hotspot/src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp
changeset 1374 4c24294029a9
child 1385 1751733b089b
equal deleted inserted replaced
615:570062d730b2 1374:4c24294029a9
       
     1 /*
       
     2  * Copyright 2001-2007 Sun Microsystems, Inc.  All Rights Reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    21  * have any questions.
       
    22  *
       
    23  */
       
    24 
       
    25 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
       
    26 // It uses the "Garbage First" heap organization and algorithm, which
       
    27 // may combine concurrent marking with parallel, incremental compaction of
       
    28 // heap subsets that will yield large amounts of garbage.
       
    29 
       
    30 class HeapRegion;
       
    31 class HeapRegionSeq;
       
    32 class HeapRegionList;
       
    33 class PermanentGenerationSpec;
       
    34 class GenerationSpec;
       
    35 class OopsInHeapRegionClosure;
       
    36 class G1ScanHeapEvacClosure;
       
    37 class ObjectClosure;
       
    38 class SpaceClosure;
       
    39 class CompactibleSpaceClosure;
       
    40 class Space;
       
    41 class G1CollectorPolicy;
       
    42 class GenRemSet;
       
    43 class G1RemSet;
       
    44 class HeapRegionRemSetIterator;
       
    45 class ConcurrentMark;
       
    46 class ConcurrentMarkThread;
       
    47 class ConcurrentG1Refine;
       
    48 class ConcurrentZFThread;
       
    49 
       
    50 // If want to accumulate detailed statistics on work queues
       
    51 // turn this on.
       
    52 #define G1_DETAILED_STATS 0
       
    53 
       
    54 #if G1_DETAILED_STATS
       
    55 #  define IF_G1_DETAILED_STATS(code) code
       
    56 #else
       
    57 #  define IF_G1_DETAILED_STATS(code)
       
    58 #endif
       
    59 
       
    60 typedef GenericTaskQueue<oop*>    RefToScanQueue;
       
    61 typedef GenericTaskQueueSet<oop*> RefToScanQueueSet;
       
    62 
       
    63 enum G1GCThreadGroups {
       
    64   G1CRGroup = 0,
       
    65   G1ZFGroup = 1,
       
    66   G1CMGroup = 2,
       
    67   G1CLGroup = 3
       
    68 };
       
    69 
       
    70 enum GCAllocPurpose {
       
    71   GCAllocForTenured,
       
    72   GCAllocForSurvived,
       
    73   GCAllocPurposeCount
       
    74 };
       
    75 
       
    76 class YoungList : public CHeapObj {
       
    77 private:
       
    78   G1CollectedHeap* _g1h;
       
    79 
       
    80   HeapRegion* _head;
       
    81 
       
    82   HeapRegion* _scan_only_head;
       
    83   HeapRegion* _scan_only_tail;
       
    84   size_t      _length;
       
    85   size_t      _scan_only_length;
       
    86 
       
    87   size_t      _last_sampled_rs_lengths;
       
    88   size_t      _sampled_rs_lengths;
       
    89   HeapRegion* _curr;
       
    90   HeapRegion* _curr_scan_only;
       
    91 
       
    92   HeapRegion* _survivor_head;
       
    93   HeapRegion* _survivors_tail;
       
    94   size_t      _survivor_length;
       
    95 
       
    96   void          empty_list(HeapRegion* list);
       
    97 
       
    98 public:
       
    99   YoungList(G1CollectedHeap* g1h);
       
   100 
       
   101   void          push_region(HeapRegion* hr);
       
   102   void          add_survivor_region(HeapRegion* hr);
       
   103   HeapRegion*   pop_region();
       
   104   void          empty_list();
       
   105   bool          is_empty() { return _length == 0; }
       
   106   size_t        length() { return _length; }
       
   107   size_t        scan_only_length() { return _scan_only_length; }
       
   108 
       
   109   void rs_length_sampling_init();
       
   110   bool rs_length_sampling_more();
       
   111   void rs_length_sampling_next();
       
   112 
       
   113   void reset_sampled_info() {
       
   114     _last_sampled_rs_lengths =   0;
       
   115   }
       
   116   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
       
   117 
       
   118   // for development purposes
       
   119   void reset_auxilary_lists();
       
   120   HeapRegion* first_region() { return _head; }
       
   121   HeapRegion* first_scan_only_region() { return _scan_only_head; }
       
   122   HeapRegion* first_survivor_region() { return _survivor_head; }
       
   123   HeapRegion* par_get_next_scan_only_region() {
       
   124     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
       
   125     HeapRegion* ret = _curr_scan_only;
       
   126     if (ret != NULL)
       
   127       _curr_scan_only = ret->get_next_young_region();
       
   128     return ret;
       
   129   }
       
   130 
       
   131   // debugging
       
   132   bool          check_list_well_formed();
       
   133   bool          check_list_empty(bool ignore_scan_only_list,
       
   134                                  bool check_sample = true);
       
   135   void          print();
       
   136 };
       
   137 
       
   138 class RefineCardTableEntryClosure;
       
   139 class G1CollectedHeap : public SharedHeap {
       
   140   friend class VM_G1CollectForAllocation;
       
   141   friend class VM_GenCollectForPermanentAllocation;
       
   142   friend class VM_G1CollectFull;
       
   143   friend class VM_G1IncCollectionPause;
       
   144   friend class VM_G1PopRegionCollectionPause;
       
   145   friend class VMStructs;
       
   146 
       
   147   // Closures used in implementation.
       
   148   friend class G1ParCopyHelper;
       
   149   friend class G1IsAliveClosure;
       
   150   friend class G1EvacuateFollowersClosure;
       
   151   friend class G1ParScanThreadState;
       
   152   friend class G1ParScanClosureSuper;
       
   153   friend class G1ParEvacuateFollowersClosure;
       
   154   friend class G1ParTask;
       
   155   friend class G1FreeGarbageRegionClosure;
       
   156   friend class RefineCardTableEntryClosure;
       
   157   friend class G1PrepareCompactClosure;
       
   158   friend class RegionSorter;
       
   159   friend class CountRCClosure;
       
   160   friend class EvacPopObjClosure;
       
   161 
       
   162   // Other related classes.
       
   163   friend class G1MarkSweep;
       
   164 
       
   165 private:
       
   166   enum SomePrivateConstants {
       
   167     VeryLargeInBytes = HeapRegion::GrainBytes/2,
       
   168     VeryLargeInWords = VeryLargeInBytes/HeapWordSize,
       
   169     MinHeapDeltaBytes = 10 * HeapRegion::GrainBytes,      // FIXME
       
   170     NumAPIs = HeapRegion::MaxAge
       
   171   };
       
   172 
       
   173 
       
   174   // The one and only G1CollectedHeap, so static functions can find it.
       
