hotspot/src/share/vm/opto/node.cpp
changeset 1 489c9b5090e2
child 197 264e201bc1d5
equal deleted inserted replaced
0:fd16c54261b3 1:489c9b5090e2
       
     1 /*
       
     2  * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    21  * have any questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "incls/_precompiled.incl"
       
    26 #include "incls/_node.cpp.incl"
       
    27 
       
    28 class RegMask;
       
    29 // #include "phase.hpp"
       
    30 class PhaseTransform;
       
    31 class PhaseGVN;
       
    32 
       
    33 // Arena we are currently building Nodes in
       
    34 const uint Node::NotAMachineReg = 0xffff0000;
       
    35 
       
    36 #ifndef PRODUCT
       
    37 extern int nodes_created;
       
    38 #endif
       
    39 
       
    40 #ifdef ASSERT
       
    41 
       
    42 //-------------------------- construct_node------------------------------------
       
    43 // Set a breakpoint here to identify where a particular node index is built.
       
    44 void Node::verify_construction() {
       
    45   _debug_orig = NULL;
       
    46   int old_debug_idx = Compile::debug_idx();
       
    47   int new_debug_idx = old_debug_idx+1;
       
    48   if (new_debug_idx > 0) {
       
    49     // Arrange that the lowest five decimal digits of _debug_idx
       
    50     // will repeat thos of _idx.  In case this is somehow pathological,
       
    51     // we continue to assign negative numbers (!) consecutively.
       
    52     const int mod = 100000;
       
    53     int bump = (int)(_idx - new_debug_idx) % mod;
       
    54     if (bump < 0)  bump += mod;
       
    55     assert(bump >= 0 && bump < mod, "");
       
    56     new_debug_idx += bump;
       
    57   }
       
    58   Compile::set_debug_idx(new_debug_idx);
       
    59   set_debug_idx( new_debug_idx );
       
    60   assert(Compile::current()->unique() < (uint)MaxNodeLimit, "Node limit exceeded");
       
    61   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
       
    62     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
       
    63     BREAKPOINT;
       
    64   }
       
    65 #if OPTO_DU_ITERATOR_ASSERT
       
    66   _last_del = NULL;
       
    67   _del_tick = 0;
       
    68 #endif
       
    69   _hash_lock = 0;
       
    70 }
       
    71 
       
    72 
       
    73 // #ifdef ASSERT ...
       
    74 
       
    75 #if OPTO_DU_ITERATOR_ASSERT
       
    76 void DUIterator_Common::sample(const Node* node) {
       
    77   _vdui     = VerifyDUIterators;
       
    78   _node     = node;
       
    79   _outcnt   = node->_outcnt;
       
    80   _del_tick = node->_del_tick;
       
    81   _last     = NULL;
       
    82 }
       
    83 
       
    84 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
       
    85   assert(_node     == node, "consistent iterator source");
       
    86   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
       
    87 }
       
    88 
       
    89 void DUIterator_Common::verify_resync() {
       
    90   // Ensure that the loop body has just deleted the last guy produced.
       
    91   const Node* node = _node;
       
    92   // Ensure that at least one copy of the last-seen edge was deleted.
       
    93   // Note:  It is OK to delete multiple copies of the last-seen edge.
       
    94   // Unfortunately, we have no way to verify that all the deletions delete
       
    95   // that same edge.  On this point we must use the Honor System.
       
    96   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
       
    97   assert(node->_last_del == _last, "must have deleted the edge just produced");
       
    98   // We liked this deletion, so accept the resulting outcnt and tick.
       
    99   _outcnt   = node->_outcnt;
       
   100   _del_tick = node->_del_tick;
       
   101 }
       
   102 
       
   103 void DUIterator_Common::reset(const DUIterator_Common& that) {
       
   104   if (this == &that)  return;  // ignore assignment to self
       
   105   if (!_vdui) {
       
   106     // We need to initialize everything, overwriting garbage values.
       
   107     _last = that._last;
       
   108     _vdui = that._vdui;
       
   109   }
       
   110   // Note:  It is legal (though odd) for an iterator over some node x
       
   111   // to be reassigned to iterate over another node y.  Some doubly-nested
       
   112   // progress loops depend on being able to do this.
       
   113   const Node* node = that._node;
       
   114   // Re-initialize everything, except _last.
       
   115   _node     = node;
       
   116   _outcnt   = node->_outcnt;
       
   117   _del_tick = node->_del_tick;
       
   118 }
       
   119 
       
   120 void DUIterator::sample(const Node* node) {
       
   121   DUIterator_Common::sample(node);      // Initialize the assertion data.
       
   122   _refresh_tick = 0;                    // No refreshes have happened, as yet.
       
   123 }
       
   124 
       
   125 void DUIterator::verify(const Node* node, bool at_end_ok) {
       
   126   DUIterator_Common::verify(node, at_end_ok);
       
   127   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
       
   128 }
       
   129 
       
   130 void DUIterator::verify_increment() {
       
   131   if (_refresh_tick & 1) {
       
   132     // We have refreshed the index during this loop.
       
   133     // Fix up _idx to meet asserts.
       
