     bind(not_null);
       
  1499   }
       
  1500 
       
  1501   // Record the receiver type.
       
  1502   record_klass_in_profile(Rreceiver, Rscratch1, Rscratch2, true);
       
  1503   bind(skip_receiver_profile);
       
  1504 
       
  1505   // The method data pointer needs to be updated to reflect the new target.
       
  1506   update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
       
  1507   bind (profile_continue);
       
  1508 }
       
  1509 
       
  1510 void InterpreterMacroAssembler::profile_typecheck(Register Rklass, Register Rscratch1, Register Rscratch2) {
       
  1511   if (ProfileInterpreter) {
       
  1512     Label profile_continue;
       
  1513 
       
  1514     // If no method data exists, go to profile_continue.
       
  1515     test_method_data_pointer(profile_continue);
       
  1516 
       
  1517     int mdp_delta = in_bytes(BitData::bit_data_size());
       
  1518     if (TypeProfileCasts) {
       
  1519       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
       
  1520 
       
  1521       // Record the object type.
       
  1522       record_klass_in_profile(Rklass, Rscratch1, Rscratch2, false);
       
  1523     }
       
  1524 
       
  1525     // The method data pointer needs to be updated.
       
  1526     update_mdp_by_constant(mdp_delta);
       
  1527 
       
  1528     bind (profile_continue);
       
  1529   }
       
  1530 }
       
  1531 
       
  1532 void InterpreterMacroAssembler::profile_typecheck_failed(Register Rscratch1, Register Rscratch2) {
       
  1533   if (ProfileInterpreter && TypeProfileCasts) {
       
  1534     Label profile_continue;
       
  1535 
       
  1536     // If no method data exists, go to profile_continue.
       
  1537     test_method_data_pointer(profile_continue);
       
  1538 
       
  1539     int count_offset = in_bytes(CounterData::count_offset());
       
  1540     // Back up the address, since we have already bumped the mdp.
       
  1541     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
       
  1542 
       
  1543     // *Decrement* the counter. We expect to see zero or small negatives.
       
  1544     increment_mdp_data_at(count_offset, Rscratch1, Rscratch2, true);
       
  1545 
       
  1546     bind (profile_continue);
       
  1547   }
       
  1548 }
       
  1549 
       
  1550 // Count a ret in the bytecodes.
       
  1551 void InterpreterMacroAssembler::profile_ret(TosState state, Register return_bci,
       
  1552                                             Register scratch1, Register scratch2) {
       
  1553   if (ProfileInterpreter) {
       
  1554     Label profile_continue;
       
  1555     uint row;
       
  1556 
       
  1557     // If no method data exists, go to profile_continue.
       
  1558     test_method_data_pointer(profile_continue);
       
  1559 
       
  1560     // Update the total ret count.
       
  1561     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2 );
       
  1562 
       
  1563     for (row = 0; row < RetData::row_limit(); row++) {
       
  1564       Label next_test;
       
  1565 
       
  1566       // See if return_bci is equal to bci[n]:
       
  1567       test_mdp_data_at(in_bytes(RetData::bci_offset(row)), return_bci, next_test, scratch1);
       
  1568 
       
  1569       // return_bci is equal to bci[n]. Increment the count.
       
  1570       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch1, scratch2);
       
  1571 
       
  1572       // The method data pointer needs to be updated to reflect the new target.
       
  1573       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch1);
       
  1574       b(profile_continue);
       
  1575       bind(next_test);
       
  1576     }
       
  1577 
       
  1578     update_mdp_for_ret(state, return_bci);
       
  1579 
       
  1580     bind (profile_continue);
       
  1581   }
       
  1582 }
       
  1583 
       
  1584 // Count the default case of a switch construct.
       
  1585 void InterpreterMacroAssembler::profile_switch_default(Register scratch1,  Register scratch2) {
       
  1586   if (ProfileInterpreter) {
       
  1587     Label profile_continue;
       
  1588 
       
  1589     // If no method data exists, go to profile_continue.
       
  1590     test_method_data_pointer(profile_continue);
       
  1591 
       
  1592     // Update the default case count
       
  1593     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
       
  1594                           scratch1, scratch2);
       
  1595 
       
  1596     // The method data pointer needs to be updated.
       
  1597     update_mdp_by_offset(in_bytes(MultiBranchData::default_displacement_offset()),
       
  1598                          scratch1);
       
  1599 
       
  1600     bind (profile_continue);
       
  1601   }
       
  1602 }
       
  1603 
       
  1604 // Count the index'th case of a switch construct.
       
  1605 void InterpreterMacroAssembler::profile_switch_case(Register index,
       
  1606                                                     Register scratch1,
       
  1607                                                     Register scratch2,
       
  1608                                                     Register scratch3) {
       
  1609   if (ProfileInterpreter) {
       
  1610     assert_different_registers(index, scratch1, scratch2, scratch3);
       
  1611     Label profile_continue;
       
  1612 
       
  1613     // If no method data exists, go to profile_continue.
       
  1614     test_method_data_pointer(profile_continue);
       
  1615 
       
  1616     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes().
       
  1617     li(scratch3, in_bytes(MultiBranchData::case_array_offset()));
       
  1618 
       
  1619     assert (in_bytes(MultiBranchData::per_case_size()) == 16, "so that shladd works");
       
  1620     sldi(scratch1, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
       
  1621     add(scratch1, scratch1, scratch3);
       
  1622 
       
  1623     // Update the case count.
       
  1624     increment_mdp_data_at(scratch1, in_bytes(MultiBranchData::relative_count_offset()), scratch2, scratch3);
       
  1625 
       
  1626     // The method data pointer needs to be updated.
       
