|
1 /* |
|
2 * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved. |
|
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 * |
|
5 * This code is free software; you can redistribute it and/or modify it |
|
6 * under the terms of the GNU General Public License version 2 only, as |
|
7 * published by the Free Software Foundation. Oracle designates this |
|
8 * particular file as subject to the "Classpath" exception as provided |
|
9 * by Oracle in the LICENSE file that accompanied this code. |
|
10 * |
|
11 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
14 * version 2 for more details (a copy is included in the LICENSE file that |
|
15 * accompanied this code). |
|
16 * |
|
17 * You should have received a copy of the GNU General Public License version |
|
18 * 2 along with this work; if not, write to the Free Software Foundation, |
|
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
20 * |
|
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
22 * or visit www.oracle.com if you need additional information or have any |
|
23 * questions. |
|
24 */ |
|
25 package sun.java2d.marlin; |
|
26 |
|
27 import sun.misc.DoubleConsts; |
|
28 import sun.misc.FloatConsts; |
|
29 |
|
30 /** |
|
31 * Faster Math ceil / floor routines derived from StrictMath |
|
32 */ |
|
33 public final class FloatMath implements MarlinConst { |
|
34 |
|
35 // overflow / NaN handling enabled: |
|
36 static final boolean CHECK_OVERFLOW = true; |
|
37 static final boolean CHECK_NAN = true; |
|
38 |
|
39 private FloatMath() { |
|
40 // utility class |
|
41 } |
|
42 |
|
43 // faster inlined min/max functions in the branch prediction is high |
|
44 static float max(final float a, final float b) { |
|
45 // no NaN handling |
|
46 return (a >= b) ? a : b; |
|
47 } |
|
48 |
|
49 static int max(final int a, final int b) { |
|
50 return (a >= b) ? a : b; |
|
51 } |
|
52 |
|
53 static int min(final int a, final int b) { |
|
54 return (a <= b) ? a : b; |
|
55 } |
|
56 |
|
57 /** |
|
58 * Returns the smallest (closest to negative infinity) {@code float} value |
|
59 * that is greater than or equal to the argument and is equal to a |
|
60 * mathematical integer. Special cases: |
|
61 * <ul><li>If the argument value is already equal to a mathematical integer, |
|
62 * then the result is the same as the argument. <li>If the argument is NaN |
|
63 * or an infinity or positive zero or negative zero, then the result is the |
|
64 * same as the argument. <li>If the argument value is less than zero but |
|
65 * greater than -1.0, then the result is negative zero.</ul> Note that the |
|
66 * value of {@code StrictMath.ceil(x)} is exactly the value of |
|
67 * {@code -StrictMath.floor(-x)}. |
|
68 * |
|
69 * @param a a value. |
|
70 * @return the smallest (closest to negative infinity) floating-point value |
|
71 * that is greater than or equal to the argument and is equal to a |
|
72 * mathematical integer. |
|
73 */ |
|
74 public static float ceil_f(final float a) { |
|
75 // Derived from StrictMath.ceil(double): |
|
76 |
|
77 // Inline call to Math.getExponent(a) to |
|
78 // compute only once Float.floatToRawIntBits(a) |
|
79 final int doppel = Float.floatToRawIntBits(a); |
|
80 |
|
81 final int exponent = ((doppel & FloatConsts.EXP_BIT_MASK) |
|
82 >> (FloatConsts.SIGNIFICAND_WIDTH - 1)) |
|
83 - FloatConsts.EXP_BIAS; |
|
84 |
|
85 if (exponent < 0) { |
|
86 /* |
|
87 * Absolute value of argument is less than 1. |
|
88 * floorOrceil(-0.0) => -0.0 |
|
89 * floorOrceil(+0.0) => +0.0 |
|
90 */ |
|
91 return ((a == 0) ? a : |
|
92 ( (a < 0f) ? -0f : 1f) ); |
|
93 } |
|
94 if (CHECK_OVERFLOW && (exponent >= 23)) { // 52 for double |
|
95 /* |
|
96 * Infinity, NaN, or a value so large it must be integral. |
|
97 */ |
|
98 return a; |
|
99 } |
|
100 // Else the argument is either an integral value already XOR it |
|
101 // has to be rounded to one. |
|
102 assert exponent >= 0 && exponent <= 22; // 51 for double |
|
103 |
|
104 final int intpart = doppel |
|
105 & (~(FloatConsts.SIGNIF_BIT_MASK >> exponent)); |
|
106 |
|
107 if (intpart == doppel) { |
|
108 return a; // integral value (including 0) |
|
109 } |
|
110 |
|
