hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/binaryTreeDictionary.cpp
changeset 12513 6123dd756c56
parent 12491 b3a91113026c
parent 12512 5898965fd407
child 12514 8af526db7bc7
equal deleted inserted replaced
12491:b3a91113026c 12513:6123dd756c56
     1 /*
       
     2  * Copyright (c) 2001, 2010, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "gc_implementation/concurrentMarkSweep/binaryTreeDictionary.hpp"
       
    27 #include "gc_implementation/shared/allocationStats.hpp"
       
    28 #include "gc_implementation/shared/spaceDecorator.hpp"
       
    29 #include "memory/space.inline.hpp"
       
    30 #include "runtime/globals.hpp"
       
    31 #include "utilities/ostream.hpp"
       
    32 
       
    33 ////////////////////////////////////////////////////////////////////////////////
       
    34 // A binary tree based search structure for free blocks.
       
    35 // This is currently used in the Concurrent Mark&Sweep implementation.
       
    36 ////////////////////////////////////////////////////////////////////////////////
       
    37 
       
    38 TreeChunk* TreeChunk::as_TreeChunk(FreeChunk* fc) {
       
    39   // Do some assertion checking here.
       
    40   return (TreeChunk*) fc;
       
    41 }
       
    42 
       
    43 void TreeChunk::verifyTreeChunkList() const {
       
    44   TreeChunk* nextTC = (TreeChunk*)next();
       
    45   if (prev() != NULL) { // interior list node shouldn'r have tree fields
       
    46     guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
       
    47               embedded_list()->right()  == NULL, "should be clear");
       
    48   }
       
    49   if (nextTC != NULL) {
       
    50     guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
       
    51     guarantee(nextTC->size() == size(), "wrong size");
       
    52     nextTC->verifyTreeChunkList();
       
    53   }
       
    54 }
       
    55 
       
    56 
       
    57 TreeList* TreeList::as_TreeList(TreeChunk* tc) {
       
    58   // This first free chunk in the list will be the tree list.
       
    59   assert(tc->size() >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
       
    60   TreeList* tl = tc->embedded_list();
       
    61   tc->set_list(tl);
       
    62 #ifdef ASSERT
       
    63   tl->set_protecting_lock(NULL);
       
    64 #endif
       
    65   tl->set_hint(0);
       
    66   tl->set_size(tc->size());
       
    67   tl->link_head(tc);
       
    68   tl->link_tail(tc);
       
    69   tl->set_count(1);
       
    70   tl->init_statistics(true /* split_birth */);
       
    71   tl->setParent(NULL);
       
    72   tl->setLeft(NULL);
       
    73   tl->setRight(NULL);
       
    74   return tl;
       
    75 }
       
    76 
       
    77 TreeList* TreeList::as_TreeList(HeapWord* addr, size_t size) {
       
    78   TreeChunk* tc = (TreeChunk*) addr;
       
    79   assert(size >= sizeof(TreeChunk), "Chunk is too small for a TreeChunk");
       
    80   // The space in the heap will have been mangled initially but
       
    81   // is not remangled when a free chunk is returned to the free list
       
    82   // (since it is used to maintain the chunk on the free list).
       
    83   assert((ZapUnusedHeapArea &&
       
    84           SpaceMangler::is_mangled((HeapWord*) tc->size_addr()) &&
       
    85           SpaceMangler::is_mangled((HeapWord*) tc->prev_addr()) &&
       
    86           SpaceMangler::is_mangled((HeapWord*) tc->next_addr())) ||
       
    87           (tc->size() == 0 && tc->prev() == NULL && tc->next() == NULL),
       
    88     "Space should be clear or mangled");
       
    89   tc->setSize(size);
       
    90   tc->linkPrev(NULL);
       
    91   tc->linkNext(NULL);
       
    92   TreeList* tl = TreeList::as_TreeList(tc);
       
    93   return tl;
       
    94 }
       
    95 
       
    96 TreeList* TreeList::removeChunkReplaceIfNeeded(TreeChunk* tc) {
       
    97 
       
    98   TreeList* retTL = this;
       
    99   FreeChunk* list = head();
       
   100   assert(!list || list != list->next(), "Chunk on list twice");
       
   101   assert(tc != NULL, "Chunk being removed is NULL");
       
   102   assert(parent() == NULL || this == parent()->left() ||
       
   103     this == parent()->right(), "list is inconsistent");
       
   104   assert(tc->isFree(), "Header is not marked correctly");
       
   105   assert(head() == NULL || head()->prev() == NULL, "list invariant");
       
   106   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
       
   107 
       
   108   FreeChunk* prevFC = tc->prev();
       
   109   TreeChunk* nextTC = TreeChunk::as_TreeChunk(tc->next());
       
   110   assert(list != NULL, "should have at least the target chunk");
       
   111 
       
   112   // Is this the first item on the list?
       
   113   if (tc == list) {
       
   114     // The "getChunk..." functions for a TreeList will not return the
       
   115     // first chunk in the list unless it is the last chunk in the list
       
   116     // because the first chunk is also acting as the tree node.
       
   117     // When coalescing happens, however, the first chunk in the a tree
       
   118     // list can be the start of a free range.  Free ranges are removed
       
   119     // from the free lists so that they are not available to be
       
   120     // allocated when the sweeper yields (giving up the free list lock)
       
   121     // to allow mutator activity.  If this chunk is the first in the
       
   122     // list and is not the last in the list, do the work to copy the
       
   123     // TreeList from the first chunk to the next chunk and update all
       
   124     // the TreeList pointers in the chunks in the list.
       
   125     if (nextTC == NULL) {
       
   126       assert(prevFC == NULL, "Not last chunk in the list");
       
   127       set_tail(NULL);
       
   128       set_head(NULL);
       
   129     } else {
       
   130       // copy embedded list.
       
   131       nextTC->set_embedded_list(tc->embedded_list());
       
   132       retTL = nextTC->embedded_list();
       
   133       // Fix the pointer to the list in each chunk in the list.
       
   134       // This can be slow for a long list.  Consider having
       
   135       // an option that does not allow the first chunk on the
       
   136       // list to be coalesced.
       
   137       for (TreeChunk* curTC = nextTC; curTC != NULL;
       
   138           curTC = TreeChunk::as_TreeChunk(curTC->next())) {
       
   139         curTC->set_list(retTL);
       
   140       }
       
   141       // Fix the parent to point to the new TreeList.
       
   142       if (retTL->parent() != NULL) {
       
   143         if (this == retTL->parent()->left()) {
       
   144           retTL->parent()->setLeft(retTL);
       
   145         } else {
       
   146           assert(this == retTL->parent()->right(), "Parent is incorrect");
       
   147           retTL->parent()->setRight(retTL);
       
   148         }
       
   149       }
       
   150       // Fix the children's parent pointers to point to the
       
   151       // new list.
       
