|
1 /* |
|
2 * Copyright 2001-2007 Sun Microsystems, Inc. All Rights Reserved. |
|
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 * |
|
5 * This code is free software; you can redistribute it and/or modify it |
|
6 * under the terms of the GNU General Public License version 2 only, as |
|
7 * published by the Free Software Foundation. |
|
8 * |
|
9 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 * version 2 for more details (a copy is included in the LICENSE file that |
|
13 * accompanied this code). |
|
14 * |
|
15 * You should have received a copy of the GNU General Public License version |
|
16 * 2 along with this work; if not, write to the Free Software Foundation, |
|
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 * |
|
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, |
|
20 * CA 95054 USA or visit www.sun.com if you need additional information or |
|
21 * have any questions. |
|
22 * |
|
23 */ |
|
24 |
|
25 class G1CollectedHeap; |
|
26 class CMTask; |
|
27 typedef GenericTaskQueue<oop> CMTaskQueue; |
|
28 typedef GenericTaskQueueSet<oop> CMTaskQueueSet; |
|
29 |
|
30 // A generic CM bit map. This is essentially a wrapper around the BitMap |
|
31 // class, with one bit per (1<<_shifter) HeapWords. |
|
32 |
|
33 class CMBitMapRO { |
|
34 protected: |
|
35 HeapWord* _bmStartWord; // base address of range covered by map |
|
36 size_t _bmWordSize; // map size (in #HeapWords covered) |
|
37 const int _shifter; // map to char or bit |
|
38 VirtualSpace _virtual_space; // underlying the bit map |
|
39 BitMap _bm; // the bit map itself |
|
40 |
|
41 public: |
|
42 // constructor |
|
43 CMBitMapRO(ReservedSpace rs, int shifter); |
|
44 |
|
45 enum { do_yield = true }; |
|
46 |
|
47 // inquiries |
|
48 HeapWord* startWord() const { return _bmStartWord; } |
|
49 size_t sizeInWords() const { return _bmWordSize; } |
|
50 // the following is one past the last word in space |
|
51 HeapWord* endWord() const { return _bmStartWord + _bmWordSize; } |
|
52 |
|
53 // read marks |
|
54 |
|
55 bool isMarked(HeapWord* addr) const { |
|
56 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize), |
|
57 "outside underlying space?"); |
|
58 return _bm.at(heapWordToOffset(addr)); |
|
59 } |
|
60 |
|
61 // iteration |
|
62 bool iterate(BitMapClosure* cl) { return _bm.iterate(cl); } |
|
63 bool iterate(BitMapClosure* cl, MemRegion mr); |
|
64 |
|
65 // Return the address corresponding to the next marked bit at or after |
|
66 // "addr", and before "limit", if "limit" is non-NULL. If there is no |
|
67 // such bit, returns "limit" if that is non-NULL, or else "endWord()". |
|
68 HeapWord* getNextMarkedWordAddress(HeapWord* addr, |
|
69 HeapWord* limit = NULL) const; |
|
70 // Return the address corresponding to the next unmarked bit at or after |
|
71 // "addr", and before "limit", if "limit" is non-NULL. If there is no |
|
72 // such bit, returns "limit" if that is non-NULL, or else "endWord()". |
|
73 HeapWord* getNextUnmarkedWordAddress(HeapWord* addr, |
|
74 HeapWord* limit = NULL) const; |
|
75 |
|
76 // conversion utilities |
|
77 // XXX Fix these so that offsets are size_t's... |
|
78 HeapWord* offsetToHeapWord(size_t offset) const { |
|
79 return _bmStartWord + (offset << _shifter); |
|
80 } |
|
81 size_t heapWordToOffset(HeapWord* addr) const { |
|
82 return pointer_delta(addr, _bmStartWord) >> _shifter; |
|
83 } |
|
84 int heapWordDiffToOffsetDiff(size_t diff) const; |
|
85 HeapWord* nextWord(HeapWord* addr) { |
|
86 return offsetToHeapWord(heapWordToOffset(addr) + 1); |
|
87 } |
|
88 |
|
89 void mostly_disjoint_range_union(BitMap* from_bitmap, |
|
90 size_t from_start_index, |
|
91 HeapWord* to_start_word, |
|
92 size_t word_num); |
|
93 |
|
94 // debugging |
|
95 NOT_PRODUCT(bool covers(ReservedSpace rs) const;) |
|
96 }; |
|
97 |
|
98 class CMBitMap : public CMBitMapRO { |
|
99 |
|
100 public: |
|
101 // constructor |
|
102 CMBitMap(ReservedSpace rs, int shifter) : |
|
103 CMBitMapRO(rs, shifter) {} |
|
104 |
|
105 // write marks |
|
106 void mark(HeapWord* addr) { |
|
107 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize), |
|
108 "outside underlying space?"); |
|
109 _bm.at_put(heapWordToOffset(addr), true); |
|
110 } |
|
111 void clear(HeapWord* addr) { |
|
112 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize), |
|
113 "outside underlying space?"); |
|
114 _bm.at_put(heapWordToOffset(addr), false); |
|
115 } |
|
116 bool parMark(HeapWord* addr) { |
|
117 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize), |
|
118 "outside underlying space?"); |
|
119 return _bm.par_at_put(heapWordToOffset(addr), true); |
|
120 } |
|
121 bool parClear(HeapWord* addr) { |
|
122 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize), |
|
123 "outside underlying space?"); |
|
124 return _bm.par_at_put(heapWordToOffset(addr), false); |
|
125 } |
|
126 void markRange(MemRegion mr); |
|
127 void clearAll(); |
|
128 void clearRange(MemRegion mr); |
|
129 |
|
130 // Starting at the bit corresponding to "addr" (inclusive), find the next |
|
131 // "1" bit, if any. This bit starts some run of consecutive "1"'s; find |
|
132 // the end of this run (stopping at "end_addr"). Return the MemRegion |
|
133 // covering from the start of the region corresponding to the first bit |
|
134 // of the run to the end of the region corresponding to the last bit of |
|
