|
1 /* |
|
2 * Copyright 2006-2007 Sun Microsystems, Inc. All Rights Reserved. |
|
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 * |
|
5 * This code is free software; you can redistribute it and/or modify it |
|
6 * under the terms of the GNU General Public License version 2 only, as |
|
7 * published by the Free Software Foundation. |
|
8 * |
|
9 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 * version 2 for more details (a copy is included in the LICENSE file that |
|
13 * accompanied this code). |
|
14 * |
|
15 * You should have received a copy of the GNU General Public License version |
|
16 * 2 along with this work; if not, write to the Free Software Foundation, |
|
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 * |
|
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, |
|
20 * CA 95054 USA or visit www.sun.com if you need additional information or |
|
21 * have any questions. |
|
22 * |
|
23 */ |
|
24 |
|
25 //------------------------------OptoReg---------------------------------------- |
|
26 // We eventually need Registers for the Real World. Registers are essentially |
|
27 // non-SSA names. A Register is represented as a number. Non-regular values |
|
28 // (e.g., Control, Memory, I/O) use the Special register. The actual machine |
|
29 // registers (as described in the ADL file for a machine) start at zero. |
|
30 // Stack-slots (spill locations) start at the nest Chunk past the last machine |
|
31 // register. |
|
32 // |
|
33 // Note that stack spill-slots are treated as a very large register set. |
|
34 // They have all the correct properties for a Register: not aliased (unique |
|
35 // named). There is some simple mapping from a stack-slot register number |
|
36 // to the actual location on the stack; this mapping depends on the calling |
|
37 // conventions and is described in the ADL. |
|
38 // |
|
39 // Note that Name is not enum. C++ standard defines that the range of enum |
|
40 // is the range of smallest bit-field that can represent all enumerators |
|
41 // declared in the enum. The result of assigning a value to enum is undefined |
|
42 // if the value is outside the enumeration's valid range. OptoReg::Name is |
|
43 // typedef'ed as int, because it needs to be able to represent spill-slots. |
|
44 // |
|
45 class OptoReg VALUE_OBJ_CLASS_SPEC { |
|
46 |
|
47 friend class C2Compiler; |
|
48 public: |
|
49 typedef int Name; |
|
50 enum { |
|
51 // Chunk 0 |
|
52 Physical = AdlcVMDeps::Physical, // Start of physical regs |
|
53 // A few oddballs at the edge of the world |
|
54 Special = -2, // All special (not allocated) values |
|
55 Bad = -1 // Not a register |
|
56 }; |
|
57 |
|
58 private: |
|
59 |
|
60 static const VMReg opto2vm[REG_COUNT]; |
|
61 static Name vm2opto[ConcreteRegisterImpl::number_of_registers]; |
|
62 |
|
63 public: |
|
64 |
|
65 // Stack pointer register |
|
66 static OptoReg::Name c_frame_pointer; |
|
67 |
|
68 |
|
69 |
|
70 // Increment a register number. As in: |
|
71 // "for ( OptoReg::Name i; i=Control; i = add(i,1) ) ..." |
|
72 static Name add( Name x, int y ) { return Name(x+y); } |
|
73 |
|
74 // (We would like to have an operator+ for RegName, but it is not |
|
75 // a class, so this would be illegal in C++.) |
|
76 |
|
77 static void dump( int ); |
|
78 |
|
79 // Get the stack slot number of an OptoReg::Name |
|
80 static unsigned int reg2stack( OptoReg::Name r) { |
|
81 assert( r >= stack0(), " must be"); |
|
82 return r - stack0(); |
|
83 } |
|
84 |
|
85 // convert a stack slot number into an OptoReg::Name |
|
86 static OptoReg::Name stack2reg( int idx) { |
|
87 return Name(stack0() + idx); |
|
88 } |
|
89 |
|
90 static bool is_stack(Name n) { |
|
91 return n >= stack0(); |
|
92 } |
|
93 |
|
94 static bool is_valid(Name n) { |
|
95 return (n != Bad); |
|
96 } |
|
97 |
|
98 static bool is_reg(Name n) { |
|
99 return is_valid(n) && !is_stack(n); |
|
100 } |
|
101 |
|
102 static VMReg as_VMReg(OptoReg::Name n) { |
|
103 if (is_reg(n)) { |
|
104 // Must use table, it'd be nice if Bad was indexable... |
