hotspot/src/share/vm/runtime/os.cpp
changeset 1 489c9b5090e2
child 228 69939fa91efd
equal deleted inserted replaced
0:fd16c54261b3 1:489c9b5090e2
       
     1 /*
       
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    21  * have any questions.
       
    22  *
       
    23  */
       
    24 
       
    25 # include "incls/_precompiled.incl"
       
    26 # include "incls/_os.cpp.incl"
       
    27 
       
    28 # include <signal.h>
       
    29 
       
    30 OSThread*         os::_starting_thread    = NULL;
       
    31 address           os::_polling_page       = NULL;
       
    32 volatile int32_t* os::_mem_serialize_page = NULL;
       
    33 uintptr_t         os::_serialize_page_mask = 0;
       
    34 long              os::_rand_seed          = 1;
       
    35 int               os::_processor_count    = 0;
       
    36 volatile jlong    os::_global_time        = 0;
       
    37 volatile int      os::_global_time_lock   = 0;
       
    38 bool              os::_use_global_time    = false;
       
    39 size_t            os::_page_sizes[os::page_sizes_max];
       
    40 
       
    41 #ifndef PRODUCT
       
    42 int os::num_mallocs = 0;            // # of calls to malloc/realloc
       
    43 size_t os::alloc_bytes = 0;         // # of bytes allocated
       
    44 int os::num_frees = 0;              // # of calls to free
       
    45 #endif
       
    46 
       
    47 // Atomic read of a jlong is assured by a seqlock; see update_global_time()
       
    48 jlong os::read_global_time() {
       
    49 #ifdef _LP64
       
    50   return _global_time;
       
    51 #else
       
    52   volatile int lock;
       
    53   volatile jlong current_time;
       
    54   int ctr = 0;
       
    55 
       
    56   for (;;) {
       
    57     lock = _global_time_lock;
       
    58 
       
    59     // spin while locked
       
    60     while ((lock & 0x1) != 0) {
       
    61       ++ctr;
       
    62       if ((ctr & 0xFFF) == 0) {
       
    63         // Guarantee writer progress.  Can't use yield; yield is advisory
       
    64         // and has almost no effect on some platforms.  Don't need a state
       
    65         // transition - the park call will return promptly.
       
    66         assert(Thread::current() != NULL, "TLS not initialized");
       
    67         assert(Thread::current()->_ParkEvent != NULL, "sync not initialized");
       
    68         Thread::current()->_ParkEvent->park(1);
       
    69       }
       
    70       lock = _global_time_lock;
       
    71     }
       
    72 
       
    73     OrderAccess::loadload();
       
    74     current_time = _global_time;
       
    75     OrderAccess::loadload();
       
    76 
       
    77     // ratify seqlock value
       
    78     if (lock == _global_time_lock) {
       
    79       return current_time;
       
    80     }
       
    81   }
       
    82 #endif
       
    83 }
       
    84 
       
    85 //
       
    86 // NOTE - Assumes only one writer thread!
       
    87 //
       
    88 // We use a seqlock to guarantee that jlong _global_time is updated
       
    89 // atomically on 32-bit platforms.  A locked value is indicated by
       
    90 // the lock variable LSB == 1.  Readers will initially read the lock
       
    91 // value, spinning until the LSB == 0.  They then speculatively read
       
    92 // the global time value, then re-read the lock value to ensure that
       
    93 // it hasn't changed.  If the lock value has changed, the entire read
       
    94 // sequence is retried.
       
    95 //
       
    96 // Writers simply set the LSB = 1 (i.e. increment the variable),
       
    97 // update the global time, then release the lock and bump the version
       
    98 // number (i.e. increment the variable again.)  In this case we don't
       
    99 // even need a CAS since we ensure there's only one writer.
       
   100 //
       
   101 void os::update_global_time() {
       
   102 #ifdef _LP64
       
   103   _global_time = timeofday();
       
   104 #else
       
   105   assert((_global_time_lock & 0x1) == 0, "multiple writers?");
       
   106   jlong current_time = timeofday();
       
   107   _global_time_lock++; // lock
       
   108   OrderAccess::storestore();
       
   109   _global_time = current_time;
       
   110   OrderAccess::storestore();
       
   111   _global_time_lock++; // unlock
       
   112 #endif
       
   113 }
       
   114 
       
   115 // Fill in buffer with current local time as an ISO-8601 string.
       
   116 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
       
   117 // Returns buffer, or NULL if it failed.
       
   118 // This would mostly be a call to
       
   119 //     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
       
   120 // except that on Windows the %z behaves badly, so we do it ourselves.
       
   121 // Also, people wanted milliseconds on there,
       
   122 // and strftime doesn't do milliseconds.
       
   123 char* os::iso8601_time(char* buffer, size_t buffer_length) {
       
   124   // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
       
   125   //                                      1         2
       
   126   //                             12345678901234567890123456789
       
   127   static const char* iso8601_format =
       
   128     "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
       
   129   static const size_t needed_buffer = 29;
       
   130 
       
   131   // Sanity check the arguments
       
   132   if (buffer == NULL) {
       
   133     assert(false, "NULL buffer");
       
   134     return NULL;
       
   135   }
       
   136   if (buffer_length < needed_buffer) {
       
   137     assert(false, "buffer_length too small");
       
   138     return NULL;
       
   139   }
       
   140   // Get the current time
       
   141   jlong milliseconds_since_19700101 = timeofday();
       
   142   const int milliseconds_per_microsecond = 1000;
       
   143   const time_t seconds_since_19700101 =
       
   144     milliseconds_since_19700101 / milliseconds_per_microsecond;
       
   145   const int milliseconds_after_second =
       
   146     milliseconds_since_19700101 % milliseconds_per_microsecond;
       
   147   // Convert the time value to a tm and timezone variable
       
   148   const struct tm *time_struct_temp = localtime(&seconds_since_19700101);
       
   149   if (time_struct_temp == NULL) {
       
   150     assert(false, "Failed localtime");
       
   151     return NULL;
       
   152   }
       
   153   // Save the results of localtime
       
   154   const struct tm time_struct = *time_struct_temp;
       
   155   const time_t zone = timezone;
       
   156 
       
   157   // If daylight savings time is in effect,
       
   158   // we are 1 hour East of our time zone
       
   159   const time_t seconds_per_minute = 60;
       
   160   const time_t minutes_per_hour = 60;
       
   161   const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
       
   162   time_t UTC_to_local = zone;
       
   163   if (time_struct.tm_isdst > 0) {
       
   164     UTC_to_local = UTC_to_local - seconds_per_hour;
       
   165   }
       
   166   // Compute the time zone offset.
       