135 // the run. If there is no "1" bit at or after "addr", return an empty |
|
136 // MemRegion. |
|
137 MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr); |
|
138 }; |
|
139 |
|
140 // Represents a marking stack used by the CM collector. |
|
141 // Ideally this should be GrowableArray<> just like MSC's marking stack(s). |
|
142 class CMMarkStack { |
|
143 ConcurrentMark* _cm; |
|
144 oop* _base; // bottom of stack |
|
145 jint _index; // one more than last occupied index |
|
146 jint _capacity; // max #elements |
|
147 jint _oops_do_bound; // Number of elements to include in next iteration. |
|
148 NOT_PRODUCT(jint _max_depth;) // max depth plumbed during run |
|
149 |
|
150 bool _overflow; |
|
151 DEBUG_ONLY(bool _drain_in_progress;) |
|
152 DEBUG_ONLY(bool _drain_in_progress_yields;) |
|
153 |
|
154 public: |
|
155 CMMarkStack(ConcurrentMark* cm); |
|
156 ~CMMarkStack(); |
|
157 |
|
158 void allocate(size_t size); |
|
159 |
|
160 oop pop() { |
|
161 if (!isEmpty()) { |
|
162 return _base[--_index] ; |
|
163 } |
|
164 return NULL; |
|
165 } |
|
166 |
|
167 // If overflow happens, don't do the push, and record the overflow. |
|
168 // *Requires* that "ptr" is already marked. |
|
169 void push(oop ptr) { |
|
170 if (isFull()) { |
|
171 // Record overflow. |
|
172 _overflow = true; |
|
173 return; |
|
174 } else { |
|
175 _base[_index++] = ptr; |
|
176 NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index)); |
|
177 } |
|
178 } |
|
179 // Non-block impl. Note: concurrency is allowed only with other |
|
180 // "par_push" operations, not with "pop" or "drain". We would need |
|
181 // parallel versions of them if such concurrency was desired. |
|
182 void par_push(oop ptr); |
|
183 |
|
184 // Pushes the first "n" elements of "ptr_arr" on the stack. |
|
185 // Non-block impl. Note: concurrency is allowed only with other |
|
186 // "par_adjoin_arr" or "push" operations, not with "pop" or "drain". |
|
187 void par_adjoin_arr(oop* ptr_arr, int n); |
|
188 |
|
189 // Pushes the first "n" elements of "ptr_arr" on the stack. |
|
190 // Locking impl: concurrency is allowed only with |
|
191 // "par_push_arr" and/or "par_pop_arr" operations, which use the same |
|
192 // locking strategy. |
|
193 void par_push_arr(oop* ptr_arr, int n); |
|
194 |
|
195 // If returns false, the array was empty. Otherwise, removes up to "max" |
|
196 // elements from the stack, and transfers them to "ptr_arr" in an |
|
197 // unspecified order. The actual number transferred is given in "n" ("n |
|
198 // == 0" is deliberately redundant with the return value.) Locking impl: |
|
199 // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr" |
|
200 // operations, which use the same locking strategy. |
|
201 bool par_pop_arr(oop* ptr_arr, int max, int* n); |
|
202 |
|
203 // Drain the mark stack, applying the given closure to all fields of |
|
204 // objects on the stack. (That is, continue until the stack is empty, |
|
205 // even if closure applications add entries to the stack.) The "bm" |
|
206 // argument, if non-null, may be used to verify that only marked objects |
|
207 // are on the mark stack. If "yield_after" is "true", then the |
|
208 // concurrent marker performing the drain offers to yield after |
|
209 // processing each object. If a yield occurs, stops the drain operation |
|
210 // and returns false. Otherwise, returns true. |
|
211 template<class OopClosureClass> |
|
212 bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false); |
|
213 |
|
214 bool isEmpty() { return _index == 0; } |
|
215 bool isFull() { return _index == _capacity; } |
|
216 int maxElems() { return _capacity; } |
|
217 |
|
218 bool overflow() { return _overflow; } |
|
219 void clear_overflow() { _overflow = false; } |
|
220 |
|
221 int size() { return _index; } |
|
222 |
|
223 void setEmpty() { _index = 0; clear_overflow(); } |
|
224 |
|
225 // Record the current size; a subsequent "oops_do" will iterate only over |
|
226 // indices valid at the time of this call. |
|
227 void set_oops_do_bound(jint bound = -1) { |
|
228 if (bound == -1) { |
|
229 _oops_do_bound = _index; |
|
230 } else { |
|
231 _oops_do_bound = bound; |
|
232 } |
|
233 } |
|
234 jint oops_do_bound() { return _oops_do_bound; } |
|
235 // iterate over the oops in the mark stack, up to the bound recorded via |
|
236 // the call above. |
|
237 void oops_do(OopClosure* f); |
|
238 }; |
|
239 |
|
240 class CMRegionStack { |
|
241 MemRegion* _base; |
|
242 jint _capacity; |
|
243 jint _index; |
|
244 jint _oops_do_bound; |
|
245 bool _overflow; |
|
246 public: |
|
247 CMRegionStack(); |
|
248 ~CMRegionStack(); |
|
249 void allocate(size_t size); |
|
250 |
|
251 // This is lock-free; assumes that it will only be called in parallel |
|
252 // with other "push" operations (no pops). |
|
253 void push(MemRegion mr); |
|
254 |
|
255 // Lock-free; assumes that it will only be called in parallel |
|
256 // with other "pop" operations (no pushes). |
|
257 MemRegion pop(); |
|
258 |
|
259 bool isEmpty() { return _index == 0; } |
|
260 bool isFull() { return _index == _capacity; } |
|
261 |
|
262 bool overflow() { return _overflow; } |
|
263 void clear_overflow() { _overflow = false; } |
|
264 |
|
265 int size() { return _index; } |
|
266 |
|
267 // It iterates over the entries in the region stack and it |
|
268 // invalidates (i.e. assigns MemRegion()) the ones that point to |