   134     if (_idx > _outcnt)  _idx = _outcnt;
       
   135   }
       
   136   verify(_node, true);
       
   137 }
       
   138 
       
   139 void DUIterator::verify_resync() {
       
   140   // Note:  We do not assert on _outcnt, because insertions are OK here.
       
   141   DUIterator_Common::verify_resync();
       
   142   // Make sure we are still in sync, possibly with no more out-edges:
       
   143   verify(_node, true);
       
   144 }
       
   145 
       
   146 void DUIterator::reset(const DUIterator& that) {
       
   147   if (this == &that)  return;  // self assignment is always a no-op
       
   148   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
       
   149   assert(that._idx          == 0, "assign only the result of Node::outs()");
       
   150   assert(_idx               == that._idx, "already assigned _idx");
       
   151   if (!_vdui) {
       
   152     // We need to initialize everything, overwriting garbage values.
       
   153     sample(that._node);
       
   154   } else {
       
   155     DUIterator_Common::reset(that);
       
   156     if (_refresh_tick & 1) {
       
   157       _refresh_tick++;                  // Clear the "was refreshed" flag.
       
   158     }
       
   159     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
       
   160   }
       
   161 }
       
   162 
       
   163 void DUIterator::refresh() {
       
   164   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
       
   165   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
       
   166 }
       
   167 
       
   168 void DUIterator::verify_finish() {
       
   169   // If the loop has killed the node, do not require it to re-run.
       
   170   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
       
   171   // If this assert triggers, it means that a loop used refresh_out_pos
       
   172   // to re-synch an iteration index, but the loop did not correctly
       
   173   // re-run itself, using a "while (progress)" construct.
       
   174   // This iterator enforces the rule that you must keep trying the loop
       
   175   // until it "runs clean" without any need for refreshing.
       
   176   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
       
   177 }
       
   178 
       
   179 
       
   180 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
       
   181   DUIterator_Common::verify(node, at_end_ok);
       
   182   Node** out    = node->_out;
       
   183   uint   cnt    = node->_outcnt;
       
   184   assert(cnt == _outcnt, "no insertions allowed");
       
   185   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
       
   186   // This last check is carefully designed to work for NO_OUT_ARRAY.
       
   187 }
       
   188 
       
   189 void DUIterator_Fast::verify_limit() {
       
   190   const Node* node = _node;
       
   191   verify(node, true);
       
   192   assert(_outp == node->_out + node->_outcnt, "limit still correct");
       
   193 }
       
   194 
       
   195 void DUIterator_Fast::verify_resync() {
       
   196   const Node* node = _node;
       
   197   if (_outp == node->_out + _outcnt) {
       
   198     // Note that the limit imax, not the pointer i, gets updated with the
       
   199     // exact count of deletions.  (For the pointer it's always "--i".)
       
   200     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
       
   201     // This is a limit pointer, with a name like "imax".
       
   202     // Fudge the _last field so that the common assert will be happy.
       
   203     _last = (Node*) node->_last_del;
       
   204     DUIterator_Common::verify_resync();
       
   205   } else {
       
   206     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
       
   207     // A normal internal pointer.
       
   208     DUIterator_Common::verify_resync();
       
   209     // Make sure we are still in sync, possibly with no more out-edges:
       
   210     verify(node, true);
       
   211   }
       
   212 }
       
   213 
       
   214 void DUIterator_Fast::verify_relimit(uint n) {
       
   215   const Node* node = _node;
       
   216   assert((int)n > 0, "use imax -= n only with a positive count");
       
   217   // This must be a limit pointer, with a name like "imax".
       
   218   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
       
   219   // The reported number of deletions must match what the node saw.
       
   220   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
       
   221   // Fudge the _last field so that the common assert will be happy.
       
   222   _last = (Node*) node->_last_del;
       
   223   DUIterator_Common::verify_resync();
       
   224 }
       
   225 
       
   226 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
       
   227   assert(_outp              == that._outp, "already assigned _outp");
       
   228   DUIterator_Common::reset(that);
       
   229 }
       
   230 
       
   231 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
       
   232   // at_end_ok means the _outp is allowed to underflow by 1
       
   233   _outp += at_end_ok;
       
   234   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
       
   235   _outp -= at_end_ok;
       
   236   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
       
   237 }
       
   238 
       
   239 void DUIterator_Last::verify_limit() {
       
   240   // Do not require the limit address to be resynched.
       
   241   //verify(node, true);
       
   242   assert(_outp == _node->_out, "limit still correct");
       
   243 }
       
   244 
       
   245 void DUIterator_Last::verify_step(uint num_edges) {
       
   246   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
       
   247   _outcnt   -= num_edges;
       
   248   _del_tick += num_edges;
       
   249   // Make sure we are still in sync, possibly with no more out-edges:
       
   250   const Node* node = _node;
       
   251   verify(node, true);
       
   252   assert(node->_last_del == _last, "must have deleted the edge just produced");
       
   253 }
       
   254 
       
   255 #endif //OPTO_DU_ITERATOR_ASSERT
       
   256 
       
   257 
       
   258 #endif //ASSERT
       
   259 
       
   260 
       
   261 // This constant used to initialize _out may be any non-null value.
       
   262 // The value NULL is reserved for the top node only.
       
