hotspot/src/share/vm/runtime/sharedRuntimeTrans.cpp
changeset 1 489c9b5090e2
child 5547 f4b087cbb361
equal deleted inserted replaced
0:fd16c54261b3 1:489c9b5090e2
       
     1 /*
       
     2  * Copyright 2005 Sun Microsystems, Inc.  All Rights Reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    21  * have any questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "incls/_precompiled.incl"
       
    26 #include "incls/_sharedRuntimeTrans.cpp.incl"
       
    27 
       
    28 // This file contains copies of the fdlibm routines used by
       
    29 // StrictMath. It turns out that it is almost always required to use
       
    30 // these runtime routines; the Intel CPU doesn't meet the Java
       
    31 // specification for sin/cos outside a certain limited argument range,
       
    32 // and the SPARC CPU doesn't appear to have sin/cos instructions. It
       
    33 // also turns out that avoiding the indirect call through function
       
    34 // pointer out to libjava.so in SharedRuntime speeds these routines up
       
    35 // by roughly 15% on both Win32/x86 and Solaris/SPARC.
       
    36 
       
    37 // Enabling optimizations in this file causes incorrect code to be
       
    38 // generated; can not figure out how to turn down optimization for one
       
    39 // file in the IDE on Windows
       
    40 #ifdef WIN32
       
    41 # pragma optimize ( "", off )
       
    42 #endif
       
    43 
       
    44 #include <math.h>
       
    45 
       
    46 // VM_LITTLE_ENDIAN is #defined appropriately in the Makefiles
       
    47 // [jk] this is not 100% correct because the float word order may different
       
    48 // from the byte order (e.g. on ARM)
       
    49 #ifdef VM_LITTLE_ENDIAN
       
    50 # define __HI(x) *(1+(int*)&x)
       
    51 # define __LO(x) *(int*)&x
       
    52 #else
       
    53 # define __HI(x) *(int*)&x
       
    54 # define __LO(x) *(1+(int*)&x)
       
    55 #endif
       
    56 
       
    57 double copysign(double x, double y) {
       
    58   __HI(x) = (__HI(x)&0x7fffffff)|(__HI(y)&0x80000000);
       
    59   return x;
       
    60 }
       
    61 
       
    62 /*
       
    63  * ====================================================
       
    64  * Copyright (C) 1998 by Sun Microsystems, Inc. All rights reserved.
       
    65  *
       
    66  * Developed at SunSoft, a Sun Microsystems, Inc. business.
       
    67  * Permission to use, copy, modify, and distribute this
       
    68  * software is freely granted, provided that this notice
       
    69  * is preserved.
       
    70  * ====================================================
       
    71  */
       
    72 
       
    73 /*
       
    74  * scalbn (double x, int n)
       
    75  * scalbn(x,n) returns x* 2**n  computed by  exponent
       
    76  * manipulation rather than by actually performing an
       
    77  * exponentiation or a multiplication.
       
    78  */
       
    79 
       
    80 static const double
       
    81 two54   =  1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
       
    82   twom54  =  5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
       
    83   hugeX   = 1.0e+300,
       
    84   tiny   = 1.0e-300;
       
    85 
       
    86 double scalbn (double x, int n) {
       
    87   int  k,hx,lx;
       
    88   hx = __HI(x);
       
    89   lx = __LO(x);
       
    90   k = (hx&0x7ff00000)>>20;              /* extract exponent */
       
    91   if (k==0) {                           /* 0 or subnormal x */
       
    92     if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
       
    93     x *= two54;
       
    94     hx = __HI(x);
       
    95     k = ((hx&0x7ff00000)>>20) - 54;
       
    96     if (n< -50000) return tiny*x;       /*underflow*/
       
    97   }
       
    98   if (k==0x7ff) return x+x;             /* NaN or Inf */
       
    99   k = k+n;
       