|
269 // regions in the collection set. |
|
270 bool invalidate_entries_into_cset(); |
|
271 |
|
272 // This gives an upper bound up to which the iteration in |
|
273 // invalidate_entries_into_cset() will reach. This prevents |
|
274 // newly-added entries to be unnecessarily scanned. |
|
275 void set_oops_do_bound() { |
|
276 _oops_do_bound = _index; |
|
277 } |
|
278 |
|
279 void setEmpty() { _index = 0; clear_overflow(); } |
|
280 }; |
|
281 |
|
282 // this will enable a variety of different statistics per GC task |
|
283 #define _MARKING_STATS_ 0 |
|
284 // this will enable the higher verbose levels |
|
285 #define _MARKING_VERBOSE_ 0 |
|
286 |
|
287 #if _MARKING_STATS_ |
|
288 #define statsOnly(statement) \ |
|
289 do { \ |
|
290 statement ; \ |
|
291 } while (0) |
|
292 #else // _MARKING_STATS_ |
|
293 #define statsOnly(statement) \ |
|
294 do { \ |
|
295 } while (0) |
|
296 #endif // _MARKING_STATS_ |
|
297 |
|
298 // Some extra guarantees that I like to also enable in optimised mode |
|
299 // when debugging. If you want to enable them, comment out the assert |
|
300 // macro and uncomment out the guaratee macro |
|
301 // #define tmp_guarantee_CM(expr, str) guarantee(expr, str) |
|
302 #define tmp_guarantee_CM(expr, str) assert(expr, str) |
|
303 |
|
304 typedef enum { |
|
305 no_verbose = 0, // verbose turned off |
|
306 stats_verbose, // only prints stats at the end of marking |
|
307 low_verbose, // low verbose, mostly per region and per major event |
|
308 medium_verbose, // a bit more detailed than low |
|
309 high_verbose // per object verbose |
|
310 } CMVerboseLevel; |
|
311 |
|
312 |
|
313 class ConcurrentMarkThread; |
|
314 |
|
315 class ConcurrentMark { |
|
316 friend class ConcurrentMarkThread; |
|
317 friend class CMTask; |
|
318 friend class CMBitMapClosure; |
|
319 friend class CSMarkOopClosure; |
|
320 friend class CMGlobalObjectClosure; |
|
321 friend class CMRemarkTask; |
|
322 friend class CMConcurrentMarkingTask; |
|
323 friend class G1ParNoteEndTask; |
|
324 friend class CalcLiveObjectsClosure; |
|
325 |
|
326 protected: |
|
327 ConcurrentMarkThread* _cmThread; // the thread doing the work |
|
328 G1CollectedHeap* _g1h; // the heap. |
|
329 size_t _parallel_marking_threads; // the number of marking |
|
330 // threads we'll use |
|
331 double _sleep_factor; // how much we have to sleep, with |
|
332 // respect to the work we just did, to |
|
333 // meet the marking overhead goal |
|
334 double _marking_task_overhead; // marking target overhead for |
|
335 // a single task |
|
336 |
|
337 // same as the two above, but for the cleanup task |
|
338 double _cleanup_sleep_factor; |
|
339 double _cleanup_task_overhead; |
|
340 |
|
341 // Stuff related to age cohort processing. |
|
342 struct ParCleanupThreadState { |
|
343 char _pre[64]; |
|
344 UncleanRegionList list; |
|
345 char _post[64]; |
|
346 }; |
|
347 ParCleanupThreadState** _par_cleanup_thread_state; |
|
348 |
|
349 // CMS marking support structures |
|
350 CMBitMap _markBitMap1; |
|
351 CMBitMap _markBitMap2; |
|
352 CMBitMapRO* _prevMarkBitMap; // completed mark bitmap |
|
353 CMBitMap* _nextMarkBitMap; // under-construction mark bitmap |
|
354 bool _at_least_one_mark_complete; |
|
355 |
|
356 BitMap _region_bm; |
|
357 BitMap _card_bm; |
|
358 |
|
359 // Heap bounds |
|
360 HeapWord* _heap_start; |
|
361 HeapWord* _heap_end; |
|
362 |
|
363 // For gray objects |
|
364 CMMarkStack _markStack; // Grey objects behind global finger. |
|
365 CMRegionStack _regionStack; // Grey regions behind global finger. |
|
366 HeapWord* volatile _finger; // the global finger, region aligned, |
|
367 // always points to the end of the |
|
368 // last claimed region |
|
369 |
|
370 // marking tasks |
|
371 size_t _max_task_num; // maximum task number |
|
372 size_t _active_tasks; // task num currently active |
|
373 CMTask** _tasks; // task queue array (max_task_num len) |
|
374 CMTaskQueueSet* _task_queues; // task queue set |
|
375 ParallelTaskTerminator _terminator; // for termination |
|
376 |
|
377 // Two sync barriers that are used to synchronise tasks when an |
|
378 // overflow occurs. The algorithm is the following. All tasks enter |
|
379 // the first one to ensure that they have all stopped manipulating |
|
380 // the global data structures. After they exit it, they re-initialise |
|
381 // their data structures and task 0 re-initialises the global data |
|
382 // structures. Then, they enter the second sync barrier. This |
|
383 // ensure, that no task starts doing work before all data |
|
384 // structures (local and global) have been re-initialised. When they |
|
385 // exit it, they are free to start working again. |
|
386 WorkGangBarrierSync _first_overflow_barrier_sync; |
|
387 WorkGangBarrierSync _second_overflow_barrier_sync; |
|
388 |
|
389 |
|
390 // this is set by any task, when an overflow on the global data |
|
391 // structures is detected. |
|
392 volatile bool _has_overflown; |
|
393 // true: marking is concurrent, false: we're in remark |
|
394 volatile bool _concurrent; |
|
395 // set at the end of a Full GC so that marking aborts |
|
396 volatile bool _has_aborted; |
|
397 // used when remark aborts due to an overflow to indicate that |
|
398 // another concurrent marking phase should start |
|
399 volatile bool _restart_for_overflow; |
|
400 |
|