  1627     update_mdp_by_offset(scratch1, in_bytes(MultiBranchData::relative_displacement_offset()), scratch2);
       
  1628 
       
  1629     bind (profile_continue);
       
  1630   }
       
  1631 }
       
  1632 
       
  1633 void InterpreterMacroAssembler::profile_null_seen(Register Rscratch1, Register Rscratch2) {
       
  1634   if (ProfileInterpreter) {
       
  1635     assert_different_registers(Rscratch1, Rscratch2);
       
  1636     Label profile_continue;
       
  1637 
       
  1638     // If no method data exists, go to profile_continue.
       
  1639     test_method_data_pointer(profile_continue);
       
  1640 
       
  1641     set_mdp_flag_at(BitData::null_seen_byte_constant(), Rscratch1);
       
  1642 
       
  1643     // The method data pointer needs to be updated.
       
  1644     int mdp_delta = in_bytes(BitData::bit_data_size());
       
  1645     if (TypeProfileCasts) {
       
  1646       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
       
  1647     }
       
  1648     update_mdp_by_constant(mdp_delta);
       
  1649 
       
  1650     bind (profile_continue);
       
  1651   }
       
  1652 }
       
  1653 
       
  1654 void InterpreterMacroAssembler::record_klass_in_profile(Register Rreceiver,
       
  1655                                                         Register Rscratch1, Register Rscratch2,
       
  1656                                                         bool is_virtual_call) {
       
  1657   assert(ProfileInterpreter, "must be profiling");
       
  1658   assert_different_registers(Rreceiver, Rscratch1, Rscratch2);
       
  1659 
       
  1660   Label done;
       
  1661   record_klass_in_profile_helper(Rreceiver, Rscratch1, Rscratch2, 0, done, is_virtual_call);
       
  1662   bind (done);
       
  1663 }
       
  1664 
       
  1665 void InterpreterMacroAssembler::record_klass_in_profile_helper(
       
  1666                                         Register receiver, Register scratch1, Register scratch2,
       
  1667                                         int start_row, Label& done, bool is_virtual_call) {
       
  1668   if (TypeProfileWidth == 0) {
       
  1669     if (is_virtual_call) {
       
  1670       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
       
  1671     }
       
  1672     return;
       
  1673   }
       
  1674 
       
  1675   int last_row = VirtualCallData::row_limit() - 1;
       
  1676   assert(start_row <= last_row, "must be work left to do");
       
  1677   // Test this row for both the receiver and for null.
       
  1678   // Take any of three different outcomes:
       
  1679   //   1. found receiver => increment count and goto done
       
  1680   //   2. found null => keep looking for case 1, maybe allocate this cell
       
  1681   //   3. found something else => keep looking for cases 1 and 2
       
  1682   // Case 3 is handled by a recursive call.
       
  1683   for (int row = start_row; row <= last_row; row++) {
       
  1684     Label next_test;
       
  1685     bool test_for_null_also = (row == start_row);
       
  1686 
       
  1687     // See if the receiver is receiver[n].
       
  1688     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
       
  1689     test_mdp_data_at(recvr_offset, receiver, next_test, scratch1);
       
  1690     // delayed()->tst(scratch);
       
  1691 
       
  1692     // The receiver is receiver[n]. Increment count[n].
       
  1693     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
       
  1694     increment_mdp_data_at(count_offset, scratch1, scratch2);
       
  1695     b(done);
       
  1696     bind(next_test);
       
  1697 
       
  1698     if (test_for_null_also) {
       
  1699       Label found_null;
       
  1700       // Failed the equality check on receiver[n]... Test for null.
       
  1701       if (start_row == last_row) {
       
  1702         // The only thing left to do is handle the null case.
       
  1703         if (is_virtual_call) {
       
  1704           // Scratch1 contains test_out from test_mdp_data_at.
       
  1705           cmpdi(CCR0, scratch1, 0);
       
  1706           beq(CCR0, found_null);
       
  1707           // Receiver did not match any saved receiver and there is no empty row for it.
       
  1708           // Increment total counter to indicate polymorphic case.
       
  1709           increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
       
  1710           b(done);
       
  1711           bind(found_null);
       
  1712         } else {
       
  1713           cmpdi(CCR0, scratch1, 0);
       
  1714           bne(CCR0, done);
       
  1715         }
       
  1716         break;
       
  1717       }
       
  1718       // Since null is rare, make it be the branch-taken case.
       
  1719       cmpdi(CCR0, scratch1, 0);
       
  1720       beq(CCR0, found_null);
       
  1721 
       
  1722       // Put all the "Case 3" tests here.
       
  1723       record_klass_in_profile_helper(receiver, scratch1, scratch2, start_row + 1, done, is_virtual_call);
       
  1724 
       
  1725       // Found a null. Keep searching for a matching receiver,
       
  1726       // but remember that this is an empty (unused) slot.
       
  1727       bind(found_null);
       
  1728     }
       
  1729   }
       
  1730 
       
  1731   // In the fall-through case, we found no matching receiver, but we
       
  1732   // observed the receiver[start_row] is NULL.
       
  1733 
       
  1734   // Fill in the receiver field and increment the count.
       
  1735   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
       
  1736   set_mdp_data_at(recvr_offset, receiver);
       
  1737   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
       
  1738   li(scratch1, DataLayout::counter_increment);
       
  1739   set_mdp_data_at(count_offset, scratch1);
       
  1740   if (start_row > 0) {
       
  1741     b(done);
       
  1742   }
       
  1743 }
       
  1744 
       
  1745 // Argument and return type profilig.
       