   167   //    localtime(3C) sets timezone to the difference (in seconds)
       
   168   //    between UTC and and local time.
       
   169   //    ISO 8601 says we need the difference between local time and UTC,
       
   170   //    we change the sign of the localtime(3C) result.
       
   171   const time_t local_to_UTC = -(UTC_to_local);
       
   172   // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
       
   173   char sign_local_to_UTC = '+';
       
   174   time_t abs_local_to_UTC = local_to_UTC;
       
   175   if (local_to_UTC < 0) {
       
   176     sign_local_to_UTC = '-';
       
   177     abs_local_to_UTC = -(abs_local_to_UTC);
       
   178   }
       
   179   // Convert time zone offset seconds to hours and minutes.
       
   180   const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
       
   181   const time_t zone_min =
       
   182     ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
       
   183 
       
   184   // Print an ISO 8601 date and time stamp into the buffer
       
   185   const int year = 1900 + time_struct.tm_year;
       
   186   const int month = 1 + time_struct.tm_mon;
       
   187   const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
       
   188                                    year,
       
   189                                    month,
       
   190                                    time_struct.tm_mday,
       
   191                                    time_struct.tm_hour,
       
   192                                    time_struct.tm_min,
       
   193                                    time_struct.tm_sec,
       
   194                                    milliseconds_after_second,
       
   195                                    sign_local_to_UTC,
       
   196                                    zone_hours,
       
   197                                    zone_min);
       
   198   if (printed == 0) {
       
   199     assert(false, "Failed jio_printf");
       
   200     return NULL;
       
   201   }
       
   202   return buffer;
       
   203 }
       
   204 
       
   205 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
       
   206 #ifdef ASSERT
       
   207   if (!(!thread->is_Java_thread() ||
       
   208          Thread::current() == thread  ||
       
   209          Threads_lock->owned_by_self()
       
   210          || thread->is_Compiler_thread()
       
   211         )) {
       
   212     assert(false, "possibility of dangling Thread pointer");
       
   213   }
       
   214 #endif
       
   215 
       
   216   if (p >= MinPriority && p <= MaxPriority) {
       
   217     int priority = java_to_os_priority[p];
       
   218     return set_native_priority(thread, priority);
       
   219   } else {
       
   220     assert(false, "Should not happen");
       
   221     return OS_ERR;
       
   222   }
       
   223 }
       
   224 
       
   225 
       
   226 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
       
   227   int p;
       
   228   int os_prio;
       
   229   OSReturn ret = get_native_priority(thread, &os_prio);
       
   230   if (ret != OS_OK) return ret;
       
   231 
       
   232   for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
       
   233   priority = (ThreadPriority)p;
       
   234   return OS_OK;
       
   235 }
       
   236 
       
   237 
       
   238 // --------------------- sun.misc.Signal (optional) ---------------------
       
   239 
       
   240 
       
   241 // SIGBREAK is sent by the keyboard to query the VM state
       
   242 #ifndef SIGBREAK
       
   243 #define SIGBREAK SIGQUIT
       
   244 #endif
       
   245 
       
   246 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
       
   247 
       
   248 
       
   249 static void signal_thread_entry(JavaThread* thread, TRAPS) {
       
   250   os::set_priority(thread, NearMaxPriority);
       
   251   while (true) {
       
   252     int sig;
       
   253     {
       
   254       // FIXME : Currently we have not decieded what should be the status
       
   255       //         for this java thread blocked here. Once we decide about
       
   256       //         that we should fix this.
       
   257       sig = os::signal_wait();
       
   258     }
       
   259     if (sig == os::sigexitnum_pd()) {
       
   260        // Terminate the signal thread
       
   261        return;
       
   262     }
       
   263 
       
   264     switch (sig) {
       
   265       case SIGBREAK: {
       
   266         // Check if the signal is a trigger to start the Attach Listener - in that
       
   267         // case don't print stack traces.
       
   268         if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
       
   269           continue;
       
   270         }
       
   271         // Print stack traces
       
   272         // Any SIGBREAK operations added here should make sure to flush
       
   273         // the output stream (e.g. tty->flush()) after output.  See 4803766.
       
   274         // Each module also prints an extra carriage return after its output.
       
   275         VM_PrintThreads op;
       
   276         VMThread::execute(&op);
       
   277         VM_PrintJNI jni_op;
       
   278         VMThread::execute(&jni_op);
       
   279         VM_FindDeadlocks op1(tty);
       
   280         VMThread::execute(&op1);
       
   281         Universe::print_heap_at_SIGBREAK();
       
   282         if (PrintClassHistogram) {
       
   283           VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */);
       
   284           VMThread::execute(&op1);
       
   285         }
       
   286         if (JvmtiExport::should_post_data_dump()) {
       
   287           JvmtiExport::post_data_dump();
       
   288         }
       
   289         break;
       
   290       }
       
   291       default: {
       
   292         // Dispatch the signal to java
       
   293         HandleMark hm(THREAD);
       
   294         klassOop k = SystemDictionary::resolve_or_null(vmSymbolHandles::sun_misc_Signal(), THREAD);
       
   295         KlassHandle klass (THREAD, k);
       
   296         if (klass.not_null()) {
       
   297           JavaValue result(T_VOID);
       
   298           JavaCallArguments args;
       
   299           args.push_int(sig);
       