   152       assert(right() == retTL->right(), "Should have been copied");
       
   153       if (retTL->right() != NULL) {
       
   154         retTL->right()->setParent(retTL);
       
   155       }
       
   156       assert(left() == retTL->left(), "Should have been copied");
       
   157       if (retTL->left() != NULL) {
       
   158         retTL->left()->setParent(retTL);
       
   159       }
       
   160       retTL->link_head(nextTC);
       
   161       assert(nextTC->isFree(), "Should be a free chunk");
       
   162     }
       
   163   } else {
       
   164     if (nextTC == NULL) {
       
   165       // Removing chunk at tail of list
       
   166       link_tail(prevFC);
       
   167     }
       
   168     // Chunk is interior to the list
       
   169     prevFC->linkAfter(nextTC);
       
   170   }
       
   171 
       
   172   // Below this point the embeded TreeList being used for the
       
   173   // tree node may have changed. Don't use "this"
       
   174   // TreeList*.
       
   175   // chunk should still be a free chunk (bit set in _prev)
       
   176   assert(!retTL->head() || retTL->size() == retTL->head()->size(),
       
   177     "Wrong sized chunk in list");
       
   178   debug_only(
       
   179     tc->linkPrev(NULL);
       
   180     tc->linkNext(NULL);
       
   181     tc->set_list(NULL);
       
   182     bool prev_found = false;
       
   183     bool next_found = false;
       
   184     for (FreeChunk* curFC = retTL->head();
       
   185          curFC != NULL; curFC = curFC->next()) {
       
   186       assert(curFC != tc, "Chunk is still in list");
       
   187       if (curFC == prevFC) {
       
   188         prev_found = true;
       
   189       }
       
   190       if (curFC == nextTC) {
       
   191         next_found = true;
       
   192       }
       
   193     }
       
   194     assert(prevFC == NULL || prev_found, "Chunk was lost from list");
       
   195     assert(nextTC == NULL || next_found, "Chunk was lost from list");
       
   196     assert(retTL->parent() == NULL ||
       
   197            retTL == retTL->parent()->left() ||
       
   198            retTL == retTL->parent()->right(),
       
   199            "list is inconsistent");
       
   200   )
       
   201   retTL->decrement_count();
       
   202 
       
   203   assert(tc->isFree(), "Should still be a free chunk");
       
   204   assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
       
   205     "list invariant");
       
   206   assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
       
   207     "list invariant");
       
   208   return retTL;
       
   209 }
       
   210 void TreeList::returnChunkAtTail(TreeChunk* chunk) {
       
   211   assert(chunk != NULL, "returning NULL chunk");
       
   212   assert(chunk->list() == this, "list should be set for chunk");
       
   213   assert(tail() != NULL, "The tree list is embedded in the first chunk");
       
   214   // which means that the list can never be empty.
       
   215   assert(!verifyChunkInFreeLists(chunk), "Double entry");
       
   216   assert(head() == NULL || head()->prev() == NULL, "list invariant");
       
   217   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
       
   218 
       
   219   FreeChunk* fc = tail();
       
   220   fc->linkAfter(chunk);
       
   221   link_tail(chunk);
       
   222 
       
   223   assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
       
   224   increment_count();
       
   225   debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
       
   226   assert(head() == NULL || head()->prev() == NULL, "list invariant");
       
   227   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
       
   228 }
       
   229 
       
   230 // Add this chunk at the head of the list.  "At the head of the list"
       
   231 // is defined to be after the chunk pointer to by head().  This is
       
   232 // because the TreeList is embedded in the first TreeChunk in the
       
   233 // list.  See the definition of TreeChunk.
       
   234 void TreeList::returnChunkAtHead(TreeChunk* chunk) {
       
   235   assert(chunk->list() == this, "list should be set for chunk");
       
   236   assert(head() != NULL, "The tree list is embedded in the first chunk");
       
   237   assert(chunk != NULL, "returning NULL chunk");
       
   238   assert(!verifyChunkInFreeLists(chunk), "Double entry");
       
   239   assert(head() == NULL || head()->prev() == NULL, "list invariant");
       
   240   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
       
   241 
       
   242   FreeChunk* fc = head()->next();
       
   243   if (fc != NULL) {
       
   244     chunk->linkAfter(fc);
       
   245   } else {
       
   246     assert(tail() == NULL, "List is inconsistent");
       
   247     link_tail(chunk);
       
   248   }
       
   249   head()->linkAfter(chunk);
       
   250   assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
       
   251   increment_count();
       
   252   debug_only(increment_returnedBytes_by(chunk->size()*sizeof(HeapWord));)
       
   253   assert(head() == NULL || head()->prev() == NULL, "list invariant");
       
   254   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
       
   255 }
       
   256 
       
   257 TreeChunk* TreeList::head_as_TreeChunk() {
       
   258   assert(head() == NULL || TreeChunk::as_TreeChunk(head())->list() == this,
       
   259     "Wrong type of chunk?");
       
   260   return TreeChunk::as_TreeChunk(head());
       
   261 }
       
   262 
       
   263 TreeChunk* TreeList::first_available() {
       
   264   assert(head() != NULL, "The head of the list cannot be NULL");
       
   265   FreeChunk* fc = head()->next();
       
   266   TreeChunk* retTC;
       
   267   if (fc == NULL) {
       
   268     retTC = head_as_TreeChunk();
       
   269   } else {
       
   270     retTC = TreeChunk::as_TreeChunk(fc);
       
   271   }
       
   272   assert(retTC->list() == this, "Wrong type of chunk.");
       
   273   return retTC;
       
   274 }
       
   275 
       
   276 // Returns the block with the largest heap address amongst
       
   277 // those in the list for this size; potentially slow and expensive,
       
   278 // use with caution!
       
   279 TreeChunk* TreeList::largest_address() {
       
   280   assert(head() != NULL, "The head of the list cannot be NULL");
       
   281   FreeChunk* fc = head()->next();
       
   282   TreeChunk* retTC;
       
   283   if (fc == NULL) {
       
   284     retTC = head_as_TreeChunk();
       
   285   } else {
       
   286     // walk down the list and return the one with the highest
       
   287     // heap address among chunks of this size.
       
   288     FreeChunk* last = fc;
       
   289     while (fc->next() != NULL) {
       
   290       if ((HeapWord*)last < (HeapWord*)fc) {
       
   291         last = fc;
       
   292       }
       
   293       fc = fc->next();
       
   294     }
       
   295     retTC = TreeChunk::as_TreeChunk(last);
       
   296   }
       
   297   assert(retTC->list() == this, "Wrong type of chunk.");
       
   298   return retTC;
       
   299 }
       
   300 
       
   301 BinaryTreeDictionary::BinaryTreeDictionary(MemRegion mr, bool splay):
       
   302   _splay(splay)
       
   303 {
       
   304   assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");
       
   305 
       
   306   reset(mr);
       
   307   assert(root()->left() == NULL, "reset check failed");
       
   308   assert(root()->right() == NULL, "reset check failed");
       
   309   assert(root()->head()->next() == NULL, "reset check failed");
       
   310   assert(root()->head()->prev() == NULL, "reset check failed");
       
   311   assert(totalSize() == root()->size(), "reset check failed");
       
   312   assert(totalFreeBlocks() == 1, "reset check failed");
       
   313 }
       
   314 
       
   315 void BinaryTreeDictionary::inc_totalSize(size_t inc) {
       
   316   _totalSize = _totalSize + inc;
       
   317 }
       
   318 
       
   319 void BinaryTreeDictionary::dec_totalSize(size_t dec) {
       
   320   _totalSize = _totalSize - dec;
       
   321 }
       
   322 
       
   323 void BinaryTreeDictionary::reset(MemRegion mr) {
       
   324   assert(mr.byte_size() > MIN_TREE_CHUNK_SIZE, "minimum chunk size");
       
   325   set_root(TreeList::as_TreeList(mr.start(), mr.word_size()));
       
   326   set_totalSize(mr.word_size());
       
   327   set_totalFreeBlocks(1);
       
   328 }
       
   329 
       
   330 void BinaryTreeDictionary::reset(HeapWord* addr, size_t byte_size) {
       
   331   MemRegion mr(addr, heap_word_size(byte_size));
       
   332   reset(mr);
       
   333 }
       
   334 
       
   335 void BinaryTreeDictionary::reset() {
       
   336   set_root(NULL);
       
   337   set_totalSize(0);
       
   338   set_totalFreeBlocks(0);
       
   339 }
       
   340 
       
   341 // Get a free block of size at least size from tree, or NULL.
       