   175   static G1CollectedHeap* _g1h;
       
   176 
       
   177   // Storage for the G1 heap (excludes the permanent generation).
       
   178   VirtualSpace _g1_storage;
       
   179   MemRegion    _g1_reserved;
       
   180 
       
   181   // The part of _g1_storage that is currently committed.
       
   182   MemRegion _g1_committed;
       
   183 
       
   184   // The maximum part of _g1_storage that has ever been committed.
       
   185   MemRegion _g1_max_committed;
       
   186 
       
   187   // The number of regions that are completely free.
       
   188   size_t _free_regions;
       
   189 
       
   190   // The number of regions we could create by expansion.
       
   191   size_t _expansion_regions;
       
   192 
       
   193   // Return the number of free regions in the heap (by direct counting.)
       
   194   size_t count_free_regions();
       
   195   // Return the number of free regions on the free and unclean lists.
       
   196   size_t count_free_regions_list();
       
   197 
       
   198   // The block offset table for the G1 heap.
       
   199   G1BlockOffsetSharedArray* _bot_shared;
       
   200 
       
   201   // Move all of the regions off the free lists, then rebuild those free
       
   202   // lists, before and after full GC.
       
   203   void tear_down_region_lists();
       
   204   void rebuild_region_lists();
       
   205   // This sets all non-empty regions to need zero-fill (which they will if
       
   206   // they are empty after full collection.)
       
   207   void set_used_regions_to_need_zero_fill();
       
   208 
       
   209   // The sequence of all heap regions in the heap.
       
   210   HeapRegionSeq* _hrs;
       
   211 
       
   212   // The region from which normal-sized objects are currently being
       
   213   // allocated.  May be NULL.
       
   214   HeapRegion* _cur_alloc_region;
       
   215 
       
   216   // Postcondition: cur_alloc_region == NULL.
       
   217   void abandon_cur_alloc_region();
       
   218 
       
   219   // The to-space memory regions into which objects are being copied during
       
   220   // a GC.
       
   221   HeapRegion* _gc_alloc_regions[GCAllocPurposeCount];
       
   222   uint _gc_alloc_region_counts[GCAllocPurposeCount];
       
   223 
       
   224   // A list of the regions that have been set to be alloc regions in the
       
   225   // current collection.
       
   226   HeapRegion* _gc_alloc_region_list;
       
   227 
       
   228   // When called by par thread, require par_alloc_during_gc_lock() to be held.
       
   229   void push_gc_alloc_region(HeapRegion* hr);
       
   230 
       
   231   // This should only be called single-threaded.  Undeclares all GC alloc
       
   232   // regions.
       
   233   void forget_alloc_region_list();
       
   234 
       
   235   // Should be used to set an alloc region, because there's other
       
   236   // associated bookkeeping.
       
   237   void set_gc_alloc_region(int purpose, HeapRegion* r);
       
   238 
       
   239   // Check well-formedness of alloc region list.
       
   240   bool check_gc_alloc_regions();
       
   241 
       
   242   // Outside of GC pauses, the number of bytes used in all regions other
       
   243   // than the current allocation region.
       
   244   size_t _summary_bytes_used;
       
   245 
       
   246   // Summary information about popular objects; method to print it.
       
   247   NumberSeq _pop_obj_rc_at_copy;
       
   248   void print_popularity_summary_info() const;
       
   249 
       
   250   unsigned _gc_time_stamp;
       
   251 
       
   252   size_t* _surviving_young_words;
       
   253 
       
   254   void setup_surviving_young_words();
       
   255   void update_surviving_young_words(size_t* surv_young_words);
       
   256   void cleanup_surviving_young_words();
       
   257 
       
   258 protected:
       
   259 
       
   260   // Returns "true" iff none of the gc alloc regions have any allocations
       
   261   // since the last call to "save_marks".
       
   262   bool all_alloc_regions_no_allocs_since_save_marks();
       
   263   // Calls "note_end_of_copying on all gc alloc_regions.
       
   264   void all_alloc_regions_note_end_of_copying();
       
   265 
       
   266   // The number of regions allocated to hold humongous objects.
       
   267   int         _num_humongous_regions;
       
   268   YoungList*  _young_list;
       
   269 
       
   270   // The current policy object for the collector.
       
   271   G1CollectorPolicy* _g1_policy;
       
   272 
       
   273   // Parallel allocation lock to protect the current allocation region.
       
   274   Mutex  _par_alloc_during_gc_lock;
       
   275   Mutex* par_alloc_during_gc_lock() { return &_par_alloc_during_gc_lock; }
       
   276 
       
   277   // If possible/desirable, allocate a new HeapRegion for normal object
       
   278   // allocation sufficient for an allocation of the given "word_size".
       
   279   // If "do_expand" is true, will attempt to expand the heap if necessary
       
   280   // to to satisfy the request.  If "zero_filled" is true, requires a
       
   281   // zero-filled region.
       
   282   // (Returning NULL will trigger a GC.)
       
   283   virtual HeapRegion* newAllocRegion_work(size_t word_size,
       
   284                                           bool do_expand,
       
   285                                           bool zero_filled);
       
   286 
       
   287   virtual HeapRegion* newAllocRegion(size_t word_size,
       
   288                                      bool zero_filled = true) {
       
   289     return newAllocRegion_work(word_size, false, zero_filled);
       
   290   }
       
   291   virtual HeapRegion* newAllocRegionWithExpansion(int purpose,
       
   292                                                   size_t word_size,
       
   293                                                   bool zero_filled = true);
       
   294 
       
   295   // Attempt to allocate an object of the given (very large) "word_size".
       
   296   // Returns "NULL" on failure.
       
   297   virtual HeapWord* humongousObjAllocate(size_t word_size);
       
   298 
       
   299   // If possible, allocate a block of the given word_size, else return "NULL".
       
   300   // Returning NULL will trigger GC or heap expansion.
       
   301   // These two methods have rather awkward pre- and
       
   302   // post-conditions. If they are called outside a safepoint, then
       
   303   // they assume that the caller is holding the heap lock. Upon return
       
   304   // they release the heap lock, if they are returning a non-NULL
       
   305   // value. attempt_allocation_slow() also dirties the cards of a
       
   306   // newly-allocated young region after it releases the heap
       
   307   // lock. This change in interface was the neatest way to achieve
       
   308   // this card dirtying without affecting mem_allocate(), which is a
       
   309   // more frequently called method. We tried two or three different
       
   310   // approaches, but they were even more hacky.
       
