hotspot/src/cpu/x86/vm/interp_masm_x86_32.cpp
changeset 29635 63d1435161c3
parent 29634 c75ff9ed0b4e
parent 29633 c480e4026568
child 29639 8890e7dd8f04
equal deleted inserted replaced
29634:c75ff9ed0b4e 29635:63d1435161c3
     1 /*
       
     2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "interp_masm_x86.hpp"
       
    27 #include "interpreter/interpreter.hpp"
       
    28 #include "interpreter/interpreterRuntime.hpp"
       
    29 #include "oops/arrayOop.hpp"
       
    30 #include "oops/markOop.hpp"
       
    31 #include "oops/methodData.hpp"
       
    32 #include "oops/method.hpp"
       
    33 #include "prims/jvmtiExport.hpp"
       
    34 #include "prims/jvmtiRedefineClassesTrace.hpp"
       
    35 #include "prims/jvmtiThreadState.hpp"
       
    36 #include "runtime/basicLock.hpp"
       
    37 #include "runtime/biasedLocking.hpp"
       
    38 #include "runtime/sharedRuntime.hpp"
       
    39 #include "runtime/thread.inline.hpp"
       
    40 
       
    41 
       
    42 // Implementation of InterpreterMacroAssembler
       
    43 #ifdef CC_INTERP
       
    44 void InterpreterMacroAssembler::get_method(Register reg) {
       
    45   movptr(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize)));
       
    46   movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
       
    47 }
       
    48 #endif // CC_INTERP
       
    49 
       
    50 
       
    51 #ifndef CC_INTERP
       
    52 void InterpreterMacroAssembler::call_VM_leaf_base(
       
    53   address entry_point,
       
    54   int     number_of_arguments
       
    55 ) {
       
    56   // interpreter specific
       
    57   //
       
    58   // Note: No need to save/restore bcp & locals (rsi & rdi) pointer
       
    59   //       since these are callee saved registers and no blocking/
       
    60   //       GC can happen in leaf calls.
       
    61   // Further Note: DO NOT save/restore bcp/locals. If a caller has
       
    62   // already saved them so that it can use rsi/rdi as temporaries
       
    63   // then a save/restore here will DESTROY the copy the caller
       
    64   // saved! There used to be a save_bcp() that only happened in
       
    65   // the ASSERT path (no restore_bcp). Which caused bizarre failures
       
    66   // when jvm built with ASSERTs.
       
    67 #ifdef ASSERT
       
    68   { Label L;
       
    69     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
       
    70     jcc(Assembler::equal, L);
       
    71     stop("InterpreterMacroAssembler::call_VM_leaf_base: last_sp != NULL");
       
    72     bind(L);
       
    73   }
       
    74 #endif
       
    75   // super call
       
    76   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
       
    77   // interpreter specific
       
    78 
       
    79   // Used to ASSERT that rsi/rdi were equal to frame's bcp/locals
       
    80   // but since they may not have been saved (and we don't want to
       
    81   // save them here (see note above) the assert is invalid.
       
    82 }
       
    83 
       
    84 
       
    85 void InterpreterMacroAssembler::call_VM_base(
       
    86   Register oop_result,
       
    87   Register java_thread,
       
    88   Register last_java_sp,
       
    89   address  entry_point,
       
    90   int      number_of_arguments,
       
    91   bool     check_exceptions
       
    92 ) {
       
    93 #ifdef ASSERT
       
    94   { Label L;
       
    95     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
       
    96     jcc(Assembler::equal, L);
       
    97     stop("InterpreterMacroAssembler::call_VM_base: last_sp != NULL");
       
    98     bind(L);
       
    99   }
       
   100 #endif /* ASSERT */
       
   101   // interpreter specific
       
   102   //
       
   103   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
       
   104   //       really make a difference for these runtime calls, since they are
       
   105   //       slow anyway. Btw., bcp must be saved/restored since it may change
       
   106   //       due to GC.
       
   107   assert(java_thread == noreg , "not expecting a precomputed java thread");
       
   108   save_bcp();
       
   109   // super call
       
   110   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
       
   111   // interpreter specific
       
   112   restore_bcp();
       
   113   restore_locals();
       
   114 }
       
   115 
       
   116 
       
   117 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
       
   118   if (JvmtiExport::can_pop_frame()) {
       
   119     Label L;
       
   120     // Initiate popframe handling only if it is not already being processed.  If the flag
       
   121     // has the popframe_processing bit set, it means that this code is called *during* popframe
       
   122     // handling - we don't want to reenter.
       
   123     Register pop_cond = java_thread;  // Not clear if any other register is available...
       
   124     movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
       
   125     testl(pop_cond, JavaThread::popframe_pending_bit);
       
   126     jcc(Assembler::zero, L);
       
   127     testl(pop_cond, JavaThread::popframe_processing_bit);
       
   128     jcc(Assembler::notZero, L);
       
   129     // Call Interpreter::remove_activation_preserving_args_entry() to get the
       
   130     // address of the same-named entrypoint in the generated interpreter code.
       
   131     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
       
   132     jmp(rax);
       
   133     bind(L);
       
   134     get_thread(java_thread);
       
   135   }
       
   136 }
       
   137 
       
   138 
       
   139 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
       
   140   get_thread(rcx);
       
   141   movl(rcx, Address(rcx, JavaThread::jvmti_thread_state_offset()));
       
   142   const Address tos_addr (rcx, JvmtiThreadState::earlyret_tos_offset());
       
   143   const Address oop_addr (rcx, JvmtiThreadState::earlyret_oop_offset());
       
   144   const Address val_addr (rcx, JvmtiThreadState::earlyret_value_offset());
       
   145   const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
       
   146                              + in_ByteSize(wordSize));
       
   147   switch (state) {
       
   148     case atos: movptr(rax, oop_addr);
       
   149                movptr(oop_addr, NULL_WORD);
       
   150                verify_oop(rax, state);                break;
       
   151     case ltos:
       
   152                movl(rdx, val_addr1);               // fall through
       
   153     case btos:                                     // fall through
       
   154     case ctos:                                     // fall through
       
   155     case stos:                                     // fall through
       
   156     case itos: movl(rax, val_addr);                   break;
       
   157     case ftos: fld_s(val_addr);                       break;
       
   158     case dtos: fld_d(val_addr);                       break;
       
   159     case vtos: /* nothing to do */                    break;
       
   160     default  : ShouldNotReachHere();
       
   161   }
       
   162   // Clean up tos value in the thread object
       
   163   movl(tos_addr,  (int32_t) ilgl);
       
   164   movptr(val_addr,  NULL_WORD);
       
   165   NOT_LP64(movptr(val_addr1, NULL_WORD));
       
   166 }
       
   167 
       
   168 
       
   169 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
       
   170   if (JvmtiExport::can_force_early_return()) {
       
   171     Label L;
       
   172     Register tmp = java_thread;
       
   173     movptr(tmp, Address(tmp, JavaThread::jvmti_thread_state_offset()));
       
   174     testptr(tmp, tmp);
       
   175     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
       
   176 
       
   177     // Initiate earlyret handling only if it is not already being processed.
       