401 // This is true from the very start of concurrent marking until the |
|
402 // point when all the tasks complete their work. It is really used |
|
403 // to determine the points between the end of concurrent marking and |
|
404 // time of remark. |
|
405 volatile bool _concurrent_marking_in_progress; |
|
406 |
|
407 // verbose level |
|
408 CMVerboseLevel _verbose_level; |
|
409 |
|
410 COTracker _cleanup_co_tracker; |
|
411 |
|
412 // These two fields are used to implement the optimisation that |
|
413 // avoids pushing objects on the global/region stack if there are |
|
414 // no collection set regions above the lowest finger. |
|
415 |
|
416 // This is the lowest finger (among the global and local fingers), |
|
417 // which is calculated before a new collection set is chosen. |
|
418 HeapWord* _min_finger; |
|
419 // If this flag is true, objects/regions that are marked below the |
|
420 // finger should be pushed on the stack(s). If this is flag is |
|
421 // false, it is safe not to push them on the stack(s). |
|
422 bool _should_gray_objects; |
|
423 |
|
424 // All of these times are in ms. |
|
425 NumberSeq _init_times; |
|
426 NumberSeq _remark_times; |
|
427 NumberSeq _remark_mark_times; |
|
428 NumberSeq _remark_weak_ref_times; |
|
429 NumberSeq _cleanup_times; |
|
430 double _total_counting_time; |
|
431 double _total_rs_scrub_time; |
|
432 |
|
433 double* _accum_task_vtime; // accumulated task vtime |
|
434 |
|
435 WorkGang* _parallel_workers; |
|
436 |
|
437 void weakRefsWork(bool clear_all_soft_refs); |
|
438 |
|
439 void swapMarkBitMaps(); |
|
440 |
|
441 // It resets the global marking data structures, as well as the |
|
442 // task local ones; should be called during initial mark. |
|
443 void reset(); |
|
444 // It resets all the marking data structures. |
|
445 void clear_marking_state(); |
|
446 |
|
447 // It should be called to indicate which phase we're in (concurrent |
|
448 // mark or remark) and how many threads are currently active. |
|
449 void set_phase(size_t active_tasks, bool concurrent); |
|
450 // We do this after we're done with marking so that the marking data |
|
451 // structures are initialised to a sensible and predictable state. |
|
452 void set_non_marking_state(); |
|
453 |
|
454 // prints all gathered CM-related statistics |
|
455 void print_stats(); |
|
456 |
|
457 // accessor methods |
|
458 size_t parallel_marking_threads() { return _parallel_marking_threads; } |
|
459 double sleep_factor() { return _sleep_factor; } |
|
460 double marking_task_overhead() { return _marking_task_overhead;} |
|
461 double cleanup_sleep_factor() { return _cleanup_sleep_factor; } |
|
462 double cleanup_task_overhead() { return _cleanup_task_overhead;} |
|
463 |
|
464 HeapWord* finger() { return _finger; } |
|
465 bool concurrent() { return _concurrent; } |
|
466 size_t active_tasks() { return _active_tasks; } |
|
467 ParallelTaskTerminator* terminator() { return &_terminator; } |
|
468 |
|
469 // It claims the next available region to be scanned by a marking |
|
470 // task. It might return NULL if the next region is empty or we have |
|
471 // run out of regions. In the latter case, out_of_regions() |
|
472 // determines whether we've really run out of regions or the task |
|
473 // should call claim_region() again. This might seem a bit |
|
474 // awkward. Originally, the code was written so that claim_region() |
|
475 // either successfully returned with a non-empty region or there |
|
476 // were no more regions to be claimed. The problem with this was |
|
477 // that, in certain circumstances, it iterated over large chunks of |
|
478 // the heap finding only empty regions and, while it was working, it |
|
479 // was preventing the calling task to call its regular clock |
|
480 // method. So, this way, each task will spend very little time in |
|
481 // claim_region() and is allowed to call the regular clock method |
|
482 // frequently. |
|
483 HeapRegion* claim_region(int task); |
|
484 |
|
485 // It determines whether we've run out of regions to scan. |
|
486 bool out_of_regions() { return _finger == _heap_end; } |
|
487 |
|
488 // Returns the task with the given id |
|
489 CMTask* task(int id) { |
|
490 guarantee( 0 <= id && id < (int) _active_tasks, "task id not within " |
|
491 "active bounds" ); |
|
492 return _tasks[id]; |
|
493 } |
|
494 |
|
495 // Returns the task queue with the given id |
|
496 CMTaskQueue* task_queue(int id) { |
|
497 guarantee( 0 <= id && id < (int) _active_tasks, "task queue id not within " |
|
498 "active bounds" ); |
|
499 return (CMTaskQueue*) _task_queues->queue(id); |
|
500 } |
|
501 |
|
502 // Returns the task queue set |
|
503 CMTaskQueueSet* task_queues() { return _task_queues; } |
|
504 |
|
505 // Access / manipulation of the overflow flag which is set to |
|
506 // indicate that the global stack or region stack has overflown |
|
507 bool has_overflown() { return _has_overflown; } |
|
508 void set_has_overflown() { _has_overflown = true; } |
|
509 void clear_has_overflown() { _has_overflown = false; } |
|
510 |
|
511 bool has_aborted() { return _has_aborted; } |
|
512 bool restart_for_overflow() { return _restart_for_overflow; } |
|
513 |
|
514 // Methods to enter the two overflow sync barriers |
|
515 void enter_first_sync_barrier(int task_num); |
|
516 void enter_second_sync_barrier(int task_num); |
|
517 |
|
518 public: |