   311   HeapWord* attempt_allocation(size_t word_size,
       
   312                                bool permit_collection_pause = true);
       
   313 
       
   314   HeapWord* attempt_allocation_slow(size_t word_size,
       
   315                                     bool permit_collection_pause = true);
       
   316 
       
   317   // Allocate blocks during garbage collection. Will ensure an
       
   318   // allocation region, either by picking one or expanding the
       
   319   // heap, and then allocate a block of the given size. The block
       
   320   // may not be a humongous - it must fit into a single heap region.
       
   321   HeapWord* allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
       
   322   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
       
   323 
       
   324   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
       
   325                                     HeapRegion*    alloc_region,
       
   326                                     bool           par,
       
   327                                     size_t         word_size);
       
   328 
       
   329   // Ensure that no further allocations can happen in "r", bearing in mind
       
   330   // that parallel threads might be attempting allocations.
       
   331   void par_allocate_remaining_space(HeapRegion* r);
       
   332 
       
   333   // Helper function for two callbacks below.
       
   334   // "full", if true, indicates that the GC is for a System.gc() request,
       
   335   // and should collect the entire heap.  If "clear_all_soft_refs" is true,
       
   336   // all soft references are cleared during the GC.  If "full" is false,
       
   337   // "word_size" describes the allocation that the GC should
       
   338   // attempt (at least) to satisfy.
       
   339   void do_collection(bool full, bool clear_all_soft_refs,
       
   340                      size_t word_size);
       
   341 
       
   342   // Callback from VM_G1CollectFull operation.
       
   343   // Perform a full collection.
       
   344   void do_full_collection(bool clear_all_soft_refs);
       
   345 
       
   346   // Resize the heap if necessary after a full collection.  If this is
       
   347   // after a collect-for allocation, "word_size" is the allocation size,
       
   348   // and will be considered part of the used portion of the heap.
       
   349   void resize_if_necessary_after_full_collection(size_t word_size);
       
   350 
       
   351   // Callback from VM_G1CollectForAllocation operation.
       
   352   // This function does everything necessary/possible to satisfy a
       
   353   // failed allocation request (including collection, expansion, etc.)
       
   354   HeapWord* satisfy_failed_allocation(size_t word_size);
       
   355 
       
   356   // Attempting to expand the heap sufficiently
       
   357   // to support an allocation of the given "word_size".  If
       
   358   // successful, perform the allocation and return the address of the
       
   359   // allocated block, or else "NULL".
       
   360   virtual HeapWord* expand_and_allocate(size_t word_size);
       
   361 
       
   362 public:
       
   363   // Expand the garbage-first heap by at least the given size (in bytes!).
       
   364   // (Rounds up to a HeapRegion boundary.)
       
   365   virtual void expand(size_t expand_bytes);
       
   366 
       
   367   // Do anything common to GC's.
       
   368   virtual void gc_prologue(bool full);
       
   369   virtual void gc_epilogue(bool full);
       
   370 
       
   371 protected:
       
   372 
       
   373   // Shrink the garbage-first heap by at most the given size (in bytes!).
       
   374   // (Rounds down to a HeapRegion boundary.)
       
   375   virtual void shrink(size_t expand_bytes);
       
   376   void shrink_helper(size_t expand_bytes);
       
   377 
       
   378   // Do an incremental collection: identify a collection set, and evacuate
       
   379   // its live objects elsewhere.
       
   380   virtual void do_collection_pause();
       
   381 
       
   382   // The guts of the incremental collection pause, executed by the vm
       
   383   // thread.  If "popular_region" is non-NULL, this pause should evacuate
       
   384   // this single region whose remembered set has gotten large, moving
       
   385   // any popular objects to one of the popular regions.
       
   386   virtual void do_collection_pause_at_safepoint(HeapRegion* popular_region);
       
   387 
       
   388   // Actually do the work of evacuating the collection set.
       
   389   virtual void evacuate_collection_set();
       
   390 
       
   391   // If this is an appropriate right time, do a collection pause.
       
   392   // The "word_size" argument, if non-zero, indicates the size of an
       
   393   // allocation request that is prompting this query.
       
   394   void do_collection_pause_if_appropriate(size_t word_size);
       
   395 
       
   396   // The g1 remembered set of the heap.
       
   397   G1RemSet* _g1_rem_set;
       
   398   // And it's mod ref barrier set, used to track updates for the above.
       
   399   ModRefBarrierSet* _mr_bs;
       
   400 
       
   401   // The Heap Region Rem Set Iterator.
       
   402   HeapRegionRemSetIterator** _rem_set_iterator;
       
   403 
       
   404   // The closure used to refine a single card.
       
   405   RefineCardTableEntryClosure* _refine_cte_cl;
       
   406 
       
   407   // A function to check the consistency of dirty card logs.
       
   408   void check_ct_logs_at_safepoint();
       
   409 
       
   410   // After a collection pause, make the regions in the CS into free
       
   411   // regions.
       
   412   void free_collection_set(HeapRegion* cs_head);
       
   413 
       
   414   // Applies "scan_non_heap_roots" to roots outside the heap,
       
   415   // "scan_rs" to roots inside the heap (having done "set_region" to
       
   416   // indicate the region in which the root resides), and does "scan_perm"
       
   417   // (setting the generation to the perm generation.)  If "scan_rs" is
       
   418   // NULL, then this step is skipped.  The "worker_i"
       
   419   // param is for use with parallel roots processing, and should be
       
   420   // the "i" of the calling parallel worker thread's work(i) function.
       
   421   // In the sequential case this param will be ignored.
       
   422   void g1_process_strong_roots(bool collecting_perm_gen,
       
   423                                SharedHeap::ScanningOption so,
       
   424                                OopClosure* scan_non_heap_roots,
       
   425                                OopsInHeapRegionClosure* scan_rs,
       
   426                                OopsInHeapRegionClosure* scan_so,
       
   427                                OopsInGenClosure* scan_perm,
       
   428                                int worker_i);
       
   429 
       
   430   void scan_scan_only_set(OopsInHeapRegionClosure* oc,
       
   431                           int worker_i);
       
   432   void scan_scan_only_region(HeapRegion* hr,
       
   433                              OopsInHeapRegionClosure* oc,
       
   434                              int worker_i);
       
   435 
       
   436   // Apply "blk" to all the weak roots of the system.  These include
       
   437   // JNI weak roots, the code cache, system dictionary, symbol table,
       
   438   // string table, and referents of reachable weak refs.
       
   439   void g1_process_weak_roots(OopClosure* root_closure,
       
   440                              OopClosure* non_root_closure);
       
   441 
       
   442   // Invoke "save_marks" on all heap regions.
       
   443   void save_marks();
       
   444 
       
   445   // Free a heap region.
       
   446   void free_region(HeapRegion* hr);
       
   447   // A component of "free_region", exposed for 'batching'.
       