   178     // If the flag has the earlyret_processing bit set, it means that this code
       
   179     // is called *during* earlyret handling - we don't want to reenter.
       
   180     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
       
   181     cmpl(tmp, JvmtiThreadState::earlyret_pending);
       
   182     jcc(Assembler::notEqual, L);
       
   183 
       
   184     // Call Interpreter::remove_activation_early_entry() to get the address of the
       
   185     // same-named entrypoint in the generated interpreter code.
       
   186     get_thread(java_thread);
       
   187     movptr(tmp, Address(java_thread, JavaThread::jvmti_thread_state_offset()));
       
   188     pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
       
   189     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
       
   190     jmp(rax);
       
   191     bind(L);
       
   192     get_thread(java_thread);
       
   193   }
       
   194 }
       
   195 
       
   196 
       
   197 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
       
   198   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
       
   199   load_unsigned_short(reg, Address(rsi, bcp_offset));
       
   200   bswapl(reg);
       
   201   shrl(reg, 16);
       
   202 }
       
   203 
       
   204 
       
   205 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register reg, int bcp_offset, size_t index_size) {
       
   206   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
       
   207   if (index_size == sizeof(u2)) {
       
   208     load_unsigned_short(reg, Address(rsi, bcp_offset));
       
   209   } else if (index_size == sizeof(u4)) {
       
   210     movl(reg, Address(rsi, bcp_offset));
       
   211     // Check if the secondary index definition is still ~x, otherwise
       
   212     // we have to change the following assembler code to calculate the
       
   213     // plain index.
       
   214     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
       
   215     notl(reg);  // convert to plain index
       
   216   } else if (index_size == sizeof(u1)) {
       
   217     load_unsigned_byte(reg, Address(rsi, bcp_offset));
       
   218   } else {
       
   219     ShouldNotReachHere();
       
   220   }
       
   221 }
       
   222 
       
   223 
       
   224 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index,
       
   225                                                            int bcp_offset, size_t index_size) {
       
   226   assert_different_registers(cache, index);
       
   227   get_cache_index_at_bcp(index, bcp_offset, index_size);
       
   228   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
       
   229   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
       
   230   assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line");
       
   231   shlptr(index, 2); // convert from field index to ConstantPoolCacheEntry index
       
   232 }
       
   233 
       
   234 
       
   235 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
       
   236                                                                         Register index,
       
   237                                                                         Register bytecode,
       
   238                                                                         int byte_no,
       
   239                                                                         int bcp_offset,
       
   240                                                                         size_t index_size) {
       
   241   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
       
   242   movptr(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
       
   243   const int shift_count = (1 + byte_no) * BitsPerByte;
       
   244   assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
       
   245          (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
       
   246          "correct shift count");
       
   247   shrptr(bytecode, shift_count);
       
   248   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
       
   249   andptr(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
       
   250 }
       
   251 
       
   252 
       
   253 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
       
   254                                                                int bcp_offset, size_t index_size) {
       
   255   assert(cache != tmp, "must use different register");
       
   256   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
       
   257   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
       
   258                                // convert from field index to ConstantPoolCacheEntry index
       
   259                                // and from word offset to byte offset
       
   260   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
       
   261   shll(tmp, 2 + LogBytesPerWord);
       
   262   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
       
   263                                // skip past the header
       
   264   addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
       
   265   addptr(cache, tmp);            // construct pointer to cache entry
       
   266 }
       
   267 
       
   268 // Load object from cpool->resolved_references(index)
       
   269 void InterpreterMacroAssembler::load_resolved_reference_at_index(
       
   270                                            Register result, Register index) {
       
   271   assert_different_registers(result, index);
       
   272   // convert from field index to resolved_references() index and from
       
   273   // word index to byte offset. Since this is a java object, it can be compressed
       
   274   Register tmp = index;  // reuse
       
   275   shll(tmp, LogBytesPerHeapOop);
       
   276 
       
   277   get_constant_pool(result);
       
   278   // load pointer for resolved_references[] objArray
       
   279   movptr(result, Address(result, ConstantPool::resolved_references_offset_in_bytes()));
       
   280   // JNIHandles::resolve(obj);
       
   281   movptr(result, Address(result, 0));
       
   282   // Add in the index
       
   283   addptr(result, tmp);
       
   284   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
       
   285 }
       
   286 
       
   287   // Generate a subtype check: branch to ok_is_subtype if sub_klass is
       
   288   // a subtype of super_klass.  EAX holds the super_klass.  Blows ECX.
       
   289   // Resets EDI to locals.  Register sub_klass cannot be any of the above.
       
   290 void InterpreterMacroAssembler::gen_subtype_check( Register Rsub_klass, Label &ok_is_subtype ) {
       
   291   assert( Rsub_klass != rax, "rax, holds superklass" );
       
   292   assert( Rsub_klass != rcx, "used as a temp" );
       
   293   assert( Rsub_klass != rdi, "used as a temp, restored from locals" );
       
   294 
       
   295   // Profile the not-null value's klass.
       
   296   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
       
   297 
       
   298   // Do the check.
       
   299   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
       
   300 
       
   301   // Profile the failure of the check.
       
   302   profile_typecheck_failed(rcx); // blows rcx
       
   303 }
       
   304 
       
   305 void InterpreterMacroAssembler::f2ieee() {
       
   306   if (IEEEPrecision) {
       
   307     fstp_s(Address(rsp, 0));
       
   308     fld_s(Address(rsp, 0));
       
   309   }
       
   310 }
       
   311 
       
   312 
       
   313 void InterpreterMacroAssembler::d2ieee() {
       
   314   if (IEEEPrecision) {
       
   315     fstp_d(Address(rsp, 0));
       
   316     fld_d(Address(rsp, 0));
       
   317   }
       
   318 }
       
   319 
       
   320 // Java Expression Stack
       
   321 
       
   322 void InterpreterMacroAssembler::pop_ptr(Register r) {
       
   323   pop(r);
       
   324 }
       
   325 
       
   326 void InterpreterMacroAssembler::pop_i(Register r) {
       
   327   pop(r);
       
   328 }
       
   329 
       
   330 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
       
   331   pop(lo);
       
   332   pop(hi);
       
   333 }
       
   334 
       
   335 void InterpreterMacroAssembler::pop_f() {
       
   336   fld_s(Address(rsp, 0));
       
   337   addptr(rsp, 1 * wordSize);
       
   338 }
       
   339 
       
   340 void InterpreterMacroAssembler::pop_d() {
       
   341   fld_d(Address(rsp, 0));
       
   342   addptr(rsp, 2 * wordSize);
       
   343 }
       
   344 
       
   345 
       
   346 void InterpreterMacroAssembler::pop(TosState state) {
       
   347   switch (state) {
       
   348     case atos: pop_ptr(rax);                                 break;
       