   342 // If a splay step is requested, the removal algorithm (only) incorporates
       
   343 // a splay step as follows:
       
   344 // . the search proceeds down the tree looking for a possible
       
   345 //   match. At the (closest) matching location, an appropriate splay step is applied
       
   346 //   (zig, zig-zig or zig-zag). A chunk of the appropriate size is then returned
       
   347 //   if available, and if it's the last chunk, the node is deleted. A deteleted
       
   348 //   node is replaced in place by its tree successor.
       
   349 TreeChunk*
       
   350 BinaryTreeDictionary::getChunkFromTree(size_t size, Dither dither, bool splay)
       
   351 {
       
   352   TreeList *curTL, *prevTL;
       
   353   TreeChunk* retTC = NULL;
       
   354   assert(size >= MIN_TREE_CHUNK_SIZE, "minimum chunk size");
       
   355   if (FLSVerifyDictionary) {
       
   356     verifyTree();
       
   357   }
       
   358   // starting at the root, work downwards trying to find match.
       
   359   // Remember the last node of size too great or too small.
       
   360   for (prevTL = curTL = root(); curTL != NULL;) {
       
   361     if (curTL->size() == size) {        // exact match
       
   362       break;
       
   363     }
       
   364     prevTL = curTL;
       
   365     if (curTL->size() < size) {        // proceed to right sub-tree
       
   366       curTL = curTL->right();
       
   367     } else {                           // proceed to left sub-tree
       
   368       assert(curTL->size() > size, "size inconsistency");
       
   369       curTL = curTL->left();
       
   370     }
       
   371   }
       
   372   if (curTL == NULL) { // couldn't find exact match
       
   373     // try and find the next larger size by walking back up the search path
       
   374     for (curTL = prevTL; curTL != NULL;) {
       
   375       if (curTL->size() >= size) break;
       
   376       else curTL = curTL->parent();
       
   377     }
       
   378     assert(curTL == NULL || curTL->count() > 0,
       
   379       "An empty list should not be in the tree");
       
   380   }
       
   381   if (curTL != NULL) {
       
   382     assert(curTL->size() >= size, "size inconsistency");
       
   383     if (UseCMSAdaptiveFreeLists) {
       
   384 
       
   385       // A candidate chunk has been found.  If it is already under
       
   386       // populated, get a chunk associated with the hint for this
       
   387       // chunk.
       
   388       if (curTL->surplus() <= 0) {
       
   389         /* Use the hint to find a size with a surplus, and reset the hint. */
       
   390         TreeList* hintTL = curTL;
       
   391         while (hintTL->hint() != 0) {
       
   392           assert(hintTL->hint() == 0 || hintTL->hint() > hintTL->size(),
       
   393             "hint points in the wrong direction");
       
   394           hintTL = findList(hintTL->hint());
       
   395           assert(curTL != hintTL, "Infinite loop");
       
   396           if (hintTL == NULL ||
       
   397               hintTL == curTL /* Should not happen but protect against it */ ) {
       
   398             // No useful hint.  Set the hint to NULL and go on.
       
   399             curTL->set_hint(0);
       
   400             break;
       
   401           }
       
   402           assert(hintTL->size() > size, "hint is inconsistent");
       
   403           if (hintTL->surplus() > 0) {
       
   404             // The hint led to a list that has a surplus.  Use it.
       
   405             // Set the hint for the candidate to an overpopulated
       
   406             // size.
       
   407             curTL->set_hint(hintTL->size());
       
   408             // Change the candidate.
       
   409             curTL = hintTL;
       
   410             break;
       
   411           }
       
   412           // The evm code reset the hint of the candidate as
       
   413           // at an interim point.  Why?  Seems like this leaves
       
   414           // the hint pointing to a list that didn't work.
       
   415           // curTL->set_hint(hintTL->size());
       
   416         }
       
   417       }
       
   418     }
       
   419     // don't waste time splaying if chunk's singleton
       
   420     if (splay && curTL->head()->next() != NULL) {
       
   421       semiSplayStep(curTL);
       
   422     }
       
   423     retTC = curTL->first_available();
       
   424     assert((retTC != NULL) && (curTL->count() > 0),
       
   425       "A list in the binary tree should not be NULL");
       
   426     assert(retTC->size() >= size,
       
   427       "A chunk of the wrong size was found");
       
   428     removeChunkFromTree(retTC);
       
   429     assert(retTC->isFree(), "Header is not marked correctly");
       
   430   }
       
   431 
       
   432   if (FLSVerifyDictionary) {
       
   433     verify();
       
   434   }
       
   435   return retTC;
       
   436 }
       
   437 
       
   438 TreeList* BinaryTreeDictionary::findList(size_t size) const {
       
   439   TreeList* curTL;
       
   440   for (curTL = root(); curTL != NULL;) {
       
   441     if (curTL->size() == size) {        // exact match
       
   442       break;
       
   443     }
       
   444 
       
   445     if (curTL->size() < size) {        // proceed to right sub-tree
       
   446       curTL = curTL->right();
       
   447     } else {                           // proceed to left sub-tree
       
   448       assert(curTL->size() > size, "size inconsistency");
       
   449       curTL = curTL->left();
       
   450     }
       
   451   }
       
   452   return curTL;
       
   453 }
       
   454 
       
   455 
       
   456 bool BinaryTreeDictionary::verifyChunkInFreeLists(FreeChunk* tc) const {
       
   457   size_t size = tc->size();
       
   458   TreeList* tl = findList(size);
       
   459   if (tl == NULL) {
       
   460     return false;
       
   461   } else {
       
   462     return tl->verifyChunkInFreeLists(tc);
       
   463   }
       
   464 }
       
   465 
       
   466 FreeChunk* BinaryTreeDictionary::findLargestDict() const {
       
   467   TreeList *curTL = root();
       
   468   if (curTL != NULL) {
       
   469     while(curTL->right() != NULL) curTL = curTL->right();
       
   470     return curTL->largest_address();
       
   471   } else {
       
   472     return NULL;
       
   473   }
       
   474 }
       
   475 
       
   476 // Remove the current chunk from the tree.  If it is not the last
       
   477 // chunk in a list on a tree node, just unlink it.
       
   478 // If it is the last chunk in the list (the next link is NULL),
       
   479 // remove the node and repair the tree.
       