   300           JavaCalls::call_static(
       
   301             &result,
       
   302             klass,
       
   303             vmSymbolHandles::dispatch_name(),
       
   304             vmSymbolHandles::int_void_signature(),
       
   305             &args,
       
   306             THREAD
       
   307           );
       
   308         }
       
   309         if (HAS_PENDING_EXCEPTION) {
       
   310           // tty is initialized early so we don't expect it to be null, but
       
   311           // if it is we can't risk doing an initialization that might
       
   312           // trigger additional out-of-memory conditions
       
   313           if (tty != NULL) {
       
   314             char klass_name[256];
       
   315             char tmp_sig_name[16];
       
   316             const char* sig_name = "UNKNOWN";
       
   317             instanceKlass::cast(PENDING_EXCEPTION->klass())->
       
   318               name()->as_klass_external_name(klass_name, 256);
       
   319             if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
       
   320               sig_name = tmp_sig_name;
       
   321             warning("Exception %s occurred dispatching signal %s to handler"
       
   322                     "- the VM may need to be forcibly terminated",
       
   323                     klass_name, sig_name );
       
   324           }
       
   325           CLEAR_PENDING_EXCEPTION;
       
   326         }
       
   327       }
       
   328     }
       
   329   }
       
   330 }
       
   331 
       
   332 
       
   333 void os::signal_init() {
       
   334   if (!ReduceSignalUsage) {
       
   335     // Setup JavaThread for processing signals
       
   336     EXCEPTION_MARK;
       
   337     klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
       
   338     instanceKlassHandle klass (THREAD, k);
       
   339     instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
       
   340 
       
   341     const char thread_name[] = "Signal Dispatcher";
       
   342     Handle string = java_lang_String::create_from_str(thread_name, CHECK);
       
   343 
       
   344     // Initialize thread_oop to put it into the system threadGroup
       
   345     Handle thread_group (THREAD, Universe::system_thread_group());
       
   346     JavaValue result(T_VOID);
       
   347     JavaCalls::call_special(&result, thread_oop,
       
   348                            klass,
       
   349                            vmSymbolHandles::object_initializer_name(),
       
   350                            vmSymbolHandles::threadgroup_string_void_signature(),
       
   351                            thread_group,
       
   352                            string,
       
   353                            CHECK);
       
   354 
       
   355     KlassHandle group(THREAD, SystemDictionary::threadGroup_klass());
       
   356     JavaCalls::call_special(&result,
       
   357                             thread_group,
       
   358                             group,
       
   359                             vmSymbolHandles::add_method_name(),
       
   360                             vmSymbolHandles::thread_void_signature(),
       
   361                             thread_oop,         // ARG 1
       
   362                             CHECK);
       
   363 
       
   364     os::signal_init_pd();
       
   365 
       
   366     { MutexLocker mu(Threads_lock);
       
   367       JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
       
   368 
       
   369       // At this point it may be possible that no osthread was created for the
       
   370       // JavaThread due to lack of memory. We would have to throw an exception
       
   371       // in that case. However, since this must work and we do not allow
       
   372       // exceptions anyway, check and abort if this fails.
       
   373       if (signal_thread == NULL || signal_thread->osthread() == NULL) {
       
   374         vm_exit_during_initialization("java.lang.OutOfMemoryError",
       
   375                                       "unable to create new native thread");
       
   376       }
       
   377 
       
   378       java_lang_Thread::set_thread(thread_oop(), signal_thread);
       
   379       java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
       
   380       java_lang_Thread::set_daemon(thread_oop());
       
   381 
       
   382       signal_thread->set_threadObj(thread_oop());
       
   383       Threads::add(signal_thread);
       
   384       Thread::start(signal_thread);
       
   385     }
       
   386     // Handle ^BREAK
       
   387     os::signal(SIGBREAK, os::user_handler());
       
   388   }
       
   389 }
       
   390 
       
   391 
       
   392 void os::terminate_signal_thread() {
       
   393   if (!ReduceSignalUsage)
       
   394     signal_notify(sigexitnum_pd());
       
   395 }
       
   396 
       
   397 
       
   398 // --------------------- loading libraries ---------------------
       
   399 
       
   400 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
       
   401 extern struct JavaVM_ main_vm;
       
   402 
       
   403 static void* _native_java_library = NULL;
       
   404 
       
   405 void* os::native_java_library() {
       
   406   if (_native_java_library == NULL) {
       
   407     char buffer[JVM_MAXPATHLEN];
       
   408     char ebuf[1024];
       
   409 
       
   410     // Try to load verify dll first. In 1.3 java dll depends on it and is not always
       
   411     // able to find it when the loading executable is outside the JDK.
       
   412     // In order to keep working with 1.2 we ignore any loading errors.
       
   413     hpi::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "verify");
       
   414     hpi::dll_load(buffer, ebuf, sizeof(ebuf));
       
   415 
       
   416     // Load java dll
       
   417     hpi::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "java");
       
   418     _native_java_library = hpi::dll_load(buffer, ebuf, sizeof(ebuf));
       
   419     if (_native_java_library == NULL) {
       
   420       vm_exit_during_initialization("Unable to load native library", ebuf);
       
   421     }
       
   422     // The JNI_OnLoad handling is normally done by method load in java.lang.ClassLoader$NativeLibrary,
       
   423     // but the VM loads the base library explicitly so we have to check for JNI_OnLoad as well
       
   424     const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
       
   425     JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(JNI_OnLoad_t, hpi::dll_lookup(_native_java_library, onLoadSymbols[0]));
       
   426     if (JNI_OnLoad != NULL) {
       
   427       JavaThread* thread = JavaThread::current();
       
   428       ThreadToNativeFromVM ttn(thread);
       
   429       HandleMark hm(thread);
       
   430       jint ver = (*JNI_OnLoad)(&main_vm, NULL);
       
   431       if (!Threads::is_supported_jni_version_including_1_1(ver)) {
       
   432         vm_exit_during_initialization("Unsupported JNI version");
       