  1746 // kills: tmp, tmp2, R0, CR0, CR1
       
  1747 void InterpreterMacroAssembler::profile_obj_type(Register obj, Register mdo_addr_base,
       
  1748                                                  RegisterOrConstant mdo_addr_offs,
       
  1749                                                  Register tmp, Register tmp2) {
       
  1750   Label do_nothing, do_update;
       
  1751 
       
  1752   // tmp2 = obj is allowed
       
  1753   assert_different_registers(obj, mdo_addr_base, tmp, R0);
       
  1754   assert_different_registers(tmp2, mdo_addr_base, tmp, R0);
       
  1755   const Register klass = tmp2;
       
  1756 
       
  1757   verify_oop(obj);
       
  1758 
       
  1759   ld(tmp, mdo_addr_offs, mdo_addr_base);
       
  1760 
       
  1761   // Set null_seen if obj is 0.
       
  1762   cmpdi(CCR0, obj, 0);
       
  1763   ori(R0, tmp, TypeEntries::null_seen);
       
  1764   beq(CCR0, do_update);
       
  1765 
       
  1766   load_klass(klass, obj);
       
  1767 
       
  1768   clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask));
       
  1769   // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask);
       
  1770   cmpd(CCR1, R0, klass);
       
  1771   // Klass seen before, nothing to do (regardless of unknown bit).
       
  1772   //beq(CCR1, do_nothing);
       
  1773 
       
  1774   andi_(R0, klass, TypeEntries::type_unknown);
       
  1775   // Already unknown. Nothing to do anymore.
       
  1776   //bne(CCR0, do_nothing);
       
  1777   crorc(CCR0, Assembler::equal, CCR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne
       
  1778   beq(CCR0, do_nothing);
       
  1779 
       
  1780   clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask));
       
  1781   orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
       
  1782   beq(CCR0, do_update); // First time here. Set profile type.
       
  1783 
       
  1784   // Different than before. Cannot keep accurate profile.
       
  1785   ori(R0, tmp, TypeEntries::type_unknown);
       
  1786 
       
  1787   bind(do_update);
       
  1788   // update profile
       
  1789   std(R0, mdo_addr_offs, mdo_addr_base);
       
  1790 
       
  1791   align(32, 12);
       
  1792   bind(do_nothing);
       
  1793 }
       
  1794 
       
  1795 void InterpreterMacroAssembler::profile_arguments_type(Register callee,
       
  1796                                                        Register tmp1, Register tmp2,
       
  1797                                                        bool is_virtual) {
       
  1798   if (!ProfileInterpreter) {
       
  1799     return;
       
  1800   }
       
  1801 
       
  1802   assert_different_registers(callee, tmp1, tmp2, R28_mdx);
       
  1803 
       
  1804   if (MethodData::profile_arguments() || MethodData::profile_return()) {
       
  1805     Label profile_continue;
       
  1806 
       
  1807     test_method_data_pointer(profile_continue);
       
  1808 
       
  1809     int off_to_start = is_virtual ?
       
  1810       in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
       
  1811 
       
  1812     lbz(tmp1, in_bytes(DataLayout::tag_offset()) - off_to_start, R28_mdx);
       
  1813     cmpwi(CCR0, tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
       
  1814     bne(CCR0, profile_continue);
       
  1815 
       
  1816     if (MethodData::profile_arguments()) {
       
  1817       Label done;
       
  1818       int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
       
  1819       add(R28_mdx, off_to_args, R28_mdx);
       
  1820 
       
  1821       for (int i = 0; i < TypeProfileArgsLimit; i++) {
       
  1822         if (i > 0 || MethodData::profile_return()) {
       
  1823           // If return value type is profiled we may have no argument to profile.
       
  1824           ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx);
       
  1825           cmpdi(CCR0, tmp1, (i+1)*TypeStackSlotEntries::per_arg_count());
       
  1826           addi(tmp1, tmp1, -i*TypeStackSlotEntries::per_arg_count());
       
  1827           blt(CCR0, done);
       
  1828         }
       
  1829         ld(tmp1, in_bytes(Method::const_offset()), callee);
       
  1830         lhz(tmp1, in_bytes(ConstMethod::size_of_parameters_offset()), tmp1);
       
  1831         // Stack offset o (zero based) from the start of the argument
       
  1832         // list, for n arguments translates into offset n - o - 1 from
       
  1833         // the end of the argument list. But there's an extra slot at
       
  1834         // the top of the stack. So the offset is n - o from Lesp.
       
  1835         ld(tmp2, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, R28_mdx);
       
  1836         subf(tmp1, tmp2, tmp1);
       
  1837 
       
  1838         sldi(tmp1, tmp1, Interpreter::logStackElementSize);
       
  1839         ldx(tmp1, tmp1, R15_esp);
       
  1840 
       
  1841         profile_obj_type(tmp1, R28_mdx, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args, tmp2, tmp1);
       
  1842 
       
  1843         int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
       
  1844         addi(R28_mdx, R28_mdx, to_add);
       
  1845         off_to_args += to_add;
       
  1846       }
       
  1847 
       
  1848       if (MethodData::profile_return()) {
       
  1849         ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx);
       
  1850         addi(tmp1, tmp1, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
       
  1851       }
       
  1852 
       
  1853       bind(done);
       
  1854 
       
  1855       if (MethodData::profile_return()) {
       
  1856         // We're right after the type profile for the last
       
  1857         // argument. tmp1 is the number of cells left in the
       
  1858         // CallTypeData/VirtualCallTypeData to reach its end. Non null
       
  1859         // if there's a return to profile.
       