   480 TreeChunk*
       
   481 BinaryTreeDictionary::removeChunkFromTree(TreeChunk* tc) {
       
   482   assert(tc != NULL, "Should not call with a NULL chunk");
       
   483   assert(tc->isFree(), "Header is not marked correctly");
       
   484 
       
   485   TreeList *newTL, *parentTL;
       
   486   TreeChunk* retTC;
       
   487   TreeList* tl = tc->list();
       
   488   debug_only(
       
   489     bool removing_only_chunk = false;
       
   490     if (tl == _root) {
       
   491       if ((_root->left() == NULL) && (_root->right() == NULL)) {
       
   492         if (_root->count() == 1) {
       
   493           assert(_root->head() == tc, "Should only be this one chunk");
       
   494           removing_only_chunk = true;
       
   495         }
       
   496       }
       
   497     }
       
   498   )
       
   499   assert(tl != NULL, "List should be set");
       
   500   assert(tl->parent() == NULL || tl == tl->parent()->left() ||
       
   501          tl == tl->parent()->right(), "list is inconsistent");
       
   502 
       
   503   bool complicatedSplice = false;
       
   504 
       
   505   retTC = tc;
       
   506   // Removing this chunk can have the side effect of changing the node
       
   507   // (TreeList*) in the tree.  If the node is the root, update it.
       
   508   TreeList* replacementTL = tl->removeChunkReplaceIfNeeded(tc);
       
   509   assert(tc->isFree(), "Chunk should still be free");
       
   510   assert(replacementTL->parent() == NULL ||
       
   511          replacementTL == replacementTL->parent()->left() ||
       
   512          replacementTL == replacementTL->parent()->right(),
       
   513          "list is inconsistent");
       
   514   if (tl == root()) {
       
   515     assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
       
   516     set_root(replacementTL);
       
   517   }
       
   518   debug_only(
       
   519     if (tl != replacementTL) {
       
   520       assert(replacementTL->head() != NULL,
       
   521         "If the tree list was replaced, it should not be a NULL list");
       
   522       TreeList* rhl = replacementTL->head_as_TreeChunk()->list();
       
   523       TreeList* rtl = TreeChunk::as_TreeChunk(replacementTL->tail())->list();
       
   524       assert(rhl == replacementTL, "Broken head");
       
   525       assert(rtl == replacementTL, "Broken tail");
       
   526       assert(replacementTL->size() == tc->size(),  "Broken size");
       
   527     }
       
   528   )
       
   529 
       
   530   // Does the tree need to be repaired?
       
   531   if (replacementTL->count() == 0) {
       
   532     assert(replacementTL->head() == NULL &&
       
   533            replacementTL->tail() == NULL, "list count is incorrect");
       
   534     // Find the replacement node for the (soon to be empty) node being removed.
       
   535     // if we have a single (or no) child, splice child in our stead
       
   536     if (replacementTL->left() == NULL) {
       
   537       // left is NULL so pick right.  right may also be NULL.
       
   538       newTL = replacementTL->right();
       
   539       debug_only(replacementTL->clearRight();)
       
   540     } else if (replacementTL->right() == NULL) {
       
   541       // right is NULL
       
   542       newTL = replacementTL->left();
       
   543       debug_only(replacementTL->clearLeft();)
       
   544     } else {  // we have both children, so, by patriarchal convention,
       
   545               // my replacement is least node in right sub-tree
       
   546       complicatedSplice = true;
       
   547       newTL = removeTreeMinimum(replacementTL->right());
       
   548       assert(newTL != NULL && newTL->left() == NULL &&
       
   549              newTL->right() == NULL, "sub-tree minimum exists");
       
   550     }
       
   551     // newTL is the replacement for the (soon to be empty) node.
       
   552     // newTL may be NULL.
       
   553     // should verify; we just cleanly excised our replacement
       
   554     if (FLSVerifyDictionary) {
       
   555       verifyTree();
       
   556     }
       
   557     // first make newTL my parent's child
       
   558     if ((parentTL = replacementTL->parent()) == NULL) {
       
   559       // newTL should be root
       
   560       assert(tl == root(), "Incorrectly replacing root");
       
   561       set_root(newTL);
       
   562       if (newTL != NULL) {
       
   563         newTL->clearParent();
       
   564       }
       
   565     } else if (parentTL->right() == replacementTL) {
       
   566       // replacementTL is a right child
       
   567       parentTL->setRight(newTL);
       
   568     } else {                                // replacementTL is a left child
       
   569       assert(parentTL->left() == replacementTL, "should be left child");
       
   570       parentTL->setLeft(newTL);
       
   571     }
       
   572     debug_only(replacementTL->clearParent();)
       
   573     if (complicatedSplice) {  // we need newTL to get replacementTL's
       
   574                               // two children
       
   575       assert(newTL != NULL &&
       
   576              newTL->left() == NULL && newTL->right() == NULL,
       
   577             "newTL should not have encumbrances from the past");
       
   578       // we'd like to assert as below:
       
   579       // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
       
   580       //       "else !complicatedSplice");
       
   581       // ... however, the above assertion is too strong because we aren't
       
   582       // guaranteed that replacementTL->right() is still NULL.
       
   583       // Recall that we removed
       
   584       // the right sub-tree minimum from replacementTL.
       
   585       // That may well have been its right
       
   586       // child! So we'll just assert half of the above:
       
   587       assert(replacementTL->left() != NULL, "else !complicatedSplice");
       
   588       newTL->setLeft(replacementTL->left());
       
   589       newTL->setRight(replacementTL->right());
       
   590       debug_only(
       
   591         replacementTL->clearRight();
       
   592         replacementTL->clearLeft();
       
   593       )
       
   594     }
       
   595     assert(replacementTL->right() == NULL &&
       
   596            replacementTL->left() == NULL &&
       
   597            replacementTL->parent() == NULL,
       
   598         "delete without encumbrances");
       
   599   }
       
   600 
       
   601   assert(totalSize() >= retTC->size(), "Incorrect total size");
       
   602   dec_totalSize(retTC->size());     // size book-keeping
       
   603   assert(totalFreeBlocks() > 0, "Incorrect total count");
       
   604   set_totalFreeBlocks(totalFreeBlocks() - 1);
       
   605 
       
   606   assert(retTC != NULL, "null chunk?");
       
   607   assert(retTC->prev() == NULL && retTC->next() == NULL,
       
   608          "should return without encumbrances");
       
   609   if (FLSVerifyDictionary) {
       
   610     verifyTree();
       
   611   }
       
   612   assert(!removing_only_chunk || _root == NULL, "root should be NULL");
       
   613   return TreeChunk::as_TreeChunk(retTC);
       
   614 }
       
   615 
       
   616 // Remove the leftmost node (lm) in the tree and return it.
       
   617 // If lm has a right child, link it to the left node of
       
   618 // the parent of lm.
       
   619 TreeList* BinaryTreeDictionary::removeTreeMinimum(TreeList* tl) {
       
   620   assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
       
   621   // locate the subtree minimum by walking down left branches
       
   622   TreeList* curTL = tl;
       
   623   for (; curTL->left() != NULL; curTL = curTL->left());
       
   624   // obviously curTL now has at most one child, a right child
       
   625   if (curTL != root()) {  // Should this test just be removed?
       
