hotspot/src/cpu/sparc/vm/templateInterpreter_sparc.cpp
changeset 35480 6ed8e1b70803
parent 35478 017a7cab2a55
parent 35479 62c12ca7a45e
child 35482 cedc2e709ac8
child 35483 d9cf65a7fd2d
equal deleted inserted replaced
35478:017a7cab2a55 35480:6ed8e1b70803
     1 /*
       
     2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "interpreter/interpreter.hpp"
       
    27 #include "oops/constMethod.hpp"
       
    28 #include "oops/method.hpp"
       
    29 #include "runtime/arguments.hpp"
       
    30 #include "runtime/frame.inline.hpp"
       
    31 #include "runtime/synchronizer.hpp"
       
    32 #include "utilities/macros.hpp"
       
    33 
       
    34 // Size of interpreter code.  Increase if too small.  Interpreter will
       
    35 // fail with a guarantee ("not enough space for interpreter generation");
       
    36 // if too small.
       
    37 // Run with +PrintInterpreter to get the VM to print out the size.
       
    38 // Max size with JVMTI
       
    39 #ifdef _LP64
       
    40   // The sethi() instruction generates lots more instructions when shell
       
    41   // stack limit is unlimited, so that's why this is much bigger.
       
    42 int TemplateInterpreter::InterpreterCodeSize = 260 * K;
       
    43 #else
       
    44 int TemplateInterpreter::InterpreterCodeSize = 230 * K;
       
    45 #endif
       
    46 
       
    47 int AbstractInterpreter::BasicType_as_index(BasicType type) {
       
    48   int i = 0;
       
    49   switch (type) {
       
    50     case T_BOOLEAN: i = 0; break;
       
    51     case T_CHAR   : i = 1; break;
       
    52     case T_BYTE   : i = 2; break;
       
    53     case T_SHORT  : i = 3; break;
       
    54     case T_INT    : i = 4; break;
       
    55     case T_LONG   : i = 5; break;
       
    56     case T_VOID   : i = 6; break;
       
    57     case T_FLOAT  : i = 7; break;
       
    58     case T_DOUBLE : i = 8; break;
       
    59     case T_OBJECT : i = 9; break;
       
    60     case T_ARRAY  : i = 9; break;
       
    61     default       : ShouldNotReachHere();
       
    62   }
       
    63   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
       
    64   return i;
       
    65 }
       
    66 
       
    67 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
       
    68   // No special entry points that preclude compilation
       
    69   return true;
       
    70 }
       
    71 
       
    72 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
       
    73 
       
    74   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
       
    75   // expression stack, the callee will have callee_extra_locals (so we can account for
       
    76   // frame extension) and monitor_size for monitors. Basically we need to calculate
       
    77   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
       
    78   //
       
    79   //
       
    80   // The big complicating thing here is that we must ensure that the stack stays properly
       
    81   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
       
    82   // needs to be aligned for). We are given that the sp (fp) is already aligned by
       
    83   // the caller so we must ensure that it is properly aligned for our callee.
       
    84   //
       
    85   const int rounded_vm_local_words =
       
    86        round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
       
    87   // callee_locals and max_stack are counts, not the size in frame.
       
    88   const int locals_size =
       
    89        round_to(callee_extra_locals * Interpreter::stackElementWords, WordsPerLong);
       
    90   const int max_stack_words = max_stack * Interpreter::stackElementWords;
       
    91   return (round_to((max_stack_words
       
    92                    + rounded_vm_local_words
       
    93                    + frame::memory_parameter_word_sp_offset), WordsPerLong)
       
    94                    // already rounded
       
    95                    + locals_size + monitor_size);
       
    96 }
       
    97 
       
    98 // How much stack a method top interpreter activation needs in words.
       
    99 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
       
   100 
       
   101   // See call_stub code
       
   102   int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
       
   103                                  WordsPerLong);    // 7 + register save area
       
   104 
       
   105   // Save space for one monitor to get into the interpreted method in case
       
   106   // the method is synchronized
       
   107   int monitor_size    = method->is_synchronized() ?
       
   108                                 1*frame::interpreter_frame_monitor_size() : 0;
       
   109   return size_activation_helper(method->max_locals(), method->max_stack(),
       
   110                                 monitor_size) + call_stub_size;
       
   111 }
       
   112 
       
   113 int AbstractInterpreter::size_activation(int max_stack,
       
   114                                          int temps,
       
   115                                          int extra_args,
       
   116                                          int monitors,
       
   117                                          int callee_params,
       
   118                                          int callee_locals,
       
   119                                          bool is_top_frame) {
       
   120   // Note: This calculation must exactly parallel the frame setup
       
   121   // in TemplateInterpreterGenerator::generate_fixed_frame.
       