   448   // All the params after "hr" are out params: the used bytes of the freed
       
   449   // region(s), the number of H regions cleared, the number of regions
       
   450   // freed, and pointers to the head and tail of a list of freed contig
       
   451   // regions, linked throught the "next_on_unclean_list" field.
       
   452   void free_region_work(HeapRegion* hr,
       
   453                         size_t& pre_used,
       
   454                         size_t& cleared_h,
       
   455                         size_t& freed_regions,
       
   456                         UncleanRegionList* list,
       
   457                         bool par = false);
       
   458 
       
   459 
       
   460   // The concurrent marker (and the thread it runs in.)
       
   461   ConcurrentMark* _cm;
       
   462   ConcurrentMarkThread* _cmThread;
       
   463   bool _mark_in_progress;
       
   464 
       
   465   // The concurrent refiner.
       
   466   ConcurrentG1Refine* _cg1r;
       
   467 
       
   468   // The concurrent zero-fill thread.
       
   469   ConcurrentZFThread* _czft;
       
   470 
       
   471   // The parallel task queues
       
   472   RefToScanQueueSet *_task_queues;
       
   473 
       
   474   // True iff a evacuation has failed in the current collection.
       
   475   bool _evacuation_failed;
       
   476 
       
   477   // Set the attribute indicating whether evacuation has failed in the
       
   478   // current collection.
       
   479   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
       
   480 
       
   481   // Failed evacuations cause some logical from-space objects to have
       
   482   // forwarding pointers to themselves.  Reset them.
       
   483   void remove_self_forwarding_pointers();
       
   484 
       
   485   // When one is non-null, so is the other.  Together, they each pair is
       
   486   // an object with a preserved mark, and its mark value.
       
   487   GrowableArray<oop>*     _objs_with_preserved_marks;
       
   488   GrowableArray<markOop>* _preserved_marks_of_objs;
       
   489 
       
   490   // Preserve the mark of "obj", if necessary, in preparation for its mark
       
   491   // word being overwritten with a self-forwarding-pointer.
       
   492   void preserve_mark_if_necessary(oop obj, markOop m);
       
   493 
       
   494   // The stack of evac-failure objects left to be scanned.
       
   495   GrowableArray<oop>*    _evac_failure_scan_stack;
       
   496   // The closure to apply to evac-failure objects.
       
   497 
       
   498   OopsInHeapRegionClosure* _evac_failure_closure;
       
   499   // Set the field above.
       
   500   void
       
   501   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
       
   502     _evac_failure_closure = evac_failure_closure;
       
   503   }
       
   504 
       
   505   // Push "obj" on the scan stack.
       
   506   void push_on_evac_failure_scan_stack(oop obj);
       
   507   // Process scan stack entries until the stack is empty.
       
   508   void drain_evac_failure_scan_stack();
       
   509   // True iff an invocation of "drain_scan_stack" is in progress; to
       
   510   // prevent unnecessary recursion.
       
   511   bool _drain_in_progress;
       
   512 
       
   513   // Do any necessary initialization for evacuation-failure handling.
       
   514   // "cl" is the closure that will be used to process evac-failure
       
   515   // objects.
       
   516   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
       
   517   // Do any necessary cleanup for evacuation-failure handling data
       
   518   // structures.
       
   519   void finalize_for_evac_failure();
       
   520 
       
   521   // An attempt to evacuate "obj" has failed; take necessary steps.
       
   522   void handle_evacuation_failure(oop obj);
       
   523   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
       
   524   void handle_evacuation_failure_common(oop obj, markOop m);
       
   525 
       
   526 
       
   527   // Ensure that the relevant gc_alloc regions are set.
       
   528   void get_gc_alloc_regions();
       
   529   // We're done with GC alloc regions; release them, as appropriate.
       
   530   void release_gc_alloc_regions();
       
   531 
       
   532   // ("Weak") Reference processing support
       
   533   ReferenceProcessor* _ref_processor;
       
   534 
       
   535   enum G1H_process_strong_roots_tasks {
       
   536     G1H_PS_mark_stack_oops_do,
       
   537     G1H_PS_refProcessor_oops_do,
       
   538     // Leave this one last.
       
   539     G1H_PS_NumElements
       
   540   };
       
   541 
       
   542   SubTasksDone* _process_strong_tasks;
       
   543 
       
   544   // Allocate space to hold a popular object.  Result is guaranteed below
       
   545   // "popular_object_boundary()".  Note: CURRENTLY halts the system if we
       
   546   // run out of space to hold popular objects.
       
   547   HeapWord* allocate_popular_object(size_t word_size);
       
   548 
       
   549   // The boundary between popular and non-popular objects.
       
   550   HeapWord* _popular_object_boundary;
       
   551 
       
   552   HeapRegionList* _popular_regions_to_be_evacuated;
       
   553 
       
   554   // Compute which objects in "single_region" are popular.  If any are,
       
   555   // evacuate them to a popular region, leaving behind forwarding pointers,
       
   556   // and select "popular_region" as the single collection set region.
       
   557   // Otherwise, leave the collection set null.
       
   558   void popularity_pause_preamble(HeapRegion* populer_region);
       
   559 
       
   560   // Compute which objects in "single_region" are popular, and evacuate
       
   561   // them to a popular region, leaving behind forwarding pointers.
       
   562   // Returns "true" if at least one popular object is discovered and
       
   563   // evacuated.  In any case, "*max_rc" is set to the maximum reference
       
   564   // count of an object in the region.
       
   565   bool compute_reference_counts_and_evac_popular(HeapRegion* populer_region,
       
   566                                                  size_t* max_rc);
       
   567   // Subroutines used in the above.
       
   568   bool _rc_region_above;
       
   569   size_t _rc_region_diff;
       
   570   jint* obj_rc_addr(oop obj) {
       
   571     uintptr_t obj_addr = (uintptr_t)obj;
       
   572     if (_rc_region_above) {
       
   573       jint* res = (jint*)(obj_addr + _rc_region_diff);
       
   574       assert((uintptr_t)res > obj_addr, "RC region is above.");
       
   575       return res;
       
   576     } else {
       
   577       jint* res = (jint*)(obj_addr - _rc_region_diff);
       
   578       assert((uintptr_t)res < obj_addr, "RC region is below.");
       
   579       return res;
       
   580     }
       
   581   }
       
   582   jint obj_rc(oop obj) {
       
   583     return *obj_rc_addr(obj);
       
   584   }
       
   585   void inc_obj_rc(oop obj) {
       
   586     (*obj_rc_addr(obj))++;
       
   587   }
       
   588   void atomic_inc_obj_rc(oop obj);
       
   589 
       
   590 
       
   591   // Number of popular objects and bytes (latter is cheaper!).
       