|
519 // Manipulation of the global mark stack. |
|
520 // Notice that the first mark_stack_push is CAS-based, whereas the |
|
521 // two below are Mutex-based. This is OK since the first one is only |
|
522 // called during evacuation pauses and doesn't compete with the |
|
523 // other two (which are called by the marking tasks during |
|
524 // concurrent marking or remark). |
|
525 bool mark_stack_push(oop p) { |
|
526 _markStack.par_push(p); |
|
527 if (_markStack.overflow()) { |
|
528 set_has_overflown(); |
|
529 return false; |
|
530 } |
|
531 return true; |
|
532 } |
|
533 bool mark_stack_push(oop* arr, int n) { |
|
534 _markStack.par_push_arr(arr, n); |
|
535 if (_markStack.overflow()) { |
|
536 set_has_overflown(); |
|
537 return false; |
|
538 } |
|
539 return true; |
|
540 } |
|
541 void mark_stack_pop(oop* arr, int max, int* n) { |
|
542 _markStack.par_pop_arr(arr, max, n); |
|
543 } |
|
544 size_t mark_stack_size() { return _markStack.size(); } |
|
545 size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; } |
|
546 bool mark_stack_overflow() { return _markStack.overflow(); } |
|
547 bool mark_stack_empty() { return _markStack.isEmpty(); } |
|
548 |
|
549 // Manipulation of the region stack |
|
550 bool region_stack_push(MemRegion mr) { |
|
551 _regionStack.push(mr); |
|
552 if (_regionStack.overflow()) { |
|
553 set_has_overflown(); |
|
554 return false; |
|
555 } |
|
556 return true; |
|
557 } |
|
558 MemRegion region_stack_pop() { return _regionStack.pop(); } |
|
559 int region_stack_size() { return _regionStack.size(); } |
|
560 bool region_stack_overflow() { return _regionStack.overflow(); } |
|
561 bool region_stack_empty() { return _regionStack.isEmpty(); } |
|
562 |
|
563 bool concurrent_marking_in_progress() { |
|
564 return _concurrent_marking_in_progress; |
|
565 } |
|
566 void set_concurrent_marking_in_progress() { |
|
567 _concurrent_marking_in_progress = true; |
|
568 } |
|
569 void clear_concurrent_marking_in_progress() { |
|
570 _concurrent_marking_in_progress = false; |
|
571 } |
|
572 |
|
573 void update_accum_task_vtime(int i, double vtime) { |
|
574 _accum_task_vtime[i] += vtime; |
|
575 } |
|
576 |
|
577 double all_task_accum_vtime() { |
|
578 double ret = 0.0; |
|
579 for (int i = 0; i < (int)_max_task_num; ++i) |
|
580 ret += _accum_task_vtime[i]; |
|
581 return ret; |
|
582 } |
|
583 |
|
584 // Attempts to steal an object from the task queues of other tasks |
|
585 bool try_stealing(int task_num, int* hash_seed, oop& obj) { |
|
586 return _task_queues->steal(task_num, hash_seed, obj); |
|
587 } |
|
588 |
|
589 // It grays an object by first marking it. Then, if it's behind the |
|
590 // global finger, it also pushes it on the global stack. |
|
591 void deal_with_reference(oop obj); |
|
592 |
|
593 ConcurrentMark(ReservedSpace rs, int max_regions); |
|
594 ~ConcurrentMark(); |
|
595 ConcurrentMarkThread* cmThread() { return _cmThread; } |
|
596 |
|
597 CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; } |
|
598 CMBitMap* nextMarkBitMap() const { return _nextMarkBitMap; } |
|
599 |
|
600 // The following three are interaction between CM and |
|
601 // G1CollectedHeap |
|
602 |
|
603 // This notifies CM that a root during initial-mark needs to be |
|
604 // grayed and it's MT-safe. Currently, we just mark it. But, in the |
|
605 // future, we can experiment with pushing it on the stack and we can |
|
606 // do this without changing G1CollectedHeap. |
|
607 void grayRoot(oop p); |
|
608 // It's used during evacuation pauses to gray a region, if |
|
609 // necessary, and it's MT-safe. It assumes that the caller has |
|
610 // marked any objects on that region. If _should_gray_objects is |
|
611 // true and we're still doing concurrent marking, the region is |
|
612 // pushed on the region stack, if it is located below the global |
|
613 // finger, otherwise we do nothing. |
|
614 void grayRegionIfNecessary(MemRegion mr); |
|
615 // It's used during evacuation pauses to mark and, if necessary, |
|
616 // gray a single object and it's MT-safe. It assumes the caller did |
|
617 // not mark the object. If _should_gray_objects is true and we're |
|
618 // still doing concurrent marking, the objects is pushed on the |
|
619 // global stack, if it is located below the global finger, otherwise |
|
620 // we do nothing. |
|
621 void markAndGrayObjectIfNecessary(oop p); |
|
622 |
|
623 // This iterates over the bitmap of the previous marking and prints |
|
624 // out all objects that are marked on the bitmap and indicates |
|
625 // whether what they point to is also marked or not. |
|
626 void print_prev_bitmap_reachable(); |
|
627 |
|
628 // Clear the next marking bitmap (will be called concurrently). |
|
629 void clearNextBitmap(); |
|
630 |
|
631 // main CMS steps and related support |
|
632 void checkpointRootsInitial(); |
|
633 |
|
634 // These two do the work that needs to be done before and after the |
|
635 // initial root checkpoint. Since this checkpoint can be done at two |
|
636 // different points (i.e. an explicit pause or piggy-backed on a |
|
637 // young collection), then it's nice to be able to easily share the |
|
638 // pre/post code. It might be the case that we can put everything in |
|
639 // the post method. TP |
|
640 void checkpointRootsInitialPre(); |
|
641 void checkpointRootsInitialPost(); |
|
642 |
|
