hotspot/src/share/vm/opto/regmask.hpp
changeset 1 489c9b5090e2
child 5547 f4b087cbb361
equal deleted inserted replaced
0:fd16c54261b3 1:489c9b5090e2
       
     1 /*
       
     2  * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    21  * have any questions.
       
    22  *
       
    23  */
       
    24 
       
    25 // Some fun naming (textual) substitutions:
       
    26 //
       
    27 // RegMask::get_low_elem() ==> RegMask::find_first_elem()
       
    28 // RegMask::Special        ==> RegMask::Empty
       
    29 // RegMask::_flags         ==> RegMask::is_AllStack()
       
    30 // RegMask::operator<<=()  ==> RegMask::Insert()
       
    31 // RegMask::operator>>=()  ==> RegMask::Remove()
       
    32 // RegMask::Union()        ==> RegMask::OR
       
    33 // RegMask::Inter()        ==> RegMask::AND
       
    34 //
       
    35 // OptoRegister::RegName   ==> OptoReg::Name
       
    36 //
       
    37 // OptoReg::stack0()       ==> _last_Mach_Reg  or ZERO in core version
       
    38 //
       
    39 // numregs in chaitin      ==> proper degree in chaitin
       
    40 
       
    41 //-------------Non-zero bit search methods used by RegMask---------------------
       
    42 // Find lowest 1, or return 32 if empty
       
    43 int find_lowest_bit( uint32 mask );
       
    44 // Find highest 1, or return 32 if empty
       
    45 int find_hihghest_bit( uint32 mask );
       
    46 
       
    47 //------------------------------RegMask----------------------------------------
       
    48 // The ADL file describes how to print the machine-specific registers, as well
       
    49 // as any notion of register classes.  We provide a register mask, which is
       
    50 // just a collection of Register numbers.
       
    51 
       
    52 // The ADLC defines 2 macros, RM_SIZE and FORALL_BODY.
       
    53 // RM_SIZE is the size of a register mask in words.
       
    54 // FORALL_BODY replicates a BODY macro once per word in the register mask.
       
    55 // The usage is somewhat clumsy and limited to the regmask.[h,c]pp files.
       
    56 // However, it means the ADLC can redefine the unroll macro and all loops
       
    57 // over register masks will be unrolled by the correct amount.
       
    58 
       
    59 class RegMask VALUE_OBJ_CLASS_SPEC {
       
    60   union {
       
    61     double _dummy_force_double_alignment[RM_SIZE>>1];
       
    62     // Array of Register Mask bits.  This array is large enough to cover
       
    63     // all the machine registers and all parameters that need to be passed
       
    64     // on the stack (stack registers) up to some interesting limit.  Methods
       
    65     // that need more parameters will NOT be compiled.  On Intel, the limit
       
    66     // is something like 90+ parameters.
       
    67     int _A[RM_SIZE];
       
    68   };
       
    69 
       
    70   enum {
       
    71     _WordBits    = BitsPerInt,
       
    72     _LogWordBits = LogBitsPerInt,
       
    73     _RM_SIZE     = RM_SIZE   // local constant, imported, then hidden by #undef
       
    74   };
       
    75 
       
    76 public:
       
    77   enum { CHUNK_SIZE = RM_SIZE*_WordBits };
       
    78 
       
    79   // SlotsPerLong is 2, since slots are 32 bits and longs are 64 bits.
       
    80   // Also, consider the maximum alignment size for a normally allocated
       
    81   // value.  Since we allocate register pairs but not register quads (at
       
    82   // present), this alignment is SlotsPerLong (== 2).  A normally
       
    83   // aligned allocated register is either a single register, or a pair
       
    84   // of adjacent registers, the lower-numbered being even.
       
    85   // See also is_aligned_Pairs() below, and the padding added before
       
    86   // Matcher::_new_SP to keep allocated pairs aligned properly.
       
    87   // If we ever go to quad-word allocations, SlotsPerQuad will become
       
    88   // the controlling alignment constraint.  Note that this alignment
       
    89   // requirement is internal to the allocator, and independent of any
       
    90   // particular platform.
       