   349     case btos:                                               // fall through
       
   350     case ctos:                                               // fall through
       
   351     case stos:                                               // fall through
       
   352     case itos: pop_i(rax);                                   break;
       
   353     case ltos: pop_l(rax, rdx);                              break;
       
   354     case ftos: pop_f();                                      break;
       
   355     case dtos: pop_d();                                      break;
       
   356     case vtos: /* nothing to do */                           break;
       
   357     default  : ShouldNotReachHere();
       
   358   }
       
   359   verify_oop(rax, state);
       
   360 }
       
   361 
       
   362 void InterpreterMacroAssembler::push_ptr(Register r) {
       
   363   push(r);
       
   364 }
       
   365 
       
   366 void InterpreterMacroAssembler::push_i(Register r) {
       
   367   push(r);
       
   368 }
       
   369 
       
   370 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
       
   371   push(hi);
       
   372   push(lo);
       
   373 }
       
   374 
       
   375 void InterpreterMacroAssembler::push_f() {
       
   376   // Do not schedule for no AGI! Never write beyond rsp!
       
   377   subptr(rsp, 1 * wordSize);
       
   378   fstp_s(Address(rsp, 0));
       
   379 }
       
   380 
       
   381 void InterpreterMacroAssembler::push_d(Register r) {
       
   382   // Do not schedule for no AGI! Never write beyond rsp!
       
   383   subptr(rsp, 2 * wordSize);
       
   384   fstp_d(Address(rsp, 0));
       
   385 }
       
   386 
       
   387 
       
   388 void InterpreterMacroAssembler::push(TosState state) {
       
   389   verify_oop(rax, state);
       
   390   switch (state) {
       
   391     case atos: push_ptr(rax); break;
       
   392     case btos:                                               // fall through
       
   393     case ctos:                                               // fall through
       
   394     case stos:                                               // fall through
       
   395     case itos: push_i(rax);                                    break;
       
   396     case ltos: push_l(rax, rdx);                               break;
       
   397     case ftos: push_f();                                       break;
       
   398     case dtos: push_d(rax);                                    break;
       
   399     case vtos: /* nothing to do */                             break;
       
   400     default  : ShouldNotReachHere();
       
   401   }
       
   402 }
       
   403 
       
   404 
       
   405 // Helpers for swap and dup
       
   406 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
       
   407   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
       
   408 }
       
   409 
       
   410 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
       
   411   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
       
   412 }
       
   413 
       
   414 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
       
   415   // set sender sp
       
   416   lea(rsi, Address(rsp, wordSize));
       
   417   // record last_sp
       
   418   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rsi);
       
   419 }
       
   420 
       
   421 
       
   422 // Jump to from_interpreted entry of a call unless single stepping is possible
       
   423 // in this thread in which case we must call the i2i entry
       
   424 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
       
   425   prepare_to_jump_from_interpreted();
       
   426 
       
   427   if (JvmtiExport::can_post_interpreter_events()) {
       
   428     Label run_compiled_code;
       
   429     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
       
   430     // compiled code in threads for which the event is enabled.  Check here for
       
   431     // interp_only_mode if these events CAN be enabled.
       
   432     get_thread(temp);
       
   433     // interp_only is an int, on little endian it is sufficient to test the byte only
       
   434     // Is a cmpl faster?
       
   435     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
       
   436     jccb(Assembler::zero, run_compiled_code);
       
   437     jmp(Address(method, Method::interpreter_entry_offset()));
       
   438     bind(run_compiled_code);
       
   439   }
       
   440 
       
   441   jmp(Address(method, Method::from_interpreted_offset()));
       
   442 
       
   443 }
       
   444 
       
   445 
       
   446 // The following two routines provide a hook so that an implementation
       
   447 // can schedule the dispatch in two parts.  Intel does not do this.
       
   448 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
       
   449   // Nothing Intel-specific to be done here.
       
   450 }
       
   451 
       
   452 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
       
   453   dispatch_next(state, step);
       
   454 }
       
   455 
       
   456 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table,
       
   457                                               bool verifyoop) {
       
   458   verify_FPU(1, state);
       
   459   if (VerifyActivationFrameSize) {
       
   460     Label L;
       
   461     mov(rcx, rbp);
       
   462     subptr(rcx, rsp);
       
   463     int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
       
   464     cmpptr(rcx, min_frame_size);
       
   465     jcc(Assembler::greaterEqual, L);
       
   466     stop("broken stack frame");
       
   467     bind(L);
       
   468   }
       
   469   if (verifyoop) verify_oop(rax, state);
       
   470   Address index(noreg, rbx, Address::times_ptr);
       
   471   ExternalAddress tbl((address)table);
       
   472   ArrayAddress dispatch(tbl, index);
       
   473   jump(dispatch);
       
   474 }
       
   475 
       
   476 
       
   477 void InterpreterMacroAssembler::dispatch_only(TosState state) {
       
   478   dispatch_base(state, Interpreter::dispatch_table(state));
       
   479 }
       
   480 
       
   481 
       
   482 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
       
   483   dispatch_base(state, Interpreter::normal_table(state));
       
   484 }
       
   485 
       
   486 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
       
   487   dispatch_base(state, Interpreter::normal_table(state), false);
       
   488 }
       
   489 
       
   490 
       
   491 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
       
   492   // load next bytecode (load before advancing rsi to prevent AGI)
       
   493   load_unsigned_byte(rbx, Address(rsi, step));
       
   494   // advance rsi
       
   495   increment(rsi, step);
       
   496   dispatch_base(state, Interpreter::dispatch_table(state));
       
   497 }
       
   498 
       
   499 
       
   500 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
       
   501   // load current bytecode
       
   502   load_unsigned_byte(rbx, Address(rsi, 0));
       
   503   dispatch_base(state, table);
       
   504 }
       
   505 
       
   506 // remove activation
       
   507 //
       
   508 // Unlock the receiver if this is a synchronized method.
       
   509 // Unlock any Java monitors from syncronized blocks.
       
   510 // Remove the activation from the stack.
       
   511 //
       
   512 // If there are locked Java monitors
       
   513 //    If throw_monitor_exception
       
   514 //       throws IllegalMonitorStateException
       
   515 //    Else if install_monitor_exception
       
   516 //       installs IllegalMonitorStateException
       
   517 //    Else
       
   518 //       no error processing
       
   519 void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr,
       
   520                                                   bool throw_monitor_exception,
       
   521                                                   bool install_monitor_exception,
       
   522                                                   bool notify_jvmdi) {
       
   523   // Note: Registers rax, rdx and FPU ST(0) may be in use for the result
       
   524   // check if synchronized method
       
   525   Label unlocked, unlock, no_unlock;
       
   526 
       
   527   get_thread(rcx);
       
   528   const Address do_not_unlock_if_synchronized(rcx,
       
   529     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
       
   530 
       
   531   movbool(rbx, do_not_unlock_if_synchronized);
       
   532   mov(rdi,rbx);
       
   533   movbool(do_not_unlock_if_synchronized, false); // reset the flag
       
   534 
       
   535   movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); // get method access flags
       
   536   movl(rcx, Address(rbx, Method::access_flags_offset()));
       
   537 
       
   538   testl(rcx, JVM_ACC_SYNCHRONIZED);
       
   539   jcc(Assembler::zero, unlocked);
       
   540 
       
   541   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
       
   542   // is set.
       
