src/hotspot/share/gc/shared/c1/barrierSetC1.cpp
changeset 49906 4bb58f644e4e
child 50728 9375184cec98
equal deleted inserted replaced
49905:a09af8ef8e5c 49906:4bb58f644e4e
       
     1 /*
       
     2  * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "c1/c1_Defs.hpp"
       
    27 #include "c1/c1_LIRGenerator.hpp"
       
    28 #include "gc/shared/c1/barrierSetC1.hpp"
       
    29 #include "utilities/macros.hpp"
       
    30 
       
    31 #ifndef PATCHED_ADDR
       
    32 #define PATCHED_ADDR  (max_jint)
       
    33 #endif
       
    34 
       
    35 #ifdef ASSERT
       
    36 #define __ gen->lir(__FILE__, __LINE__)->
       
    37 #else
       
    38 #define __ gen->lir()->
       
    39 #endif
       
    40 
       
    41 LIR_Opr BarrierSetC1::resolve_address(LIRAccess& access, bool resolve_in_register) {
       
    42   DecoratorSet decorators = access.decorators();
       
    43   bool on_array = (decorators & IN_HEAP_ARRAY) != 0;
       
    44   bool needs_patching = (decorators & C1_NEEDS_PATCHING) != 0;
       
    45 
       
    46   LIRItem& base = access.base().item();
       
    47   LIR_Opr offset = access.offset().opr();
       
    48   LIRGenerator *gen = access.gen();
       
    49 
       
    50   LIR_Opr addr_opr;
       
    51   if (on_array) {
       
    52     addr_opr = LIR_OprFact::address(gen->emit_array_address(base.result(), offset, access.type()));
       
    53   } else if (needs_patching) {
       
    54     // we need to patch the offset in the instruction so don't allow
       
    55     // generate_address to try to be smart about emitting the -1.
       
    56     // Otherwise the patching code won't know how to find the
       
    57     // instruction to patch.
       
    58     addr_opr = LIR_OprFact::address(new LIR_Address(base.result(), PATCHED_ADDR, access.type()));
       
    59   } else {
       
    60     addr_opr = LIR_OprFact::address(gen->generate_address(base.result(), offset, 0, 0, access.type()));
       
    61   }
       
    62 
       
    63   if (resolve_in_register) {
       
    64     LIR_Opr resolved_addr = gen->new_pointer_register();
       
    65     __ leal(addr_opr, resolved_addr);
       
    66     resolved_addr = LIR_OprFact::address(new LIR_Address(resolved_addr, access.type()));
       
    67     return resolved_addr;
       
    68   } else {
       
    69     return addr_opr;
       
    70   }
       
    71 }
       
    72 
       
    73 void BarrierSetC1::store_at(LIRAccess& access, LIR_Opr value) {
       
    74   DecoratorSet decorators = access.decorators();
       
    75   bool in_heap = (decorators & IN_HEAP) != 0;
       
    76   assert(in_heap, "not supported yet");
       
    77 
       
    78   LIR_Opr resolved = resolve_address(access, false);
       
    79   access.set_resolved_addr(resolved);
       
    80   store_at_resolved(access, value);
       
    81 }
       
    82 
       
    83 void BarrierSetC1::load_at(LIRAccess& access, LIR_Opr result) {
       
    84   DecoratorSet decorators = access.decorators();
       
    85   bool in_heap = (decorators & IN_HEAP) != 0;
       
    86   assert(in_heap, "not supported yet");
       
    87 
       
    88   LIR_Opr resolved = resolve_address(access, false);
       
    89   access.set_resolved_addr(resolved);
       
    90   load_at_resolved(access, result);
       
    91 }
       
    92 
       
    93 LIR_Opr BarrierSetC1::atomic_cmpxchg_at(LIRAccess& access, LIRItem& cmp_value, LIRItem& new_value) {
       
    94   DecoratorSet decorators = access.decorators();
       
    95   bool in_heap = (decorators & IN_HEAP) != 0;
       
    96   assert(in_heap, "not supported yet");
       
    97 
       
    98   access.load_address();
       
    99 
       
   100   LIR_Opr resolved = resolve_address(access, true);
       
   101   access.set_resolved_addr(resolved);
       
   102   return atomic_cmpxchg_at_resolved(access, cmp_value, new_value);
       
   103 }
       
   104 
       
   105 LIR_Opr BarrierSetC1::atomic_xchg_at(LIRAccess& access, LIRItem& value) {
       
   106   DecoratorSet decorators = access.decorators();
       
   107   bool in_heap = (decorators & IN_HEAP) != 0;
       
   108   assert(in_heap, "not supported yet");
       
   109 
       
   110   access.load_address();
       
   111 
       
   112   LIR_Opr resolved = resolve_address(access, true);
       
   113   access.set_resolved_addr(resolved);
       
   114   return atomic_xchg_at_resolved(access, value);
       
   115 }
       
   116 
       
   117 LIR_Opr BarrierSetC1::atomic_add_at(LIRAccess& access, LIRItem& value) {
       
   118   DecoratorSet decorators = access.decorators();
       
   119   bool in_heap = (decorators & IN_HEAP) != 0;
       