643 // Do concurrent phase of marking, to a tentative transitive closure. |
|
644 void markFromRoots(); |
|
645 |
|
646 // Process all unprocessed SATB buffers. It is called at the |
|
647 // beginning of an evacuation pause. |
|
648 void drainAllSATBBuffers(); |
|
649 |
|
650 void checkpointRootsFinal(bool clear_all_soft_refs); |
|
651 void checkpointRootsFinalWork(); |
|
652 void calcDesiredRegions(); |
|
653 void cleanup(); |
|
654 void completeCleanup(); |
|
655 |
|
656 // Mark in the previous bitmap. NB: this is usually read-only, so use |
|
657 // this carefully! |
|
658 void markPrev(oop p); |
|
659 void clear(oop p); |
|
660 // Clears marks for all objects in the given range, for both prev and |
|
661 // next bitmaps. NB: the previous bitmap is usually read-only, so use |
|
662 // this carefully! |
|
663 void clearRangeBothMaps(MemRegion mr); |
|
664 |
|
665 // Record the current top of the mark and region stacks; a |
|
666 // subsequent oops_do() on the mark stack and |
|
667 // invalidate_entries_into_cset() on the region stack will iterate |
|
668 // only over indices valid at the time of this call. |
|
669 void set_oops_do_bound() { |
|
670 _markStack.set_oops_do_bound(); |
|
671 _regionStack.set_oops_do_bound(); |
|
672 } |
|
673 // Iterate over the oops in the mark stack and all local queues. It |
|
674 // also calls invalidate_entries_into_cset() on the region stack. |
|
675 void oops_do(OopClosure* f); |
|
676 // It is called at the end of an evacuation pause during marking so |
|
677 // that CM is notified of where the new end of the heap is. It |
|
678 // doesn't do anything if concurrent_marking_in_progress() is false, |
|
679 // unless the force parameter is true. |
|
680 void update_g1_committed(bool force = false); |
|
681 |
|
682 void complete_marking_in_collection_set(); |
|
683 |
|
684 // It indicates that a new collection set is being chosen. |
|
685 void newCSet(); |
|
686 // It registers a collection set heap region with CM. This is used |
|
687 // to determine whether any heap regions are located above the finger. |
|
688 void registerCSetRegion(HeapRegion* hr); |
|
689 |
|
690 // Returns "true" if at least one mark has been completed. |
|
691 bool at_least_one_mark_complete() { return _at_least_one_mark_complete; } |
|
692 |
|
693 bool isMarked(oop p) const { |
|
694 assert(p != NULL && p->is_oop(), "expected an oop"); |
|
695 HeapWord* addr = (HeapWord*)p; |
|
696 assert(addr >= _nextMarkBitMap->startWord() || |
|
697 addr < _nextMarkBitMap->endWord(), "in a region"); |
|
698 |
|
699 return _nextMarkBitMap->isMarked(addr); |
|
700 } |
|
701 |
|
702 inline bool not_yet_marked(oop p) const; |
|
703 |
|
704 // XXX Debug code |
|
705 bool containing_card_is_marked(void* p); |
|
706 bool containing_cards_are_marked(void* start, void* last); |
|
707 |
|
708 bool isPrevMarked(oop p) const { |
|
709 assert(p != NULL && p->is_oop(), "expected an oop"); |
|
710 HeapWord* addr = (HeapWord*)p; |
|
711 assert(addr >= _prevMarkBitMap->startWord() || |
|
712 addr < _prevMarkBitMap->endWord(), "in a region"); |
|
713 |
|
714 return _prevMarkBitMap->isMarked(addr); |
|
715 } |
|
716 |
|
717 inline bool do_yield_check(int worker_i = 0); |
|
718 inline bool should_yield(); |
|
719 |
|
720 // Called to abort the marking cycle after a Full GC takes palce. |
|
721 void abort(); |
|
722 |
|
723 void disable_co_trackers(); |
|
724 |
|
725 // This prints the global/local fingers. It is used for debugging. |
|
726 NOT_PRODUCT(void print_finger();) |
|
727 |
|
728 void print_summary_info(); |
|
729 |
|
730 // The following indicate whether a given verbose level has been |
|
731 // set. Notice that anything above stats is conditional to |
|
732 // _MARKING_VERBOSE_ having been set to 1 |
|
733 bool verbose_stats() |
|
734 { return _verbose_level >= stats_verbose; } |
|
735 bool verbose_low() |
|
736 { return _MARKING_VERBOSE_ && _verbose_level >= low_verbose; } |
|
737 bool verbose_medium() |
|
738 { return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose; } |
|
739 bool verbose_high() |
|
740 { return _MARKING_VERBOSE_ && _verbose_level >= high_verbose; } |
|
741 }; |
|
742 |
|
743 // A class representing a marking task. |
|
744 class CMTask : public TerminatorTerminator { |
|
745 private: |
|
746 enum PrivateConstants { |
|
747 // the regular clock call is called once the scanned words reaches |
|
748 // this limit |
|
749 words_scanned_period = 12*1024, |
|
750 // the regular clock call is called once the number of visited |
|
751 // references reaches this limit |
|
752 refs_reached_period = 384, |
|
753 // initial value for the hash seed, used in the work stealing code |
|
754 init_hash_seed = 17, |
|
755 // how many entries will be transferred between global stack and |
|
756 // local queues |
|
757 global_stack_transfer_size = 16 |
|
758 }; |
|
759 |
|
760 int _task_id; |
|
761 G1CollectedHeap* _g1h; |
|
762 ConcurrentMark* _cm; |
|
763 CMBitMap* _nextMarkBitMap; |
|
764 // the task queue of this task |
|
765 CMTaskQueue* _task_queue; |
|
766 // the task queue set---needed for stealing |
|
767 CMTaskQueueSet* _task_queues; |
|
768 // indicates whether the task has been claimed---this is only for |
|
769 // debugging purposes |
|
770 bool _claimed; |
|
771 |
|
772 // number of calls to this task |
|
773 int _calls; |
|
774 |
|
775 // concurrent overhead over a single CPU for this task |
