hotspot/src/share/vm/runtime/orderAccess.hpp
changeset 1 489c9b5090e2
child 2131 98f9cef66a34
equal deleted inserted replaced
0:fd16c54261b3 1:489c9b5090e2
       
     1 /*
       
     2  * Copyright 2003 Sun Microsystems, Inc.  All Rights Reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    21  * have any questions.
       
    22  *
       
    23  */
       
    24 
       
    25 //                Memory Access Ordering Model
       
    26 //
       
    27 // This interface is based on the JSR-133 Cookbook for Compiler Writers
       
    28 // and on the IA64 memory model.  It is the dynamic equivalent of the
       
    29 // C/C++ volatile specifier.  I.e., volatility restricts compile-time
       
    30 // memory access reordering in a way similar to what we want to occur
       
    31 // at runtime.
       
    32 //
       
    33 // In the following, the terms 'previous', 'subsequent', 'before',
       
    34 // 'after', 'preceeding' and 'succeeding' refer to program order.  The
       
    35 // terms 'down' and 'below' refer to forward load or store motion
       
    36 // relative to program order, while 'up' and 'above' refer to backward
       
    37 // motion.
       
    38 //
       
    39 //
       
    40 // We define four primitive memory barrier operations.
       
    41 //
       
    42 // LoadLoad:   Load1(s); LoadLoad; Load2
       
    43 //
       
    44 // Ensures that Load1 completes (obtains the value it loads from memory)
       
    45 // before Load2 and any subsequent load operations.  Loads before Load1
       
    46 // may *not* float below Load2 and any subsequent load operations.
       
    47 //
       
    48 // StoreStore: Store1(s); StoreStore; Store2
       
    49 //
       
    50 // Ensures that Store1 completes (the effect on memory of Store1 is made
       
    51 // visible to other processors) before Store2 and any subsequent store
       
    52 // operations.  Stores before Store1 may *not* float below Store2 and any
       
    53 // subsequent store operations.
       
    54 //
       
    55 // LoadStore:  Load1(s); LoadStore; Store2
       
    56 //
       
    57 // Ensures that Load1 completes before Store2 and any subsequent store
       
    58 // operations.  Loads before Load1 may *not* float below Store2 and any
       
    59 // subseqeuent store operations.
       
    60 //
       
    61 // StoreLoad:  Store1(s); StoreLoad; Load2
       
    62 //
       
    63 // Ensures that Store1 completes before Load2 and any subsequent load
       
    64 // operations.  Stores before Store1 may *not* float below Load2 and any
       
    65 // subseqeuent load operations.
       
    66 //
       
    67 //
       
    68 // We define two further operations, 'release' and 'acquire'.  They are
       
    69 // mirror images of each other.
       
    70 //
       
    71 // Execution by a processor of release makes the effect of all memory
       
    72 // accesses issued by it previous to the release visible to all
       
    73 // processors *before* the release completes.  The effect of subsequent
       
    74 // memory accesses issued by it *may* be made visible *before* the
       
    75 // release.  I.e., subsequent memory accesses may float above the
       
    76 // release, but prior ones may not float below it.
       
    77 //
       
    78 // Execution by a processor of acquire makes the effect of all memory
       
    79 // accesses issued by it subsequent to the acquire visible to all
       
    80 // processors *after* the acquire completes.  The effect of prior memory
       
    81 // accesses issued by it *may* be made visible *after* the acquire.
       
    82 // I.e., prior memory accesses may float below the acquire, but
       
    83 // subsequent ones may not float above it.
       
    84 //
       
    85 // Finally, we define a 'fence' operation, which conceptually is a
       
    86 // release combined with an acquire.  In the real world these operations
       
    87 // require one or more machine instructions which can float above and
       
    88 // below the release or acquire, so we usually can't just issue the
       
    89 // release-acquire back-to-back.  All machines we know of implement some
       
    90 // sort of memory fence instruction.
       
    91 //
       
    92 //
       
    93 // The standalone implementations of release and acquire need an associated
       
    94 // dummy volatile store or load respectively.  To avoid redundant operations,
       
    95 // we can define the composite operators: 'release_store', 'store_fence' and
       
    96 // 'load_acquire'.  Here's a summary of the machine instructions corresponding
       
    97 // to each operation.
       
    98 //
       
    99 //               sparc RMO             ia64             x86
       
   100 // ---------------------------------------------------------------------
       
   101 // fence         membar #LoadStore |   mf               lock addl 0,(sp)
       
   102 //                      #StoreStore |
       
   103 //                      #LoadLoad |
       
   104 //                      #StoreLoad
       
   105 //
       
   106 // release       membar #LoadStore |   st.rel [sp]=r0   movl $0,<dummy>
       
   107 //                      #StoreStore
       
   108 //               st %g0,[]
       
   109 //
       
   110 // acquire       ld [%sp],%g0          ld.acq <r>=[sp]  movl (sp),<r>
       
   111 //               membar #LoadLoad |
       
   112 //                      #LoadStore
       
   113 //
       
   114 // release_store membar #LoadStore |   st.rel           <store>
       
   115 //                      #StoreStore
       
   116 //               st
       
   117 //
       
   118 // store_fence   st                    st               lock xchg
       
   119 //               fence                 mf
       
   120 //
       
   121 // load_acquire  ld                    ld.acq           <load>
       
   122 //               membar #LoadLoad |
       
   123 //                      #LoadStore
       
   124 //
       
   125 // Using only release_store and load_acquire, we can implement the
       
   126 // following ordered sequences.
       