   263 #define NO_OUT_ARRAY ((Node**)-1)
       
   264 
       
   265 // This funny expression handshakes with Node::operator new
       
   266 // to pull Compile::current out of the new node's _out field,
       
   267 // and then calls a subroutine which manages most field
       
   268 // initializations.  The only one which is tricky is the
       
   269 // _idx field, which is const, and so must be initialized
       
   270 // by a return value, not an assignment.
       
   271 //
       
   272 // (Aren't you thankful that Java finals don't require so many tricks?)
       
   273 #define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
       
   274 #ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
       
   275 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
       
   276 #endif
       
   277 
       
   278 // Out-of-line code from node constructors.
       
   279 // Executed only when extra debug info. is being passed around.
       
   280 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
       
   281   C->set_node_notes_at(idx, nn);
       
   282 }
       
   283 
       
   284 // Shared initialization code.
       
   285 inline int Node::Init(int req, Compile* C) {
       
   286   assert(Compile::current() == C, "must use operator new(Compile*)");
       
   287   int idx = C->next_unique();
       
   288 
       
   289   // If there are default notes floating around, capture them:
       
   290   Node_Notes* nn = C->default_node_notes();
       
   291   if (nn != NULL)  init_node_notes(C, idx, nn);
       
   292 
       
   293   // Note:  At this point, C is dead,
       
   294   // and we begin to initialize the new Node.
       
   295 
       
   296   _cnt = _max = req;
       
   297   _outcnt = _outmax = 0;
       
   298   _class_id = Class_Node;
       
   299   _flags = 0;
       
   300   _out = NO_OUT_ARRAY;
       
   301   return idx;
       
   302 }
       
   303 
       
   304 //------------------------------Node-------------------------------------------
       
   305 // Create a Node, with a given number of required edges.
       
   306 Node::Node(uint req)
       
   307   : _idx(IDX_INIT(req))
       
   308 {
       
   309   assert( req < (uint)(MaxNodeLimit - NodeLimitFudgeFactor), "Input limit exceeded" );
       
   310   debug_only( verify_construction() );
       
   311   NOT_PRODUCT(nodes_created++);
       
   312   if (req == 0) {
       
   313     assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
       
   314     _in = NULL;
       
   315   } else {
       
   316     assert( _in[req-1] == this, "Must pass arg count to 'new'" );
       
   317     Node** to = _in;
       
   318     for(uint i = 0; i < req; i++) {
       
   319       to[i] = NULL;
       
   320     }
       
   321   }
       
   322 }
       
   323 
       
   324 //------------------------------Node-------------------------------------------
       
   325 Node::Node(Node *n0)
       
   326   : _idx(IDX_INIT(1))
       
   327 {
       
   328   debug_only( verify_construction() );
       
   329   NOT_PRODUCT(nodes_created++);
       
   330   // Assert we allocated space for input array already
       
   331   assert( _in[0] == this, "Must pass arg count to 'new'" );
       
   332   assert( is_not_dead(n0), "can not use dead node");
       
   333   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
       
   334 }
       
   335 
       
   336 //------------------------------Node-------------------------------------------
       
   337 Node::Node(Node *n0, Node *n1)
       
   338   : _idx(IDX_INIT(2))
       
   339 {
       
   340   debug_only( verify_construction() );
       
   341   NOT_PRODUCT(nodes_created++);
       
   342   // Assert we allocated space for input array already
       
   343   assert( _in[1] == this, "Must pass arg count to 'new'" );
       
   344   assert( is_not_dead(n0), "can not use dead node");
       
   345   assert( is_not_dead(n1), "can not use dead node");
       
   346   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
       
   347   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
       
   348 }
       
   349 
       
   350 //------------------------------Node-------------------------------------------
       
   351 Node::Node(Node *n0, Node *n1, Node *n2)
       
   352   : _idx(IDX_INIT(3))
       
   353 {
       
   354   debug_only( verify_construction() );
       
   355   NOT_PRODUCT(nodes_created++);
       
   356   // Assert we allocated space for input array already
       
   357   assert( _in[2] == this, "Must pass arg count to 'new'" );
       
   358   assert( is_not_dead(n0), "can not use dead node");
       
   359   assert( is_not_dead(n1), "can not use dead node");
       
   360   assert( is_not_dead(n2), "can not use dead node");
       
   361   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
       
   362   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
       
   363   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
       
   364 }
       
   365 
       
   366 //------------------------------Node-------------------------------------------
       
   367 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
       
   368   : _idx(IDX_INIT(4))
       
   369 {
       
   370   debug_only( verify_construction() );
       
   371   NOT_PRODUCT(nodes_created++);
       
   372   // Assert we allocated space for input array already
       
   373   assert( _in[3] == this, "Must pass arg count to 'new'" );
       
   374   assert( is_not_dead(n0), "can not use dead node");
       
   375   assert( is_not_dead(n1), "can not use dead node");
       
   376   assert( is_not_dead(n2), "can not use dead node");
       
   377   assert( is_not_dead(n3), "can not use dead node");
       
   378   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
       
   379   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
       
   380   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
       
   381   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
       
   382 }
       
   383 
       
   384 //------------------------------Node-------------------------------------------
       
   385 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
       
   386   : _idx(IDX_INIT(5))
       
   387 {
       
   388   debug_only( verify_construction() );
       