   122 
       
   123   int monitor_size           = monitors * frame::interpreter_frame_monitor_size();
       
   124 
       
   125   assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
       
   126 
       
   127   //
       
   128   // Note: if you look closely this appears to be doing something much different
       
   129   // than generate_fixed_frame. What is happening is this. On sparc we have to do
       
   130   // this dance with interpreter_sp_adjustment because the window save area would
       
   131   // appear just below the bottom (tos) of the caller's java expression stack. Because
       
   132   // the interpreter want to have the locals completely contiguous generate_fixed_frame
       
   133   // will adjust the caller's sp for the "extra locals" (max_locals - parameter_size).
       
   134   // Now in generate_fixed_frame the extension of the caller's sp happens in the callee.
       
   135   // In this code the opposite occurs the caller adjusts it's own stack base on the callee.
       
   136   // This is mostly ok but it does cause a problem when we get to the initial frame (the oldest)
       
   137   // because the oldest frame would have adjust its callers frame and yet that frame
       
   138   // already exists and isn't part of this array of frames we are unpacking. So at first
       
   139   // glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper()
       
   140   // will after it calculates all of the frame's on_stack_size()'s will then figure out the
       
   141   // amount to adjust the caller of the initial (oldest) frame and the calculation will all
       
   142   // add up. It does seem like it simpler to account for the adjustment here (and remove the
       
   143   // callee... parameters here). However this would mean that this routine would have to take
       
   144   // the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment)
       
   145   // and run the calling loop in the reverse order. This would also would appear to mean making
       
   146   // this code aware of what the interactions are when that initial caller fram was an osr or
       
   147   // other adapter frame. deoptimization is complicated enough and  hard enough to debug that
       
   148   // there is no sense in messing working code.
       
   149   //
       
   150 
       
   151   int rounded_cls = round_to((callee_locals - callee_params), WordsPerLong);
       
   152   assert(rounded_cls == round_to(rounded_cls, WordsPerLong), "must align");
       
   153 
       
   154   int raw_frame_size = size_activation_helper(rounded_cls, max_stack, monitor_size);
       
   155 
       
   156   return raw_frame_size;
       
   157 }
       
   158 
       
   159 void AbstractInterpreter::layout_activation(Method* method,
       
   160                                             int tempcount,
       
   161                                             int popframe_extra_args,
       
   162                                             int moncount,
       
   163                                             int caller_actual_parameters,
       
   164                                             int callee_param_count,
       
   165                                             int callee_local_count,
       
   166                                             frame* caller,
       
   167                                             frame* interpreter_frame,
       
   168                                             bool is_top_frame,
       
   169                                             bool is_bottom_frame) {
       
   170   // Set up the following variables:
       
   171   //   - Lmethod
       
   172   //   - Llocals
       
   173   //   - Lmonitors (to the indicated number of monitors)
       
   174   //   - Lesp (to the indicated number of temps)
       
   175   // The frame caller on entry is a description of the caller of the
       
   176   // frame we are about to layout. We are guaranteed that we will be
       
   177   // able to fill in a new interpreter frame as its callee (i.e. the
       
   178   // stack space is allocated and the amount was determined by an
       
   179   // earlier call to the size_activation() method).  On return caller
       
   180   // while describe the interpreter frame we just layed out.
       
   181 
       
   182   // The skeleton frame must already look like an interpreter frame
       
   183   // even if not fully filled out.
       
   184   assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame");
       
   185 
       
   186   int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
       
   187   int monitor_size           = moncount * frame::interpreter_frame_monitor_size();
       
   188   assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
       
   189 
       
   190   intptr_t* fp = interpreter_frame->fp();
       
   191 
       
   192   JavaThread* thread = JavaThread::current();
       
   193   RegisterMap map(thread, false);
       
   194   // More verification that skeleton frame is properly walkable
       
   195   assert(fp == caller->sp(), "fp must match");
       
   196 
       
   197   intptr_t* montop     = fp - rounded_vm_local_words;
       
   198 
       
   199   // preallocate monitors (cf. __ add_monitor_to_stack)
       
   200   intptr_t* monitors = montop - monitor_size;
       
   201 
       
   202   // preallocate stack space
       
   203   intptr_t*  esp = monitors - 1 -
       
   204     (tempcount * Interpreter::stackElementWords) -
       
   205     popframe_extra_args;
       
   206 
       
   207   int local_words = method->max_locals() * Interpreter::stackElementWords;
       
   208   NEEDS_CLEANUP;
       
   209   intptr_t* locals;
       
   210   if (caller->is_interpreted_frame()) {
       
   211     // Can force the locals area to end up properly overlapping the top of the expression stack.
       
   212     intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1;
       
   213     // Note that this computation means we replace size_of_parameters() values from the caller
       
   214     // interpreter frame's expression stack with our argument locals
       
   215     int parm_words  = caller_actual_parameters * Interpreter::stackElementWords;
       
   216     locals = Lesp_ptr + parm_words;
       
   217     int delta = local_words - parm_words;
       
   218     int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0;
       
   219     *interpreter_frame->register_addr(I5_savedSP)    = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
       
   220     if (!is_bottom_frame) {
       
   221       // Llast_SP is set below for the current frame to SP (with the
       
   222       // extra space for the callee's locals). Here we adjust
       
   223       // Llast_SP for the caller's frame, removing the extra space
       
   224       // for the current method's locals.
       