   626     TreeList* parentTL = curTL->parent();
       
   627     if (parentTL->left() == curTL) { // curTL is a left child
       
   628       parentTL->setLeft(curTL->right());
       
   629     } else {
       
   630       // If the list tl has no left child, then curTL may be
       
   631       // the right child of parentTL.
       
   632       assert(parentTL->right() == curTL, "should be a right child");
       
   633       parentTL->setRight(curTL->right());
       
   634     }
       
   635   } else {
       
   636     // The only use of this method would not pass the root of the
       
   637     // tree (as indicated by the assertion above that the tree list
       
   638     // has a parent) but the specification does not explicitly exclude the
       
   639     // passing of the root so accomodate it.
       
   640     set_root(NULL);
       
   641   }
       
   642   debug_only(
       
   643     curTL->clearParent();  // Test if this needs to be cleared
       
   644     curTL->clearRight();    // recall, above, left child is already null
       
   645   )
       
   646   // we just excised a (non-root) node, we should still verify all tree invariants
       
   647   if (FLSVerifyDictionary) {
       
   648     verifyTree();
       
   649   }
       
   650   return curTL;
       
   651 }
       
   652 
       
   653 // Based on a simplification of the algorithm by Sleator and Tarjan (JACM 1985).
       
   654 // The simplifications are the following:
       
   655 // . we splay only when we delete (not when we insert)
       
   656 // . we apply a single spay step per deletion/access
       
   657 // By doing such partial splaying, we reduce the amount of restructuring,
       
   658 // while getting a reasonably efficient search tree (we think).
       
   659 // [Measurements will be needed to (in)validate this expectation.]
       
   660 
       
   661 void BinaryTreeDictionary::semiSplayStep(TreeList* tc) {
       
   662   // apply a semi-splay step at the given node:
       
   663   // . if root, norting needs to be done
       
   664   // . if child of root, splay once
       
   665   // . else zig-zig or sig-zag depending on path from grandparent
       
   666   if (root() == tc) return;
       
   667   warning("*** Splaying not yet implemented; "
       
   668           "tree operations may be inefficient ***");
       
   669 }
       
   670 
       
   671 void BinaryTreeDictionary::insertChunkInTree(FreeChunk* fc) {
       
   672   TreeList *curTL, *prevTL;
       
   673   size_t size = fc->size();
       
   674 
       
   675   assert(size >= MIN_TREE_CHUNK_SIZE, "too small to be a TreeList");
       
   676   if (FLSVerifyDictionary) {
       
   677     verifyTree();
       
   678   }
       
   679   // XXX: do i need to clear the FreeChunk fields, let me do it just in case
       
   680   // Revisit this later
       
   681 
       
   682   fc->clearNext();
       
   683   fc->linkPrev(NULL);
       
   684 
       
   685   // work down from the _root, looking for insertion point
       
   686   for (prevTL = curTL = root(); curTL != NULL;) {
       
   687     if (curTL->size() == size)  // exact match
       
   688       break;
       
   689     prevTL = curTL;
       
   690     if (curTL->size() > size) { // follow left branch
       
   691       curTL = curTL->left();
       
   692     } else {                    // follow right branch
       
   693       assert(curTL->size() < size, "size inconsistency");
       
   694       curTL = curTL->right();
       
   695     }
       
   696   }
       
   697   TreeChunk* tc = TreeChunk::as_TreeChunk(fc);
       
   698   // This chunk is being returned to the binary tree.  Its embedded
       
   699   // TreeList should be unused at this point.
       
   700   tc->initialize();
       
   701   if (curTL != NULL) {          // exact match
       
   702     tc->set_list(curTL);
       
   703     curTL->returnChunkAtTail(tc);
       
   704   } else {                     // need a new node in tree
       
   705     tc->clearNext();
       
   706     tc->linkPrev(NULL);
       
   707     TreeList* newTL = TreeList::as_TreeList(tc);
       
   708     assert(((TreeChunk*)tc)->list() == newTL,
       
   709       "List was not initialized correctly");
       
   710     if (prevTL == NULL) {      // we are the only tree node
       
   711       assert(root() == NULL, "control point invariant");
       
   712       set_root(newTL);
       
   713     } else {                   // insert under prevTL ...
       
   714       if (prevTL->size() < size) {   // am right child
       
   715         assert(prevTL->right() == NULL, "control point invariant");
       
   716         prevTL->setRight(newTL);
       
   717       } else {                       // am left child
       
   718         assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
       
   719         prevTL->setLeft(newTL);
       
   720       }
       
   721     }
       
   722   }
       
   723   assert(tc->list() != NULL, "Tree list should be set");
       
   724 
       
   725   inc_totalSize(size);
       
   726   // Method 'totalSizeInTree' walks through the every block in the
       
   727   // tree, so it can cause significant performance loss if there are
       
   728   // many blocks in the tree
       
   729   assert(!FLSVerifyDictionary || totalSizeInTree(root()) == totalSize(), "_totalSize inconsistency");
       
   730   set_totalFreeBlocks(totalFreeBlocks() + 1);
       
   731   if (FLSVerifyDictionary) {
       
   732     verifyTree();
       
   733   }
       
   734 }
       
   735 
       
   736 size_t BinaryTreeDictionary::maxChunkSize() const {
       
   737   verify_par_locked();
       
   738   TreeList* tc = root();
       
   739   if (tc == NULL) return 0;
       
   740   for (; tc->right() != NULL; tc = tc->right());
       
   741   return tc->size();
       
   742 }
       
   743 
       
   744 size_t BinaryTreeDictionary::totalListLength(TreeList* tl) const {
       
   745   size_t res;
       
   746   res = tl->count();
       
   747 #ifdef ASSERT
       
   748   size_t cnt;
       
   749   FreeChunk* tc = tl->head();
       
   750   for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
       
   751   assert(res == cnt, "The count is not being maintained correctly");
       
   752 #endif
       
   753   return res;
       
   754 }
       
   755 
       
   756 size_t BinaryTreeDictionary::totalSizeInTree(TreeList* tl) const {
       
   757   if (tl == NULL)
       
   758     return 0;
       
   759   return (tl->size() * totalListLength(tl)) +
       
   760          totalSizeInTree(tl->left())    +
       
   761          totalSizeInTree(tl->right());
       
   762 }
       
   763 
       
   764 double BinaryTreeDictionary::sum_of_squared_block_sizes(TreeList* const tl) const {
       
   765   if (tl == NULL) {
       
   766     return 0.0;
       
   767   }
       
   768   double size = (double)(tl->size());
       
   769   double curr = size * size * totalListLength(tl);
       
   770   curr += sum_of_squared_block_sizes(tl->left());
       
   771   curr += sum_of_squared_block_sizes(tl->right());
       
   772   return curr;
       
   773 }
       
   774 
       
   775 size_t BinaryTreeDictionary::totalFreeBlocksInTree(TreeList* tl) const {
       
   776   if (tl == NULL)
       
   777     return 0;
       
   778   return totalListLength(tl) +
       
   779          totalFreeBlocksInTree(tl->left()) +
       
   780          totalFreeBlocksInTree(tl->right());
       