   100   if (k >  0x7fe) return hugeX*copysign(hugeX,x); /* overflow  */
       
   101   if (k > 0)                            /* normal result */
       
   102     {__HI(x) = (hx&0x800fffff)|(k<<20); return x;}
       
   103   if (k <= -54) {
       
   104     if (n > 50000)      /* in case integer overflow in n+k */
       
   105       return hugeX*copysign(hugeX,x);   /*overflow*/
       
   106     else return tiny*copysign(tiny,x);  /*underflow*/
       
   107   }
       
   108   k += 54;                              /* subnormal result */
       
   109   __HI(x) = (hx&0x800fffff)|(k<<20);
       
   110   return x*twom54;
       
   111 }
       
   112 
       
   113 /* __ieee754_log(x)
       
   114  * Return the logrithm of x
       
   115  *
       
   116  * Method :
       
   117  *   1. Argument Reduction: find k and f such that
       
   118  *                    x = 2^k * (1+f),
       
   119  *       where  sqrt(2)/2 < 1+f < sqrt(2) .
       
   120  *
       
   121  *   2. Approximation of log(1+f).
       
   122  *    Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
       
   123  *             = 2s + 2/3 s**3 + 2/5 s**5 + .....,
       
   124  *             = 2s + s*R
       
   125  *      We use a special Reme algorithm on [0,0.1716] to generate
       
   126  *    a polynomial of degree 14 to approximate R The maximum error
       
   127  *    of this polynomial approximation is bounded by 2**-58.45. In
       
   128  *    other words,
       
   129  *                    2      4      6      8      10      12      14
       
   130  *        R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
       
   131  *    (the values of Lg1 to Lg7 are listed in the program)
       
   132  *    and
       
   133  *        |      2          14          |     -58.45
       
   134  *        | Lg1*s +...+Lg7*s    -  R(z) | <= 2
       
   135  *        |                             |
       
   136  *    Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
       
   137  *    In order to guarantee error in log below 1ulp, we compute log
       
   138  *    by
       
   139  *            log(1+f) = f - s*(f - R)        (if f is not too large)
       
   140  *            log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy)
       
   141  *
       
   142  *    3. Finally,  log(x) = k*ln2 + log(1+f).
       
   143  *                        = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
       
   144  *       Here ln2 is split into two floating point number:
       
   145  *                    ln2_hi + ln2_lo,
       
   146  *       where n*ln2_hi is always exact for |n| < 2000.
       
   147  *
       
   148  * Special cases:
       
   149  *    log(x) is NaN with signal if x < 0 (including -INF) ;
       
   150  *    log(+INF) is +INF; log(0) is -INF with signal;
       
   151  *    log(NaN) is that NaN with no signal.
       
   152  *
       
   153  * Accuracy:
       
   154  *    according to an error analysis, the error is always less than
       
   155  *    1 ulp (unit in the last place).
       
   156  *
       
   157  * Constants:
       
   158  * The hexadecimal values are the intended ones for the following
       
   159  * constants. The decimal values may be used, provided that the
       
   160  * compiler will convert from decimal to binary accurately enough
       
   161  * to produce the hexadecimal values shown.
       
   162  */
       
   163 
       
   164 static const double
       
   165 ln2_hi  =  6.93147180369123816490e-01,        /* 3fe62e42 fee00000 */
       
   166   ln2_lo  =  1.90821492927058770002e-10,        /* 3dea39ef 35793c76 */
       
   167   Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
       
   168   Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
       
   169   Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
       
   170   Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
       
   171   Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
       
   172   Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
       
   173   Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
       
   174 
       
   175 static double zero = 0.0;
       
   176 
       
   177 static double __ieee754_log(double x) {
       
   178   double hfsq,f,s,z,R,w,t1,t2,dk;
       
   179   int k,hx,i,j;
       
   180   unsigned lx;
       
   181 
       
   182   hx = __HI(x);               /* high word of x */
       
   183   lx = __LO(x);               /* low  word of x */
       
   184 
       
   185   k=0;
       
   186   if (hx < 0x00100000) {                   /* x < 2**-1022  */
       
   187     if (((hx&0x7fffffff)|lx)==0)
       