   120   assert(in_heap, "not supported yet");
       
   121 
       
   122   access.load_address();
       
   123 
       
   124   LIR_Opr resolved = resolve_address(access, true);
       
   125   access.set_resolved_addr(resolved);
       
   126   return atomic_add_at_resolved(access, value);
       
   127 }
       
   128 
       
   129 void BarrierSetC1::store_at_resolved(LIRAccess& access, LIR_Opr value) {
       
   130   DecoratorSet decorators = access.decorators();
       
   131   bool is_volatile = (((decorators & MO_SEQ_CST) != 0) || AlwaysAtomicAccesses) && os::is_MP();
       
   132   bool needs_patching = (decorators & C1_NEEDS_PATCHING) != 0;
       
   133   bool mask_boolean = (decorators & C1_MASK_BOOLEAN) != 0;
       
   134   LIRGenerator* gen = access.gen();
       
   135 
       
   136   if (mask_boolean) {
       
   137     value = gen->mask_boolean(access.base().opr(), value, access.access_emit_info());
       
   138   }
       
   139 
       
   140   if (is_volatile && os::is_MP()) {
       
   141     __ membar_release();
       
   142   }
       
   143 
       
   144   LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
       
   145   if (is_volatile && !needs_patching) {
       
   146     gen->volatile_field_store(value, access.resolved_addr()->as_address_ptr(), access.access_emit_info());
       
   147   } else {
       
   148     __ store(value, access.resolved_addr()->as_address_ptr(), access.access_emit_info(), patch_code);
       
   149   }
       
   150 
       
   151   if (is_volatile && !support_IRIW_for_not_multiple_copy_atomic_cpu) {
       
   152     __ membar();
       
   153   }
       
   154 }
       
   155 
       
   156 void BarrierSetC1::load_at_resolved(LIRAccess& access, LIR_Opr result) {
       
   157   LIRGenerator *gen = access.gen();
       
   158   DecoratorSet decorators = access.decorators();
       
   159   bool is_volatile = (((decorators & MO_SEQ_CST) != 0) || AlwaysAtomicAccesses) && os::is_MP();
       
   160   bool needs_patching = (decorators & C1_NEEDS_PATCHING) != 0;
       
   161   bool mask_boolean = (decorators & C1_MASK_BOOLEAN) != 0;
       
   162 
       
   163   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile) {
       
   164     __ membar();
       
   165   }
       
   166 
       
   167   LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
       
   168   if (is_volatile && !needs_patching) {
       
   169     gen->volatile_field_load(access.resolved_addr()->as_address_ptr(), result, access.access_emit_info());
       
   170   } else {
       
   171     __ load(access.resolved_addr()->as_address_ptr(), result, access.access_emit_info(), patch_code);
       
   172   }
       
   173 
       
   174   if (is_volatile && os::is_MP()) {
       
   175     __ membar_acquire();
       
   176   }
       
   177 
       
   178   /* Normalize boolean value returned by unsafe operation, i.e., value  != 0 ? value = true : value false. */
       
   179   if (mask_boolean) {
       
   180     LabelObj* equalZeroLabel = new LabelObj();
       
   181     __ cmp(lir_cond_equal, result, 0);
       
   182     __ branch(lir_cond_equal, T_BOOLEAN, equalZeroLabel->label());
       
   183     __ move(LIR_OprFact::intConst(1), result);
       
   184     __ branch_destination(equalZeroLabel->label());
       
   185   }
       
   186 }
       
   187 
       
   188 LIR_Opr BarrierSetC1::atomic_cmpxchg_at_resolved(LIRAccess& access, LIRItem& cmp_value, LIRItem& new_value) {
       
   189   LIRGenerator *gen = access.gen();
       
   190   return gen->atomic_cmpxchg(access.type(), access.resolved_addr(), cmp_value, new_value);
       
   191 }
       
   192 
       
   193 LIR_Opr BarrierSetC1::atomic_xchg_at_resolved(LIRAccess& access, LIRItem& value) {
       
   194   LIRGenerator *gen = access.gen();
       
   195   return gen->atomic_xchg(access.type(), access.resolved_addr(), value);
       
   196 }
       
   197 
       
   198 LIR_Opr BarrierSetC1::atomic_add_at_resolved(LIRAccess& access, LIRItem& value) {
       
   199   LIRGenerator *gen = access.gen();
       
   200   return gen->atomic_add(access.type(), access.resolved_addr(), value);
       
   201 }
       
   202 
       
   203 void BarrierSetC1::generate_referent_check(LIRAccess& access, LabelObj* cont) {
       
   204   // We might be reading the value of the referent field of a
       
   205   // Reference object in order to attach it back to the live
       
   206   // object graph. If G1 is enabled then we need to record
       
   207   // the value that is being returned in an SATB log buffer.
       
   208   //
       
   209   // We need to generate code similar to the following...
       