|
776 COTracker _co_tracker; |
|
777 |
|
778 // when the virtual timer reaches this time, the marking step should |
|
779 // exit |
|
780 double _time_target_ms; |
|
781 // the start time of the current marking step |
|
782 double _start_time_ms; |
|
783 |
|
784 // the oop closure used for iterations over oops |
|
785 OopClosure* _oop_closure; |
|
786 |
|
787 // the region this task is scanning, NULL if we're not scanning any |
|
788 HeapRegion* _curr_region; |
|
789 // the local finger of this task, NULL if we're not scanning a region |
|
790 HeapWord* _finger; |
|
791 // limit of the region this task is scanning, NULL if we're not scanning one |
|
792 HeapWord* _region_limit; |
|
793 |
|
794 // This is used only when we scan regions popped from the region |
|
795 // stack. It records what the last object on such a region we |
|
796 // scanned was. It is used to ensure that, if we abort region |
|
797 // iteration, we do not rescan the first part of the region. This |
|
798 // should be NULL when we're not scanning a region from the region |
|
799 // stack. |
|
800 HeapWord* _region_finger; |
|
801 |
|
802 // the number of words this task has scanned |
|
803 size_t _words_scanned; |
|
804 // When _words_scanned reaches this limit, the regular clock is |
|
805 // called. Notice that this might be decreased under certain |
|
806 // circumstances (i.e. when we believe that we did an expensive |
|
807 // operation). |
|
808 size_t _words_scanned_limit; |
|
809 // the initial value of _words_scanned_limit (i.e. what it was |
|
810 // before it was decreased). |
|
811 size_t _real_words_scanned_limit; |
|
812 |
|
813 // the number of references this task has visited |
|
814 size_t _refs_reached; |
|
815 // When _refs_reached reaches this limit, the regular clock is |
|
816 // called. Notice this this might be decreased under certain |
|
817 // circumstances (i.e. when we believe that we did an expensive |
|
818 // operation). |
|
819 size_t _refs_reached_limit; |
|
820 // the initial value of _refs_reached_limit (i.e. what it was before |
|
821 // it was decreased). |
|
822 size_t _real_refs_reached_limit; |
|
823 |
|
824 // used by the work stealing stuff |
|
825 int _hash_seed; |
|
826 // if this is true, then the task has aborted for some reason |
|
827 bool _has_aborted; |
|
828 // set when the task aborts because it has met its time quota |
|
829 bool _has_aborted_timed_out; |
|
830 // true when we're draining SATB buffers; this avoids the task |
|
831 // aborting due to SATB buffers being available (as we're already |
|
832 // dealing with them) |
|
833 bool _draining_satb_buffers; |
|
834 |
|
835 // number sequence of past step times |
|
836 NumberSeq _step_times_ms; |
|
837 // elapsed time of this task |
|
838 double _elapsed_time_ms; |
|
839 // termination time of this task |
|
840 double _termination_time_ms; |
|
841 // when this task got into the termination protocol |
|
842 double _termination_start_time_ms; |
|
843 |
|
844 // true when the task is during a concurrent phase, false when it is |
|
845 // in the remark phase (so, in the latter case, we do not have to |
|
846 // check all the things that we have to check during the concurrent |
|
847 // phase, i.e. SATB buffer availability...) |
|
848 bool _concurrent; |
|
849 |
|
850 TruncatedSeq _marking_step_diffs_ms; |
|
851 |
|
852 // LOTS of statistics related with this task |
|
853 #if _MARKING_STATS_ |
|
854 NumberSeq _all_clock_intervals_ms; |
|
855 double _interval_start_time_ms; |
|
856 |
|
857 int _aborted; |
|
858 int _aborted_overflow; |
|
859 int _aborted_cm_aborted; |
|
860 int _aborted_yield; |
|
861 int _aborted_timed_out; |
|
862 int _aborted_satb; |
|
863 int _aborted_termination; |
|
864 |
|
865 int _steal_attempts; |
|
866 int _steals; |
|
867 |
|
868 int _clock_due_to_marking; |
|
869 int _clock_due_to_scanning; |
|
870 |
|
871 int _local_pushes; |
|
872 int _local_pops; |
|
873 int _local_max_size; |
|
874 int _objs_scanned; |
|
875 |
|
876 int _global_pushes; |
|
877 int _global_pops; |
|
878 int _global_max_size; |
|
879 |
|
880 int _global_transfers_to; |
|
881 int _global_transfers_from; |
|
882 |
|
883 int _region_stack_pops; |
|
884 |
|
885 int _regions_claimed; |
|
886 int _objs_found_on_bitmap; |
|
887 |
|
888 int _satb_buffers_processed; |
|
889 #endif // _MARKING_STATS_ |
|
890 |
|
891 // it updates the local fields after this task has claimed |
|
892 // a new region to scan |
|
893 void setup_for_region(HeapRegion* hr); |
|
894 // it brings up-to-date the limit of the region |
|
895 void update_region_limit(); |
|
896 // it resets the local fields after a task has finished scanning a |
|
897 // region |
|
898 void giveup_current_region(); |
|
899 |
|
900 // called when either the words scanned or the refs visited limit |
|
901 // has been reached |
|
902 void reached_limit(); |
|
903 // recalculates the words scanned and refs visited limits |
|
904 void recalculate_limits(); |
|
905 // decreases the words scanned and refs visited limits when we reach |
|
906 // an expensive operation |
|
907 void decrease_limits(); |
|
908 // it checks whether the words scanned or refs visited reached their |
|
909 // respective limit and calls reached_limit() if they have |
|
910 void check_limits() { |
|
911 if (_words_scanned >= _words_scanned_limit || |
|
912 _refs_reached >= _refs_reached_limit) |