   433       }
       
   434     }
       
   435   }
       
   436   return _native_java_library;
       
   437 }
       
   438 
       
   439 // --------------------- heap allocation utilities ---------------------
       
   440 
       
   441 char *os::strdup(const char *str) {
       
   442   size_t size = strlen(str);
       
   443   char *dup_str = (char *)malloc(size + 1);
       
   444   if (dup_str == NULL) return NULL;
       
   445   strcpy(dup_str, str);
       
   446   return dup_str;
       
   447 }
       
   448 
       
   449 
       
   450 
       
   451 #ifdef ASSERT
       
   452 #define space_before             (MallocCushion + sizeof(double))
       
   453 #define space_after              MallocCushion
       
   454 #define size_addr_from_base(p)   (size_t*)(p + space_before - sizeof(size_t))
       
   455 #define size_addr_from_obj(p)    ((size_t*)p - 1)
       
   456 // MallocCushion: size of extra cushion allocated around objects with +UseMallocOnly
       
   457 // NB: cannot be debug variable, because these aren't set from the command line until
       
   458 // *after* the first few allocs already happened
       
   459 #define MallocCushion            16
       
   460 #else
       
   461 #define space_before             0
       
   462 #define space_after              0
       
   463 #define size_addr_from_base(p)   should not use w/o ASSERT
       
   464 #define size_addr_from_obj(p)    should not use w/o ASSERT
       
   465 #define MallocCushion            0
       
   466 #endif
       
   467 #define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
       
   468 
       
   469 #ifdef ASSERT
       
   470 inline size_t get_size(void* obj) {
       
   471   size_t size = *size_addr_from_obj(obj);
       
   472   if (size < 0 )
       
   473     fatal2("free: size field of object #%p was overwritten (%lu)", obj, size);
       
   474   return size;
       
   475 }
       
   476 
       
   477 u_char* find_cushion_backwards(u_char* start) {
       
   478   u_char* p = start;
       
   479   while (p[ 0] != badResourceValue || p[-1] != badResourceValue ||
       
   480          p[-2] != badResourceValue || p[-3] != badResourceValue) p--;
       
   481   // ok, we have four consecutive marker bytes; find start
       
   482   u_char* q = p - 4;
       
   483   while (*q == badResourceValue) q--;
       
   484   return q + 1;
       
   485 }
       
   486 
       
   487 u_char* find_cushion_forwards(u_char* start) {
       
   488   u_char* p = start;
       
   489   while (p[0] != badResourceValue || p[1] != badResourceValue ||
       
   490          p[2] != badResourceValue || p[3] != badResourceValue) p++;
       
   491   // ok, we have four consecutive marker bytes; find end of cushion
       
   492   u_char* q = p + 4;
       
   493   while (*q == badResourceValue) q++;
       
   494   return q - MallocCushion;
       
   495 }
       
   496 
       
   497 void print_neighbor_blocks(void* ptr) {
       
   498   // find block allocated before ptr (not entirely crash-proof)
       
   499   if (MallocCushion < 4) {
       
   500     tty->print_cr("### cannot find previous block (MallocCushion < 4)");
       
   501     return;
       
   502   }
       
   503   u_char* start_of_this_block = (u_char*)ptr - space_before;
       
   504   u_char* end_of_prev_block_data = start_of_this_block - space_after -1;
       
   505   // look for cushion in front of prev. block
       
   506   u_char* start_of_prev_block = find_cushion_backwards(end_of_prev_block_data);
       
   507   ptrdiff_t size = *size_addr_from_base(start_of_prev_block);
       
   508   u_char* obj = start_of_prev_block + space_before;
       
   509   if (size <= 0 ) {
       
   510     // start is bad; mayhave been confused by OS data inbetween objects
       
   511     // search one more backwards
       
   512     start_of_prev_block = find_cushion_backwards(start_of_prev_block);
       
   513     size = *size_addr_from_base(start_of_prev_block);
       
   514     obj = start_of_prev_block + space_before;
       
   515   }
       
   516 
       
   517   if (start_of_prev_block + space_before + size + space_after == start_of_this_block) {
       
   518     tty->print_cr("### previous object: %p (%ld bytes)", obj, size);
       
   519   } else {
       
   520     tty->print_cr("### previous object (not sure if correct): %p (%ld bytes)", obj, size);
       
   521   }
       
   522 
       
   523   // now find successor block
       
   524   u_char* start_of_next_block = (u_char*)ptr + *size_addr_from_obj(ptr) + space_after;
       
   525   start_of_next_block = find_cushion_forwards(start_of_next_block);
       
   526   u_char* next_obj = start_of_next_block + space_before;
       
   527   ptrdiff_t next_size = *size_addr_from_base(start_of_next_block);
       
   528   if (start_of_next_block[0] == badResourceValue &&
       
   529       start_of_next_block[1] == badResourceValue &&
       
   530       start_of_next_block[2] == badResourceValue &&
       
   531       start_of_next_block[3] == badResourceValue) {
       
   532     tty->print_cr("### next object: %p (%ld bytes)", next_obj, next_size);
       
   533   } else {
       
   534     tty->print_cr("### next object (not sure if correct): %p (%ld bytes)", next_obj, next_size);
       
   535   }
       
   536 }
       
   537 
       
   538 
       
   539 void report_heap_error(void* memblock, void* bad, const char* where) {
       
   540   tty->print_cr("## nof_mallocs = %d, nof_frees = %d", os::num_mallocs, os::num_frees);
       
   541   tty->print_cr("## memory stomp: byte at %p %s object %p", bad, where, memblock);
       
   542   print_neighbor_blocks(memblock);
       
   543   fatal("memory stomping error");
       
   544 }
       
   545 
       
   546 void verify_block(void* memblock) {
       
   547   size_t size = get_size(memblock);
       
   548   if (MallocCushion) {
       
   549     u_char* ptr = (u_char*)memblock - space_before;
       
   550     for (int i = 0; i < MallocCushion; i++) {
       
   551       if (ptr[i] != badResourceValue) {
       
   552         report_heap_error(memblock, ptr+i, "in front of");
       
   553       }
       
   554     }
       
   555     u_char* end = (u_char*)memblock + size + space_after;
       
   556     for (int j = -MallocCushion; j < 0; j++) {
       
   557       if (end[j] != badResourceValue) {
       
   558         report_heap_error(memblock, end+j, "after");
       
   559       }
       
   560     }
       
   561   }
       
   562 }
       
   563 #endif
       
   564 
       
   565 void* os::malloc(size_t size) {
       
   566   NOT_PRODUCT(num_mallocs++);
       
   567   NOT_PRODUCT(alloc_bytes += size);
       
   568 
       
   569   if (size == 0) {
       
   570     // return a valid pointer if size is zero
       
   571     // if NULL is returned the calling functions assume out of memory.
       