    91   enum { SlotsPerLong = 2 };
       
    92 
       
    93   // A constructor only used by the ADLC output.  All mask fields are filled
       
    94   // in directly.  Calls to this look something like RM(1,2,3,4);
       
    95   RegMask(
       
    96 #   define BODY(I) int a##I,
       
    97     FORALL_BODY
       
    98 #   undef BODY
       
    99     int dummy = 0 ) {
       
   100 #   define BODY(I) _A[I] = a##I;
       
   101     FORALL_BODY
       
   102 #   undef BODY
       
   103   }
       
   104 
       
   105   // Handy copying constructor
       
   106   RegMask( RegMask *rm ) {
       
   107 #   define BODY(I) _A[I] = rm->_A[I];
       
   108     FORALL_BODY
       
   109 #   undef BODY
       
   110   }
       
   111 
       
   112   // Construct an empty mask
       
   113   RegMask( ) { Clear(); }
       
   114 
       
   115   // Construct a mask with a single bit
       
   116   RegMask( OptoReg::Name reg ) { Clear(); Insert(reg); }
       
   117 
       
   118   // Check for register being in mask
       
   119   int Member( OptoReg::Name reg ) const {
       
   120     assert( reg < CHUNK_SIZE, "" );
       
   121     return _A[reg>>_LogWordBits] & (1<<(reg&(_WordBits-1)));
       
   122   }
       
   123 
       
   124   // The last bit in the register mask indicates that the mask should repeat
       
   125   // indefinitely with ONE bits.  Returns TRUE if mask is infinite or
       
   126   // unbounded in size.  Returns FALSE if mask is finite size.
       
   127   int is_AllStack() const { return _A[RM_SIZE-1] >> (_WordBits-1); }
       
   128 
       
   129   // Work around an -xO3 optimization problme in WS6U1. The old way:
       
   130   //   void set_AllStack() { _A[RM_SIZE-1] |= (1<<(_WordBits-1)); }
       
   131   // will cause _A[RM_SIZE-1] to be clobbered, not updated when set_AllStack()
       
   132   // follows an Insert() loop, like the one found in init_spill_mask(). Using
       
   133   // Insert() instead works because the index into _A in computed instead of
       
   134   // constant.  See bug 4665841.
       
   135   void set_AllStack() { Insert(OptoReg::Name(CHUNK_SIZE-1)); }
       
   136 
       
   137   // Test for being a not-empty mask.
       
   138   int is_NotEmpty( ) const {
       
   139     int tmp = 0;
       
   140 #   define BODY(I) tmp |= _A[I];
       
   141     FORALL_BODY
       
   142 #   undef BODY
       
   143     return tmp;
       
   144   }
       
   145 
       
   146   // Find lowest-numbered register from mask, or BAD if mask is empty.
       
   147   OptoReg::Name find_first_elem() const {
       
   148     int base, bits;
       
   149 #   define BODY(I) if( (bits = _A[I]) != 0 ) base = I<<_LogWordBits; else
       
   150     FORALL_BODY
       
   151 #   undef BODY
       
   152       { base = OptoReg::Bad; bits = 1<<0; }
       
   153     return OptoReg::Name(base + find_lowest_bit(bits));
       
   154   }
       
   155   // Get highest-numbered register from mask, or BAD if mask is empty.
       
   156   OptoReg::Name find_last_elem() const {
       
   157     int base, bits;
       
   158 #   define BODY(I) if( (bits = _A[RM_SIZE-1-I]) != 0 ) base = (RM_SIZE-1-I)<<_LogWordBits; else
       
   159     FORALL_BODY
       
   160 #   undef BODY
       
   161       { base = OptoReg::Bad; bits = 1<<0; }
       
   162     return OptoReg::Name(base + find_hihghest_bit(bits));
       
   163   }
       
   164 
       
   165   // Find the lowest-numbered register pair in the mask.  Return the
       
   166   // HIGHEST register number in the pair, or BAD if no pairs.
       
   167   // Assert that the mask contains only bit pairs.
       
   168   OptoReg::Name find_first_pair() const;
       
   169 
       
   170   // Clear out partial bits; leave only aligned adjacent bit pairs.
       