   781 }
       
   782 
       
   783 size_t BinaryTreeDictionary::numFreeBlocks() const {
       
   784   assert(totalFreeBlocksInTree(root()) == totalFreeBlocks(),
       
   785          "_totalFreeBlocks inconsistency");
       
   786   return totalFreeBlocks();
       
   787 }
       
   788 
       
   789 size_t BinaryTreeDictionary::treeHeightHelper(TreeList* tl) const {
       
   790   if (tl == NULL)
       
   791     return 0;
       
   792   return 1 + MAX2(treeHeightHelper(tl->left()),
       
   793                   treeHeightHelper(tl->right()));
       
   794 }
       
   795 
       
   796 size_t BinaryTreeDictionary::treeHeight() const {
       
   797   return treeHeightHelper(root());
       
   798 }
       
   799 
       
   800 size_t BinaryTreeDictionary::totalNodesHelper(TreeList* tl) const {
       
   801   if (tl == NULL) {
       
   802     return 0;
       
   803   }
       
   804   return 1 + totalNodesHelper(tl->left()) +
       
   805     totalNodesHelper(tl->right());
       
   806 }
       
   807 
       
   808 size_t BinaryTreeDictionary::totalNodesInTree(TreeList* tl) const {
       
   809   return totalNodesHelper(root());
       
   810 }
       
   811 
       
   812 void BinaryTreeDictionary::dictCensusUpdate(size_t size, bool split, bool birth){
       
   813   TreeList* nd = findList(size);
       
   814   if (nd) {
       
   815     if (split) {
       
   816       if (birth) {
       
   817         nd->increment_splitBirths();
       
   818         nd->increment_surplus();
       
   819       }  else {
       
   820         nd->increment_splitDeaths();
       
   821         nd->decrement_surplus();
       
   822       }
       
   823     } else {
       
   824       if (birth) {
       
   825         nd->increment_coalBirths();
       
   826         nd->increment_surplus();
       
   827       } else {
       
   828         nd->increment_coalDeaths();
       
   829         nd->decrement_surplus();
       
   830       }
       
   831     }
       
   832   }
       
   833   // A list for this size may not be found (nd == 0) if
       
   834   //   This is a death where the appropriate list is now
       
   835   //     empty and has been removed from the list.
       
   836   //   This is a birth associated with a LinAB.  The chunk
       
   837   //     for the LinAB is not in the dictionary.
       
   838 }
       
   839 
       
   840 bool BinaryTreeDictionary::coalDictOverPopulated(size_t size) {
       
   841   if (FLSAlwaysCoalesceLarge) return true;
       
   842 
       
   843   TreeList* list_of_size = findList(size);
       
   844   // None of requested size implies overpopulated.
       
   845   return list_of_size == NULL || list_of_size->coalDesired() <= 0 ||
       
   846          list_of_size->count() > list_of_size->coalDesired();
       
   847 }
       
   848 
       
   849 // Closures for walking the binary tree.
       
   850 //   do_list() walks the free list in a node applying the closure
       
   851 //     to each free chunk in the list
       
   852 //   do_tree() walks the nodes in the binary tree applying do_list()
       
   853 //     to each list at each node.
       
   854 
       
   855 class TreeCensusClosure : public StackObj {
       
   856  protected:
       
   857   virtual void do_list(FreeList* fl) = 0;
       
   858  public:
       
   859   virtual void do_tree(TreeList* tl) = 0;
       
   860 };
       
   861 
       
   862 class AscendTreeCensusClosure : public TreeCensusClosure {
       
   863  public:
       
   864   void do_tree(TreeList* tl) {
       
   865     if (tl != NULL) {
       
   866       do_tree(tl->left());
       
   867       do_list(tl);
       
   868       do_tree(tl->right());
       
   869     }
       
   870   }
       
   871 };
       
   872 
       
   873 class DescendTreeCensusClosure : public TreeCensusClosure {
       
   874  public:
       
   875   void do_tree(TreeList* tl) {
       
   876     if (tl != NULL) {
       
   877       do_tree(tl->right());
       
   878       do_list(tl);
       
   879       do_tree(tl->left());
       
   880     }
       
   881   }
       
   882 };
       
   883 
       
   884 // For each list in the tree, calculate the desired, desired
       
   885 // coalesce, count before sweep, and surplus before sweep.
       
   886 class BeginSweepClosure : public AscendTreeCensusClosure {
       
   887   double _percentage;
       
   888   float _inter_sweep_current;
       
   889   float _inter_sweep_estimate;
       
   890   float _intra_sweep_estimate;
       
   891 
       
   892  public:
       
   893   BeginSweepClosure(double p, float inter_sweep_current,
       
   894                               float inter_sweep_estimate,
       
   895                               float intra_sweep_estimate) :
       
   896    _percentage(p),
       
   897    _inter_sweep_current(inter_sweep_current),
       
   898    _inter_sweep_estimate(inter_sweep_estimate),
       
   899    _intra_sweep_estimate(intra_sweep_estimate) { }
       
   900 
       
   901   void do_list(FreeList* fl) {
       
   902     double coalSurplusPercent = _percentage;
       
   903     fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
       
   904     fl->set_coalDesired((ssize_t)((double)fl->desired() * coalSurplusPercent));
       
   905     fl->set_beforeSweep(fl->count());
       
   906     fl->set_bfrSurp(fl->surplus());
       
   907   }
       
   908 };
       
   909 
       
   910 // Used to search the tree until a condition is met.
       
   911 // Similar to TreeCensusClosure but searches the
       
   912 // tree and returns promptly when found.
       
   913 
       
   914 class TreeSearchClosure : public StackObj {
       
   915  protected:
       
   916   virtual bool do_list(FreeList* fl) = 0;
       
   917  public:
       
   918   virtual bool do_tree(TreeList* tl) = 0;
       
   919 };
       
   920 
       
   921 #if 0 //  Don't need this yet but here for symmetry.
       
   922 class AscendTreeSearchClosure : public TreeSearchClosure {
       
   923  public:
       
   924   bool do_tree(TreeList* tl) {
       
   925     if (tl != NULL) {
       
   926       if (do_tree(tl->left())) return true;
       
   927       if (do_list(tl)) return true;
       
   928       if (do_tree(tl->right())) return true;
       
   929     }
       
   930     return false;
       
   931   }
       
   932 };
       
   933 #endif
       
   934 
       
   935 class DescendTreeSearchClosure : public TreeSearchClosure {
       
   936  public:
       
   937   bool do_tree(TreeList* tl) {
       
   938     if (tl != NULL) {
       
   939       if (do_tree(tl->right())) return true;
       
   940       if (do_list(tl)) return true;
       
   941       if (do_tree(tl->left())) return true;
       
   942     }
       
   943     return false;
       
   944   }
       
   945 };
       
   946 
       
   947 // Searches the tree for a chunk that ends at the
       
   948 // specified address.
       