   592   size_t pop_object_used_objs();
       
   593   size_t pop_object_used_bytes();
       
   594 
       
   595   // Index of the popular region in which allocation is currently being
       
   596   // done.
       
   597   int _cur_pop_hr_index;
       
   598 
       
   599   // List of regions which require zero filling.
       
   600   UncleanRegionList _unclean_region_list;
       
   601   bool _unclean_regions_coming;
       
   602 
       
   603   bool check_age_cohort_well_formed_work(int a, HeapRegion* hr);
       
   604 
       
   605 public:
       
   606   void set_refine_cte_cl_concurrency(bool concurrent);
       
   607 
       
   608   RefToScanQueue *task_queue(int i);
       
   609 
       
   610   // Create a G1CollectedHeap with the specified policy.
       
   611   // Must call the initialize method afterwards.
       
   612   // May not return if something goes wrong.
       
   613   G1CollectedHeap(G1CollectorPolicy* policy);
       
   614 
       
   615   // Initialize the G1CollectedHeap to have the initial and
       
   616   // maximum sizes, permanent generation, and remembered and barrier sets
       
   617   // specified by the policy object.
       
   618   jint initialize();
       
   619 
       
   620   void ref_processing_init();
       
   621 
       
   622   void set_par_threads(int t) {
       
   623     SharedHeap::set_par_threads(t);
       
   624     _process_strong_tasks->set_par_threads(t);
       
   625   }
       
   626 
       
   627   virtual CollectedHeap::Name kind() const {
       
   628     return CollectedHeap::G1CollectedHeap;
       
   629   }
       
   630 
       
   631   // The current policy object for the collector.
       
   632   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
       
   633 
       
   634   // Adaptive size policy.  No such thing for g1.
       
   635   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
       
   636 
       
   637   // The rem set and barrier set.
       
   638   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
       
   639   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
       
   640 
       
   641   // The rem set iterator.
       
   642   HeapRegionRemSetIterator* rem_set_iterator(int i) {
       
   643     return _rem_set_iterator[i];
       
   644   }
       
   645 
       
   646   HeapRegionRemSetIterator* rem_set_iterator() {
       
   647     return _rem_set_iterator[0];
       
   648   }
       
   649 
       
   650   unsigned get_gc_time_stamp() {
       
   651     return _gc_time_stamp;
       
   652   }
       
   653 
       
   654   void reset_gc_time_stamp() {
       
   655     _gc_time_stamp = 0;
       
   656   }
       
   657 
       
   658   void iterate_dirty_card_closure(bool concurrent, int worker_i);
       
   659 
       
   660   // The shared block offset table array.
       
   661   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
       
   662 
       
   663   // Reference Processing accessor
       
   664   ReferenceProcessor* ref_processor() { return _ref_processor; }
       
   665 
       
   666   // Reserved (g1 only; super method includes perm), capacity and the used
       
   667   // portion in bytes.
       
   668   size_t g1_reserved_obj_bytes() { return _g1_reserved.byte_size(); }
       
   669   virtual size_t capacity() const;
       
   670   virtual size_t used() const;
       
   671   size_t recalculate_used() const;
       
   672 #ifndef PRODUCT
       
   673   size_t recalculate_used_regions() const;
       
   674 #endif // PRODUCT
       
   675 
       
   676   // These virtual functions do the actual allocation.
       
   677   virtual HeapWord* mem_allocate(size_t word_size,
       
   678                                  bool   is_noref,
       
   679                                  bool   is_tlab,
       
   680                                  bool* gc_overhead_limit_was_exceeded);
       
   681 
       
   682   // Some heaps may offer a contiguous region for shared non-blocking
       
   683   // allocation, via inlined code (by exporting the address of the top and
       
   684   // end fields defining the extent of the contiguous allocation region.)
       
   685   // But G1CollectedHeap doesn't yet support this.
       
   686 
       
   687   // Return an estimate of the maximum allocation that could be performed
       
   688   // without triggering any collection or expansion activity.  In a
       
   689   // generational collector, for example, this is probably the largest
       
   690   // allocation that could be supported (without expansion) in the youngest
       
   691   // generation.  It is "unsafe" because no locks are taken; the result
       
   692   // should be treated as an approximation, not a guarantee, for use in
       
   693   // heuristic resizing decisions.
       
   694   virtual size_t unsafe_max_alloc();
       
   695 
       
   696   virtual bool is_maximal_no_gc() const {
       
   697     return _g1_storage.uncommitted_size() == 0;
       
   698   }
       
   699 
       
   700   // The total number of regions in the heap.
       
   701   size_t n_regions();
       
   702 
       
   703   // The number of regions that are completely free.
       
   704   size_t max_regions();
       
   705 
       
   706   // The number of regions that are completely free.
       
   707   size_t free_regions();
       
   708 
       
   709   // The number of regions that are not completely free.
       
   710   size_t used_regions() { return n_regions() - free_regions(); }
       
   711 
       
   712   // True iff the ZF thread should run.
       
   713   bool should_zf();
       
   714 
       
   715   // The number of regions available for "regular" expansion.
       
   716   size_t expansion_regions() { return _expansion_regions; }
       
   717 
       
   718 #ifndef PRODUCT
       
   719   bool regions_accounted_for();
       
   720   bool print_region_accounting_info();
       
   721   void print_region_counts();
       
   722 #endif
       
   723 
       
   724   HeapRegion* alloc_region_from_unclean_list(bool zero_filled);
       
   725   HeapRegion* alloc_region_from_unclean_list_locked(bool zero_filled);
       
   726 
       
   727   void put_region_on_unclean_list(HeapRegion* r);
       
   728   void put_region_on_unclean_list_locked(HeapRegion* r);
       
   729 
       
   730   void prepend_region_list_on_unclean_list(UncleanRegionList* list);
       
   731   void prepend_region_list_on_unclean_list_locked(UncleanRegionList* list);
       
   732 
       
   733   void set_unclean_regions_coming(bool b);
       
   734   void set_unclean_regions_coming_locked(bool b);
       
   735   // Wait for cleanup to be complete.
       
   736   void wait_for_cleanup_complete();
       
   737   // Like above, but assumes that the calling thread owns the Heap_lock.
       
   738   void wait_for_cleanup_complete_locked();
       
   739 
       
   740   // Return the head of the unclean list.
       
   741   HeapRegion* peek_unclean_region_list_locked();
       
   742   // Remove and return the head of the unclean list.
       
   743   HeapRegion* pop_unclean_region_list_locked();
       
   744 
       
   745   // List of regions which are zero filled and ready for allocation.
       
   746   HeapRegion* _free_region_list;
       
   747   // Number of elements on the free list.
       