111 // 0 handled above as an integer |
|
112 // sign: 1 for negative, 0 for positive numbers |
|
113 // add : 0 for negative and 1 for positive numbers |
|
114 return Float.intBitsToFloat(intpart) + ((~intpart) >>> 31); |
|
115 } |
|
116 |
|
117 /** |
|
118 * Returns the largest (closest to positive infinity) {@code float} value |
|
119 * that is less than or equal to the argument and is equal to a mathematical |
|
120 * integer. Special cases: |
|
121 * <ul><li>If the argument value is already equal to a mathematical integer, |
|
122 * then the result is the same as the argument. <li>If the argument is NaN |
|
123 * or an infinity or positive zero or negative zero, then the result is the |
|
124 * same as the argument.</ul> |
|
125 * |
|
126 * @param a a value. |
|
127 * @return the largest (closest to positive infinity) floating-point value |
|
128 * that less than or equal to the argument and is equal to a mathematical |
|
129 * integer. |
|
130 */ |
|
131 public static float floor_f(final float a) { |
|
132 // Derived from StrictMath.floor(double): |
|
133 |
|
134 // Inline call to Math.getExponent(a) to |
|
135 // compute only once Float.floatToRawIntBits(a) |
|
136 final int doppel = Float.floatToRawIntBits(a); |
|
137 |
|
138 final int exponent = ((doppel & FloatConsts.EXP_BIT_MASK) |
|
139 >> (FloatConsts.SIGNIFICAND_WIDTH - 1)) |
|
140 - FloatConsts.EXP_BIAS; |
|
141 |
|
142 if (exponent < 0) { |
|
143 /* |
|
144 * Absolute value of argument is less than 1. |
|
145 * floorOrceil(-0.0) => -0.0 |
|
146 * floorOrceil(+0.0) => +0.0 |
|
147 */ |
|
148 return ((a == 0) ? a : |
|
149 ( (a < 0f) ? -1f : 0f) ); |
|
150 } |
|
151 if (CHECK_OVERFLOW && (exponent >= 23)) { // 52 for double |
|
152 /* |
|
153 * Infinity, NaN, or a value so large it must be integral. |
|
154 */ |
|
155 return a; |
|
156 } |
|
157 // Else the argument is either an integral value already XOR it |
|
158 // has to be rounded to one. |
|
159 assert exponent >= 0 && exponent <= 22; // 51 for double |
|
160 |
|
161 final int intpart = doppel |
|
162 & (~(FloatConsts.SIGNIF_BIT_MASK >> exponent)); |
|
163 |
|
164 if (intpart == doppel) { |
|
165 return a; // integral value (including 0) |
|
166 } |
|
167 |
|
168 // 0 handled above as an integer |
|
169 // sign: 1 for negative, 0 for positive numbers |
|
170 // add : -1 for negative and 0 for positive numbers |
|
171 return Float.intBitsToFloat(intpart) + (intpart >> 31); |
|
172 } |
|
173 |
|
174 /** |
|
175 * Faster alternative to ceil(float) optimized for the integer domain |
|
176 * and supporting NaN and +/-Infinity. |
|
177 * |
|
178 * @param a a value. |
|
179 * @return the largest (closest to positive infinity) integer value |
|
180 * that less than or equal to the argument and is equal to a mathematical |
|
181 * integer. |
|
182 */ |
|
183 public static int ceil_int(final float a) { |
|
184 final int intpart = (int) a; |
|
185 |
|
186 if (a <= intpart |
|
187 || (CHECK_OVERFLOW && intpart == Integer.MAX_VALUE) |
|
188 || CHECK_NAN && Float.isNaN(a)) { |
|
189 return intpart; |
|
190 } |
|
191 return intpart + 1; |
|
192 } |
|
193 |
|
194 /** |
|
195 * Faster alternative to floor(float) optimized for the integer domain |
|
196 * and supporting NaN and +/-Infinity. |
|
197 * |
|
198 * @param a a value. |
|
199 * @return the largest (closest to positive infinity) floating-point value |
|
200 * that less than or equal to the argument and is equal to a mathematical |
|
201 * integer. |
|
202 */ |
|
203 public static int floor_int(final float a) { |
|
204 final int intpart = (int) a; |
|
205 |
|
206 if (a >= intpart |
|
207 || (CHECK_OVERFLOW && intpart == Integer.MIN_VALUE) |
|
208 || CHECK_NAN && Float.isNaN(a)) { |
|
209 return intpart; |
|
210 } |
|
211 return intpart - 1; |
|
212 } |
|
213 |
|
214 /** |
|
215 * Returns a floating-point power of two in the normal range. |
|
216 */ |
|
217 static double powerOfTwoD(int n) { |
|
218 assert (n >= DoubleConsts.MIN_EXPONENT && n <= DoubleConsts.MAX_EXPONENT); |
|
219 return Double.longBitsToDouble((((long) n + (long) DoubleConsts.EXP_BIAS) |
|
220 << (DoubleConsts.SIGNIFICAND_WIDTH - 1)) |
|
221 & DoubleConsts.EXP_BIT_MASK); |
|
222 } |
|
223 } |