   389   NOT_PRODUCT(nodes_created++);
       
   390   // Assert we allocated space for input array already
       
   391   assert( _in[4] == this, "Must pass arg count to 'new'" );
       
   392   assert( is_not_dead(n0), "can not use dead node");
       
   393   assert( is_not_dead(n1), "can not use dead node");
       
   394   assert( is_not_dead(n2), "can not use dead node");
       
   395   assert( is_not_dead(n3), "can not use dead node");
       
   396   assert( is_not_dead(n4), "can not use dead node");
       
   397   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
       
   398   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
       
   399   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
       
   400   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
       
   401   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
       
   402 }
       
   403 
       
   404 //------------------------------Node-------------------------------------------
       
   405 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
       
   406                      Node *n4, Node *n5)
       
   407   : _idx(IDX_INIT(6))
       
   408 {
       
   409   debug_only( verify_construction() );
       
   410   NOT_PRODUCT(nodes_created++);
       
   411   // Assert we allocated space for input array already
       
   412   assert( _in[5] == this, "Must pass arg count to 'new'" );
       
   413   assert( is_not_dead(n0), "can not use dead node");
       
   414   assert( is_not_dead(n1), "can not use dead node");
       
   415   assert( is_not_dead(n2), "can not use dead node");
       
   416   assert( is_not_dead(n3), "can not use dead node");
       
   417   assert( is_not_dead(n4), "can not use dead node");
       
   418   assert( is_not_dead(n5), "can not use dead node");
       
   419   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
       
   420   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
       
   421   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
       
   422   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
       
   423   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
       
   424   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
       
   425 }
       
   426 
       
   427 //------------------------------Node-------------------------------------------
       
   428 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
       
   429                      Node *n4, Node *n5, Node *n6)
       
   430   : _idx(IDX_INIT(7))
       
   431 {
       
   432   debug_only( verify_construction() );
       
   433   NOT_PRODUCT(nodes_created++);
       
   434   // Assert we allocated space for input array already
       
   435   assert( _in[6] == this, "Must pass arg count to 'new'" );
       
   436   assert( is_not_dead(n0), "can not use dead node");
       
   437   assert( is_not_dead(n1), "can not use dead node");
       
   438   assert( is_not_dead(n2), "can not use dead node");
       
   439   assert( is_not_dead(n3), "can not use dead node");
       
   440   assert( is_not_dead(n4), "can not use dead node");
       
   441   assert( is_not_dead(n5), "can not use dead node");
       
   442   assert( is_not_dead(n6), "can not use dead node");
       
   443   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
       
   444   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
       
   445   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
       
   446   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
       
   447   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
       
   448   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
       
   449   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
       
   450 }
       
   451 
       
   452 
       
   453 //------------------------------clone------------------------------------------
       
   454 // Clone a Node.
       
   455 Node *Node::clone() const {
       
   456   Compile *compile = Compile::current();
       
   457   uint s = size_of();           // Size of inherited Node
       
   458   Node *n = (Node*)compile->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
       
   459   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
       
   460   // Set the new input pointer array
       
   461   n->_in = (Node**)(((char*)n)+s);
       
   462   // Cannot share the old output pointer array, so kill it
       
   463   n->_out = NO_OUT_ARRAY;
       
   464   // And reset the counters to 0
       
   465   n->_outcnt = 0;
       
   466   n->_outmax = 0;
       
   467   // Unlock this guy, since he is not in any hash table.
       
   468   debug_only(n->_hash_lock = 0);
       
   469   // Walk the old node's input list to duplicate its edges
       
   470   uint i;
       
   471   for( i = 0; i < len(); i++ ) {
       
   472     Node *x = in(i);
       
   473     n->_in[i] = x;
       
   474     if (x != NULL) x->add_out(n);
       
   475   }
       
   476   if (is_macro())
       
   477     compile->add_macro_node(n);
       
   478 
       
   479   n->set_idx(compile->next_unique()); // Get new unique index as well
       
   480   debug_only( n->verify_construction() );
       
   481   NOT_PRODUCT(nodes_created++);
       
   482   // Do not patch over the debug_idx of a clone, because it makes it
       
   483   // impossible to break on the clone's moment of creation.
       
   484   //debug_only( n->set_debug_idx( debug_idx() ) );
       
   485 
       
   486   compile->copy_node_notes_to(n, (Node*) this);
       
   487 
       
   488   // MachNode clone
       
   489   uint nopnds;
       
   490   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
       
   491     MachNode *mach  = n->as_Mach();
       
   492     MachNode *mthis = this->as_Mach();
       
   493     // Get address of _opnd_array.
       
   494     // It should be the same offset since it is the clone of this node.
       
   495     MachOper **from = mthis->_opnds;
       
   496     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
       
   497                     pointer_delta((const void*)from,
       
   498                                   (const void*)(&mthis->_opnds), 1));
       
   499     mach->_opnds = to;
       
   500     for ( uint i = 0; i < nopnds; ++i ) {
       
   501       to[i] = from[i]->clone(compile);
       
   502     }
       
   503   }
       
   504   // cloning CallNode may need to clone JVMState
       
   505   if (n->is_Call()) {
       
   506     CallNode *call = n->as_Call();
       
   507     call->clone_jvms();
       
   508   }
       
   509   return n;                     // Return the clone
       
   510 }
       
   511 
       
   512 //---------------------------setup_is_top--------------------------------------
       
   513 // Call this when changing the top node, to reassert the invariants
       
   514 // required by Node::is_top.  See Compile::set_cached_top_node.
       