   748   size_t _free_region_list_size;
       
   749 
       
   750   // If the head of the unclean list is ZeroFilled, move it to the free
       
   751   // list.
       
   752   bool move_cleaned_region_to_free_list_locked();
       
   753   bool move_cleaned_region_to_free_list();
       
   754 
       
   755   void put_free_region_on_list_locked(HeapRegion* r);
       
   756   void put_free_region_on_list(HeapRegion* r);
       
   757 
       
   758   // Remove and return the head element of the free list.
       
   759   HeapRegion* pop_free_region_list_locked();
       
   760 
       
   761   // If "zero_filled" is true, we first try the free list, then we try the
       
   762   // unclean list, zero-filling the result.  If "zero_filled" is false, we
       
   763   // first try the unclean list, then the zero-filled list.
       
   764   HeapRegion* alloc_free_region_from_lists(bool zero_filled);
       
   765 
       
   766   // Verify the integrity of the region lists.
       
   767   void remove_allocated_regions_from_lists();
       
   768   bool verify_region_lists();
       
   769   bool verify_region_lists_locked();
       
   770   size_t unclean_region_list_length();
       
   771   size_t free_region_list_length();
       
   772 
       
   773   // Perform a collection of the heap; intended for use in implementing
       
   774   // "System.gc".  This probably implies as full a collection as the
       
   775   // "CollectedHeap" supports.
       
   776   virtual void collect(GCCause::Cause cause);
       
   777 
       
   778   // The same as above but assume that the caller holds the Heap_lock.
       
   779   void collect_locked(GCCause::Cause cause);
       
   780 
       
   781   // This interface assumes that it's being called by the
       
   782   // vm thread. It collects the heap assuming that the
       
   783   // heap lock is already held and that we are executing in
       
   784   // the context of the vm thread.
       
   785   virtual void collect_as_vm_thread(GCCause::Cause cause);
       
   786 
       
   787   // True iff a evacuation has failed in the most-recent collection.
       
   788   bool evacuation_failed() { return _evacuation_failed; }
       
   789 
       
   790   // Free a region if it is totally full of garbage.  Returns the number of
       
   791   // bytes freed (0 ==> didn't free it).
       
   792   size_t free_region_if_totally_empty(HeapRegion *hr);
       
   793   void free_region_if_totally_empty_work(HeapRegion *hr,
       
   794                                          size_t& pre_used,
       
   795                                          size_t& cleared_h_regions,
       
   796                                          size_t& freed_regions,
       
   797                                          UncleanRegionList* list,
       
   798                                          bool par = false);
       
   799 
       
   800   // If we've done free region work that yields the given changes, update
       
   801   // the relevant global variables.
       
   802   void finish_free_region_work(size_t pre_used,
       
   803                                size_t cleared_h_regions,
       
   804                                size_t freed_regions,
       
   805                                UncleanRegionList* list);
       
   806 
       
   807 
       
   808   // Returns "TRUE" iff "p" points into the allocated area of the heap.
       
   809   virtual bool is_in(const void* p) const;
       
   810 
       
   811   // Return "TRUE" iff the given object address is within the collection
       
   812   // set.
       
   813   inline bool obj_in_cs(oop obj);
       
   814 
       
   815   // Return "TRUE" iff the given object address is in the reserved
       
   816   // region of g1 (excluding the permanent generation).
       
   817   bool is_in_g1_reserved(const void* p) const {
       
   818     return _g1_reserved.contains(p);
       
   819   }
       
   820 
       
   821   // Returns a MemRegion that corresponds to the space that  has been
       
   822   // committed in the heap
       
   823   MemRegion g1_committed() {
       
   824     return _g1_committed;
       
   825   }
       
   826 
       
   827   NOT_PRODUCT( bool is_in_closed_subset(const void* p) const; )
       
   828 
       
   829   // Dirty card table entries covering a list of young regions.
       
   830   void dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list);
       
   831 
       
   832   // This resets the card table to all zeros.  It is used after
       
   833   // a collection pause which used the card table to claim cards.
       
   834   void cleanUpCardTable();
       
   835 
       
   836   // Iteration functions.
       
   837 
       
   838   // Iterate over all the ref-containing fields of all objects, calling
       
   839   // "cl.do_oop" on each.
       
   840   virtual void oop_iterate(OopClosure* cl);
       
   841 
       
   842   // Same as above, restricted to a memory region.
       
   843   virtual void oop_iterate(MemRegion mr, OopClosure* cl);
       
   844 
       
   845   // Iterate over all objects, calling "cl.do_object" on each.
       
   846   virtual void object_iterate(ObjectClosure* cl);
       
   847 
       
   848   // Iterate over all objects allocated since the last collection, calling
       
   849   // "cl.do_object" on each.  The heap must have been initialized properly
       
   850   // to support this function, or else this call will fail.
       
   851   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
       
   852 
       
   853   // Iterate over all spaces in use in the heap, in ascending address order.
       
   854   virtual void space_iterate(SpaceClosure* cl);
       
   855 
       
   856   // Iterate over heap regions, in address order, terminating the
       
   857   // iteration early if the "doHeapRegion" method returns "true".
       
   858   void heap_region_iterate(HeapRegionClosure* blk);
       
   859 
       
   860   // Iterate over heap regions starting with r (or the first region if "r"
       
   861   // is NULL), in address order, terminating early if the "doHeapRegion"
       
   862   // method returns "true".
       
   863   void heap_region_iterate_from(HeapRegion* r, HeapRegionClosure* blk);
       
   864 
       
   865   // As above but starting from the region at index idx.
       
   866   void heap_region_iterate_from(int idx, HeapRegionClosure* blk);
       
   867 
       
   868   HeapRegion* region_at(size_t idx);
       
   869 
       
   870 
       
   871   // Divide the heap region sequence into "chunks" of some size (the number
       
   872   // of regions divided by the number of parallel threads times some
       
   873   // overpartition factor, currently 4).  Assumes that this will be called
       
   874   // in parallel by ParallelGCThreads worker threads with discinct worker
       
   875   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
       
   876   // calls will use the same "claim_value", and that that claim value is
       
   877   // different from the claim_value of any heap region before the start of
       
   878   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
       
   879   // attempting to claim the first region in each chunk, and, if
       
   880   // successful, applying the closure to each region in the chunk (and
       
   881   // setting the claim value of the second and subsequent regions of the
       
   882   // chunk.)  For now requires that "doHeapRegion" always returns "false",
       
   883   // i.e., that a closure never attempt to abort a traversal.
       
   884   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
       
   885                                        int worker,
       
   886                                        jint claim_value);
       
   887 
       
   888   // Iterate over the regions (if any) in the current collection set.
       