   949 class EndTreeSearchClosure : public DescendTreeSearchClosure {
       
   950   HeapWord* _target;
       
   951   FreeChunk* _found;
       
   952 
       
   953  public:
       
   954   EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
       
   955   bool do_list(FreeList* fl) {
       
   956     FreeChunk* item = fl->head();
       
   957     while (item != NULL) {
       
   958       if (item->end() == _target) {
       
   959         _found = item;
       
   960         return true;
       
   961       }
       
   962       item = item->next();
       
   963     }
       
   964     return false;
       
   965   }
       
   966   FreeChunk* found() { return _found; }
       
   967 };
       
   968 
       
   969 FreeChunk* BinaryTreeDictionary::find_chunk_ends_at(HeapWord* target) const {
       
   970   EndTreeSearchClosure etsc(target);
       
   971   bool found_target = etsc.do_tree(root());
       
   972   assert(found_target || etsc.found() == NULL, "Consistency check");
       
   973   assert(!found_target || etsc.found() != NULL, "Consistency check");
       
   974   return etsc.found();
       
   975 }
       
   976 
       
   977 void BinaryTreeDictionary::beginSweepDictCensus(double coalSurplusPercent,
       
   978   float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
       
   979   BeginSweepClosure bsc(coalSurplusPercent, inter_sweep_current,
       
   980                                             inter_sweep_estimate,
       
   981                                             intra_sweep_estimate);
       
   982   bsc.do_tree(root());
       
   983 }
       
   984 
       
   985 // Closures and methods for calculating total bytes returned to the
       
   986 // free lists in the tree.
       
   987 NOT_PRODUCT(
       
   988   class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure {
       
   989    public:
       
   990     void do_list(FreeList* fl) {
       
   991       fl->set_returnedBytes(0);
       
   992     }
       
   993   };
       
   994 
       
   995   void BinaryTreeDictionary::initializeDictReturnedBytes() {
       
   996     InitializeDictReturnedBytesClosure idrb;
       
   997     idrb.do_tree(root());
       
   998   }
       
   999 
       
  1000   class ReturnedBytesClosure : public AscendTreeCensusClosure {
       
  1001     size_t _dictReturnedBytes;
       
  1002    public:
       
  1003     ReturnedBytesClosure() { _dictReturnedBytes = 0; }
       
  1004     void do_list(FreeList* fl) {
       
  1005       _dictReturnedBytes += fl->returnedBytes();
       
  1006     }
       
  1007     size_t dictReturnedBytes() { return _dictReturnedBytes; }
       
  1008   };
       
  1009 
       
  1010   size_t BinaryTreeDictionary::sumDictReturnedBytes() {
       
  1011     ReturnedBytesClosure rbc;
       
  1012     rbc.do_tree(root());
       
  1013 
       
  1014     return rbc.dictReturnedBytes();
       
  1015   }
       
  1016 
       
  1017   // Count the number of entries in the tree.
       
  1018   class treeCountClosure : public DescendTreeCensusClosure {
       
  1019    public:
       
  1020     uint count;
       
  1021     treeCountClosure(uint c) { count = c; }
       
  1022     void do_list(FreeList* fl) {
       
  1023       count++;
       
  1024     }
       
  1025   };
       
  1026 
       
  1027   size_t BinaryTreeDictionary::totalCount() {
       
  1028     treeCountClosure ctc(0);
       
  1029     ctc.do_tree(root());
       
  1030     return ctc.count;
       
  1031   }
       
  1032 )
       
  1033 
       
  1034 // Calculate surpluses for the lists in the tree.
       
  1035 class setTreeSurplusClosure : public AscendTreeCensusClosure {
       
  1036   double percentage;
       
  1037  public:
       
  1038   setTreeSurplusClosure(double v) { percentage = v; }
       
  1039   void do_list(FreeList* fl) {
       
  1040     double splitSurplusPercent = percentage;
       
  1041     fl->set_surplus(fl->count() -
       
  1042                    (ssize_t)((double)fl->desired() * splitSurplusPercent));
       
  1043   }
       
  1044 };
       
  1045 
       
  1046 void BinaryTreeDictionary::setTreeSurplus(double splitSurplusPercent) {
       
  1047   setTreeSurplusClosure sts(splitSurplusPercent);
       
  1048   sts.do_tree(root());
       
  1049 }
       
  1050 
       
  1051 // Set hints for the lists in the tree.
       
  1052 class setTreeHintsClosure : public DescendTreeCensusClosure {
       
  1053   size_t hint;
       
  1054  public:
       
  1055   setTreeHintsClosure(size_t v) { hint = v; }
       
  1056   void do_list(FreeList* fl) {
       
  1057     fl->set_hint(hint);
       
  1058     assert(fl->hint() == 0 || fl->hint() > fl->size(),
       
  1059       "Current hint is inconsistent");
       
  1060     if (fl->surplus() > 0) {
       
  1061       hint = fl->size();
       
  1062     }
       
  1063   }
       
  1064 };
       
  1065 
       
  1066 void BinaryTreeDictionary::setTreeHints(void) {
       
  1067   setTreeHintsClosure sth(0);
       
  1068   sth.do_tree(root());
       
  1069 }
       
  1070 
       
  1071 // Save count before previous sweep and splits and coalesces.
       
  1072 class clearTreeCensusClosure : public AscendTreeCensusClosure {
       
  1073   void do_list(FreeList* fl) {
       
  1074     fl->set_prevSweep(fl->count());
       
  1075     fl->set_coalBirths(0);
       
  1076     fl->set_coalDeaths(0);
       
  1077     fl->set_splitBirths(0);
       
  1078     fl->set_splitDeaths(0);
       
  1079   }
       
  1080 };
       
  1081 
       
  1082 void BinaryTreeDictionary::clearTreeCensus(void) {
       
  1083   clearTreeCensusClosure ctc;
       
  1084   ctc.do_tree(root());
       
  1085 }
       
  1086 
       
  1087 // Do reporting and post sweep clean up.
       
  1088 void BinaryTreeDictionary::endSweepDictCensus(double splitSurplusPercent) {
       
  1089   // Does walking the tree 3 times hurt?
       
  1090   setTreeSurplus(splitSurplusPercent);
       
  1091   setTreeHints();
       
  1092   if (PrintGC && Verbose) {
       
  1093     reportStatistics();
       
  1094   }
       
  1095   clearTreeCensus();
       
  1096 }
       
  1097 
       
  1098 // Print summary statistics
       
  1099 void BinaryTreeDictionary::reportStatistics() const {
       
  1100   verify_par_locked();
       
  1101   gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
       
  1102          "------------------------------------\n");
       
  1103   size_t totalSize = totalChunkSize(debug_only(NULL));
       
  1104   size_t    freeBlocks = numFreeBlocks();
       
  1105   gclog_or_tty->print("Total Free Space: %d\n", totalSize);
       
  1106   gclog_or_tty->print("Max   Chunk Size: %d\n", maxChunkSize());
       
  1107   gclog_or_tty->print("Number of Blocks: %d\n", freeBlocks);
       
  1108   if (freeBlocks > 0) {
       
  1109     gclog_or_tty->print("Av.  Block  Size: %d\n", totalSize/freeBlocks);
       
  1110   }
       
  1111   gclog_or_tty->print("Tree      Height: %d\n", treeHeight());
       
  1112 }
       
  1113 
       
  1114 // Print census information - counts, births, deaths, etc.
       
  1115 // for each list in the tree.  Also print some summary
       
  1116 // information.
       