   188       return -two54/zero;             /* log(+-0)=-inf */
       
   189     if (hx<0) return (x-x)/zero;   /* log(-#) = NaN */
       
   190     k -= 54; x *= two54; /* subnormal number, scale up x */
       
   191     hx = __HI(x);             /* high word of x */
       
   192   }
       
   193   if (hx >= 0x7ff00000) return x+x;
       
   194   k += (hx>>20)-1023;
       
   195   hx &= 0x000fffff;
       
   196   i = (hx+0x95f64)&0x100000;
       
   197   __HI(x) = hx|(i^0x3ff00000);        /* normalize x or x/2 */
       
   198   k += (i>>20);
       
   199   f = x-1.0;
       
   200   if((0x000fffff&(2+hx))<3) {  /* |f| < 2**-20 */
       
   201     if(f==zero) {
       
   202       if (k==0) return zero;
       
   203       else {dk=(double)k; return dk*ln2_hi+dk*ln2_lo;}
       
   204     }
       
   205     R = f*f*(0.5-0.33333333333333333*f);
       
   206     if(k==0) return f-R; else {dk=(double)k;
       
   207     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
       
   208   }
       
   209   s = f/(2.0+f);
       
   210   dk = (double)k;
       
   211   z = s*s;
       
   212   i = hx-0x6147a;
       
   213   w = z*z;
       
   214   j = 0x6b851-hx;
       
   215   t1= w*(Lg2+w*(Lg4+w*Lg6));
       
   216   t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
       
   217   i |= j;
       
   218   R = t2+t1;
       
   219   if(i>0) {
       
   220     hfsq=0.5*f*f;
       
   221     if(k==0) return f-(hfsq-s*(hfsq+R)); else
       
   222       return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
       
   223   } else {
       
   224     if(k==0) return f-s*(f-R); else
       
   225       return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
       
   226   }
       
   227 }
       
   228 
       
   229 JRT_LEAF(jdouble, SharedRuntime::dlog(jdouble x))
       
   230   return __ieee754_log(x);
       
   231 JRT_END
       
   232 
       
   233 /* __ieee754_log10(x)
       
   234  * Return the base 10 logarithm of x
       
   235  *
       
   236  * Method :
       
   237  *    Let log10_2hi = leading 40 bits of log10(2) and
       
   238  *        log10_2lo = log10(2) - log10_2hi,
       
   239  *        ivln10   = 1/log(10) rounded.
       
   240  *    Then
       
   241  *            n = ilogb(x),
       
   242  *            if(n<0)  n = n+1;
       
   243  *            x = scalbn(x,-n);
       
   244  *            log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x))
       
   245  *
       
   246  * Note 1:
       
   247  *    To guarantee log10(10**n)=n, where 10**n is normal, the rounding
       
   248  *    mode must set to Round-to-Nearest.
       
   249  * Note 2:
       
   250  *    [1/log(10)] rounded to 53 bits has error  .198   ulps;
       
   251  *    log10 is monotonic at all binary break points.
       
   252  *
       
   253  * Special cases:
       
   254  *    log10(x) is NaN with signal if x < 0;
       
   255  *    log10(+INF) is +INF with no signal; log10(0) is -INF with signal;
       
   256  *    log10(NaN) is that NaN with no signal;
       
   257  *    log10(10**N) = N  for N=0,1,...,22.
       
   258  *
       
   259  * Constants:
       
   260  * The hexadecimal values are the intended ones for the following constants.
       
   261  * The decimal values may be used, provided that the compiler will convert
       
   262  * from decimal to binary accurately enough to produce the hexadecimal values
       
   263  * shown.
       
   264  */
       
   265 
       
   266 static const double
       
   267 ivln10     =  4.34294481903251816668e-01, /* 0x3FDBCB7B, 0x1526E50E */
       
   268   log10_2hi  =  3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
       
   269   log10_2lo  =  3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
       
   270 
       
   271 static double __ieee754_log10(double x) {
       
   272   double y,z;
       
   273   int i,k,hx;
       
   274   unsigned lx;
       
   275 
       
   276   hx = __HI(x);       /* high word of x */
       
   277   lx = __LO(x);       /* low word of x */
       
   278 
       
   279   k=0;
       