   225       *caller->register_addr(Llast_SP) = *interpreter_frame->register_addr(I5_savedSP);
       
   226     } else {
       
   227       assert(*caller->register_addr(Llast_SP) >= *interpreter_frame->register_addr(I5_savedSP), "strange Llast_SP");
       
   228     }
       
   229   } else {
       
   230     assert(caller->is_compiled_frame() || caller->is_entry_frame(), "only possible cases");
       
   231     // Don't have Lesp available; lay out locals block in the caller
       
   232     // adjacent to the register window save area.
       
   233     //
       
   234     // Compiled frames do not allocate a varargs area which is why this if
       
   235     // statement is needed.
       
   236     //
       
   237     if (caller->is_compiled_frame()) {
       
   238       locals = fp + frame::register_save_words + local_words - 1;
       
   239     } else {
       
   240       locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
       
   241     }
       
   242     if (!caller->is_entry_frame()) {
       
   243       // Caller wants his own SP back
       
   244       int caller_frame_size = caller->cb()->frame_size();
       
   245       *interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS;
       
   246     }
       
   247   }
       
   248   if (TraceDeoptimization) {
       
   249     if (caller->is_entry_frame()) {
       
   250       // make sure I5_savedSP and the entry frames notion of saved SP
       
   251       // agree.  This assertion duplicate a check in entry frame code
       
   252       // but catches the failure earlier.
       
   253       assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP),
       
   254              "would change callers SP");
       
   255     }
       
   256     if (caller->is_entry_frame()) {
       
   257       tty->print("entry ");
       
   258     }
       
   259     if (caller->is_compiled_frame()) {
       
   260       tty->print("compiled ");
       
   261       if (caller->is_deoptimized_frame()) {
       
   262         tty->print("(deopt) ");
       
   263       }
       
   264     }
       
   265     if (caller->is_interpreted_frame()) {
       
   266       tty->print("interpreted ");
       
   267     }
       
   268     tty->print_cr("caller fp=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(caller->fp()), p2i(caller->sp()));
       
   269     tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(caller->sp()), p2i(caller->sp() + 16));
       
   270     tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(caller->fp()), p2i(caller->fp() + 16));
       
   271     tty->print_cr("interpreter fp=" INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(interpreter_frame->fp()), p2i(interpreter_frame->sp()));
       
   272     tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(interpreter_frame->sp()), p2i(interpreter_frame->sp() + 16));
       
   273     tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(interpreter_frame->fp()), p2i(interpreter_frame->fp() + 16));
       
   274     tty->print_cr("Llocals = " INTPTR_FORMAT, p2i(locals));
       
   275     tty->print_cr("Lesp = " INTPTR_FORMAT, p2i(esp));
       
   276     tty->print_cr("Lmonitors = " INTPTR_FORMAT, p2i(monitors));
       
   277   }
       
   278 
       
   279   if (method->max_locals() > 0) {
       
   280     assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area");
       
   281     assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area");
       
   282     assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area");
       
   283     assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area");
       
   284   }
       
   285 #ifdef _LP64
       
   286   assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd");
       
   287 #endif
       
   288 
       
   289   *interpreter_frame->register_addr(Lmethod)     = (intptr_t) method;
       
   290   *interpreter_frame->register_addr(Llocals)     = (intptr_t) locals;
       
   291   *interpreter_frame->register_addr(Lmonitors)   = (intptr_t) monitors;
       
   292   *interpreter_frame->register_addr(Lesp)        = (intptr_t) esp;
       
   293   // Llast_SP will be same as SP as there is no adapter space
       
   294   *interpreter_frame->register_addr(Llast_SP)    = (intptr_t) interpreter_frame->sp() - STACK_BIAS;
       
   295   *interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache();
       
   296 #ifdef FAST_DISPATCH
       
   297   *interpreter_frame->register_addr(IdispatchTables) = (intptr_t) Interpreter::dispatch_table();
       
   298 #endif
       
   299 
       
   300 
       
   301 #ifdef ASSERT
       
   302   BasicObjectLock* mp = (BasicObjectLock*)monitors;
       
   303 
       
   304   assert(interpreter_frame->interpreter_frame_method() == method, "method matches");
       
   305   assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize)), "locals match");
       
   306   assert(interpreter_frame->interpreter_frame_monitor_end()   == mp, "monitor_end matches");
       
   307   assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches");
       
   308   assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches");
       
   309 
       
   310   // check bounds
       
   311   intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1);
       
   312   intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words;
       
   313   assert(lo < monitors && montop <= hi, "monitors in bounds");
       
   314   assert(lo <= esp && esp < monitors, "esp in bounds");
       
   315 #endif // ASSERT
       
   316 }