   889   void collection_set_iterate(HeapRegionClosure* blk);
       
   890 
       
   891   // As above but starting from region r
       
   892   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
       
   893 
       
   894   // Returns the first (lowest address) compactible space in the heap.
       
   895   virtual CompactibleSpace* first_compactible_space();
       
   896 
       
   897   // A CollectedHeap will contain some number of spaces.  This finds the
       
   898   // space containing a given address, or else returns NULL.
       
   899   virtual Space* space_containing(const void* addr) const;
       
   900 
       
   901   // A G1CollectedHeap will contain some number of heap regions.  This
       
   902   // finds the region containing a given address, or else returns NULL.
       
   903   HeapRegion* heap_region_containing(const void* addr) const;
       
   904 
       
   905   // Like the above, but requires "addr" to be in the heap (to avoid a
       
   906   // null-check), and unlike the above, may return an continuing humongous
       
   907   // region.
       
   908   HeapRegion* heap_region_containing_raw(const void* addr) const;
       
   909 
       
   910   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
       
   911   // each address in the (reserved) heap is a member of exactly
       
   912   // one block.  The defining characteristic of a block is that it is
       
   913   // possible to find its size, and thus to progress forward to the next
       
   914   // block.  (Blocks may be of different sizes.)  Thus, blocks may
       
   915   // represent Java objects, or they might be free blocks in a
       
   916   // free-list-based heap (or subheap), as long as the two kinds are
       
   917   // distinguishable and the size of each is determinable.
       
   918 
       
   919   // Returns the address of the start of the "block" that contains the
       
   920   // address "addr".  We say "blocks" instead of "object" since some heaps
       
   921   // may not pack objects densely; a chunk may either be an object or a
       
   922   // non-object.
       
   923   virtual HeapWord* block_start(const void* addr) const;
       
   924 
       
   925   // Requires "addr" to be the start of a chunk, and returns its size.
       
   926   // "addr + size" is required to be the start of a new chunk, or the end
       
   927   // of the active area of the heap.
       
   928   virtual size_t block_size(const HeapWord* addr) const;
       
   929 
       
   930   // Requires "addr" to be the start of a block, and returns "TRUE" iff
       
   931   // the block is an object.
       
   932   virtual bool block_is_obj(const HeapWord* addr) const;
       
   933 
       
   934   // Does this heap support heap inspection? (+PrintClassHistogram)
       
   935   virtual bool supports_heap_inspection() const { return true; }
       
   936 
       
   937   // Section on thread-local allocation buffers (TLABs)
       
   938   // See CollectedHeap for semantics.
       
   939 
       
   940   virtual bool supports_tlab_allocation() const;
       
   941   virtual size_t tlab_capacity(Thread* thr) const;
       
   942   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
       
   943   virtual HeapWord* allocate_new_tlab(size_t size);
       
   944 
       
   945   // Can a compiler initialize a new object without store barriers?
       
   946   // This permission only extends from the creation of a new object
       
   947   // via a TLAB up to the first subsequent safepoint.
       
   948   virtual bool can_elide_tlab_store_barriers() const {
       
   949     // Since G1's TLAB's may, on occasion, come from non-young regions
       
   950     // as well. (Is there a flag controlling that? XXX)
       
   951     return false;
       
   952   }
       
   953 
       
   954   // Can a compiler elide a store barrier when it writes
       
   955   // a permanent oop into the heap?  Applies when the compiler
       
   956   // is storing x to the heap, where x->is_perm() is true.
       
   957   virtual bool can_elide_permanent_oop_store_barriers() const {
       
   958     // At least until perm gen collection is also G1-ified, at
       
   959     // which point this should return false.
       
   960     return true;
       
   961   }
       
   962 
       
   963   virtual bool allocs_are_zero_filled();
       
   964 
       
   965   // The boundary between a "large" and "small" array of primitives, in
       
   966   // words.
       
   967   virtual size_t large_typearray_limit();
       
   968 
       
   969   // All popular objects are guaranteed to have addresses below this
       
   970   // boundary.
       
   971   HeapWord* popular_object_boundary() {
       
   972     return _popular_object_boundary;
       
   973   }
       
   974 
       
   975   // Declare the region as one that should be evacuated because its
       
   976   // remembered set is too large.
       
   977   void schedule_popular_region_evac(HeapRegion* r);
       
   978   // If there is a popular region to evacuate it, remove it from the list
       
   979   // and return it.
       
   980   HeapRegion* popular_region_to_evac();
       
   981   // Evacuate the given popular region.
       
   982   void evac_popular_region(HeapRegion* r);
       
   983 
       
   984   // Returns "true" iff the given word_size is "very large".
       
   985   static bool isHumongous(size_t word_size) {
       
   986     return word_size >= VeryLargeInWords;
       
   987   }
       
   988 
       
   989   // Update mod union table with the set of dirty cards.
       
   990   void updateModUnion();
       
   991 
       
   992   // Set the mod union bits corresponding to the given memRegion.  Note
       
   993   // that this is always a safe operation, since it doesn't clear any
       
   994   // bits.
       
   995   void markModUnionRange(MemRegion mr);
       
   996 
       
   997   // Records the fact that a marking phase is no longer in progress.
       
   998   void set_marking_complete() {
       
   999     _mark_in_progress = false;
       
  1000   }
       
  1001   void set_marking_started() {
       
  1002     _mark_in_progress = true;
       
  1003   }
       
  1004   bool mark_in_progress() {
       
  1005     return _mark_in_progress;
       
  1006   }
       
  1007 
       
  1008   // Print the maximum heap capacity.
       
  1009   virtual size_t max_capacity() const;
       
  1010 
       
  1011   virtual jlong millis_since_last_gc();
       
  1012 
       
  1013   // Perform any cleanup actions necessary before allowing a verification.
       
  1014   virtual void prepare_for_verify();
       
  1015 
       
  1016   // Perform verification.
       
  1017   virtual void verify(bool allow_dirty, bool silent);
       
  1018   virtual void print() const;
       
  1019   virtual void print_on(outputStream* st) const;
       
  1020 
       
  1021   virtual void print_gc_threads_on(outputStream* st) const;
       
  1022   virtual void gc_threads_do(ThreadClosure* tc) const;
       
  1023 
       
  1024   // Override
       
  1025   void print_tracing_info() const;
       
  1026 
       
  1027   // If "addr" is a pointer into the (reserved?) heap, returns a positive
       
  1028   // number indicating the "arena" within the heap in which "addr" falls.
       
  1029   // Or else returns 0.
       
  1030   virtual int addr_to_arena_id(void* addr) const;
       
  1031 
       
  1032   // Convenience function to be used in situations where the heap type can be
       
  1033   // asserted to be this type.
       