  1860         assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(),
       
  1861                "can't move past ret type");
       
  1862         sldi(tmp1, tmp1, exact_log2(DataLayout::cell_size));
       
  1863         add(R28_mdx, tmp1, R28_mdx);
       
  1864       }
       
  1865     } else {
       
  1866       assert(MethodData::profile_return(), "either profile call args or call ret");
       
  1867       update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size()));
       
  1868     }
       
  1869 
       
  1870     // Mdp points right after the end of the
       
  1871     // CallTypeData/VirtualCallTypeData, right after the cells for the
       
  1872     // return value type if there's one.
       
  1873     align(32, 12);
       
  1874     bind(profile_continue);
       
  1875   }
       
  1876 }
       
  1877 
       
  1878 void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) {
       
  1879   assert_different_registers(ret, tmp1, tmp2);
       
  1880   if (ProfileInterpreter && MethodData::profile_return()) {
       
  1881     Label profile_continue;
       
  1882 
       
  1883     test_method_data_pointer(profile_continue);
       
  1884 
       
  1885     if (MethodData::profile_return_jsr292_only()) {
       
  1886       // If we don't profile all invoke bytecodes we must make sure
       
  1887       // it's a bytecode we indeed profile. We can't go back to the
       
  1888       // begining of the ProfileData we intend to update to check its
       
  1889       // type because we're right after it and we don't known its
       
  1890       // length.
       
  1891       lbz(tmp1, 0, R14_bcp);
       
  1892       lbz(tmp2, Method::intrinsic_id_offset_in_bytes(), R19_method);
       
  1893       cmpwi(CCR0, tmp1, Bytecodes::_invokedynamic);
       
  1894       cmpwi(CCR1, tmp1, Bytecodes::_invokehandle);
       
  1895       cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
       
  1896       cmpwi(CCR1, tmp2, vmIntrinsics::_compiledLambdaForm);
       
  1897       cror(CCR0, Assembler::equal, CCR1, Assembler::equal);
       
  1898       bne(CCR0, profile_continue);
       
  1899     }
       
  1900 
       
  1901     profile_obj_type(ret, R28_mdx, -in_bytes(ReturnTypeEntry::size()), tmp1, tmp2);
       
  1902 
       
  1903     align(32, 12);
       
  1904     bind(profile_continue);
       
  1905   }
       
  1906 }
       
  1907 
       
  1908 void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2,
       
  1909                                                         Register tmp3, Register tmp4) {
       
  1910   if (ProfileInterpreter && MethodData::profile_parameters()) {
       
  1911     Label profile_continue, done;
       
  1912 
       
  1913     test_method_data_pointer(profile_continue);
       
  1914 
       
  1915     // Load the offset of the area within the MDO used for
       
  1916     // parameters. If it's negative we're not profiling any parameters.
       
  1917     lwz(tmp1, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), R28_mdx);
       
  1918     cmpwi(CCR0, tmp1, 0);
       
  1919     blt(CCR0, profile_continue);
       
  1920 
       
  1921     // Compute a pointer to the area for parameters from the offset
       
  1922     // and move the pointer to the slot for the last
       
  1923     // parameters. Collect profiling from last parameter down.
       
  1924     // mdo start + parameters offset + array length - 1
       
  1925 
       
  1926     // Pointer to the parameter area in the MDO.
       
  1927     const Register mdp = tmp1;
       
  1928     add(mdp, tmp1, R28_mdx);
       
  1929 
       
  1930     // Offset of the current profile entry to update.
       
  1931     const Register entry_offset = tmp2;
       
  1932     // entry_offset = array len in number of cells
       
  1933     ld(entry_offset, in_bytes(ArrayData::array_len_offset()), mdp);
       
  1934 
       
  1935     int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
       
  1936     assert(off_base % DataLayout::cell_size == 0, "should be a number of cells");
       
  1937 
       
  1938     // entry_offset (number of cells)  = array len - size of 1 entry + offset of the stack slot field
       
  1939     addi(entry_offset, entry_offset, -TypeStackSlotEntries::per_arg_count() + (off_base / DataLayout::cell_size));
       
  1940     // entry_offset in bytes
       
  1941     sldi(entry_offset, entry_offset, exact_log2(DataLayout::cell_size));
       
  1942 
       
  1943     Label loop;
       
  1944     align(32, 12);
       
  1945     bind(loop);
       
  1946 
       
  1947     // Load offset on the stack from the slot for this parameter.
       
  1948     ld(tmp3, entry_offset, mdp);
       
  1949     sldi(tmp3, tmp3, Interpreter::logStackElementSize);
       
  1950     neg(tmp3, tmp3);
       
  1951     // Read the parameter from the local area.
       
  1952     ldx(tmp3, tmp3, R18_locals);
       
  1953 
       
  1954     // Make entry_offset now point to the type field for this parameter.
       
  1955     int type_base = in_bytes(ParametersTypeData::type_offset(0));
       
  1956     assert(type_base > off_base, "unexpected");
       
  1957     addi(entry_offset, entry_offset, type_base - off_base);
       
  1958 
       
  1959     // Profile the parameter.
       
  1960     profile_obj_type(tmp3, mdp, entry_offset, tmp4, tmp3);
       
  1961 
       
  1962     // Go to next parameter.
       
  1963     int delta = TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base);
       
  1964     cmpdi(CCR0, entry_offset, off_base + delta);
       
  1965     addi(entry_offset, entry_offset, -delta);
       
  1966     bge(CCR0, loop);
       
  1967 
       
  1968     align(32, 12);
       
  1969     bind(profile_continue);
       
  1970   }
       
  1971 }
       
  1972 
       
  1973 // Add a InterpMonitorElem to stack (see frame_sparc.hpp).
       
  1974 void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, Register Rtemp1, Register Rtemp2) {
       
  1975 
       
  1976   // Very-local scratch registers.
       