   515 void Node::setup_is_top() {
       
   516   if (this == (Node*)Compile::current()->top()) {
       
   517     // This node has just become top.  Kill its out array.
       
   518     _outcnt = _outmax = 0;
       
   519     _out = NULL;                           // marker value for top
       
   520     assert(is_top(), "must be top");
       
   521   } else {
       
   522     if (_out == NULL)  _out = NO_OUT_ARRAY;
       
   523     assert(!is_top(), "must not be top");
       
   524   }
       
   525 }
       
   526 
       
   527 
       
   528 //------------------------------~Node------------------------------------------
       
   529 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
       
   530 extern int reclaim_idx ;
       
   531 extern int reclaim_in  ;
       
   532 extern int reclaim_node;
       
   533 void Node::destruct() {
       
   534   // Eagerly reclaim unique Node numberings
       
   535   Compile* compile = Compile::current();
       
   536   if ((uint)_idx+1 == compile->unique()) {
       
   537     compile->set_unique(compile->unique()-1);
       
   538 #ifdef ASSERT
       
   539     reclaim_idx++;
       
   540 #endif
       
   541   }
       
   542   // Clear debug info:
       
   543   Node_Notes* nn = compile->node_notes_at(_idx);
       
   544   if (nn != NULL)  nn->clear();
       
   545   // Walk the input array, freeing the corresponding output edges
       
   546   _cnt = _max;  // forget req/prec distinction
       
   547   uint i;
       
   548   for( i = 0; i < _max; i++ ) {
       
   549     set_req(i, NULL);
       
   550     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
       
   551   }
       
   552   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
       
   553   // See if the input array was allocated just prior to the object
       
   554   int edge_size = _max*sizeof(void*);
       
   555   int out_edge_size = _outmax*sizeof(void*);
       
   556   char *edge_end = ((char*)_in) + edge_size;
       
   557   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
       
   558   char *out_edge_end = out_array + out_edge_size;
       
   559   int node_size = size_of();
       
   560 
       
   561   // Free the output edge array
       
   562   if (out_edge_size > 0) {
       
   563 #ifdef ASSERT
       
   564     if( out_edge_end == compile->node_arena()->hwm() )
       
   565       reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
       
   566 #endif
       
   567     compile->node_arena()->Afree(out_array, out_edge_size);
       
   568   }
       
   569 
       
   570   // Free the input edge array and the node itself
       
   571   if( edge_end == (char*)this ) {
       
   572 #ifdef ASSERT
       
   573     if( edge_end+node_size == compile->node_arena()->hwm() ) {
       
   574       reclaim_in  += edge_size;
       
   575       reclaim_node+= node_size;
       
   576     }
       
   577 #else
       
   578     // It was; free the input array and object all in one hit
       
   579     compile->node_arena()->Afree(_in,edge_size+node_size);
       
   580 #endif
       
   581   } else {
       
   582 
       
   583     // Free just the input array
       
   584 #ifdef ASSERT
       
   585     if( edge_end == compile->node_arena()->hwm() )
       
   586       reclaim_in  += edge_size;
       
   587 #endif
       
   588     compile->node_arena()->Afree(_in,edge_size);
       
   589 
       
   590     // Free just the object
       
   591 #ifdef ASSERT
       
   592     if( ((char*)this) + node_size == compile->node_arena()->hwm() )
       
   593       reclaim_node+= node_size;
       
   594 #else
       
   595     compile->node_arena()->Afree(this,node_size);
       
   596 #endif
       
   597   }
       
   598   if (is_macro()) {
       
   599     compile->remove_macro_node(this);
       
   600   }
       
   601 #ifdef ASSERT
       
   602   // We will not actually delete the storage, but we'll make the node unusable.
       
   603   *(address*)this = badAddress;  // smash the C++ vtbl, probably
       
   604   _in = _out = (Node**) badAddress;
       
   605   _max = _cnt = _outmax = _outcnt = 0;
       
   606 #endif
       
   607 }
       
   608 
       
   609 //------------------------------grow-------------------------------------------
       
   610 // Grow the input array, making space for more edges
       
   611 void Node::grow( uint len ) {
       
   612   Arena* arena = Compile::current()->node_arena();
       
   613   uint new_max = _max;
       
   614   if( new_max == 0 ) {
       
   615     _max = 4;
       
   616     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
       
   617     Node** to = _in;
       
   618     to[0] = NULL;
       
   619     to[1] = NULL;
       
   620     to[2] = NULL;
       
   621     to[3] = NULL;
       
   622     return;
       
   623   }
       
   624   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
       
   625   // Trimming to limit allows a uint8 to handle up to 255 edges.
       
   626   // Previously I was using only powers-of-2 which peaked at 128 edges.
       
   627   //if( new_max >= limit ) new_max = limit-1;
       
   628   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
       
   629   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
       
   630   _max = new_max;               // Record new max length
       
   631   // This assertion makes sure that Node::_max is wide enough to
       
   632   // represent the numerical value of new_max.
       