   572     size = 1;
       
   573   }
       
   574 
       
   575   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
       
   576   u_char* ptr = (u_char*)::malloc(size + space_before + space_after);
       
   577 #ifdef ASSERT
       
   578   if (ptr == NULL) return NULL;
       
   579   if (MallocCushion) {
       
   580     for (u_char* p = ptr; p < ptr + MallocCushion; p++) *p = (u_char)badResourceValue;
       
   581     u_char* end = ptr + space_before + size;
       
   582     for (u_char* pq = ptr+MallocCushion; pq < end; pq++) *pq = (u_char)uninitBlockPad;
       
   583     for (u_char* q = end; q < end + MallocCushion; q++) *q = (u_char)badResourceValue;
       
   584   }
       
   585   // put size just before data
       
   586   *size_addr_from_base(ptr) = size;
       
   587 #endif
       
   588   u_char* memblock = ptr + space_before;
       
   589   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
       
   590     tty->print_cr("os::malloc caught, %lu bytes --> %p", size, memblock);
       
   591     breakpoint();
       
   592   }
       
   593   debug_only(if (paranoid) verify_block(memblock));
       
   594   if (PrintMalloc && tty != NULL) tty->print_cr("os::malloc %lu bytes --> %p", size, memblock);
       
   595   return memblock;
       
   596 }
       
   597 
       
   598 
       
   599 void* os::realloc(void *memblock, size_t size) {
       
   600   NOT_PRODUCT(num_mallocs++);
       
   601   NOT_PRODUCT(alloc_bytes += size);
       
   602 #ifndef ASSERT
       
   603   return ::realloc(memblock, size);
       
   604 #else
       
   605   if (memblock == NULL) {
       
   606     return os::malloc(size);
       
   607   }
       
   608   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
       
   609     tty->print_cr("os::realloc caught %p", memblock);
       
   610     breakpoint();
       
   611   }
       
   612   verify_block(memblock);
       
   613   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
       
   614   if (size == 0) return NULL;
       
   615   // always move the block
       
   616   void* ptr = malloc(size);
       
   617   if (PrintMalloc) tty->print_cr("os::remalloc %lu bytes, %p --> %p", size, memblock, ptr);
       
   618   // Copy to new memory if malloc didn't fail
       
   619   if ( ptr != NULL ) {
       
   620     memcpy(ptr, memblock, MIN2(size, get_size(memblock)));
       
   621     if (paranoid) verify_block(ptr);
       
   622     if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
       
   623       tty->print_cr("os::realloc caught, %lu bytes --> %p", size, ptr);
       
   624       breakpoint();
       
   625     }
       
   626     free(memblock);
       
   627   }
       
   628   return ptr;
       
   629 #endif
       
   630 }
       
   631 
       
   632 
       
   633 void  os::free(void *memblock) {
       
   634   NOT_PRODUCT(num_frees++);
       
   635 #ifdef ASSERT
       
   636   if (memblock == NULL) return;
       
   637   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
       
   638     if (tty != NULL) tty->print_cr("os::free caught %p", memblock);
       
   639     breakpoint();
       
   640   }
       
   641   verify_block(memblock);
       
   642   if (PrintMalloc && tty != NULL)
       
   643     // tty->print_cr("os::free %p", memblock);
       
   644     fprintf(stderr, "os::free %p\n", memblock);
       
   645   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
       
   646   // Added by detlefs.
       
   647   if (MallocCushion) {
       
   648     u_char* ptr = (u_char*)memblock - space_before;
       
   649     for (u_char* p = ptr; p < ptr + MallocCushion; p++) {
       
   650       guarantee(*p == badResourceValue,
       
   651                 "Thing freed should be malloc result.");
       
   652       *p = (u_char)freeBlockPad;
       
   653     }
       
   654     size_t size = get_size(memblock);
       
   655     u_char* end = ptr + space_before + size;
       
   656     for (u_char* q = end; q < end + MallocCushion; q++) {
       
   657       guarantee(*q == badResourceValue,
       
   658                 "Thing freed should be malloc result.");
       
   659       *q = (u_char)freeBlockPad;
       
   660     }
       
   661   }
       
   662 #endif
       
   663   ::free((char*)memblock - space_before);
       
   664 }
       
   665 
       
   666 void os::init_random(long initval) {
       
   667   _rand_seed = initval;
       
   668 }
       
   669 
       
   670 
       
   671 long os::random() {
       
   672   /* standard, well-known linear congruential random generator with
       
   673    * next_rand = (16807*seed) mod (2**31-1)
       
   674    * see
       
   675    * (1) "Random Number Generators: Good Ones Are Hard to Find",
       
   676    *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
       
   677    * (2) "Two Fast Implementations of the 'Minimal Standard' Random
       
   678    *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
       
   679   */
       
   680   const long a = 16807;
       
   681   const unsigned long m = 2147483647;
       
   682   const long q = m / a;        assert(q == 127773, "weird math");
       
   683   const long r = m % a;        assert(r == 2836, "weird math");
       
   684 
       
   685   // compute az=2^31p+q
       
   686   unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
       
   687   unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
       
   688   lo += (hi & 0x7FFF) << 16;
       
   689 
       
   690   // if q overflowed, ignore the overflow and increment q
       
   691   if (lo > m) {
       
   692     lo &= m;
       
   693     ++lo;
       
   694   }
       
   695   lo += hi >> 15;
       
   696 
       
   697   // if (p+q) overflowed, ignore the overflow and increment (p+q)
       
   698   if (lo > m) {
       
   699     lo &= m;
       
   700     ++lo;
       
   701   }
       
   702   return (_rand_seed = lo);
       
   703 }
       
   704 
       
   705 // The INITIALIZED state is distinguished from the SUSPENDED state because the
       
   706 // conditions in which a thread is first started are different from those in which
       
   707 // a suspension is resumed.  These differences make it hard for us to apply the
       
   708 // tougher checks when starting threads that we want to do when resuming them.
       