   543   mov(rcx,rdi);
       
   544   testbool(rcx);
       
   545   jcc(Assembler::notZero, no_unlock);
       
   546 
       
   547   // unlock monitor
       
   548   push(state);                                   // save result
       
   549 
       
   550   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
       
   551   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
       
   552   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
       
   553   lea   (rdx, monitor);                          // address of first monitor
       
   554 
       
   555   movptr (rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
       
   556   testptr(rax, rax);
       
   557   jcc    (Assembler::notZero, unlock);
       
   558 
       
   559   pop(state);
       
   560   if (throw_monitor_exception) {
       
   561     empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
       
   562 
       
   563     // Entry already unlocked, need to throw exception
       
   564     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
       
   565     should_not_reach_here();
       
   566   } else {
       
   567     // Monitor already unlocked during a stack unroll.
       
   568     // If requested, install an illegal_monitor_state_exception.
       
   569     // Continue with stack unrolling.
       
   570     if (install_monitor_exception) {
       
   571       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
       
   572       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
       
   573     }
       
   574     jmp(unlocked);
       
   575   }
       
   576 
       
   577   bind(unlock);
       
   578   unlock_object(rdx);
       
   579   pop(state);
       
   580 
       
   581   // Check that for block-structured locking (i.e., that all locked objects has been unlocked)
       
   582   bind(unlocked);
       
   583 
       
   584   // rax, rdx: Might contain return value
       
   585 
       
   586   // Check that all monitors are unlocked
       
   587   {
       
   588     Label loop, exception, entry, restart;
       
   589     const int entry_size               = frame::interpreter_frame_monitor_size()           * wordSize;
       
   590     const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
       
   591     const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
       
   592 
       
   593     bind(restart);
       
   594     movptr(rcx, monitor_block_top);           // points to current entry, starting with top-most entry
       
   595     lea(rbx, monitor_block_bot);              // points to word before bottom of monitor block
       
   596     jmp(entry);
       
   597 
       
   598     // Entry already locked, need to throw exception
       
   599     bind(exception);
       
   600 
       
   601     if (throw_monitor_exception) {
       
   602       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
       
   603 
       
   604       // Throw exception
       
   605       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
       
   606       should_not_reach_here();
       
   607     } else {
       
   608       // Stack unrolling. Unlock object and install illegal_monitor_exception
       
   609       // Unlock does not block, so don't have to worry about the frame
       
   610 
       
   611       push(state);
       
   612       mov(rdx, rcx);
       
   613       unlock_object(rdx);
       
   614       pop(state);
       
   615 
       
   616       if (install_monitor_exception) {
       
   617         empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
       
   618         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
       
   619       }
       
   620 
       
   621       jmp(restart);
       
   622     }
       
   623 
       
   624     bind(loop);
       
   625     cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
       
   626     jcc(Assembler::notEqual, exception);
       
   627 
       
   628     addptr(rcx, entry_size);                     // otherwise advance to next entry
       
   629     bind(entry);
       
   630     cmpptr(rcx, rbx);                            // check if bottom reached
       
   631     jcc(Assembler::notEqual, loop);              // if not at bottom then check this entry
       
   632   }
       
   633 
       
   634   bind(no_unlock);
       
   635 
       
   636   // jvmti support
       
   637   if (notify_jvmdi) {
       
   638     notify_method_exit(state, NotifyJVMTI);     // preserve TOSCA
       
   639   } else {
       
   640     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
       
   641   }
       
   642 
       
   643   // remove activation
       
   644   movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
       
   645   leave();                                     // remove frame anchor
       
   646   pop(ret_addr);                               // get return address
       
   647   mov(rsp, rbx);                               // set sp to sender sp
       
   648   if (UseSSE) {
       
   649     // float and double are returned in xmm register in SSE-mode
       
   650     if (state == ftos && UseSSE >= 1) {
       
   651       subptr(rsp, wordSize);
       
   652       fstp_s(Address(rsp, 0));
       
   653       movflt(xmm0, Address(rsp, 0));
       
   654       addptr(rsp, wordSize);
       
   655     } else if (state == dtos && UseSSE >= 2) {
       
   656       subptr(rsp, 2*wordSize);
       
   657       fstp_d(Address(rsp, 0));
       
   658       movdbl(xmm0, Address(rsp, 0));
       
   659       addptr(rsp, 2*wordSize);
       
   660     }
       
   661   }
       
   662 }
       
   663 
       
   664 #endif /* !CC_INTERP */
       
   665 
       
   666 void InterpreterMacroAssembler::get_method_counters(Register method,
       
   667                                                     Register mcs, Label& skip) {
       
   668   Label has_counters;
       
   669   movptr(mcs, Address(method, Method::method_counters_offset()));
       
   670   testptr(mcs, mcs);
       
   671   jcc(Assembler::notZero, has_counters);
       
   672   call_VM(noreg, CAST_FROM_FN_PTR(address,
       
   673           InterpreterRuntime::build_method_counters), method);
       
   674   movptr(mcs, Address(method,Method::method_counters_offset()));
       
   675   testptr(mcs, mcs);
       
   676   jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
       
   677   bind(has_counters);
       
   678 }
       
   679 
       
   680 
       
   681 // Lock object
       
   682 //
       
   683 // Argument: rdx : Points to BasicObjectLock to be used for locking. Must
       
   684 // be initialized with object to lock
       
   685 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
       
   686   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
       
   687 
       
   688   if (UseHeavyMonitors) {
       
   689     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
       
   690   } else {
       
   691 
       
   692     Label done;
       
   693 
       
   694     const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
       
   695     const Register obj_reg  = rcx;  // Will contain the oop
       
   696 
       
   697     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
       
   698     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
       
   699     const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
       
   700 
       
   701     Label slow_case;
       
   702 
       
   703     // Load object pointer into obj_reg %rcx
       
   704     movptr(obj_reg, Address(lock_reg, obj_offset));
       
   705 
       
   706     if (UseBiasedLocking) {
       
   707       // Note: we use noreg for the temporary register since it's hard
       
   708       // to come up with a free register on all incoming code paths
       
   709       biased_locking_enter(lock_reg, obj_reg, swap_reg, noreg, false, done, &slow_case);
       
   710     }
       
   711 
       
   712     // Load immediate 1 into swap_reg %rax,
       
   713     movptr(swap_reg, (int32_t)1);
       
   714 
       
   715     // Load (object->mark() | 1) into swap_reg %rax,
       
   716     orptr(swap_reg, Address(obj_reg, 0));
       
   717 
       
   718     // Save (object->mark() | 1) into BasicLock's displaced header
       
   719     movptr(Address(lock_reg, mark_offset), swap_reg);
       
   720 
       
   721     assert(lock_offset == 0, "displached header must be first word in BasicObjectLock");
       
   722     if (os::is_MP()) {
       
   723       lock();
       
   724     }
       
   725     cmpxchgptr(lock_reg, Address(obj_reg, 0));
       
   726     if (PrintBiasedLockingStatistics) {
       
   727       cond_inc32(Assembler::zero,
       
   728                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
       
   729     }
       
   730     jcc(Assembler::zero, done);
       
   731 
       
   732     // Test if the oopMark is an obvious stack pointer, i.e.,
       
   733     //  1) (mark & 3) == 0, and
       
   734     //  2) rsp <= mark < mark + os::pagesize()
       
   735     //
       
   736     // These 3 tests can be done by evaluating the following
       
   737     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
       
   738     // assuming both stack pointer and pagesize have their
       
   739     // least significant 2 bits clear.
       