   280   if (hx < 0x00100000) {                  /* x < 2**-1022  */
       
   281     if (((hx&0x7fffffff)|lx)==0)
       
   282       return -two54/zero;             /* log(+-0)=-inf */
       
   283     if (hx<0) return (x-x)/zero;        /* log(-#) = NaN */
       
   284     k -= 54; x *= two54; /* subnormal number, scale up x */
       
   285     hx = __HI(x);                /* high word of x */
       
   286   }
       
   287   if (hx >= 0x7ff00000) return x+x;
       
   288   k += (hx>>20)-1023;
       
   289   i  = ((unsigned)k&0x80000000)>>31;
       
   290   hx = (hx&0x000fffff)|((0x3ff-i)<<20);
       
   291   y  = (double)(k+i);
       
   292   __HI(x) = hx;
       
   293   z  = y*log10_2lo + ivln10*__ieee754_log(x);
       
   294   return  z+y*log10_2hi;
       
   295 }
       
   296 
       
   297 JRT_LEAF(jdouble, SharedRuntime::dlog10(jdouble x))
       
   298   return __ieee754_log10(x);
       
   299 JRT_END
       
   300 
       
   301 
       
   302 /* __ieee754_exp(x)
       
   303  * Returns the exponential of x.
       
   304  *
       
   305  * Method
       
   306  *   1. Argument reduction:
       
   307  *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
       
   308  *      Given x, find r and integer k such that
       
   309  *
       
   310  *               x = k*ln2 + r,  |r| <= 0.5*ln2.
       
   311  *
       
   312  *      Here r will be represented as r = hi-lo for better
       
   313  *      accuracy.
       
   314  *
       
   315  *   2. Approximation of exp(r) by a special rational function on
       
   316  *      the interval [0,0.34658]:
       
   317  *      Write
       
   318  *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
       
   319  *      We use a special Reme algorithm on [0,0.34658] to generate
       
   320  *      a polynomial of degree 5 to approximate R. The maximum error
       
   321  *      of this polynomial approximation is bounded by 2**-59. In
       
   322  *      other words,
       
   323  *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
       
   324  *      (where z=r*r, and the values of P1 to P5 are listed below)
       
   325  *      and
       
   326  *          |                  5          |     -59
       
   327  *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
       
   328  *          |                             |
       
   329  *      The computation of exp(r) thus becomes
       
   330  *                             2*r
       
   331  *              exp(r) = 1 + -------
       
   332  *                            R - r
       
   333  *                                 r*R1(r)
       
   334  *                     = 1 + r + ----------- (for better accuracy)
       
   335  *                                2 - R1(r)
       
   336  *      where
       
   337  *                               2       4             10
       
   338  *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
       
   339  *
       
   340  *   3. Scale back to obtain exp(x):
       
   341  *      From step 1, we have
       
   342  *         exp(x) = 2^k * exp(r)
       
   343  *
       
   344  * Special cases:
       
   345  *      exp(INF) is INF, exp(NaN) is NaN;
       
   346  *      exp(-INF) is 0, and
       
   347  *      for finite argument, only exp(0)=1 is exact.
       
   348  *
       
   349  * Accuracy:
       
   350  *      according to an error analysis, the error is always less than
       
   351  *      1 ulp (unit in the last place).
       
   352  *
       
   353  * Misc. info.
       
   354  *      For IEEE double
       
   355  *          if x >  7.09782712893383973096e+02 then exp(x) overflow
       
   356  *          if x < -7.45133219101941108420e+02 then exp(x) underflow
       
   357  *
       
   358  * Constants:
       
   359  * The hexadecimal values are the intended ones for the following
       
   360  * constants. The decimal values may be used, provided that the
       
   361  * compiler will convert from decimal to binary accurately enough
       
   362  * to produce the hexadecimal values shown.
       