|
913 reached_limit(); |
|
914 } |
|
915 // this is supposed to be called regularly during a marking step as |
|
916 // it checks a bunch of conditions that might cause the marking step |
|
917 // to abort |
|
918 void regular_clock_call(); |
|
919 bool concurrent() { return _concurrent; } |
|
920 |
|
921 public: |
|
922 // It resets the task; it should be called right at the beginning of |
|
923 // a marking phase. |
|
924 void reset(CMBitMap* _nextMarkBitMap); |
|
925 // it clears all the fields that correspond to a claimed region. |
|
926 void clear_region_fields(); |
|
927 |
|
928 void set_concurrent(bool concurrent) { _concurrent = concurrent; } |
|
929 |
|
930 void enable_co_tracker() { |
|
931 guarantee( !_co_tracker.enabled(), "invariant" ); |
|
932 _co_tracker.enable(); |
|
933 } |
|
934 void disable_co_tracker() { |
|
935 guarantee( _co_tracker.enabled(), "invariant" ); |
|
936 _co_tracker.disable(); |
|
937 } |
|
938 bool co_tracker_enabled() { |
|
939 return _co_tracker.enabled(); |
|
940 } |
|
941 void reset_co_tracker(double starting_conc_overhead = 0.0) { |
|
942 _co_tracker.reset(starting_conc_overhead); |
|
943 } |
|
944 void start_co_tracker() { |
|
945 _co_tracker.start(); |
|
946 } |
|
947 void update_co_tracker(bool force_end = false) { |
|
948 _co_tracker.update(force_end); |
|
949 } |
|
950 |
|
951 // The main method of this class which performs a marking step |
|
952 // trying not to exceed the given duration. However, it might exit |
|
953 // prematurely, according to some conditions (i.e. SATB buffers are |
|
954 // available for processing). |
|
955 void do_marking_step(double target_ms); |
|
956 |
|
957 // These two calls start and stop the timer |
|
958 void record_start_time() { |
|
959 _elapsed_time_ms = os::elapsedTime() * 1000.0; |
|
960 } |
|
961 void record_end_time() { |
|
962 _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms; |
|
963 } |
|
964 |
|
965 // returns the task ID |
|
966 int task_id() { return _task_id; } |
|
967 |
|
968 // From TerminatorTerminator. It determines whether this task should |
|
969 // exit the termination protocol after it's entered it. |
|
970 virtual bool should_exit_termination(); |
|
971 |
|
972 HeapWord* finger() { return _finger; } |
|
973 |
|
974 bool has_aborted() { return _has_aborted; } |
|
975 void set_has_aborted() { _has_aborted = true; } |
|
976 void clear_has_aborted() { _has_aborted = false; } |
|
977 bool claimed() { return _claimed; } |
|
978 |
|
979 void set_oop_closure(OopClosure* oop_closure) { |
|
980 _oop_closure = oop_closure; |
|
981 } |
|
982 |
|
983 // It grays the object by marking it and, if necessary, pushing it |
|
984 // on the local queue |
|
985 void deal_with_reference(oop obj); |
|
986 |
|
987 // It scans an object and visits its children. |
|
988 void scan_object(oop obj) { |
|
989 tmp_guarantee_CM( _nextMarkBitMap->isMarked((HeapWord*) obj), |
|
990 "invariant" ); |
|
991 |
|
992 if (_cm->verbose_high()) |
|
993 gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT, |
|
994 _task_id, (void*) obj); |
|
995 |
|
996 size_t obj_size = obj->size(); |
|
997 _words_scanned += obj_size; |
|
998 |
|
999 obj->oop_iterate(_oop_closure); |
|
1000 statsOnly( ++_objs_scanned ); |
|
1001 check_limits(); |
|
1002 } |
|
1003 |
|
1004 // It pushes an object on the local queue. |
|
1005 void push(oop obj); |
|
1006 |
|
1007 // These two move entries to/from the global stack. |
|
1008 void move_entries_to_global_stack(); |
|
1009 void get_entries_from_global_stack(); |
|
1010 |
|
1011 // It pops and scans objects from the local queue. If partially is |
|
1012 // true, then it stops when the queue size is of a given limit. If |
|
1013 // partially is false, then it stops when the queue is empty. |
|
1014 void drain_local_queue(bool partially); |
|
1015 // It moves entries from the global stack to the local queue and |
|
1016 // drains the local queue. If partially is true, then it stops when |
|
1017 // both the global stack and the local queue reach a given size. If |
|
1018 // partially if false, it tries to empty them totally. |
|
1019 void drain_global_stack(bool partially); |
|
1020 // It keeps picking SATB buffers and processing them until no SATB |
|
1021 // buffers are available. |
|
1022 void drain_satb_buffers(); |
|
1023 // It keeps popping regions from the region stack and processing |
|
1024 // them until the region stack is empty. |
|
1025 void drain_region_stack(BitMapClosure* closure); |
|
1026 |
|
1027 // moves the local finger to a new location |
|
1028 inline void move_finger_to(HeapWord* new_finger) { |
|
1029 tmp_guarantee_CM( new_finger >= _finger && new_finger < _region_limit, |
|
1030 "invariant" ); |
|
1031 _finger = new_finger; |
|
1032 } |
|
1033 |
|
1034 // moves the region finger to a new location |
|
1035 inline void move_region_finger_to(HeapWord* new_finger) { |
|
1036 tmp_guarantee_CM( new_finger < _cm->finger(), "invariant" ); |
|
1037 _region_finger = new_finger; |
|
1038 } |
|
1039 |
|
1040 CMTask(int task_num, ConcurrentMark *cm, |
|
1041 CMTaskQueue* task_queue, CMTaskQueueSet* task_queues); |
|
1042 |
|
1043 // it prints statistics associated with this task |
|
1044 void print_stats(); |
|
1045 |
|
1046 #if _MARKING_STATS_ |
|
1047 void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; } |
|
1048 #endif // _MARKING_STATS_ |
|
1049 }; |