   740     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
       
   741     subptr(swap_reg, rsp);
       
   742     andptr(swap_reg, 3 - os::vm_page_size());
       
   743 
       
   744     // Save the test result, for recursive case, the result is zero
       
   745     movptr(Address(lock_reg, mark_offset), swap_reg);
       
   746 
       
   747     if (PrintBiasedLockingStatistics) {
       
   748       cond_inc32(Assembler::zero,
       
   749                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
       
   750     }
       
   751     jcc(Assembler::zero, done);
       
   752 
       
   753     bind(slow_case);
       
   754 
       
   755     // Call the runtime routine for slow case
       
   756     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
       
   757 
       
   758     bind(done);
       
   759   }
       
   760 }
       
   761 
       
   762 
       
   763 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
       
   764 //
       
   765 // Argument: rdx : Points to BasicObjectLock structure for lock
       
   766 // Throw an IllegalMonitorException if object is not locked by current thread
       
   767 //
       
   768 // Uses: rax, rbx, rcx, rdx
       
   769 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
       
   770   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
       
   771 
       
   772   if (UseHeavyMonitors) {
       
   773     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
       
   774   } else {
       
   775     Label done;
       
   776 
       
   777     const Register swap_reg   = rax;  // Must use rax, for cmpxchg instruction
       
   778     const Register header_reg = rbx;  // Will contain the old oopMark
       
   779     const Register obj_reg    = rcx;  // Will contain the oop
       
   780 
       
   781     save_bcp(); // Save in case of exception
       
   782 
       
   783     // Convert from BasicObjectLock structure to object and BasicLock structure
       
   784     // Store the BasicLock address into %rax,
       
   785     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
       
   786 
       
   787     // Load oop into obj_reg(%rcx)
       
   788     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes ()));
       
   789 
       
   790     // Free entry
       
   791     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);
       
   792 
       
   793     if (UseBiasedLocking) {
       
   794       biased_locking_exit(obj_reg, header_reg, done);
       
   795     }
       
   796 
       
   797     // Load the old header from BasicLock structure
       
   798     movptr(header_reg, Address(swap_reg, BasicLock::displaced_header_offset_in_bytes()));
       
   799 
       
   800     // Test for recursion
       
   801     testptr(header_reg, header_reg);
       
   802 
       
   803     // zero for recursive case
       
   804     jcc(Assembler::zero, done);
       
   805 
       
   806     // Atomic swap back the old header
       
   807     if (os::is_MP()) lock();
       
   808     cmpxchgptr(header_reg, Address(obj_reg, 0));
       
   809 
       
   810     // zero for recursive case
       
   811     jcc(Assembler::zero, done);
       
   812 
       
   813     // Call the runtime routine for slow case.
       
   814     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj
       
   815     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
       
   816 
       
   817     bind(done);
       
   818 
       
   819     restore_bcp();
       
   820   }
       
   821 }
       
   822 
       
   823 
       
   824 #ifndef CC_INTERP
       
   825 
       
   826 // Test ImethodDataPtr.  If it is null, continue at the specified label
       
   827 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
       
   828   assert(ProfileInterpreter, "must be profiling interpreter");
       
   829   movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize));
       
   830   testptr(mdp, mdp);
       
   831   jcc(Assembler::zero, zero_continue);
       
   832 }
       
   833 
       
   834 
       
   835 // Set the method data pointer for the current bcp.
       
   836 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
       
   837   assert(ProfileInterpreter, "must be profiling interpreter");
       
   838   Label set_mdp;
       
   839   push(rax);
       
   840   push(rbx);
       
   841 
       
   842   get_method(rbx);
       
   843   // Test MDO to avoid the call if it is NULL.
       
   844   movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
       
   845   testptr(rax, rax);
       
   846   jcc(Assembler::zero, set_mdp);
       
   847   // rbx,: method
       
   848   // rsi: bcp
       
   849   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, rsi);
       
   850   // rax,: mdi
       
   851   // mdo is guaranteed to be non-zero here, we checked for it before the call.
       
   852   movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
       
   853   addptr(rbx, in_bytes(MethodData::data_offset()));
       
   854   addptr(rax, rbx);
       
   855   bind(set_mdp);
       
   856   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax);
       
   857   pop(rbx);
       
   858   pop(rax);
       
   859 }
       
   860 
       
   861 void InterpreterMacroAssembler::verify_method_data_pointer() {
       
   862   assert(ProfileInterpreter, "must be profiling interpreter");
       
   863 #ifdef ASSERT
       
   864   Label verify_continue;
       
   865   push(rax);
       
   866   push(rbx);
       
   867   push(rcx);
       
   868   push(rdx);
       
   869   test_method_data_pointer(rcx, verify_continue); // If mdp is zero, continue
       
   870   get_method(rbx);
       
   871 
       
   872   // If the mdp is valid, it will point to a DataLayout header which is
       
   873   // consistent with the bcp.  The converse is highly probable also.
       
   874   load_unsigned_short(rdx, Address(rcx, in_bytes(DataLayout::bci_offset())));
       
   875   addptr(rdx, Address(rbx, Method::const_offset()));
       
   876   lea(rdx, Address(rdx, ConstMethod::codes_offset()));
       
   877   cmpptr(rdx, rsi);
       
   878   jcc(Assembler::equal, verify_continue);
       
   879   // rbx,: method
       
   880   // rsi: bcp
       
   881   // rcx: mdp
       
   882   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), rbx, rsi, rcx);
       
   883   bind(verify_continue);
       
   884   pop(rdx);
       
   885   pop(rcx);
       
   886   pop(rbx);
       
   887   pop(rax);
       
   888 #endif // ASSERT
       
   889 }
       
   890 
       
   891 
       
   892 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
       
   893   // %%% this seems to be used to store counter data which is surely 32bits
       
   894   // however 64bit side stores 64 bits which seems wrong
       
   895   assert(ProfileInterpreter, "must be profiling interpreter");
       
   896   Address data(mdp_in, constant);
       
   897   movptr(data, value);
       
   898 }
       
   899 
       
   900 
       
   901 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
       
   902                                                       int constant,
       
   903                                                       bool decrement) {
       
   904   // Counter address
       
   905   Address data(mdp_in, constant);
       
   906 
       
   907   increment_mdp_data_at(data, decrement);
       
   908 }
       
   909 
       
   910 
       
   911 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
       
   912                                                       bool decrement) {
       
   913 
       
   914   assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
       
   915   assert(ProfileInterpreter, "must be profiling interpreter");
       
   916 
       
   917   // %%% 64bit treats this as 64 bit which seems unlikely
       
   918   if (decrement) {
       
   919     // Decrement the register.  Set condition codes.
       