   127 //
       
   128 // 1. load, load   == load_acquire,  load
       
   129 //                 or load_acquire,  load_acquire
       
   130 // 2. load, store  == load,          release_store
       
   131 //                 or load_acquire,  store
       
   132 //                 or load_acquire,  release_store
       
   133 // 3. store, store == store,         release_store
       
   134 //                 or release_store, release_store
       
   135 //
       
   136 // These require no membar instructions for sparc-TSO and no extra
       
   137 // instructions for ia64.
       
   138 //
       
   139 // Ordering a load relative to preceding stores requires a store_fence,
       
   140 // which implies a membar #StoreLoad between the store and load under
       
   141 // sparc-TSO.  A fence is required by ia64.  On x86, we use locked xchg.
       
   142 //
       
   143 // 4. store, load  == store_fence, load
       
   144 //
       
   145 // Use store_fence to make sure all stores done in an 'interesting'
       
   146 // region are made visible prior to both subsequent loads and stores.
       
   147 //
       
   148 // Conventional usage is to issue a load_acquire for ordered loads.  Use
       
   149 // release_store for ordered stores when you care only that prior stores
       
   150 // are visible before the release_store, but don't care exactly when the
       
   151 // store associated with the release_store becomes visible.  Use
       
   152 // release_store_fence to update values like the thread state, where we
       
   153 // don't want the current thread to continue until all our prior memory
       
   154 // accesses (including the new thread state) are visible to other threads.
       
   155 //
       
   156 //
       
   157 //                C++ Volatility
       
   158 //
       
   159 // C++ guarantees ordering at operations termed 'sequence points' (defined
       
   160 // to be volatile accesses and calls to library I/O functions).  'Side
       
   161 // effects' (defined as volatile accesses, calls to library I/O functions
       
   162 // and object modification) previous to a sequence point must be visible
       
   163 // at that sequence point.  See the C++ standard, section 1.9, titled
       
   164 // "Program Execution".  This means that all barrier implementations,
       
   165 // including standalone loadload, storestore, loadstore, storeload, acquire
       
   166 // and release must include a sequence point, usually via a volatile memory
       
   167 // access.  Other ways to guarantee a sequence point are, e.g., use of
       
   168 // indirect calls and linux's __asm__ volatile.
       
   169 //
       
   170 //
       
   171 //                os::is_MP Considered Redundant
       
   172 //
       
   173 // Callers of this interface do not need to test os::is_MP() before
       
   174 // issuing an operation. The test is taken care of by the implementation
       
   175 // of the interface (depending on the vm version and platform, the test
       
   176 // may or may not be actually done by the implementation).
       
   177 //
       
   178 //
       
   179 //                A Note on Memory Ordering and Cache Coherency
       
   180 //
       
   181 // Cache coherency and memory ordering are orthogonal concepts, though they
       
   182 // interact.  E.g., all existing itanium machines are cache-coherent, but
       
   183 // the hardware can freely reorder loads wrt other loads unless it sees a
       
   184 // load-acquire instruction.  All existing sparc machines are cache-coherent
       
   185 // and, unlike itanium, TSO guarantees that the hardware orders loads wrt
       
   186 // loads and stores, and stores wrt to each other.
       
   187 //
       
   188 // Consider the implementation of loadload.  *If* your platform *isn't*
       
   189 // cache-coherent, then loadload must not only prevent hardware load
       
   190 // instruction reordering, but it must *also* ensure that subsequent
       
   191 // loads from addresses that could be written by other processors (i.e.,
       
   192 // that are broadcast by other processors) go all the way to the first
       
   193 // level of memory shared by those processors and the one issuing
       
   194 // the loadload.
       
   195 //
       
   196 // So if we have a MP that has, say, a per-processor D$ that doesn't see
       
   197 // writes by other processors, and has a shared E$ that does, the loadload
       
   198 // barrier would have to make sure that either
       
   199 //
       
   200 // 1. cache lines in the issuing processor's D$ that contained data from
       
   201 // addresses that could be written by other processors are invalidated, so
       
   202 // subsequent loads from those addresses go to the E$, (it could do this
       
   203 // by tagging such cache lines as 'shared', though how to tell the hardware
       
   204 // to do the tagging is an interesting problem), or
       
   205 //
       
   206 // 2. there never are such cache lines in the issuing processor's D$, which
       
   207 // means all references to shared data (however identified: see above)
       
   208 // bypass the D$ (i.e., are satisfied from the E$).
       
   209 //
       
   210 // If your machine doesn't have an E$, substitute 'main memory' for 'E$'.
       
   211 //
       
   212 // Either of these alternatives is a pain, so no current machine we know of
       
   213 // has incoherent caches.
       