  1117 class PrintTreeCensusClosure : public AscendTreeCensusClosure {
       
  1118   int _print_line;
       
  1119   size_t _totalFree;
       
  1120   FreeList _total;
       
  1121 
       
  1122  public:
       
  1123   PrintTreeCensusClosure() {
       
  1124     _print_line = 0;
       
  1125     _totalFree = 0;
       
  1126   }
       
  1127   FreeList* total() { return &_total; }
       
  1128   size_t totalFree() { return _totalFree; }
       
  1129   void do_list(FreeList* fl) {
       
  1130     if (++_print_line >= 40) {
       
  1131       FreeList::print_labels_on(gclog_or_tty, "size");
       
  1132       _print_line = 0;
       
  1133     }
       
  1134     fl->print_on(gclog_or_tty);
       
  1135     _totalFree +=            fl->count()            * fl->size()        ;
       
  1136     total()->set_count(      total()->count()       + fl->count()      );
       
  1137     total()->set_bfrSurp(    total()->bfrSurp()     + fl->bfrSurp()    );
       
  1138     total()->set_surplus(    total()->splitDeaths() + fl->surplus()    );
       
  1139     total()->set_desired(    total()->desired()     + fl->desired()    );
       
  1140     total()->set_prevSweep(  total()->prevSweep()   + fl->prevSweep()  );
       
  1141     total()->set_beforeSweep(total()->beforeSweep() + fl->beforeSweep());
       
  1142     total()->set_coalBirths( total()->coalBirths()  + fl->coalBirths() );
       
  1143     total()->set_coalDeaths( total()->coalDeaths()  + fl->coalDeaths() );
       
  1144     total()->set_splitBirths(total()->splitBirths() + fl->splitBirths());
       
  1145     total()->set_splitDeaths(total()->splitDeaths() + fl->splitDeaths());
       
  1146   }
       
  1147 };
       
  1148 
       
  1149 void BinaryTreeDictionary::printDictCensus(void) const {
       
  1150 
       
  1151   gclog_or_tty->print("\nBinaryTree\n");
       
  1152   FreeList::print_labels_on(gclog_or_tty, "size");
       
  1153   PrintTreeCensusClosure ptc;
       
  1154   ptc.do_tree(root());
       
  1155 
       
  1156   FreeList* total = ptc.total();
       
  1157   FreeList::print_labels_on(gclog_or_tty, " ");
       
  1158   total->print_on(gclog_or_tty, "TOTAL\t");
       
  1159   gclog_or_tty->print(
       
  1160               "totalFree(words): " SIZE_FORMAT_W(16)
       
  1161               " growth: %8.5f  deficit: %8.5f\n",
       
  1162               ptc.totalFree(),
       
  1163               (double)(total->splitBirths() + total->coalBirths()
       
  1164                      - total->splitDeaths() - total->coalDeaths())
       
  1165               /(total->prevSweep() != 0 ? (double)total->prevSweep() : 1.0),
       
  1166              (double)(total->desired() - total->count())
       
  1167              /(total->desired() != 0 ? (double)total->desired() : 1.0));
       
  1168 }
       
  1169 
       
  1170 class PrintFreeListsClosure : public AscendTreeCensusClosure {
       
  1171   outputStream* _st;
       
  1172   int _print_line;
       
  1173 
       
  1174  public:
       
  1175   PrintFreeListsClosure(outputStream* st) {
       
  1176     _st = st;
       
  1177     _print_line = 0;
       
  1178   }
       
  1179   void do_list(FreeList* fl) {
       
  1180     if (++_print_line >= 40) {
       
  1181       FreeList::print_labels_on(_st, "size");
       
  1182       _print_line = 0;
       
  1183     }
       
  1184     fl->print_on(gclog_or_tty);
       
  1185     size_t sz = fl->size();
       
  1186     for (FreeChunk* fc = fl->head(); fc != NULL;
       
  1187          fc = fc->next()) {
       
  1188       _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ")  %s",
       
  1189                     fc, (HeapWord*)fc + sz,
       
  1190                     fc->cantCoalesce() ? "\t CC" : "");
       
  1191     }
       
  1192   }
       
  1193 };
       
  1194 
       
  1195 void BinaryTreeDictionary::print_free_lists(outputStream* st) const {
       
  1196 
       
  1197   FreeList::print_labels_on(st, "size");
       
  1198   PrintFreeListsClosure pflc(st);
       
  1199   pflc.do_tree(root());
       
  1200 }
       
  1201 
       
  1202 // Verify the following tree invariants:
       
  1203 // . _root has no parent
       
  1204 // . parent and child point to each other
       
  1205 // . each node's key correctly related to that of its child(ren)
       
  1206 void BinaryTreeDictionary::verifyTree() const {
       
  1207   guarantee(root() == NULL || totalFreeBlocks() == 0 ||
       
  1208     totalSize() != 0, "_totalSize should't be 0?");
       
  1209   guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
       
  1210   verifyTreeHelper(root());
       
  1211 }
       
  1212 
       
  1213 size_t BinaryTreeDictionary::verifyPrevFreePtrs(TreeList* tl) {
       
  1214   size_t ct = 0;
       
  1215   for (FreeChunk* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
       
  1216     ct++;
       
  1217     assert(curFC->prev() == NULL || curFC->prev()->isFree(),
       
  1218       "Chunk should be free");
       
  1219   }
       
  1220   return ct;
       
  1221 }
       
  1222 
       
  1223 // Note: this helper is recursive rather than iterative, so use with
       
  1224 // caution on very deep trees; and watch out for stack overflow errors;
       
  1225 // In general, to be used only for debugging.
       
  1226 void BinaryTreeDictionary::verifyTreeHelper(TreeList* tl) const {
       
  1227   if (tl == NULL)
       
  1228     return;
       
  1229   guarantee(tl->size() != 0, "A list must has a size");
       
  1230   guarantee(tl->left()  == NULL || tl->left()->parent()  == tl,
       
  1231          "parent<-/->left");
       
  1232   guarantee(tl->right() == NULL || tl->right()->parent() == tl,
       
  1233          "parent<-/->right");;
       
  1234   guarantee(tl->left() == NULL  || tl->left()->size()    <  tl->size(),
       
  1235          "parent !> left");
       
  1236   guarantee(tl->right() == NULL || tl->right()->size()   >  tl->size(),
       
  1237          "parent !< left");
       
  1238   guarantee(tl->head() == NULL || tl->head()->isFree(), "!Free");
       
  1239   guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
       
  1240     "list inconsistency");
       
  1241   guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
       
  1242     "list count is inconsistent");
       
  1243   guarantee(tl->count() > 1 || tl->head() == tl->tail(),
       
  1244     "list is incorrectly constructed");
       
  1245   size_t count = verifyPrevFreePtrs(tl);
       
  1246   guarantee(count == (size_t)tl->count(), "Node count is incorrect");
       
  1247   if (tl->head() != NULL) {
       
  1248     tl->head_as_TreeChunk()->verifyTreeChunkList();
       
  1249   }
       
  1250   verifyTreeHelper(tl->left());
       
  1251   verifyTreeHelper(tl->right());
       
  1252 }
       
  1253 
       
  1254 void BinaryTreeDictionary::verify() const {
       
  1255   verifyTree();
       
  1256   guarantee(totalSize() == totalSizeInTree(root()), "Total Size inconsistency");
       
  1257 }