   633   assert(_max == new_max && _max > len, "int width of _max is too small");
       
   634 }
       
   635 
       
   636 //-----------------------------out_grow----------------------------------------
       
   637 // Grow the input array, making space for more edges
       
   638 void Node::out_grow( uint len ) {
       
   639   assert(!is_top(), "cannot grow a top node's out array");
       
   640   Arena* arena = Compile::current()->node_arena();
       
   641   uint new_max = _outmax;
       
   642   if( new_max == 0 ) {
       
   643     _outmax = 4;
       
   644     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
       
   645     return;
       
   646   }
       
   647   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
       
   648   // Trimming to limit allows a uint8 to handle up to 255 edges.
       
   649   // Previously I was using only powers-of-2 which peaked at 128 edges.
       
   650   //if( new_max >= limit ) new_max = limit-1;
       
   651   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
       
   652   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
       
   653   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
       
   654   _outmax = new_max;               // Record new max length
       
   655   // This assertion makes sure that Node::_max is wide enough to
       
   656   // represent the numerical value of new_max.
       
   657   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
       
   658 }
       
   659 
       
   660 #ifdef ASSERT
       
   661 //------------------------------is_dead----------------------------------------
       
   662 bool Node::is_dead() const {
       
   663   // Mach and pinch point nodes may look like dead.
       
   664   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
       
   665     return false;
       
   666   for( uint i = 0; i < _max; i++ )
       
   667     if( _in[i] != NULL )
       
   668       return false;
       
   669   dump();
       
   670   return true;
       
   671 }
       
   672 #endif
       
   673 
       
   674 //------------------------------add_req----------------------------------------
       
   675 // Add a new required input at the end
       
   676 void Node::add_req( Node *n ) {
       
   677   assert( is_not_dead(n), "can not use dead node");
       
   678 
       
   679   // Look to see if I can move precedence down one without reallocating
       
   680   if( (_cnt >= _max) || (in(_max-1) != NULL) )
       
   681     grow( _max+1 );
       
   682 
       
   683   // Find a precedence edge to move
       
   684   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
       
   685     uint i;
       
   686     for( i=_cnt; i<_max; i++ )
       
   687       if( in(i) == NULL )       // Find the NULL at end of prec edge list
       
   688         break;                  // There must be one, since we grew the array
       
   689     _in[i] = in(_cnt);          // Move prec over, making space for req edge
       
   690   }
       
   691   _in[_cnt++] = n;            // Stuff over old prec edge
       
   692   if (n != NULL) n->add_out((Node *)this);
       
   693 }
       
   694 
       
   695 //---------------------------add_req_batch-------------------------------------
       
   696 // Add a new required input at the end
       
   697 void Node::add_req_batch( Node *n, uint m ) {
       
   698   assert( is_not_dead(n), "can not use dead node");
       
   699   // check various edge cases
       
   700   if ((int)m <= 1) {
       
   701     assert((int)m >= 0, "oob");
       
   702     if (m != 0)  add_req(n);
       
   703     return;
       
   704   }
       
   705 
       
   706   // Look to see if I can move precedence down one without reallocating
       
   707   if( (_cnt+m) > _max || _in[_max-m] )
       
   708     grow( _max+m );
       
   709 
       
   710   // Find a precedence edge to move
       
   711   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
       
   712     uint i;
       
   713     for( i=_cnt; i<_max; i++ )
       
   714       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
       
   715         break;                  // There must be one, since we grew the array
       
   716     // Slide all the precs over by m positions (assume #prec << m).
       
   717     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
       
   718   }
       
   719 
       
   720   // Stuff over the old prec edges
       
   721   for(uint i=0; i<m; i++ ) {
       
   722     _in[_cnt++] = n;
       
   723   }
       
   724 
       
   725   // Insert multiple out edges on the node.
       
   726   if (n != NULL && !n->is_top()) {
       
   727     for(uint i=0; i<m; i++ ) {
       
   728       n->add_out((Node *)this);
       
   729     }
       
   730   }
       
   731 }
       
   732 
       
   733 //------------------------------del_req----------------------------------------
       
   734 // Delete the required edge and compact the edge array
       
   735 void Node::del_req( uint idx ) {
       
   736   // First remove corresponding def-use edge
       
   737   Node *n = in(idx);
       
   738   if (n != NULL) n->del_out((Node *)this);
       
   739   _in[idx] = in(--_cnt);  // Compact the array
       
   740   _in[_cnt] = NULL;       // NULL out emptied slot
       
   741 }
       
   742 
       
   743 //------------------------------ins_req----------------------------------------
       
   744 // Insert a new required input at the end
       
   745 void Node::ins_req( uint idx, Node *n ) {
       
   746   assert( is_not_dead(n), "can not use dead node");
       
   747   add_req(NULL);                // Make space
       
   748   assert( idx < _max, "Must have allocated enough space");
       
   749   // Slide over
       
   750   if(_cnt-idx-1 > 0) {
       
   751     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
       
   752   }
       
   753   _in[idx] = n;                            // Stuff over old required edge
       
   754   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
       
   755 }
       
   756 
       
   757 //-----------------------------find_edge---------------------------------------
       
   758 int Node::find_edge(Node* n) {
       
   759   for (uint i = 0; i < len(); i++) {
       
   760     if (_in[i] == n)  return i;
       