  1034   static G1CollectedHeap* heap();
       
  1035 
       
  1036   void empty_young_list();
       
  1037   bool should_set_young_locked();
       
  1038 
       
  1039   void set_region_short_lived_locked(HeapRegion* hr);
       
  1040   // add appropriate methods for any other surv rate groups
       
  1041 
       
  1042   void young_list_rs_length_sampling_init() {
       
  1043     _young_list->rs_length_sampling_init();
       
  1044   }
       
  1045   bool young_list_rs_length_sampling_more() {
       
  1046     return _young_list->rs_length_sampling_more();
       
  1047   }
       
  1048   void young_list_rs_length_sampling_next() {
       
  1049     _young_list->rs_length_sampling_next();
       
  1050   }
       
  1051   size_t young_list_sampled_rs_lengths() {
       
  1052     return _young_list->sampled_rs_lengths();
       
  1053   }
       
  1054 
       
  1055   size_t young_list_length()   { return _young_list->length(); }
       
  1056   size_t young_list_scan_only_length() {
       
  1057                                       return _young_list->scan_only_length(); }
       
  1058 
       
  1059   HeapRegion* pop_region_from_young_list() {
       
  1060     return _young_list->pop_region();
       
  1061   }
       
  1062 
       
  1063   HeapRegion* young_list_first_region() {
       
  1064     return _young_list->first_region();
       
  1065   }
       
  1066 
       
  1067   // debugging
       
  1068   bool check_young_list_well_formed() {
       
  1069     return _young_list->check_list_well_formed();
       
  1070   }
       
  1071   bool check_young_list_empty(bool ignore_scan_only_list,
       
  1072                               bool check_sample = true);
       
  1073 
       
  1074   // *** Stuff related to concurrent marking.  It's not clear to me that so
       
  1075   // many of these need to be public.
       
  1076 
       
  1077   // The functions below are helper functions that a subclass of
       
  1078   // "CollectedHeap" can use in the implementation of its virtual
       
  1079   // functions.
       
  1080   // This performs a concurrent marking of the live objects in a
       
  1081   // bitmap off to the side.
       
  1082   void doConcurrentMark();
       
  1083 
       
  1084   // This is called from the marksweep collector which then does
       
  1085   // a concurrent mark and verifies that the results agree with
       
  1086   // the stop the world marking.
       
  1087   void checkConcurrentMark();
       
  1088   void do_sync_mark();
       
  1089 
       
  1090   bool isMarkedPrev(oop obj) const;
       
  1091   bool isMarkedNext(oop obj) const;
       
  1092 
       
  1093   // Determine if an object is dead, given the object and also
       
  1094   // the region to which the object belongs. An object is dead
       
  1095   // iff a) it was not allocated since the last mark and b) it
       
  1096   // is not marked.
       
  1097 
       
  1098   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
       
  1099     return
       
  1100       !hr->obj_allocated_since_prev_marking(obj) &&
       
  1101       !isMarkedPrev(obj);
       
  1102   }
       
  1103 
       
  1104   // This is used when copying an object to survivor space.
       
  1105   // If the object is marked live, then we mark the copy live.
       
  1106   // If the object is allocated since the start of this mark
       
  1107   // cycle, then we mark the copy live.
       
  1108   // If the object has been around since the previous mark
       
  1109   // phase, and hasn't been marked yet during this phase,
       
  1110   // then we don't mark it, we just wait for the
       
  1111   // current marking cycle to get to it.
       
  1112 
       
  1113   // This function returns true when an object has been
       
  1114   // around since the previous marking and hasn't yet
       
  1115   // been marked during this marking.
       
  1116 
       
  1117   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
       
  1118     return
       
  1119       !hr->obj_allocated_since_next_marking(obj) &&
       
  1120       !isMarkedNext(obj);
       
  1121   }
       
  1122 
       
  1123   // Determine if an object is dead, given only the object itself.
       
  1124   // This will find the region to which the object belongs and
       
  1125   // then call the region version of the same function.
       
  1126 
       
  1127   // Added if it is in permanent gen it isn't dead.
       
  1128   // Added if it is NULL it isn't dead.
       
  1129 
       
  1130   bool is_obj_dead(oop obj) {
       
  1131     HeapRegion* hr = heap_region_containing(obj);
       
  1132     if (hr == NULL) {
       
  1133       if (Universe::heap()->is_in_permanent(obj))
       
  1134         return false;
       
  1135       else if (obj == NULL) return false;
       
  1136       else return true;
       
  1137     }
       
  1138     else return is_obj_dead(obj, hr);
       
  1139   }
       
  1140 
       
  1141   bool is_obj_ill(oop obj) {
       
  1142     HeapRegion* hr = heap_region_containing(obj);
       
  1143     if (hr == NULL) {
       
  1144       if (Universe::heap()->is_in_permanent(obj))
       
  1145         return false;
       
  1146       else if (obj == NULL) return false;
       
  1147       else return true;
       
  1148     }
       
  1149     else return is_obj_ill(obj, hr);
       
  1150   }
       
  1151 
       
  1152   // The following is just to alert the verification code
       
  1153   // that a full collection has occurred and that the
       
  1154   // remembered sets are no longer up to date.
       
  1155   bool _full_collection;
       
  1156   void set_full_collection() { _full_collection = true;}
       
  1157   void clear_full_collection() {_full_collection = false;}
       
  1158   bool full_collection() {return _full_collection;}
       
  1159 
       
  1160   ConcurrentMark* concurrent_mark() const { return _cm; }
       
  1161   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
       
  1162 
       
  1163 public:
       
  1164   void stop_conc_gc_threads();
       
  1165 
       
  1166   // <NEW PREDICTION>
       
  1167 
       
  1168   double predict_region_elapsed_time_ms(HeapRegion* hr, bool young);
       
  1169   void check_if_region_is_too_expensive(double predicted_time_ms);
       
  1170   size_t pending_card_num();
       
  1171   size_t max_pending_card_num();
       
  1172   size_t cards_scanned();
       
  1173 
       
  1174   // </NEW PREDICTION>
       
  1175 
       
  1176 protected:
       
  1177   size_t _max_heap_capacity;
       
  1178 
       
  1179 //  debug_only(static void check_for_valid_allocation_state();)
       
  1180 
       
  1181 public:
       
  1182   // Temporary: call to mark things unimplemented for the G1 heap (e.g.,
       
  1183   // MemoryService).  In productization, we can make this assert false
       
  1184   // to catch such places (as well as searching for calls to this...)
       
  1185   static void g1_unimplemented();
       
  1186 
       
  1187 };
       
  1188 
       
  1189 // Local Variables: ***
       
  1190 // c-indentation-style: gnu ***
       
  1191 // End: ***