   920     addl(data, -DataLayout::counter_increment);
       
   921     // If the decrement causes the counter to overflow, stay negative
       
   922     Label L;
       
   923     jcc(Assembler::negative, L);
       
   924     addl(data, DataLayout::counter_increment);
       
   925     bind(L);
       
   926   } else {
       
   927     assert(DataLayout::counter_increment == 1,
       
   928            "flow-free idiom only works with 1");
       
   929     // Increment the register.  Set carry flag.
       
   930     addl(data, DataLayout::counter_increment);
       
   931     // If the increment causes the counter to overflow, pull back by 1.
       
   932     sbbl(data, 0);
       
   933   }
       
   934 }
       
   935 
       
   936 
       
   937 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
       
   938                                                       Register reg,
       
   939                                                       int constant,
       
   940                                                       bool decrement) {
       
   941   Address data(mdp_in, reg, Address::times_1, constant);
       
   942 
       
   943   increment_mdp_data_at(data, decrement);
       
   944 }
       
   945 
       
   946 
       
   947 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) {
       
   948   assert(ProfileInterpreter, "must be profiling interpreter");
       
   949   int header_offset = in_bytes(DataLayout::header_offset());
       
   950   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
       
   951   // Set the flag
       
   952   orl(Address(mdp_in, header_offset), header_bits);
       
   953 }
       
   954 
       
   955 
       
   956 
       
   957 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
       
   958                                                  int offset,
       
   959                                                  Register value,
       
   960                                                  Register test_value_out,
       
   961                                                  Label& not_equal_continue) {
       
   962   assert(ProfileInterpreter, "must be profiling interpreter");
       
   963   if (test_value_out == noreg) {
       
   964     cmpptr(value, Address(mdp_in, offset));
       
   965   } else {
       
   966     // Put the test value into a register, so caller can use it:
       
   967     movptr(test_value_out, Address(mdp_in, offset));
       
   968     cmpptr(test_value_out, value);
       
   969   }
       
   970   jcc(Assembler::notEqual, not_equal_continue);
       
   971 }
       
   972 
       
   973 
       
   974 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
       
   975   assert(ProfileInterpreter, "must be profiling interpreter");
       
   976   Address disp_address(mdp_in, offset_of_disp);
       
   977   addptr(mdp_in,disp_address);
       
   978   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
       
   979 }
       
   980 
       
   981 
       
   982 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg, int offset_of_disp) {
       
   983   assert(ProfileInterpreter, "must be profiling interpreter");
       
   984   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
       
   985   addptr(mdp_in, disp_address);
       
   986   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
       
   987 }
       
   988 
       
   989 
       
   990 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
       
   991   assert(ProfileInterpreter, "must be profiling interpreter");
       
   992   addptr(mdp_in, constant);
       
   993   movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
       
   994 }
       
   995 
       
   996 
       
   997 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
       
   998   assert(ProfileInterpreter, "must be profiling interpreter");
       
   999   push(return_bci);             // save/restore across call_VM
       
  1000   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
       
  1001   pop(return_bci);
       
  1002 }
       
  1003 
       
  1004 
       
  1005 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
       
  1006   if (ProfileInterpreter) {
       
  1007     Label profile_continue;
       
  1008 
       
  1009     // If no method data exists, go to profile_continue.
       
  1010     // Otherwise, assign to mdp
       
  1011     test_method_data_pointer(mdp, profile_continue);
       
  1012 
       
  1013     // We are taking a branch.  Increment the taken count.
       
  1014     // We inline increment_mdp_data_at to return bumped_count in a register
       
  1015     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
       
  1016     Address data(mdp, in_bytes(JumpData::taken_offset()));
       
  1017 
       
  1018     // %%% 64bit treats these cells as 64 bit but they seem to be 32 bit
       
  1019     movl(bumped_count,data);
       
  1020     assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
       
  1021     addl(bumped_count, DataLayout::counter_increment);
       
  1022     sbbl(bumped_count, 0);
       
  1023     movl(data,bumped_count);    // Store back out
       
  1024 
       
  1025     // The method data pointer needs to be updated to reflect the new target.
       
  1026     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
       
  1027     bind (profile_continue);
       
  1028   }
       
  1029 }
       
  1030 
       
  1031 
       
  1032 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
       
  1033   if (ProfileInterpreter) {
       
  1034     Label profile_continue;
       
  1035 
       
  1036     // If no method data exists, go to profile_continue.
       
  1037     test_method_data_pointer(mdp, profile_continue);
       
  1038 
       
  1039     // We are taking a branch.  Increment the not taken count.
       
  1040     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
       
  1041 
       
  1042     // The method data pointer needs to be updated to correspond to the next bytecode
       
  1043     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
       
  1044     bind (profile_continue);
       
  1045   }
       
  1046 }
       
  1047 
       
  1048 void InterpreterMacroAssembler::profile_call(Register mdp) {
       
  1049   if (ProfileInterpreter) {
       
  1050     Label profile_continue;
       
  1051 
       
  1052     // If no method data exists, go to profile_continue.
       
  1053     test_method_data_pointer(mdp, profile_continue);
       
  1054 
       
  1055     // We are making a call.  Increment the count.
       
  1056     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
       
  1057 
       
  1058     // The method data pointer needs to be updated to reflect the new target.
       
  1059     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
       
  1060     bind (profile_continue);
       
  1061   }
       
  1062 }
       
  1063 
       
  1064 
       
  1065 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
       
  1066   if (ProfileInterpreter) {
       
  1067     Label profile_continue;
       
  1068 
       
  1069     // If no method data exists, go to profile_continue.
       
  1070     test_method_data_pointer(mdp, profile_continue);
       
  1071 
       
  1072     // We are making a call.  Increment the count.
       
  1073     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
       
  1074 
       
  1075     // The method data pointer needs to be updated to reflect the new target.
       
  1076     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
       
  1077     bind (profile_continue);
       
  1078   }
       
  1079 }
       
  1080 
       
  1081 
       
  1082 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register mdp,
       
  1083                                                      Register reg2,
       
  1084                                                      bool receiver_can_be_null) {
       
  1085   if (ProfileInterpreter) {
       
  1086     Label profile_continue;
       
  1087 
       
  1088     // If no method data exists, go to profile_continue.
       