  1977   const Register esp  = Rtemp1;
       
  1978   const Register slot = Rtemp2;
       
  1979 
       
  1980   // Extracted monitor_size.
       
  1981   int monitor_size = frame::interpreter_frame_monitor_size_in_bytes();
       
  1982   assert(Assembler::is_aligned((unsigned int)monitor_size,
       
  1983                                (unsigned int)frame::alignment_in_bytes),
       
  1984          "size of a monitor must respect alignment of SP");
       
  1985 
       
  1986   resize_frame(-monitor_size, /*temp*/esp); // Allocate space for new monitor
       
  1987   std(R1_SP, _ijava_state_neg(top_frame_sp), esp); // esp contains fp
       
  1988 
       
  1989   // Shuffle expression stack down. Recall that stack_base points
       
  1990   // just above the new expression stack bottom. Old_tos and new_tos
       
  1991   // are used to scan thru the old and new expression stacks.
       
  1992   if (!stack_is_empty) {
       
  1993     Label copy_slot, copy_slot_finished;
       
  1994     const Register n_slots = slot;
       
  1995 
       
  1996     addi(esp, R15_esp, Interpreter::stackElementSize); // Point to first element (pre-pushed stack).
       
  1997     subf(n_slots, esp, R26_monitor);
       
  1998     srdi_(n_slots, n_slots, LogBytesPerWord);          // Compute number of slots to copy.
       
  1999     assert(LogBytesPerWord == 3, "conflicts assembler instructions");
       
  2000     beq(CCR0, copy_slot_finished);                     // Nothing to copy.
       
  2001 
       
  2002     mtctr(n_slots);
       
  2003 
       
  2004     // loop
       
  2005     bind(copy_slot);
       
  2006     ld(slot, 0, esp);              // Move expression stack down.
       
  2007     std(slot, -monitor_size, esp); // distance = monitor_size
       
  2008     addi(esp, esp, BytesPerWord);
       
  2009     bdnz(copy_slot);
       
  2010 
       
  2011     bind(copy_slot_finished);
       
  2012   }
       
  2013 
       
  2014   addi(R15_esp, R15_esp, -monitor_size);
       
  2015   addi(R26_monitor, R26_monitor, -monitor_size);
       
  2016 
       
  2017   // Restart interpreter
       
  2018 }
       
  2019 
       
  2020 // ============================================================================
       
  2021 // Java locals access
       
  2022 
       
  2023 // Load a local variable at index in Rindex into register Rdst_value.
       
  2024 // Also puts address of local into Rdst_address as a service.
       
  2025 // Kills:
       
  2026 //   - Rdst_value
       
  2027 //   - Rdst_address
       
  2028 void InterpreterMacroAssembler::load_local_int(Register Rdst_value, Register Rdst_address, Register Rindex) {
       
  2029   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
       
  2030   subf(Rdst_address, Rdst_address, R18_locals);
       
  2031   lwz(Rdst_value, 0, Rdst_address);
       
  2032 }
       
  2033 
       
  2034 // Load a local variable at index in Rindex into register Rdst_value.
       
  2035 // Also puts address of local into Rdst_address as a service.
       
  2036 // Kills:
       
  2037 //   - Rdst_value
       
  2038 //   - Rdst_address
       
  2039 void InterpreterMacroAssembler::load_local_long(Register Rdst_value, Register Rdst_address, Register Rindex) {
       
  2040   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
       
  2041   subf(Rdst_address, Rdst_address, R18_locals);
       
  2042   ld(Rdst_value, -8, Rdst_address);
       
  2043 }
       
  2044 
       
  2045 // Load a local variable at index in Rindex into register Rdst_value.
       
  2046 // Also puts address of local into Rdst_address as a service.
       
  2047 // Input:
       
  2048 //   - Rindex:      slot nr of local variable
       
  2049 // Kills:
       
  2050 //   - Rdst_value
       
  2051 //   - Rdst_address
       
  2052 void InterpreterMacroAssembler::load_local_ptr(Register Rdst_value,
       
  2053                                                Register Rdst_address,
       
  2054                                                Register Rindex) {
       
  2055   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
       
  2056   subf(Rdst_address, Rdst_address, R18_locals);
       
  2057   ld(Rdst_value, 0, Rdst_address);
       
  2058 }
       
  2059 
       
  2060 // Load a local variable at index in Rindex into register Rdst_value.
       
  2061 // Also puts address of local into Rdst_address as a service.
       
  2062 // Kills:
       
  2063 //   - Rdst_value
       
  2064 //   - Rdst_address
       
  2065 void InterpreterMacroAssembler::load_local_float(FloatRegister Rdst_value,
       
  2066                                                  Register Rdst_address,
       
  2067                                                  Register Rindex) {
       
  2068   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
       
  2069   subf(Rdst_address, Rdst_address, R18_locals);
       
  2070   lfs(Rdst_value, 0, Rdst_address);
       
  2071 }
       
  2072 
       
  2073 // Load a local variable at index in Rindex into register Rdst_value.
       
  2074 // Also puts address of local into Rdst_address as a service.
       
  2075 // Kills:
       
  2076 //   - Rdst_value
       
  2077 //   - Rdst_address
       
  2078 void InterpreterMacroAssembler::load_local_double(FloatRegister Rdst_value,
       
  2079                                                   Register Rdst_address,
       
  2080                                                   Register Rindex) {
       
  2081   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
       
  2082   subf(Rdst_address, Rdst_address, R18_locals);
       
  2083   lfd(Rdst_value, -8, Rdst_address);
       
  2084 }
       
  2085 
       
  2086 // Store an int value at local variable slot Rindex.
       