   210   //
       
   211   // if (offset == java_lang_ref_Reference::referent_offset) {
       
   212   //   if (src != NULL) {
       
   213   //     if (klass(src)->reference_type() != REF_NONE) {
       
   214   //       pre_barrier(..., value, ...);
       
   215   //     }
       
   216   //   }
       
   217   // }
       
   218 
       
   219   bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
       
   220   bool gen_offset_check = true;    // Assume we need to generate the offset guard.
       
   221   bool gen_source_check = true;    // Assume we need to check the src object for null.
       
   222   bool gen_type_check = true;      // Assume we need to check the reference_type.
       
   223 
       
   224   LIRGenerator *gen = access.gen();
       
   225 
       
   226   LIRItem& base = access.base().item();
       
   227   LIR_Opr offset = access.offset().opr();
       
   228 
       
   229   if (offset->is_constant()) {
       
   230     LIR_Const* constant = offset->as_constant_ptr();
       
   231     jlong off_con = (constant->type() == T_INT ?
       
   232                      (jlong)constant->as_jint() :
       
   233                      constant->as_jlong());
       
   234 
       
   235 
       
   236     if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
       
   237       // The constant offset is something other than referent_offset.
       
   238       // We can skip generating/checking the remaining guards and
       
   239       // skip generation of the code stub.
       
   240       gen_pre_barrier = false;
       
   241     } else {
       
   242       // The constant offset is the same as referent_offset -
       
   243       // we do not need to generate a runtime offset check.
       
   244       gen_offset_check = false;
       
   245     }
       
   246   }
       
   247 
       
   248   // We don't need to generate stub if the source object is an array
       
   249   if (gen_pre_barrier && base.type()->is_array()) {
       
   250     gen_pre_barrier = false;
       
   251   }
       
   252 
       
   253   if (gen_pre_barrier) {
       
   254     // We still need to continue with the checks.
       
   255     if (base.is_constant()) {
       
   256       ciObject* src_con = base.get_jobject_constant();
       
   257       guarantee(src_con != NULL, "no source constant");
       
   258 
       
   259       if (src_con->is_null_object()) {
       
   260         // The constant src object is null - We can skip
       
   261         // generating the code stub.
       
   262         gen_pre_barrier = false;
       
   263       } else {
       
   264         // Non-null constant source object. We still have to generate
       
   265         // the slow stub - but we don't need to generate the runtime
       
   266         // null object check.
       
   267         gen_source_check = false;
       
   268       }
       
   269     }
       
   270   }
       
   271   if (gen_pre_barrier && !PatchALot) {
       
   272     // Can the klass of object be statically determined to be
       
   273     // a sub-class of Reference?
       
   274     ciType* type = base.value()->declared_type();
       
   275     if ((type != NULL) && type->is_loaded()) {
       
   276       if (type->is_subtype_of(gen->compilation()->env()->Reference_klass())) {
       
   277         gen_type_check = false;
       
   278       } else if (type->is_klass() &&
       
   279                  !gen->compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
       
   280         // Not Reference and not Object klass.
       
   281         gen_pre_barrier = false;
       
   282       }
       
   283     }
       
   284   }
       
   285 
       
   286   if (gen_pre_barrier) {
       
   287     // We can have generate one runtime check here. Let's start with
       
   288     // the offset check.
       
   289     if (gen_offset_check) {
       
   290       // if (offset != referent_offset) -> continue
       
   291       // If offset is an int then we can do the comparison with the
       
   292       // referent_offset constant; otherwise we need to move
       
   293       // referent_offset into a temporary register and generate
       
   294       // a reg-reg compare.
       
   295 
       
   296       LIR_Opr referent_off;
       
   297 
       
   298       if (offset->type() == T_INT) {
       
   299         referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
       
   300       } else {
       
   301         assert(offset->type() == T_LONG, "what else?");
       
   302         referent_off = gen->new_register(T_LONG);
       
   303         __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
       
   304       }
       
   305       __ cmp(lir_cond_notEqual, offset, referent_off);
       
   306       __ branch(lir_cond_notEqual, offset->type(), cont->label());
       
   307     }
       
   308     if (gen_source_check) {
       
   309       // offset is a const and equals referent offset
       
   310       // if (source == null) -> continue
       
   311       __ cmp(lir_cond_equal, base.result(), LIR_OprFact::oopConst(NULL));
       
   312       __ branch(lir_cond_equal, T_OBJECT, cont->label());
       
   313     }
       
   314     LIR_Opr src_klass = gen->new_register(T_OBJECT);
       
   315     if (gen_type_check) {
       
   316       // We have determined that offset == referent_offset && src != null.
       
   317       // if (src->_klass->_reference_type == REF_NONE) -> continue
       
   318       __ move(new LIR_Address(base.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
       
   319       LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
       
   320       LIR_Opr reference_type = gen->new_register(T_INT);
       
   321       __ move(reference_type_addr, reference_type);
       
   322       __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
       
   323       __ branch(lir_cond_equal, T_INT, cont->label());
       
   324     }
       
   325   }
       
   326 }