   761   }
       
   762   return -1;
       
   763 }
       
   764 
       
   765 //----------------------------replace_edge-------------------------------------
       
   766 int Node::replace_edge(Node* old, Node* neww) {
       
   767   if (old == neww)  return 0;  // nothing to do
       
   768   uint nrep = 0;
       
   769   for (uint i = 0; i < len(); i++) {
       
   770     if (in(i) == old) {
       
   771       if (i < req())
       
   772         set_req(i, neww);
       
   773       else
       
   774         set_prec(i, neww);
       
   775       nrep++;
       
   776     }
       
   777   }
       
   778   return nrep;
       
   779 }
       
   780 
       
   781 //-------------------------disconnect_inputs-----------------------------------
       
   782 // NULL out all inputs to eliminate incoming Def-Use edges.
       
   783 // Return the number of edges between 'n' and 'this'
       
   784 int Node::disconnect_inputs(Node *n) {
       
   785   int edges_to_n = 0;
       
   786 
       
   787   uint cnt = req();
       
   788   for( uint i = 0; i < cnt; ++i ) {
       
   789     if( in(i) == 0 ) continue;
       
   790     if( in(i) == n ) ++edges_to_n;
       
   791     set_req(i, NULL);
       
   792   }
       
   793   // Remove precedence edges if any exist
       
   794   // Note: Safepoints may have precedence edges, even during parsing
       
   795   if( (req() != len()) && (in(req()) != NULL) ) {
       
   796     uint max = len();
       
   797     for( uint i = 0; i < max; ++i ) {
       
   798       if( in(i) == 0 ) continue;
       
   799       if( in(i) == n ) ++edges_to_n;
       
   800       set_prec(i, NULL);
       
   801     }
       
   802   }
       
   803 
       
   804   // Node::destruct requires all out edges be deleted first
       
   805   // debug_only(destruct();)   // no reuse benefit expected
       
   806   return edges_to_n;
       
   807 }
       
   808 
       
   809 //-----------------------------uncast---------------------------------------
       
   810 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
       
   811 // Strip away casting.  (It is depth-limited.)
       
   812 Node* Node::uncast() const {
       
   813   // Should be inline:
       
   814   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
       
   815   if (is_ConstraintCast() ||
       
   816       (is_Type() && req() == 2 && Opcode() == Op_CheckCastPP))
       
   817     return uncast_helper(this);
       
   818   else
       
   819     return (Node*) this;
       
   820 }
       
   821 
       
   822 //---------------------------uncast_helper-------------------------------------
       
   823 Node* Node::uncast_helper(const Node* p) {
       
   824   uint max_depth = 3;
       
   825   for (uint i = 0; i < max_depth; i++) {
       
   826     if (p == NULL || p->req() != 2) {
       
   827       break;
       
   828     } else if (p->is_ConstraintCast()) {
       
   829       p = p->in(1);
       
   830     } else if (p->is_Type() && p->Opcode() == Op_CheckCastPP) {
       
   831       p = p->in(1);
       
   832     } else {
       
   833       break;
       
   834     }
       
   835   }
       
   836   return (Node*) p;
       
   837 }
       
   838 
       
   839 //------------------------------add_prec---------------------------------------
       
   840 // Add a new precedence input.  Precedence inputs are unordered, with
       
   841 // duplicates removed and NULLs packed down at the end.
       
   842 void Node::add_prec( Node *n ) {
       
   843   assert( is_not_dead(n), "can not use dead node");
       
   844 
       
   845   // Check for NULL at end
       
   846   if( _cnt >= _max || in(_max-1) )
       
   847     grow( _max+1 );
       
   848 
       
   849   // Find a precedence edge to move
       
   850   uint i = _cnt;
       
   851   while( in(i) != NULL ) i++;
       
   852   _in[i] = n;                                // Stuff prec edge over NULL
       
   853   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
       
   854 }
       
   855 
       
   856 //------------------------------rm_prec----------------------------------------
       
   857 // Remove a precedence input.  Precedence inputs are unordered, with
       
   858 // duplicates removed and NULLs packed down at the end.
       
   859 void Node::rm_prec( uint j ) {
       
   860 
       
   861   // Find end of precedence list to pack NULLs
       
   862   uint i;
       
   863   for( i=j; i<_max; i++ )
       
   864     if( !_in[i] )               // Find the NULL at end of prec edge list
       
   865       break;
       
   866   if (_in[j] != NULL) _in[j]->del_out((Node *)this);
       
   867   _in[j] = _in[--i];            // Move last element over removed guy
       
   868   _in[i] = NULL;                // NULL out last element
       
   869 }
       
   870 
       
   871 //------------------------------size_of----------------------------------------
       
   872 uint Node::size_of() const { return sizeof(*this); }
       
   873 
       
   874 //------------------------------ideal_reg--------------------------------------
       
   875 uint Node::ideal_reg() const { return 0; }
       
   876 
       
   877 //------------------------------jvms-------------------------------------------
       
   878 JVMState* Node::jvms() const { return NULL; }
       
   879 
       
   880 #ifdef ASSERT
       
   881 //------------------------------jvms-------------------------------------------
       
   882 bool Node::verify_jvms(const JVMState* using_jvms) const {
       
   883   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
       
   884     if (jvms == using_jvms)  return true;
       
   885   }
       
   886   return false;
       
   887 }
       
   888 
       
   889 //------------------------------init_NodeProperty------------------------------
       
   890 void Node::init_NodeProperty() {
       
   891   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
       
   892   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
       
   893 }
       
   894 #endif
       
   895 
       
   896 //------------------------------format-----------------------------------------
       
   897 // Print as assembly
       
   898 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
       
   899 //------------------------------emit-------------------------------------------
       
   900 // Emit bytes starting at parameter 'ptr'.
       