   709 // However, when start_thread is called as a result of Thread.start, on a Java
       
   710 // thread, the operation is synchronized on the Java Thread object.  So there
       
   711 // cannot be a race to start the thread and hence for the thread to exit while
       
   712 // we are working on it.  Non-Java threads that start Java threads either have
       
   713 // to do so in a context in which races are impossible, or should do appropriate
       
   714 // locking.
       
   715 
       
   716 void os::start_thread(Thread* thread) {
       
   717   // guard suspend/resume
       
   718   MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
       
   719   OSThread* osthread = thread->osthread();
       
   720   osthread->set_state(RUNNABLE);
       
   721   pd_start_thread(thread);
       
   722 }
       
   723 
       
   724 //---------------------------------------------------------------------------
       
   725 // Helper functions for fatal error handler
       
   726 
       
   727 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
       
   728   assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
       
   729 
       
   730   int cols = 0;
       
   731   int cols_per_line = 0;
       
   732   switch (unitsize) {
       
   733     case 1: cols_per_line = 16; break;
       
   734     case 2: cols_per_line = 8;  break;
       
   735     case 4: cols_per_line = 4;  break;
       
   736     case 8: cols_per_line = 2;  break;
       
   737     default: return;
       
   738   }
       
   739 
       
   740   address p = start;
       
   741   st->print(PTR_FORMAT ":   ", start);
       
   742   while (p < end) {
       
   743     switch (unitsize) {
       
   744       case 1: st->print("%02x", *(u1*)p); break;
       
   745       case 2: st->print("%04x", *(u2*)p); break;
       
   746       case 4: st->print("%08x", *(u4*)p); break;
       
   747       case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
       
   748     }
       
   749     p += unitsize;
       
   750     cols++;
       
   751     if (cols >= cols_per_line && p < end) {
       
   752        cols = 0;
       
   753        st->cr();
       
   754        st->print(PTR_FORMAT ":   ", p);
       
   755     } else {
       
   756        st->print(" ");
       
   757     }
       
   758   }
       
   759   st->cr();
       
   760 }
       
   761 
       
   762 void os::print_environment_variables(outputStream* st, const char** env_list,
       
   763                                      char* buffer, int len) {
       
   764   if (env_list) {
       
   765     st->print_cr("Environment Variables:");
       
   766 
       
   767     for (int i = 0; env_list[i] != NULL; i++) {
       
   768       if (getenv(env_list[i], buffer, len)) {
       
   769         st->print(env_list[i]);
       
   770         st->print("=");
       
   771         st->print_cr(buffer);
       
   772       }
       
   773     }
       
   774   }
       
   775 }
       
   776 
       
   777 void os::print_cpu_info(outputStream* st) {
       
   778   // cpu
       
   779   st->print("CPU:");
       
   780   st->print("total %d", os::processor_count());
       
   781   // It's not safe to query number of active processors after crash
       
   782   // st->print("(active %d)", os::active_processor_count());
       
   783   st->print(" %s", VM_Version::cpu_features());
       
   784   st->cr();
       
   785 }
       
   786 
       
   787 void os::print_date_and_time(outputStream *st) {
       
   788   time_t tloc;
       
   789   (void)time(&tloc);
       
   790   st->print("time: %s", ctime(&tloc));  // ctime adds newline.
       
   791 
       
   792   double t = os::elapsedTime();
       
   793   // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
       
   794   //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
       
   795   //       before printf. We lost some precision, but who cares?
       
   796   st->print_cr("elapsed time: %d seconds", (int)t);
       
   797 }
       
   798 
       
   799 
       
   800 // Looks like all platforms except IA64 can use the same function to check
       
   801 // if C stack is walkable beyond current frame. The check for fp() is not
       
   802 // necessary on Sparc, but it's harmless.
       
   803 bool os::is_first_C_frame(frame* fr) {
       
   804 #ifdef IA64
       
   805   // In order to walk native frames on Itanium, we need to access the unwind
       
   806   // table, which is inside ELF. We don't want to parse ELF after fatal error,
       
   807   // so return true for IA64. If we need to support C stack walking on IA64,
       
   808   // this function needs to be moved to CPU specific files, as fp() on IA64
       
   809   // is register stack, which grows towards higher memory address.
       
   810   return true;
       
   811 #endif
       
   812 
       
   813   // Load up sp, fp, sender sp and sender fp, check for reasonable values.
       
   814   // Check usp first, because if that's bad the other accessors may fault
       
   815   // on some architectures.  Ditto ufp second, etc.
       
   816   uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
       
   817   // sp on amd can be 32 bit aligned.
       
   818   uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
       
   819 
       
   820   uintptr_t usp    = (uintptr_t)fr->sp();
       
   821   if ((usp & sp_align_mask) != 0) return true;
       
   822 
       
   823   uintptr_t ufp    = (uintptr_t)fr->fp();
       
   824   if ((ufp & fp_align_mask) != 0) return true;
       
   825 
       
   826   uintptr_t old_sp = (uintptr_t)fr->sender_sp();
       
   827   if ((old_sp & sp_align_mask) != 0) return true;
       
   828   if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
       
   829 
       
   830   uintptr_t old_fp = (uintptr_t)fr->link();
       
   831   if ((old_fp & fp_align_mask) != 0) return true;
       
   832   if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
       
   833 
       
   834   // stack grows downwards; if old_fp is below current fp or if the stack
       
   835   // frame is too large, either the stack is corrupted or fp is not saved
       
   836   // on stack (i.e. on x86, ebp may be used as general register). The stack
       
   837   // is not walkable beyond current frame.
       