|
105 return opto2vm[n]; |
|
106 } else { |
|
107 assert(!is_stack(n), "must un warp"); |
|
108 return VMRegImpl::Bad(); |
|
109 } |
|
110 } |
|
111 |
|
112 // Can un-warp a stack slot or convert a register or Bad |
|
113 static VMReg as_VMReg(OptoReg::Name n, int frame_size, int arg_count) { |
|
114 if (is_reg(n)) { |
|
115 // Must use table, it'd be nice if Bad was indexable... |
|
116 return opto2vm[n]; |
|
117 } else if (is_stack(n)) { |
|
118 int stack_slot = reg2stack(n); |
|
119 if (stack_slot < arg_count) { |
|
120 return VMRegImpl::stack2reg(stack_slot + frame_size); |
|
121 } |
|
122 return VMRegImpl::stack2reg(stack_slot - arg_count); |
|
123 // return return VMRegImpl::stack2reg(reg2stack(OptoReg::add(n, -arg_count))); |
|
124 } else { |
|
125 return VMRegImpl::Bad(); |
|
126 } |
|
127 } |
|
128 |
|
129 static OptoReg::Name as_OptoReg(VMReg r) { |
|
130 if (r->is_stack()) { |
|
131 assert(false, "must warp"); |
|
132 return stack2reg(r->reg2stack()); |
|
133 } else if (r->is_valid()) { |
|
134 // Must use table, it'd be nice if Bad was indexable... |
|
135 return vm2opto[r->value()]; |
|
136 } else { |
|
137 return Bad; |
|
138 } |
|
139 } |
|
140 |
|
141 static OptoReg::Name stack0() { |
|
142 return VMRegImpl::stack0->value(); |
|
143 } |
|
144 |
|
145 static const char* regname(OptoReg::Name n) { |
|
146 return as_VMReg(n)->name(); |
|
147 } |
|
148 |
|
149 }; |
|
150 |
|
151 //---------------------------OptoRegPair------------------------------------------- |
|
152 // Pairs of 32-bit registers for the allocator. |
|
153 // This is a very similar class to VMRegPair. C2 only interfaces with VMRegPair |
|
154 // via the calling convention code which is shared between the compilers. |
|
155 // Since C2 uses OptoRegs for register allocation it is more efficient to use |
|
156 // VMRegPair internally for nodes that can contain a pair of OptoRegs rather |
|
157 // than use VMRegPair and continually be converting back and forth. So normally |
|
158 // C2 will take in a VMRegPair from the calling convention code and immediately |
|
159 // convert them to an OptoRegPair and stay in the OptoReg world. The only over |
|
160 // conversion between OptoRegs and VMRegs is for debug info and oopMaps. This |
|
161 // is not a high bandwidth spot and so it is not an issue. |
|
162 // Note that onde other consequence of staying in the OptoReg world with OptoRegPairs |
|
163 // is that there are "physical" OptoRegs that are not representable in the VMReg |
|
164 // world, notably flags. [ But by design there is "space" in the VMReg world |
|
165 // for such registers they just may not be concrete ]. So if we were to use VMRegPair |
|
166 // then the VMReg world would have to have a representation for these registers |
|
167 // so that a OptoReg->VMReg->OptoReg would reproduce ther original OptoReg. As it |
|
168 // stands if you convert a flag (condition code) to a VMReg you will get VMRegImpl::Bad |
|
169 // and converting that will return OptoReg::Bad losing the identity of the OptoReg. |
|
170 |
|
171 class OptoRegPair { |
|
172 private: |
|
173 short _second; |
|
174 short _first; |
|
175 public: |
|
176 void set_bad ( ) { _second = OptoReg::Bad; _first = OptoReg::Bad; } |
|
177 void set1 ( OptoReg::Name n ) { _second = OptoReg::Bad; _first = n; } |
|
178 void set2 ( OptoReg::Name n ) { _second = n + 1; _first = n; } |
|
179 void set_pair( OptoReg::Name second, OptoReg::Name first ) { _second= second; _first= first; } |
|
180 void set_ptr ( OptoReg::Name ptr ) { |
|
181 #ifdef _LP64 |
|
182 _second = ptr+1; |
|
183 #else |
|
184 _second = OptoReg::Bad; |
|
185 #endif |
|
186 _first = ptr; |
|
187 } |
|
188 |
|
189 OptoReg::Name second() const { return _second; } |
|
190 OptoReg::Name first() const { return _first; } |
|
191 OptoRegPair(OptoReg::Name second, OptoReg::Name first) { _second = second; _first = first; } |
|
192 OptoRegPair(OptoReg::Name f) { _second = OptoReg::Bad; _first = f; } |
|
193 OptoRegPair() { _second = OptoReg::Bad; _first = OptoReg::Bad; } |
|
194 }; |