   363  */
       
   364 
       
   365 static const double
       
   366 one     = 1.0,
       
   367   halF[2]       = {0.5,-0.5,},
       
   368   twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
       
   369     o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
       
   370     u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
       
   371     ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
       
   372                   -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
       
   373     ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
       
   374                   -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
       
   375       invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
       
   376         P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
       
   377         P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
       
   378         P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
       
   379         P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
       
   380         P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
       
   381 
       
   382 static double __ieee754_exp(double x) {
       
   383   double y,hi=0,lo=0,c,t;
       
   384   int k=0,xsb;
       
   385   unsigned hx;
       
   386 
       
   387   hx  = __HI(x);        /* high word of x */
       
   388   xsb = (hx>>31)&1;             /* sign bit of x */
       
   389   hx &= 0x7fffffff;             /* high word of |x| */
       
   390 
       
   391   /* filter out non-finite argument */
       
   392   if(hx >= 0x40862E42) {                        /* if |x|>=709.78... */
       
   393     if(hx>=0x7ff00000) {
       
   394       if(((hx&0xfffff)|__LO(x))!=0)
       
   395         return x+x;             /* NaN */
       
   396       else return (xsb==0)? x:0.0;      /* exp(+-inf)={inf,0} */
       
   397     }
       
   398     if(x > o_threshold) return hugeX*hugeX; /* overflow */
       
   399     if(x < u_threshold) return twom1000*twom1000; /* underflow */
       
   400   }
       
   401 
       
   402   /* argument reduction */
       
   403   if(hx > 0x3fd62e42) {         /* if  |x| > 0.5 ln2 */
       
   404     if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
       
   405       hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
       
   406     } else {
       
   407       k  = (int)(invln2*x+halF[xsb]);
       
   408       t  = k;
       
   409       hi = x - t*ln2HI[0];      /* t*ln2HI is exact here */
       
   410       lo = t*ln2LO[0];
       
   411     }
       
   412     x  = hi - lo;
       
   413   }
       
   414   else if(hx < 0x3e300000)  {   /* when |x|<2**-28 */
       
   415     if(hugeX+x>one) return one+x;/* trigger inexact */
       
   416   }
       
   417   else k = 0;
       
   418 
       
   419   /* x is now in primary range */
       
   420   t  = x*x;
       
   421   c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
       
   422   if(k==0)      return one-((x*c)/(c-2.0)-x);
       
   423   else          y = one-((lo-(x*c)/(2.0-c))-hi);
       
   424   if(k >= -1021) {
       
   425     __HI(y) += (k<<20); /* add k to y's exponent */
       
   426     return y;
       
   427   } else {
       
   428     __HI(y) += ((k+1000)<<20);/* add k to y's exponent */
       
   429     return y*twom1000;
       
   430   }
       
   431 }
       
   432 
       
   433 JRT_LEAF(jdouble, SharedRuntime::dexp(jdouble x))
       
   434   return __ieee754_exp(x);
       
   435 JRT_END
       
   436 
       
   437 /* __ieee754_pow(x,y) return x**y
       
   438  *
       
   439  *                    n
       
   440  * Method:  Let x =  2   * (1+f)
       
   441  *      1. Compute and return log2(x) in two pieces:
       
   442  *              log2(x) = w1 + w2,
       
   443  *         where w1 has 53-24 = 29 bit trailing zeros.
       
   444  *      2. Perform y*log2(x) = n+y' by simulating muti-precision
       
   445  *         arithmetic, where |y'|<=0.5.
       
   446  *      3. Return x**y = 2**n*exp(y'*log2)
       
   447  *
       
   448  * Special cases:
       
   449  *      1.  (anything) ** 0  is 1
       
   450  *      2.  (anything) ** 1  is itself
       
   451  *      3.  (anything) ** NAN is NAN
       
   452  *      4.  NAN ** (anything except 0) is NAN
       
   453  *      5.  +-(|x| > 1) **  +INF is +INF
       
   454  *      6.  +-(|x| > 1) **  -INF is +0
       
   455  *      7.  +-(|x| < 1) **  +INF is +0
       
   456  *      8.  +-(|x| < 1) **  -INF is +INF
       
   457  *      9.  +-1         ** +-INF is NAN
       
   458  *      10. +0 ** (+anything except 0, NAN)               is +0
       
   459  *      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
       
   460  *      12. +0 ** (-anything except 0, NAN)               is +INF
       
   461  *      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
       
   462  *      14. -0 ** (odd integer) = -( +0 ** (odd integer) )
       