   838   if (old_fp < ufp) return true;
       
   839   if (old_fp - ufp > 64 * K) return true;
       
   840 
       
   841   return false;
       
   842 }
       
   843 
       
   844 #ifdef ASSERT
       
   845 extern "C" void test_random() {
       
   846   const double m = 2147483647;
       
   847   double mean = 0.0, variance = 0.0, t;
       
   848   long reps = 10000;
       
   849   unsigned long seed = 1;
       
   850 
       
   851   tty->print_cr("seed %ld for %ld repeats...", seed, reps);
       
   852   os::init_random(seed);
       
   853   long num;
       
   854   for (int k = 0; k < reps; k++) {
       
   855     num = os::random();
       
   856     double u = (double)num / m;
       
   857     assert(u >= 0.0 && u <= 1.0, "bad random number!");
       
   858 
       
   859     // calculate mean and variance of the random sequence
       
   860     mean += u;
       
   861     variance += (u*u);
       
   862   }
       
   863   mean /= reps;
       
   864   variance /= (reps - 1);
       
   865 
       
   866   assert(num == 1043618065, "bad seed");
       
   867   tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
       
   868   tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
       
   869   const double eps = 0.0001;
       
   870   t = fabsd(mean - 0.5018);
       
   871   assert(t < eps, "bad mean");
       
   872   t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
       
   873   assert(t < eps, "bad variance");
       
   874 }
       
   875 #endif
       
   876 
       
   877 
       
   878 // Set up the boot classpath.
       
   879 
       
   880 char* os::format_boot_path(const char* format_string,
       
   881                            const char* home,
       
   882                            int home_len,
       
   883                            char fileSep,
       
   884                            char pathSep) {
       
   885     assert((fileSep == '/' && pathSep == ':') ||
       
   886            (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
       
   887 
       
   888     // Scan the format string to determine the length of the actual
       
   889     // boot classpath, and handle platform dependencies as well.
       
   890     int formatted_path_len = 0;
       
   891     const char* p;
       
   892     for (p = format_string; *p != 0; ++p) {
       
   893         if (*p == '%') formatted_path_len += home_len - 1;
       
   894         ++formatted_path_len;
       
   895     }
       
   896 
       
   897     char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1);
       
   898     if (formatted_path == NULL) {
       
   899         return NULL;
       
   900     }
       
   901 
       
   902     // Create boot classpath from format, substituting separator chars and
       
   903     // java home directory.
       
   904     char* q = formatted_path;
       
   905     for (p = format_string; *p != 0; ++p) {
       
   906         switch (*p) {
       
   907         case '%':
       
   908             strcpy(q, home);
       
   909             q += home_len;
       
   910             break;
       
   911         case '/':
       
   912             *q++ = fileSep;
       
   913             break;
       
   914         case ':':
       
   915             *q++ = pathSep;
       
   916             break;
       
   917         default:
       
   918             *q++ = *p;
       
   919         }
       
   920     }
       
   921     *q = '\0';
       
   922 
       
   923     assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
       
   924     return formatted_path;
       
   925 }
       
   926 
       
   927 
       
   928 bool os::set_boot_path(char fileSep, char pathSep) {
       
   929 
       
   930     const char* home = Arguments::get_java_home();
       
   931     int home_len = (int)strlen(home);
       
   932 
       
   933     static const char* meta_index_dir_format = "%/lib/";
       
   934     static const char* meta_index_format = "%/lib/meta-index";
       
   935     char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
       
   936     if (meta_index == NULL) return false;
       
   937     char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
       
   938     if (meta_index_dir == NULL) return false;
       
   939     Arguments::set_meta_index_path(meta_index, meta_index_dir);
       
   940 
       
   941     // Any modification to the JAR-file list, for the boot classpath must be
       
   942     // aligned with install/install/make/common/Pack.gmk. Note: boot class
       
   943     // path class JARs, are stripped for StackMapTable to reduce download size.
       
   944     static const char classpath_format[] =
       
   945         "%/lib/resources.jar:"
       
   946         "%/lib/rt.jar:"
       
   947         "%/lib/sunrsasign.jar:"
       
   948         "%/lib/jsse.jar:"
       
   949         "%/lib/jce.jar:"
       
   950         "%/lib/charsets.jar:"
       
   951         "%/classes";
       
   952     char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
       
   953     if (sysclasspath == NULL) return false;
       
   954     Arguments::set_sysclasspath(sysclasspath);
       
   955 
       
   956     return true;
       
   957 }
       
   958 
       
   959 
       
   960 void os::set_memory_serialize_page(address page) {
       
   961   int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
       
   962   _mem_serialize_page = (volatile int32_t *)page;
       
   963   // We initialize the serialization page shift count here
       
   964   // We assume a cache line size of 64 bytes
       
   965   assert(SerializePageShiftCount == count,
       
   966          "thread size changed, fix SerializePageShiftCount constant");
       
   967   set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
       
   968 }
       
   969 
       
   970 // This method is called from signal handler when SIGSEGV occurs while the current
       
   971 // thread tries to store to the "read-only" memory serialize page during state
       
   972 // transition.
       
   973 void os::block_on_serialize_page_trap() {
       
   974   if (TraceSafepoint) {
       
   975     tty->print_cr("Block until the serialize page permission restored");
       
   976   }
       
   977   // When VMThread is holding the SerializePage_lock during modifying the
       
   978   // access permission of the memory serialize page, the following call
       
   979   // will block until the permission of that page is restored to rw.
       