   171   void ClearToPairs();
       
   172   // Smear out partial bits; leave only aligned adjacent bit pairs.
       
   173   void SmearToPairs();
       
   174   // Verify that the mask contains only aligned adjacent bit pairs
       
   175   void VerifyPairs() const { assert( is_aligned_Pairs(), "mask is not aligned, adjacent pairs" ); }
       
   176   // Test that the mask contains only aligned adjacent bit pairs
       
   177   bool is_aligned_Pairs() const;
       
   178 
       
   179   // mask is a pair of misaligned registers
       
   180   bool is_misaligned_Pair() const { return Size()==2 && !is_aligned_Pairs();}
       
   181   // Test for single register
       
   182   int is_bound1() const;
       
   183   // Test for a single adjacent pair
       
   184   int is_bound2() const;
       
   185 
       
   186   // Fast overlap test.  Non-zero if any registers in common.
       
   187   int overlap( const RegMask &rm ) const {
       
   188     return
       
   189 #   define BODY(I) (_A[I] & rm._A[I]) |
       
   190     FORALL_BODY
       
   191 #   undef BODY
       
   192     0 ;
       
   193   }
       
   194 
       
   195   // Special test for register pressure based splitting
       
   196   // UP means register only, Register plus stack, or stack only is DOWN
       
   197   bool is_UP() const;
       
   198 
       
   199   // Clear a register mask
       
   200   void Clear( ) {
       
   201 #   define BODY(I) _A[I] = 0;
       
   202     FORALL_BODY
       
   203 #   undef BODY
       
   204   }
       
   205 
       
   206   // Fill a register mask with 1's
       
   207   void Set_All( ) {
       
   208 #   define BODY(I) _A[I] = -1;
       
   209     FORALL_BODY
       
   210 #   undef BODY
       
   211   }
       
   212 
       
   213   // Insert register into mask
       
   214   void Insert( OptoReg::Name reg ) {
       
   215     assert( reg < CHUNK_SIZE, "" );
       
   216     _A[reg>>_LogWordBits] |= (1<<(reg&(_WordBits-1)));
       
   217   }
       
   218 
       
   219   // Remove register from mask
       
   220   void Remove( OptoReg::Name reg ) {
       
   221     assert( reg < CHUNK_SIZE, "" );
       
   222     _A[reg>>_LogWordBits] &= ~(1<<(reg&(_WordBits-1)));
       
   223   }
       
   224 
       
   225   // OR 'rm' into 'this'
       
   226   void OR( const RegMask &rm ) {
       
   227 #   define BODY(I) this->_A[I] |= rm._A[I];
       
   228     FORALL_BODY
       
   229 #   undef BODY
       
   230   }
       
   231 
       
   232   // AND 'rm' into 'this'
       
   233   void AND( const RegMask &rm ) {
       
   234 #   define BODY(I) this->_A[I] &= rm._A[I];
       
   235     FORALL_BODY
       
   236 #   undef BODY
       
   237   }
       
   238 
       
   239   // Subtract 'rm' from 'this'
       
   240   void SUBTRACT( const RegMask &rm ) {
       
   241 #   define BODY(I) _A[I] &= ~rm._A[I];
       
   242     FORALL_BODY
       
   243 #   undef BODY
       
   244   }
       
   245 
       
   246   // Compute size of register mask: number of bits
       
   247   uint Size() const;
       
   248 
       
   249 #ifndef PRODUCT
       
   250   void print() const { dump(); }
       
   251   void dump() const;            // Print a mask
       
   252 #endif
       
   253 
       
   254   static const RegMask Empty;   // Common empty mask
       
   255 
       
   256   static bool can_represent(OptoReg::Name reg) {
       
   257     // NOTE: -1 in computation reflects the usage of the last
       
   258     //       bit of the regmask as an infinite stack flag.
       
   259     return (int)reg < (int)(CHUNK_SIZE-1);
       
   260   }
       
   261 };
       
   262 
       
   263 // Do not use this constant directly in client code!
       
   264 #undef RM_SIZE