  2087 // Kills:
       
  2088 //   - Rindex
       
  2089 void InterpreterMacroAssembler::store_local_int(Register Rvalue, Register Rindex) {
       
  2090   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
       
  2091   subf(Rindex, Rindex, R18_locals);
       
  2092   stw(Rvalue, 0, Rindex);
       
  2093 }
       
  2094 
       
  2095 // Store a long value at local variable slot Rindex.
       
  2096 // Kills:
       
  2097 //   - Rindex
       
  2098 void InterpreterMacroAssembler::store_local_long(Register Rvalue, Register Rindex) {
       
  2099   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
       
  2100   subf(Rindex, Rindex, R18_locals);
       
  2101   std(Rvalue, -8, Rindex);
       
  2102 }
       
  2103 
       
  2104 // Store an oop value at local variable slot Rindex.
       
  2105 // Kills:
       
  2106 //   - Rindex
       
  2107 void InterpreterMacroAssembler::store_local_ptr(Register Rvalue, Register Rindex) {
       
  2108   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
       
  2109   subf(Rindex, Rindex, R18_locals);
       
  2110   std(Rvalue, 0, Rindex);
       
  2111 }
       
  2112 
       
  2113 // Store an int value at local variable slot Rindex.
       
  2114 // Kills:
       
  2115 //   - Rindex
       
  2116 void InterpreterMacroAssembler::store_local_float(FloatRegister Rvalue, Register Rindex) {
       
  2117   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
       
  2118   subf(Rindex, Rindex, R18_locals);
       
  2119   stfs(Rvalue, 0, Rindex);
       
  2120 }
       
  2121 
       
  2122 // Store an int value at local variable slot Rindex.
       
  2123 // Kills:
       
  2124 //   - Rindex
       
  2125 void InterpreterMacroAssembler::store_local_double(FloatRegister Rvalue, Register Rindex) {
       
  2126   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
       
  2127   subf(Rindex, Rindex, R18_locals);
       
  2128   stfd(Rvalue, -8, Rindex);
       
  2129 }
       
  2130 
       
  2131 // Read pending exception from thread and jump to interpreter.
       
  2132 // Throw exception entry if one if pending. Fall through otherwise.
       
  2133 void InterpreterMacroAssembler::check_and_forward_exception(Register Rscratch1, Register Rscratch2) {
       
  2134   assert_different_registers(Rscratch1, Rscratch2, R3);
       
  2135   Register Rexception = Rscratch1;
       
  2136   Register Rtmp       = Rscratch2;
       
  2137   Label Ldone;
       
  2138   // Get pending exception oop.
       
  2139   ld(Rexception, thread_(pending_exception));
       
  2140   cmpdi(CCR0, Rexception, 0);
       
  2141   beq(CCR0, Ldone);
       
  2142   li(Rtmp, 0);
       
  2143   mr_if_needed(R3, Rexception);
       
  2144   std(Rtmp, thread_(pending_exception)); // Clear exception in thread
       
  2145   if (Interpreter::rethrow_exception_entry() != NULL) {
       
  2146     // Already got entry address.
       
  2147     load_dispatch_table(Rtmp, (address*)Interpreter::rethrow_exception_entry());
       
  2148   } else {
       
  2149     // Dynamically load entry address.
       
  2150     int simm16_rest = load_const_optimized(Rtmp, &Interpreter::_rethrow_exception_entry, R0, true);
       
  2151     ld(Rtmp, simm16_rest, Rtmp);
       
  2152   }
       
  2153   mtctr(Rtmp);
       
  2154   save_interpreter_state(Rtmp);
       
  2155   bctr();
       
  2156 
       
  2157   align(32, 12);
       
  2158   bind(Ldone);
       
  2159 }
       
  2160 
       
  2161 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
       
  2162   save_interpreter_state(R11_scratch1);
       
  2163 
       
  2164   MacroAssembler::call_VM(oop_result, entry_point, false);
       
  2165 
       
  2166   restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
       
  2167 
       
  2168   check_and_handle_popframe(R11_scratch1);
       
  2169   check_and_handle_earlyret(R11_scratch1);
       
  2170   // Now check exceptions manually.
       
  2171   if (check_exceptions) {
       
  2172     check_and_forward_exception(R11_scratch1, R12_scratch2);
       
  2173   }
       
  2174 }
       
  2175 
       
  2176 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point,
       
  2177                                         Register arg_1, bool check_exceptions) {
       
  2178   // ARG1 is reserved for the thread.
       
  2179   mr_if_needed(R4_ARG2, arg_1);
       
  2180   call_VM(oop_result, entry_point, check_exceptions);
       
  2181 }
       
  2182 
       
  2183 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point,
       
  2184                                         Register arg_1, Register arg_2,
       
  2185                                         bool check_exceptions) {
       
  2186   // ARG1 is reserved for the thread.
       
  2187   mr_if_needed(R4_ARG2, arg_1);
       
  2188   assert(arg_2 != R4_ARG2, "smashed argument");
       
  2189   mr_if_needed(R5_ARG3, arg_2);
       
  2190   call_VM(oop_result, entry_point, check_exceptions);
       
  2191 }
       
  2192 
       
  2193 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point,
       
  2194                                         Register arg_1, Register arg_2, Register arg_3,
       
  2195                                         bool check_exceptions) {
       
  2196   // ARG1 is reserved for the thread.
       