   463  *      15. +INF ** (+anything except 0,NAN) is +INF
       
   464  *      16. +INF ** (-anything except 0,NAN) is +0
       
   465  *      17. -INF ** (anything)  = -0 ** (-anything)
       
   466  *      18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
       
   467  *      19. (-anything except 0 and inf) ** (non-integer) is NAN
       
   468  *
       
   469  * Accuracy:
       
   470  *      pow(x,y) returns x**y nearly rounded. In particular
       
   471  *                      pow(integer,integer)
       
   472  *      always returns the correct integer provided it is
       
   473  *      representable.
       
   474  *
       
   475  * Constants :
       
   476  * The hexadecimal values are the intended ones for the following
       
   477  * constants. The decimal values may be used, provided that the
       
   478  * compiler will convert from decimal to binary accurately enough
       
   479  * to produce the hexadecimal values shown.
       
   480  */
       
   481 
       
   482 static const double
       
   483 bp[] = {1.0, 1.5,},
       
   484   dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
       
   485     dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
       
   486       zeroX    =  0.0,
       
   487         two     =  2.0,
       
   488         two53   =  9007199254740992.0,  /* 0x43400000, 0x00000000 */
       
   489         /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
       
   490         L1X  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
       
   491         L2X  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
       
   492         L3X  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
       
   493         L4X  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
       
   494         L5X  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
       
   495         L6X  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
       
   496         lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
       
   497         lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
       
   498         lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
       
   499         ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
       
   500         cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
       
   501         cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
       
   502         cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
       
   503         ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
       
   504         ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
       
   505         ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
       
   506 
       
   507 double __ieee754_pow(double x, double y) {
       
   508   double z,ax,z_h,z_l,p_h,p_l;
       
   509   double y1,t1,t2,r,s,t,u,v,w;
       
   510   int i0,i1,i,j,k,yisint,n;
       
   511   int hx,hy,ix,iy;
       
   512   unsigned lx,ly;
       
   513 
       
   514   i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
       
   515   hx = __HI(x); lx = __LO(x);
       
   516   hy = __HI(y); ly = __LO(y);
       
   517   ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
       
   518 
       
   519   /* y==zero: x**0 = 1 */
       
   520   if((iy|ly)==0) return one;
       
   521 
       
   522   /* +-NaN return x+y */
       
   523   if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
       
   524      iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
       
   525     return x+y;
       
   526 
       
   527   /* determine if y is an odd int when x < 0
       
   528    * yisint = 0 ... y is not an integer
       
   529    * yisint = 1 ... y is an odd int
       
   530    * yisint = 2 ... y is an even int
       
   531    */
       
   532   yisint  = 0;
       
   533   if(hx<0) {
       
   534     if(iy>=0x43400000) yisint = 2; /* even integer y */
       
   535     else if(iy>=0x3ff00000) {
       
   536       k = (iy>>20)-0x3ff;          /* exponent */
       
   537       if(k>20) {
       
   538         j = ly>>(52-k);
       
   539         if((unsigned)(j<<(52-k))==ly) yisint = 2-(j&1);
       
   540       } else if(ly==0) {
       
   541         j = iy>>(20-k);
       
   542         if((j<<(20-k))==iy) yisint = 2-(j&1);
       
   543       }
       
   544     }
       
   545   }
       
   546 
       
   547   /* special value of y */
       
   548   if(ly==0) {
       
   549     if (iy==0x7ff00000) {       /* y is +-inf */
       
   550       if(((ix-0x3ff00000)|lx)==0)
       
   551         return  y - y;  /* inf**+-1 is NaN */
       
   552       else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
       
   553         return (hy>=0)? y: zeroX;
       
   554       else                      /* (|x|<1)**-,+inf = inf,0 */
       
   555         return (hy<0)?-y: zeroX;
       
   556     }
       
   557     if(iy==0x3ff00000) {        /* y is  +-1 */
       
   558       if(hy<0) return one/x; else return x;
       