  1089     test_method_data_pointer(mdp, profile_continue);
       
  1090 
       
  1091     Label skip_receiver_profile;
       
  1092     if (receiver_can_be_null) {
       
  1093       Label not_null;
       
  1094       testptr(receiver, receiver);
       
  1095       jccb(Assembler::notZero, not_null);
       
  1096       // We are making a call.  Increment the count for null receiver.
       
  1097       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
       
  1098       jmp(skip_receiver_profile);
       
  1099       bind(not_null);
       
  1100     }
       
  1101 
       
  1102     // Record the receiver type.
       
  1103     record_klass_in_profile(receiver, mdp, reg2, true);
       
  1104     bind(skip_receiver_profile);
       
  1105 
       
  1106     // The method data pointer needs to be updated to reflect the new target.
       
  1107     update_mdp_by_constant(mdp,
       
  1108                            in_bytes(VirtualCallData::
       
  1109                                     virtual_call_data_size()));
       
  1110     bind(profile_continue);
       
  1111   }
       
  1112 }
       
  1113 
       
  1114 
       
  1115 void InterpreterMacroAssembler::record_klass_in_profile_helper(
       
  1116                                         Register receiver, Register mdp,
       
  1117                                         Register reg2, int start_row,
       
  1118                                         Label& done, bool is_virtual_call) {
       
  1119   if (TypeProfileWidth == 0) {
       
  1120     if (is_virtual_call) {
       
  1121       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
       
  1122     }
       
  1123     return;
       
  1124   }
       
  1125 
       
  1126   int last_row = VirtualCallData::row_limit() - 1;
       
  1127   assert(start_row <= last_row, "must be work left to do");
       
  1128   // Test this row for both the receiver and for null.
       
  1129   // Take any of three different outcomes:
       
  1130   //   1. found receiver => increment count and goto done
       
  1131   //   2. found null => keep looking for case 1, maybe allocate this cell
       
  1132   //   3. found something else => keep looking for cases 1 and 2
       
  1133   // Case 3 is handled by a recursive call.
       
  1134   for (int row = start_row; row <= last_row; row++) {
       
  1135     Label next_test;
       
  1136     bool test_for_null_also = (row == start_row);
       
  1137 
       
  1138     // See if the receiver is receiver[n].
       
  1139     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
       
  1140     test_mdp_data_at(mdp, recvr_offset, receiver,
       
  1141                      (test_for_null_also ? reg2 : noreg),
       
  1142                      next_test);
       
  1143     // (Reg2 now contains the receiver from the CallData.)
       
  1144 
       
  1145     // The receiver is receiver[n].  Increment count[n].
       
  1146     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
       
  1147     increment_mdp_data_at(mdp, count_offset);
       
  1148     jmp(done);
       
  1149     bind(next_test);
       
  1150 
       
  1151     if (row == start_row) {
       
  1152       Label found_null;
       
  1153       // Failed the equality check on receiver[n]...  Test for null.
       
  1154       testptr(reg2, reg2);
       
  1155       if (start_row == last_row) {
       
  1156         // The only thing left to do is handle the null case.
       
  1157         if (is_virtual_call) {
       
  1158           jccb(Assembler::zero, found_null);
       
  1159           // Receiver did not match any saved receiver and there is no empty row for it.
       
  1160           // Increment total counter to indicate polymorphic case.
       
  1161           increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
       
  1162           jmp(done);
       
  1163           bind(found_null);
       
  1164         } else {
       
  1165           jcc(Assembler::notZero, done);
       
  1166         }
       
  1167         break;
       
  1168       }
       
  1169       // Since null is rare, make it be the branch-taken case.
       
  1170       jcc(Assembler::zero, found_null);
       
  1171 
       
  1172       // Put all the "Case 3" tests here.
       
  1173       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
       
  1174 
       
  1175       // Found a null.  Keep searching for a matching receiver,
       
  1176       // but remember that this is an empty (unused) slot.
       
  1177       bind(found_null);
       
  1178     }
       
  1179   }
       
  1180 
       
  1181   // In the fall-through case, we found no matching receiver, but we
       
  1182   // observed the receiver[start_row] is NULL.
       
  1183 
       
  1184   // Fill in the receiver field and increment the count.
       
  1185   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
       
  1186   set_mdp_data_at(mdp, recvr_offset, receiver);
       
  1187   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
       
  1188   movptr(reg2, (intptr_t)DataLayout::counter_increment);
       
  1189   set_mdp_data_at(mdp, count_offset, reg2);
       
  1190   if (start_row > 0) {
       
  1191     jmp(done);
       
  1192   }
       
  1193 }
       
  1194 
       
  1195 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
       
  1196                                                         Register mdp, Register reg2,
       
  1197                                                         bool is_virtual_call) {
       
  1198   assert(ProfileInterpreter, "must be profiling");
       
  1199   Label done;
       
  1200 
       
  1201   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
       
  1202 
       
  1203   bind (done);
       
  1204 }
       
  1205 
       
  1206 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
       
  1207   if (ProfileInterpreter) {
       
  1208     Label profile_continue;
       
  1209     uint row;
       
  1210 
       
  1211     // If no method data exists, go to profile_continue.
       
  1212     test_method_data_pointer(mdp, profile_continue);
       
  1213 
       
  1214     // Update the total ret count.
       
  1215     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
       
  1216 
       
  1217     for (row = 0; row < RetData::row_limit(); row++) {
       
  1218       Label next_test;
       
  1219 
       
  1220       // See if return_bci is equal to bci[n]:
       
  1221       test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci,
       
  1222                        noreg, next_test);
       
  1223 
       
  1224       // return_bci is equal to bci[n].  Increment the count.
       
  1225       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
       
  1226 
       
  1227       // The method data pointer needs to be updated to reflect the new target.
       
  1228       update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
       
  1229       jmp(profile_continue);
       
  1230       bind(next_test);
       
  1231     }
       
  1232 
       
  1233     update_mdp_for_ret(return_bci);
       
  1234 
       
  1235     bind (profile_continue);
       
  1236   }
       
  1237 }
       
  1238 
       
  1239 
       
  1240 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
       
  1241   if (ProfileInterpreter) {
       
  1242     Label profile_continue;
       
  1243 
       
  1244     // If no method data exists, go to profile_continue.
       
  1245     test_method_data_pointer(mdp, profile_continue);
       
  1246 
       
  1247     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
       
  1248 
       
  1249     // The method data pointer needs to be updated.
       
  1250     int mdp_delta = in_bytes(BitData::bit_data_size());
       
  1251     if (TypeProfileCasts) {
       
  1252       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
       
  1253     }
       
  1254     update_mdp_by_constant(mdp, mdp_delta);
       
  1255 
       
  1256     bind (profile_continue);
       
  1257   }
       
  1258 }
       
  1259 
       
  1260 
       
  1261 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
       
  1262   if (ProfileInterpreter && TypeProfileCasts) {
       
  1263     Label profile_continue;
       
  1264 
       
  1265     // If no method data exists, go to profile_continue.
       