   980   // Generally, it is unsafe to manipulate locks in signal handlers, but in
       
   981   // this case, it's OK as the signal is synchronous and we know precisely when
       
   982   // it can occur. SerializePage_lock is a transiently-held leaf lock, so
       
   983   // lock_without_safepoint_check should be safe.
       
   984   SerializePage_lock->lock_without_safepoint_check();
       
   985   SerializePage_lock->unlock();
       
   986 }
       
   987 
       
   988 // Serialize all thread state variables
       
   989 void os::serialize_thread_states() {
       
   990   // On some platforms such as Solaris & Linux, the time duration of the page
       
   991   // permission restoration is observed to be much longer than expected  due to
       
   992   // scheduler starvation problem etc. To avoid the long synchronization
       
   993   // time and expensive page trap spinning, 'SerializePage_lock' is used to block
       
   994   // the mutator thread if such case is encountered. Since this method is always
       
   995   // called by VMThread during safepoint, lock_without_safepoint_check is used
       
   996   // instead. See bug 6546278.
       
   997   SerializePage_lock->lock_without_safepoint_check();
       
   998   os::protect_memory( (char *)os::get_memory_serialize_page(), os::vm_page_size() );
       
   999   os::unguard_memory( (char *)os::get_memory_serialize_page(), os::vm_page_size() );
       
  1000   SerializePage_lock->unlock();
       
  1001 }
       
  1002 
       
  1003 // Returns true if the current stack pointer is above the stack shadow
       
  1004 // pages, false otherwise.
       
  1005 
       
  1006 bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
       
  1007   assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
       
  1008   address sp = current_stack_pointer();
       
  1009   // Check if we have StackShadowPages above the yellow zone.  This parameter
       
  1010   // is dependant on the depth of the maximum VM call stack possible from
       
  1011   // the handler for stack overflow.  'instanceof' in the stack overflow
       
  1012   // handler or a println uses at least 8k stack of VM and native code
       
  1013   // respectively.
       
  1014   const int framesize_in_bytes =
       
  1015     Interpreter::size_top_interpreter_activation(method()) * wordSize;
       
  1016   int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
       
  1017                       * vm_page_size()) + framesize_in_bytes;
       
  1018   // The very lower end of the stack
       
  1019   address stack_limit = thread->stack_base() - thread->stack_size();
       
  1020   return (sp > (stack_limit + reserved_area));
       
  1021 }
       
  1022 
       
  1023 size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
       
  1024                                 uint min_pages)
       
  1025 {
       
  1026   assert(min_pages > 0, "sanity");
       
  1027   if (UseLargePages) {
       
  1028     const size_t max_page_size = region_max_size / min_pages;
       
  1029 
       
  1030     for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
       
  1031       const size_t sz = _page_sizes[i];
       
  1032       const size_t mask = sz - 1;
       
  1033       if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
       
  1034         // The largest page size with no fragmentation.
       
  1035         return sz;
       
  1036       }
       
  1037 
       
  1038       if (sz <= max_page_size) {
       
  1039         // The largest page size that satisfies the min_pages requirement.
       
  1040         return sz;
       
  1041       }
       
  1042     }
       
  1043   }
       
  1044 
       
  1045   return vm_page_size();
       
  1046 }
       
  1047 
       
  1048 #ifndef PRODUCT
       
  1049 void os::trace_page_sizes(const char* str, const size_t region_min_size,
       
  1050                           const size_t region_max_size, const size_t page_size,
       
  1051                           const char* base, const size_t size)
       
  1052 {
       
  1053   if (TracePageSizes) {
       
  1054     tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
       
  1055                   " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
       
  1056                   " size=" SIZE_FORMAT,
       
  1057                   str, region_min_size, region_max_size,
       
  1058                   page_size, base, size);
       
  1059   }
       
  1060 }
       
  1061 #endif  // #ifndef PRODUCT
       
  1062 
       
  1063 // This is the working definition of a server class machine:
       
  1064 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
       
  1065 // because the graphics memory (?) sometimes masks physical memory.
       
  1066 // If you want to change the definition of a server class machine
       
  1067 // on some OS or platform, e.g., >=4GB on Windohs platforms,
       
  1068 // then you'll have to parameterize this method based on that state,
       
  1069 // as was done for logical processors here, or replicate and
       
  1070 // specialize this method for each platform.  (Or fix os to have
       
  1071 // some inheritance structure and use subclassing.  Sigh.)
       
  1072 // If you want some platform to always or never behave as a server
       
  1073 // class machine, change the setting of AlwaysActAsServerClassMachine
       
  1074 // and NeverActAsServerClassMachine in globals*.hpp.
       
  1075 bool os::is_server_class_machine() {
       
  1076   // First check for the early returns
       
  1077   if (NeverActAsServerClassMachine) {
       
  1078     return false;
       
  1079   }
       
  1080   if (AlwaysActAsServerClassMachine) {
       
  1081     return true;
       
  1082   }
       
  1083   // Then actually look at the machine
       
  1084   bool         result            = false;
       
  1085   const unsigned int    server_processors = 2;
       
  1086   const julong server_memory     = 2UL * G;
       
  1087   // We seem not to get our full complement of memory.
       
  1088   //     We allow some part (1/8?) of the memory to be "missing",
       
  1089   //     based on the sizes of DIMMs, and maybe graphics cards.
       
  1090   const julong missing_memory   = 256UL * M;
       
  1091 
       
  1092   /* Is this a server class machine? */
       
  1093   if ((os::active_processor_count() >= (int)server_processors) &&
       
  1094       (os::physical_memory() >= (server_memory - missing_memory))) {
       
  1095     const unsigned int logical_processors =
       
  1096       VM_Version::logical_processors_per_package();
       
  1097     if (logical_processors > 1) {
       
  1098       const unsigned int physical_packages =
       
  1099         os::active_processor_count() / logical_processors;
       
  1100       if (physical_packages > server_processors) {
       
  1101         result = true;
       
  1102       }
       
  1103     } else {
       
  1104       result = true;
       
  1105     }
       
  1106   }
       
  1107   return result;
       
  1108 }