   559     }
       
   560     if(hy==0x40000000) return x*x; /* y is  2 */
       
   561     if(hy==0x3fe00000) {        /* y is  0.5 */
       
   562       if(hx>=0) /* x >= +0 */
       
   563         return sqrt(x);
       
   564     }
       
   565   }
       
   566 
       
   567   ax   = fabsd(x);
       
   568   /* special value of x */
       
   569   if(lx==0) {
       
   570     if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
       
   571       z = ax;                   /*x is +-0,+-inf,+-1*/
       
   572       if(hy<0) z = one/z;       /* z = (1/|x|) */
       
   573       if(hx<0) {
       
   574         if(((ix-0x3ff00000)|yisint)==0) {
       
   575           z = (z-z)/(z-z); /* (-1)**non-int is NaN */
       
   576         } else if(yisint==1)
       
   577           z = -1.0*z;           /* (x<0)**odd = -(|x|**odd) */
       
   578       }
       
   579       return z;
       
   580     }
       
   581   }
       
   582 
       
   583   n = (hx>>31)+1;
       
   584 
       
   585   /* (x<0)**(non-int) is NaN */
       
   586   if((n|yisint)==0) return (x-x)/(x-x);
       
   587 
       
   588   s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
       
   589   if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
       
   590 
       
   591   /* |y| is huge */
       
   592   if(iy>0x41e00000) { /* if |y| > 2**31 */
       
   593     if(iy>0x43f00000){  /* if |y| > 2**64, must o/uflow */
       
   594       if(ix<=0x3fefffff) return (hy<0)? hugeX*hugeX:tiny*tiny;
       
   595       if(ix>=0x3ff00000) return (hy>0)? hugeX*hugeX:tiny*tiny;
       
   596     }
       
   597     /* over/underflow if x is not close to one */
       
   598     if(ix<0x3fefffff) return (hy<0)? s*hugeX*hugeX:s*tiny*tiny;
       
   599     if(ix>0x3ff00000) return (hy>0)? s*hugeX*hugeX:s*tiny*tiny;
       
   600     /* now |1-x| is tiny <= 2**-20, suffice to compute
       
   601        log(x) by x-x^2/2+x^3/3-x^4/4 */
       
   602     t = ax-one;         /* t has 20 trailing zeros */
       
   603     w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
       
   604     u = ivln2_h*t;      /* ivln2_h has 21 sig. bits */
       
   605     v = t*ivln2_l-w*ivln2;
       
   606     t1 = u+v;
       
   607     __LO(t1) = 0;
       
   608     t2 = v-(t1-u);
       
   609   } else {
       
   610     double ss,s2,s_h,s_l,t_h,t_l;
       
   611     n = 0;
       
   612     /* take care subnormal number */
       
   613     if(ix<0x00100000)
       
   614       {ax *= two53; n -= 53; ix = __HI(ax); }
       
   615     n  += ((ix)>>20)-0x3ff;
       
   616     j  = ix&0x000fffff;
       
   617     /* determine interval */
       
   618     ix = j|0x3ff00000;          /* normalize ix */
       
   619     if(j<=0x3988E) k=0;         /* |x|<sqrt(3/2) */
       
   620     else if(j<0xBB67A) k=1;     /* |x|<sqrt(3)   */
       
   621     else {k=0;n+=1;ix -= 0x00100000;}
       
   622     __HI(ax) = ix;
       
   623 
       
   624     /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
       
   625     u = ax-bp[k];               /* bp[0]=1.0, bp[1]=1.5 */
       
   626     v = one/(ax+bp[k]);
       
   627     ss = u*v;
       
   628     s_h = ss;
       
   629     __LO(s_h) = 0;
       
   630     /* t_h=ax+bp[k] High */
       
   631     t_h = zeroX;
       
   632     __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
       
   633     t_l = ax - (t_h-bp[k]);
       
   634     s_l = v*((u-s_h*t_h)-s_h*t_l);
       
   635     /* compute log(ax) */
       
   636     s2 = ss*ss;
       