  1266     test_method_data_pointer(mdp, profile_continue);
       
  1267 
       
  1268     int count_offset = in_bytes(CounterData::count_offset());
       
  1269     // Back up the address, since we have already bumped the mdp.
       
  1270     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
       
  1271 
       
  1272     // *Decrement* the counter.  We expect to see zero or small negatives.
       
  1273     increment_mdp_data_at(mdp, count_offset, true);
       
  1274 
       
  1275     bind (profile_continue);
       
  1276   }
       
  1277 }
       
  1278 
       
  1279 
       
  1280 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2)
       
  1281 {
       
  1282   if (ProfileInterpreter) {
       
  1283     Label profile_continue;
       
  1284 
       
  1285     // If no method data exists, go to profile_continue.
       
  1286     test_method_data_pointer(mdp, profile_continue);
       
  1287 
       
  1288     // The method data pointer needs to be updated.
       
  1289     int mdp_delta = in_bytes(BitData::bit_data_size());
       
  1290     if (TypeProfileCasts) {
       
  1291       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
       
  1292 
       
  1293       // Record the object type.
       
  1294       record_klass_in_profile(klass, mdp, reg2, false);
       
  1295       assert(reg2 == rdi, "we know how to fix this blown reg");
       
  1296       restore_locals();         // Restore EDI
       
  1297     }
       
  1298     update_mdp_by_constant(mdp, mdp_delta);
       
  1299 
       
  1300     bind(profile_continue);
       
  1301   }
       
  1302 }
       
  1303 
       
  1304 
       
  1305 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
       
  1306   if (ProfileInterpreter) {
       
  1307     Label profile_continue;
       
  1308 
       
  1309     // If no method data exists, go to profile_continue.
       
  1310     test_method_data_pointer(mdp, profile_continue);
       
  1311 
       
  1312     // Update the default case count
       
  1313     increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
       
  1314 
       
  1315     // The method data pointer needs to be updated.
       
  1316     update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
       
  1317 
       
  1318     bind (profile_continue);
       
  1319   }
       
  1320 }
       
  1321 
       
  1322 
       
  1323 void InterpreterMacroAssembler::profile_switch_case(Register index, Register mdp, Register reg2) {
       
  1324   if (ProfileInterpreter) {
       
  1325     Label profile_continue;
       
  1326 
       
  1327     // If no method data exists, go to profile_continue.
       
  1328     test_method_data_pointer(mdp, profile_continue);
       
  1329 
       
  1330     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
       
  1331     movptr(reg2, (intptr_t)in_bytes(MultiBranchData::per_case_size()));
       
  1332     // index is positive and so should have correct value if this code were
       
  1333     // used on 64bits
       
  1334     imulptr(index, reg2);
       
  1335     addptr(index, in_bytes(MultiBranchData::case_array_offset()));
       
  1336 
       
  1337     // Update the case count
       
  1338     increment_mdp_data_at(mdp, index, in_bytes(MultiBranchData::relative_count_offset()));
       
  1339 
       
  1340     // The method data pointer needs to be updated.
       
  1341     update_mdp_by_offset(mdp, index, in_bytes(MultiBranchData::relative_displacement_offset()));
       
  1342 
       
  1343     bind (profile_continue);
       
  1344   }
       
  1345 }
       
  1346 
       
  1347 #endif // !CC_INTERP
       
  1348 
       
  1349 
       
  1350 
       
  1351 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
       
  1352   if (state == atos) MacroAssembler::verify_oop(reg);
       
  1353 }
       
  1354 
       
  1355 
       
  1356 #ifndef CC_INTERP
       
  1357 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
       
  1358   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
       
  1359 }
       
  1360 
       
  1361 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
       
  1362 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
       
  1363                                                         int increment, Address mask,
       
  1364                                                         Register scratch, bool preloaded,
       
  1365                                                         Condition cond, Label* where) {
       
  1366   if (!preloaded) {
       
  1367     movl(scratch, counter_addr);
       
  1368   }
       
  1369   incrementl(scratch, increment);
       
  1370   movl(counter_addr, scratch);
       
  1371   andl(scratch, mask);
       
  1372   jcc(cond, *where);
       
  1373 }
       
  1374 #endif /* CC_INTERP */
       
  1375 
       
  1376 
       
  1377 void InterpreterMacroAssembler::notify_method_entry() {
       
  1378   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
       
  1379   // track stack depth.  If it is possible to enter interp_only_mode we add
       
  1380   // the code to check if the event should be sent.
       
  1381   if (JvmtiExport::can_post_interpreter_events()) {
       
  1382     Label L;
       
  1383     get_thread(rcx);
       
  1384     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
       
  1385     testl(rcx,rcx);
       
  1386     jcc(Assembler::zero, L);
       
  1387     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
       
  1388     bind(L);
       
  1389   }
       
  1390 
       
  1391   {
       
  1392     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
       
  1393     get_thread(rcx);
       
  1394     get_method(rbx);
       
  1395     call_VM_leaf(
       
  1396       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), rcx, rbx);
       
  1397   }
       
  1398 
       
  1399   // RedefineClasses() tracing support for obsolete method entry
       
  1400   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
       
  1401     get_thread(rcx);
       
  1402     get_method(rbx);
       
  1403     call_VM_leaf(
       
  1404       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
       
  1405       rcx, rbx);
       
  1406   }
       
  1407 }
       
  1408 
       
  1409 
       
  1410 void InterpreterMacroAssembler::notify_method_exit(
       
  1411     TosState state, NotifyMethodExitMode mode) {
       
  1412   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
       
  1413   // track stack depth.  If it is possible to enter interp_only_mode we add
       
  1414   // the code to check if the event should be sent.
       
  1415   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
       
  1416     Label L;
       
  1417     // Note: frame::interpreter_frame_result has a dependency on how the
       
  1418     // method result is saved across the call to post_method_exit. If this
       
  1419     // is changed then the interpreter_frame_result implementation will
       
  1420     // need to be updated too.
       
  1421 
       
  1422     // For c++ interpreter the result is always stored at a known location in the frame
       
  1423     // template interpreter will leave it on the top of the stack.
       
  1424     NOT_CC_INTERP(push(state);)
       
  1425     get_thread(rcx);
       
  1426     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
       
  1427     testl(rcx,rcx);
       
  1428     jcc(Assembler::zero, L);
       
  1429     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
       
  1430     bind(L);
       
  1431     NOT_CC_INTERP(pop(state);)
       
  1432   }
       
  1433 
       
  1434   {
       
  1435     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
       
  1436     NOT_CC_INTERP(push(state));
       
  1437     get_thread(rbx);
       
  1438     get_method(rcx);
       
  1439     call_VM_leaf(
       
  1440       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
       
  1441       rbx, rcx);
       
  1442     NOT_CC_INTERP(pop(state));
       
  1443   }
       
  1444 }