   214 //
       
   215 // If loadload didn't have these properties, the store-release sequence for
       
   216 // publishing a shared data structure wouldn't work, because a processor
       
   217 // trying to read data newly published by another processor might go to
       
   218 // its own incoherent caches to satisfy the read instead of to the newly
       
   219 // written shared memory.
       
   220 //
       
   221 //
       
   222 //                NOTE WELL!!
       
   223 //
       
   224 //                A Note on MutexLocker and Friends
       
   225 //
       
   226 // See mutexLocker.hpp.  We assume throughout the VM that MutexLocker's
       
   227 // and friends' constructors do a fence, a lock and an acquire *in that
       
   228 // order*.  And that their destructors do a release and unlock, in *that*
       
   229 // order.  If their implementations change such that these assumptions
       
   230 // are violated, a whole lot of code will break.
       
   231 
       
   232 class OrderAccess : AllStatic {
       
   233  public:
       
   234   static void     loadload();
       
   235   static void     storestore();
       
   236   static void     loadstore();
       
   237   static void     storeload();
       
   238 
       
   239   static void     acquire();
       
   240   static void     release();
       
   241   static void     fence();
       
   242 
       
   243   static jbyte    load_acquire(volatile jbyte*   p);
       
   244   static jshort   load_acquire(volatile jshort*  p);
       
   245   static jint     load_acquire(volatile jint*    p);
       
   246   static jlong    load_acquire(volatile jlong*   p);
       
   247   static jubyte   load_acquire(volatile jubyte*  p);
       
   248   static jushort  load_acquire(volatile jushort* p);
       
   249   static juint    load_acquire(volatile juint*   p);
       
   250   static julong   load_acquire(volatile julong*  p);
       
   251   static jfloat   load_acquire(volatile jfloat*  p);
       
   252   static jdouble  load_acquire(volatile jdouble* p);
       
   253 
       
   254   static intptr_t load_ptr_acquire(volatile intptr_t*   p);
       
   255   static void*    load_ptr_acquire(volatile void*       p);
       
   256   static void*    load_ptr_acquire(const volatile void* p);
       
   257 
       
   258   static void     release_store(volatile jbyte*   p, jbyte   v);
       
   259   static void     release_store(volatile jshort*  p, jshort  v);
       
   260   static void     release_store(volatile jint*    p, jint    v);
       
   261   static void     release_store(volatile jlong*   p, jlong   v);
       
   262   static void     release_store(volatile jubyte*  p, jubyte  v);
       
   263   static void     release_store(volatile jushort* p, jushort v);
       
   264   static void     release_store(volatile juint*   p, juint   v);
       
   265   static void     release_store(volatile julong*  p, julong  v);
       
   266   static void     release_store(volatile jfloat*  p, jfloat  v);
       
   267   static void     release_store(volatile jdouble* p, jdouble v);
       
   268 
       
   269   static void     release_store_ptr(volatile intptr_t* p, intptr_t v);
       
   270   static void     release_store_ptr(volatile void*     p, void*    v);
       
   271 
       
   272   static void     store_fence(jbyte*   p, jbyte   v);
       
   273   static void     store_fence(jshort*  p, jshort  v);
       
   274   static void     store_fence(jint*    p, jint    v);
       
   275   static void     store_fence(jlong*   p, jlong   v);
       
   276   static void     store_fence(jubyte*  p, jubyte  v);
       
   277   static void     store_fence(jushort* p, jushort v);
       
   278   static void     store_fence(juint*   p, juint   v);
       
   279   static void     store_fence(julong*  p, julong  v);
       
   280   static void     store_fence(jfloat*  p, jfloat  v);
       
   281   static void     store_fence(jdouble* p, jdouble v);
       
   282 
       
   283   static void     store_ptr_fence(intptr_t* p, intptr_t v);
       
   284   static void     store_ptr_fence(void**    p, void*    v);
       
   285 
       
   286   static void     release_store_fence(volatile jbyte*   p, jbyte   v);
       
   287   static void     release_store_fence(volatile jshort*  p, jshort  v);
       
   288   static void     release_store_fence(volatile jint*    p, jint    v);
       
   289   static void     release_store_fence(volatile jlong*   p, jlong   v);
       
   290   static void     release_store_fence(volatile jubyte*  p, jubyte  v);
       
   291   static void     release_store_fence(volatile jushort* p, jushort v);
       
   292   static void     release_store_fence(volatile juint*   p, juint   v);
       
   293   static void     release_store_fence(volatile julong*  p, julong  v);
       
   294   static void     release_store_fence(volatile jfloat*  p, jfloat  v);
       
   295   static void     release_store_fence(volatile jdouble* p, jdouble v);
       
   296 
       
   297   static void     release_store_ptr_fence(volatile intptr_t* p, intptr_t v);
       
   298   static void     release_store_ptr_fence(volatile void*     p, void*    v);
       
   299 
       
   300   // In order to force a memory access, implementations may
       
   301   // need a volatile externally visible dummy variable.
       
   302   static volatile intptr_t dummy;
       
   303 };