   637     r = s2*s2*(L1X+s2*(L2X+s2*(L3X+s2*(L4X+s2*(L5X+s2*L6X)))));
       
   638     r += s_l*(s_h+ss);
       
   639     s2  = s_h*s_h;
       
   640     t_h = 3.0+s2+r;
       
   641     __LO(t_h) = 0;
       
   642     t_l = r-((t_h-3.0)-s2);
       
   643     /* u+v = ss*(1+...) */
       
   644     u = s_h*t_h;
       
   645     v = s_l*t_h+t_l*ss;
       
   646     /* 2/(3log2)*(ss+...) */
       
   647     p_h = u+v;
       
   648     __LO(p_h) = 0;
       
   649     p_l = v-(p_h-u);
       
   650     z_h = cp_h*p_h;             /* cp_h+cp_l = 2/(3*log2) */
       
   651     z_l = cp_l*p_h+p_l*cp+dp_l[k];
       
   652     /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
       
   653     t = (double)n;
       
   654     t1 = (((z_h+z_l)+dp_h[k])+t);
       
   655     __LO(t1) = 0;
       
   656     t2 = z_l-(((t1-t)-dp_h[k])-z_h);
       
   657   }
       
   658 
       
   659   /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
       
   660   y1  = y;
       
   661   __LO(y1) = 0;
       
   662   p_l = (y-y1)*t1+y*t2;
       
   663   p_h = y1*t1;
       
   664   z = p_l+p_h;
       
   665   j = __HI(z);
       
   666   i = __LO(z);
       
   667   if (j>=0x40900000) {                          /* z >= 1024 */
       
   668     if(((j-0x40900000)|i)!=0)                   /* if z > 1024 */
       
   669       return s*hugeX*hugeX;                     /* overflow */
       
   670     else {
       
   671       if(p_l+ovt>z-p_h) return s*hugeX*hugeX;   /* overflow */
       
   672     }
       
   673   } else if((j&0x7fffffff)>=0x4090cc00 ) {      /* z <= -1075 */
       
   674     if(((j-0xc090cc00)|i)!=0)           /* z < -1075 */
       
   675       return s*tiny*tiny;               /* underflow */
       
   676     else {
       
   677       if(p_l<=z-p_h) return s*tiny*tiny;        /* underflow */
       
   678     }
       
   679   }
       
   680   /*
       
   681    * compute 2**(p_h+p_l)
       
   682    */
       
   683   i = j&0x7fffffff;
       
   684   k = (i>>20)-0x3ff;
       
   685   n = 0;
       
   686   if(i>0x3fe00000) {            /* if |z| > 0.5, set n = [z+0.5] */
       
   687     n = j+(0x00100000>>(k+1));
       
   688     k = ((n&0x7fffffff)>>20)-0x3ff;     /* new k for n */
       
   689     t = zeroX;
       
   690     __HI(t) = (n&~(0x000fffff>>k));
       
   691     n = ((n&0x000fffff)|0x00100000)>>(20-k);
       
   692     if(j<0) n = -n;
       
   693     p_h -= t;
       
   694   }
       
   695   t = p_l+p_h;
       
   696   __LO(t) = 0;
       
   697   u = t*lg2_h;
       
   698   v = (p_l-(t-p_h))*lg2+t*lg2_l;
       
   699   z = u+v;
       
   700   w = v-(z-u);
       
   701   t  = z*z;
       
   702   t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
       
   703   r  = (z*t1)/(t1-two)-(w+z*w);
       
   704   z  = one-(r-z);
       
   705   j  = __HI(z);
       
   706   j += (n<<20);
       
   707   if((j>>20)<=0) z = scalbn(z,n);       /* subnormal output */
       
   708   else __HI(z) += (n<<20);
       
   709   return s*z;
       
   710 }
       
   711 
       
   712 
       
   713 JRT_LEAF(jdouble, SharedRuntime::dpow(jdouble x, jdouble y))
       
   714   return __ieee754_pow(x, y);
       
   715 JRT_END
       
   716 
       
   717 #ifdef WIN32
       
   718 # pragma optimize ( "", on )
       
   719 #endif