  2197   mr_if_needed(R4_ARG2, arg_1);
       
  2198   assert(arg_2 != R4_ARG2, "smashed argument");
       
  2199   mr_if_needed(R5_ARG3, arg_2);
       
  2200   assert(arg_3 != R4_ARG2 && arg_3 != R5_ARG3, "smashed argument");
       
  2201   mr_if_needed(R6_ARG4, arg_3);
       
  2202   call_VM(oop_result, entry_point, check_exceptions);
       
  2203 }
       
  2204 
       
  2205 void InterpreterMacroAssembler::save_interpreter_state(Register scratch) {
       
  2206   ld(scratch, 0, R1_SP);
       
  2207   std(R15_esp, _ijava_state_neg(esp), scratch);
       
  2208   std(R14_bcp, _ijava_state_neg(bcp), scratch);
       
  2209   std(R26_monitor, _ijava_state_neg(monitors), scratch);
       
  2210   if (ProfileInterpreter) { std(R28_mdx, _ijava_state_neg(mdx), scratch); }
       
  2211   // Other entries should be unchanged.
       
  2212 }
       
  2213 
       
  2214 void InterpreterMacroAssembler::restore_interpreter_state(Register scratch, bool bcp_and_mdx_only) {
       
  2215   ld(scratch, 0, R1_SP);
       
  2216   ld(R14_bcp, _ijava_state_neg(bcp), scratch); // Changed by VM code (exception).
       
  2217   if (ProfileInterpreter) { ld(R28_mdx, _ijava_state_neg(mdx), scratch); } // Changed by VM code.
       
  2218   if (!bcp_and_mdx_only) {
       
  2219     // Following ones are Metadata.
       
  2220     ld(R19_method, _ijava_state_neg(method), scratch);
       
  2221     ld(R27_constPoolCache, _ijava_state_neg(cpoolCache), scratch);
       
  2222     // Following ones are stack addresses and don't require reload.
       
  2223     ld(R15_esp, _ijava_state_neg(esp), scratch);
       
  2224     ld(R18_locals, _ijava_state_neg(locals), scratch);
       
  2225     ld(R26_monitor, _ijava_state_neg(monitors), scratch);
       
  2226   }
       
  2227 #ifdef ASSERT
       
  2228   {
       
  2229     Label Lok;
       
  2230     subf(R0, R1_SP, scratch);
       
  2231     cmpdi(CCR0, R0, frame::abi_reg_args_size + frame::ijava_state_size);
       
  2232     bge(CCR0, Lok);
       
  2233     stop("frame too small (restore istate)", 0x5432);
       
  2234     bind(Lok);
       
  2235   }
       
  2236   {
       
  2237     Label Lok;
       
  2238     ld(R0, _ijava_state_neg(ijava_reserved), scratch);
       
  2239     cmpdi(CCR0, R0, 0x5afe);
       
  2240     beq(CCR0, Lok);
       
  2241     stop("frame corrupted (restore istate)", 0x5afe);
       
  2242     bind(Lok);
       
  2243   }
       
  2244 #endif
       
  2245 }
       
  2246 
       
  2247 void InterpreterMacroAssembler::get_method_counters(Register method,
       
  2248                                                     Register Rcounters,
       
  2249                                                     Label& skip) {
       
  2250   BLOCK_COMMENT("Load and ev. allocate counter object {");
       
  2251   Label has_counters;
       
  2252   ld(Rcounters, in_bytes(Method::method_counters_offset()), method);
       
  2253   cmpdi(CCR0, Rcounters, 0);
       
  2254   bne(CCR0, has_counters);
       
  2255   call_VM(noreg, CAST_FROM_FN_PTR(address,
       
  2256                                   InterpreterRuntime::build_method_counters), method, false);
       
  2257   ld(Rcounters, in_bytes(Method::method_counters_offset()), method);
       
  2258   cmpdi(CCR0, Rcounters, 0);
       
  2259   beq(CCR0, skip); // No MethodCounters, OutOfMemory.
       
  2260   BLOCK_COMMENT("} Load and ev. allocate counter object");
       
  2261 
       
  2262   bind(has_counters);
       
  2263 }
       
  2264 
       
  2265 void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters,
       
  2266                                                              Register iv_be_count,
       
  2267                                                              Register Rtmp_r0) {
       
  2268   assert(UseCompiler || LogTouchedMethods, "incrementing must be useful");
       
  2269   Register invocation_count = iv_be_count;
       
  2270   Register backedge_count   = Rtmp_r0;
       
  2271   int delta = InvocationCounter::count_increment;
       
  2272 
       
  2273   // Load each counter in a register.
       
  2274   //  ld(inv_counter, Rtmp);
       
  2275   //  ld(be_counter, Rtmp2);
       
  2276   int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() +
       
  2277                                     InvocationCounter::counter_offset());
       
  2278   int be_counter_offset  = in_bytes(MethodCounters::backedge_counter_offset() +
       
  2279                                     InvocationCounter::counter_offset());
       
  2280 
       
  2281   BLOCK_COMMENT("Increment profiling counters {");
       
  2282 
       
  2283   // Load the backedge counter.
       
  2284   lwz(backedge_count, be_counter_offset, Rcounters); // is unsigned int
       
  2285   // Mask the backedge counter.
       
  2286   andi(backedge_count, backedge_count, InvocationCounter::count_mask_value);
       
  2287 
       
  2288   // Load the invocation counter.
       
  2289   lwz(invocation_count, inv_counter_offset, Rcounters); // is unsigned int
       
  2290   // Add the delta to the invocation counter and store the result.
       
  2291   addi(invocation_count, invocation_count, delta);
       
  2292   // Store value.
       
  2293   stw(invocation_count, inv_counter_offset, Rcounters);
       
  2294 
       
  2295   // Add invocation counter + backedge counter.
       
  2296   add(iv_be_count, backedge_count, invocation_count);
       
  2297 
       
  2298   // Note that this macro must leave the backedge_count + invocation_count in
       
  2299   // register iv_be_count!
       
  2300   BLOCK_COMMENT("} Increment profiling counters");
       
  2301 }
       
  2302 
       
  2303 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
       
  2304   if (state == atos) { MacroAssembler::verify_oop(reg); }
       
  2305 }
       
  2306 
       
  2307 // Local helper function for the verify_oop_or_return_address macro.
       
  2308 static bool verify_return_address(Method* m, int bci) {
       
  2309 #ifndef PRODUCT
       
  2310   address pc = (address)(m->constMethod()) + in_bytes(ConstMethod::codes_offset()) + bci;
       
  2311   // Assume it is a valid return address if it is inside m and is preceded by a jsr.
       
  2312   if (!m->contains(pc))                                            return false;
       
  2313   address jsr_pc;
       
  2314   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
       
  2315   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
       
  2316   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
       
  2317   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
       
  2318 #endif // PRODUCT
       
  2319   return false;
       
  2320 }
       
  2321 
       
  2322 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
       
  2323   if (VerifyFPU) {
       
  2324     unimplemented("verfiyFPU");
       
  2325   }
       
  2326 }
       
  2327 
       
  2328 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
       
  2329   if (!VerifyOops) return;
       
  2330 
       
  2331   // The VM documentation for the astore[_wide] bytecode allows
       
  2332   // the TOS to be not only an oop but also a return address.
       
  2333   Label test;
       
  2334   Label skip;
       
  2335   // See if it is an address (in the current method):
       
  2336 
       
  2337   const int log2_bytecode_size_limit = 16;
       
  2338   srdi_(Rtmp, reg, log2_bytecode_size_limit);
       
  2339   bne(CCR0, test);
       
  2340 
       
  2341   address fd = CAST_FROM_FN_PTR(address, verify_return_address);
       
  2342   const int nbytes_save = MacroAssembler::num_volatile_regs * 8;
       
  2343   save_volatile_gprs(R1_SP, -nbytes_save); // except R0
       
  2344   save_LR_CR(Rtmp); // Save in old frame.
       
  2345   push_frame_reg_args(nbytes_save, Rtmp);
       
  2346 
       
  2347   load_const_optimized(Rtmp, fd, R0);
       
  2348   mr_if_needed(R4_ARG2, reg);
       
  2349   mr(R3_ARG1, R19_method);
       
  2350   call_c(Rtmp); // call C
       
  2351 
       
  2352   pop_frame();
       
  2353   restore_LR_CR(Rtmp);
       
  2354   restore_volatile_gprs(R1_SP, -nbytes_save); // except R0
       
  2355   b(skip);
       
  2356 
       
  2357   // Perform a more elaborate out-of-line call.
       
  2358   // Not an address; verify it:
       
  2359   bind(test);
       
  2360   verify_oop(reg);
       
  2361   bind(skip);
       
  2362 }
       
  2363 
       
  2364 // Inline assembly for:
       
  2365 //
       
  2366 // if (thread is in interp_only_mode) {
       
  2367 //   InterpreterRuntime::post_method_entry();
       
  2368 // }
       
  2369 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY ) ||
       
  2370 //     *jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY2)   ) {
       
  2371 //   SharedRuntime::jvmpi_method_entry(method, receiver);
       
  2372 // }
       
  2373 void InterpreterMacroAssembler::notify_method_entry() {
       
  2374   // JVMTI
       
  2375   // Whenever JVMTI puts a thread in interp_only_mode, method
       
  2376   // entry/exit events are sent for that thread to track stack
       
  2377   // depth. If it is possible to enter interp_only_mode we add
       
  2378   // the code to check if the event should be sent.
       
  2379   if (JvmtiExport::can_post_interpreter_events()) {
       
  2380     Label jvmti_post_done;
       
  2381 
       
  2382     lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
       
  2383     cmpwi(CCR0, R0, 0);
       
  2384     beq(CCR0, jvmti_post_done);
       
  2385     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry),
       
  2386             /*check_exceptions=*/true);
       
  2387 
       
  2388     bind(jvmti_post_done);
       
  2389   }
       
  2390 }
       
  2391 
       
  2392 // Inline assembly for:
       
  2393 //
       
  2394 // if (thread is in interp_only_mode) {
       
  2395 //   // save result
       
  2396 //   InterpreterRuntime::post_method_exit();
       
  2397 //   // restore result
       
  2398 // }
       
  2399 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_EXIT)) {
       
  2400 //   // save result
       
  2401 //   SharedRuntime::jvmpi_method_exit();
       
  2402 //   // restore result
       
  2403 // }
       
  2404 //
       
  2405 // Native methods have their result stored in d_tmp and l_tmp.
       
  2406 // Java methods have their result stored in the expression stack.
       
  2407 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method, TosState state,
       
  2408                                                    NotifyMethodExitMode mode, bool check_exceptions) {
       
  2409   // JVMTI
       
  2410   // Whenever JVMTI puts a thread in interp_only_mode, method
       
  2411   // entry/exit events are sent for that thread to track stack
       
  2412   // depth. If it is possible to enter interp_only_mode we add
       
  2413   // the code to check if the event should be sent.
       
  2414   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
       
  2415     Label jvmti_post_done;
       
  2416 
       
  2417     lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
       
  2418     cmpwi(CCR0, R0, 0);
       
  2419     beq(CCR0, jvmti_post_done);
       
  2420     if (!is_native_method) { push(state); } // Expose tos to GC.
       
  2421     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit),
       
  2422             /*check_exceptions=*/check_exceptions);
       
  2423     if (!is_native_method) { pop(state); }
       
  2424 
       
  2425     align(32, 12);
       
  2426     bind(jvmti_post_done);
       
  2427   }
       
  2428 
       
  2429   // Dtrace support not implemented.
       
  2430 }
       
  2431