   901 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
       
   902 //------------------------------size-------------------------------------------
       
   903 // Size of instruction in bytes
       
   904 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
       
   905 
       
   906 //------------------------------CFG Construction-------------------------------
       
   907 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
       
   908 // Goto and Return.
       
   909 const Node *Node::is_block_proj() const { return 0; }
       
   910 
       
   911 // Minimum guaranteed type
       
   912 const Type *Node::bottom_type() const { return Type::BOTTOM; }
       
   913 
       
   914 
       
   915 //------------------------------raise_bottom_type------------------------------
       
   916 // Get the worst-case Type output for this Node.
       
   917 void Node::raise_bottom_type(const Type* new_type) {
       
   918   if (is_Type()) {
       
   919     TypeNode *n = this->as_Type();
       
   920     if (VerifyAliases) {
       
   921       assert(new_type->higher_equal(n->type()), "new type must refine old type");
       
   922     }
       
   923     n->set_type(new_type);
       
   924   } else if (is_Load()) {
       
   925     LoadNode *n = this->as_Load();
       
   926     if (VerifyAliases) {
       
   927       assert(new_type->higher_equal(n->type()), "new type must refine old type");
       
   928     }
       
   929     n->set_type(new_type);
       
   930   }
       
   931 }
       
   932 
       
   933 //------------------------------Identity---------------------------------------
       
   934 // Return a node that the given node is equivalent to.
       
   935 Node *Node::Identity( PhaseTransform * ) {
       
   936   return this;                  // Default to no identities
       
   937 }
       
   938 
       
   939 //------------------------------Value------------------------------------------
       
   940 // Compute a new Type for a node using the Type of the inputs.
       
   941 const Type *Node::Value( PhaseTransform * ) const {
       
   942   return bottom_type();         // Default to worst-case Type
       
   943 }
       
   944 
       
   945 //------------------------------Ideal------------------------------------------
       
   946 //
       
   947 // 'Idealize' the graph rooted at this Node.
       
   948 //
       
   949 // In order to be efficient and flexible there are some subtle invariants
       
   950 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
       
   951 // these invariants, although its too slow to have on by default.  If you are
       
   952 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
       
   953 //
       
   954 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
       
   955 // pointer.  If ANY change is made, it must return the root of the reshaped
       
   956 // graph - even if the root is the same Node.  Example: swapping the inputs
       
   957 // to an AddINode gives the same answer and same root, but you still have to
       
   958 // return the 'this' pointer instead of NULL.
       
   959 //
       
   960 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
       
   961 // Identity call to return an old Node; basically if Identity can find
       
   962 // another Node have the Ideal call make no change and return NULL.
       
   963 // Example: AddINode::Ideal must check for add of zero; in this case it
       
   964 // returns NULL instead of doing any graph reshaping.
       
   965 //
       
   966 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
       
   967 // sharing there may be other users of the old Nodes relying on their current
       
   968 // semantics.  Modifying them will break the other users.
       
   969 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
       
   970 // "X+3" unchanged in case it is shared.
       
   971 //
       
   972 // If you modify the 'this' pointer's inputs, you must use 'set_req' with
       
   973 // def-use info.  If you are making a new Node (either as the new root or
       
   974 // some new internal piece) you must NOT use set_req with def-use info.
       
   975 // You can make a new Node with either 'new' or 'clone'.  In either case,
       
   976 // def-use info is (correctly) not generated.
       
   977 // Example: reshape "(X+3)+4" into "X+7":
       
   978 //    set_req(1,in(1)->in(1) /* grab X */, du /* must use DU on 'this' */);
       
   979 //    set_req(2,phase->intcon(7),du);
       
   980 //    return this;
       
   981 // Example: reshape "X*4" into "X<<1"
       
   982 //    return new (C,3) LShiftINode( in(1), phase->intcon(1) );
       
   983 //
       
   984 // You must call 'phase->transform(X)' on any new Nodes X you make, except
       
   985 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-1".
       
   986 //    Node *shift=phase->transform(new(C,3)LShiftINode(in(1),phase->intcon(5)));
       
   987 //    return new (C,3) AddINode(shift, phase->intcon(-1));
       
   988 //
       
   989 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
       
   990 // These forms are faster than 'phase->transform(new (C,1) ConNode())' and Do
       
   991 // The Right Thing with def-use info.
       
   992 //
       
   993 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
       
   994 // graph uses the 'this' Node it must be the root.  If you want a Node with
       
   995 // the same Opcode as the 'this' pointer use 'clone'.
       
   996 //
       
   997 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
       
   998   return NULL;                  // Default to being Ideal already
       
   999 }
       
  1000 
       
  1001 // Some nodes have specific Ideal subgraph transformations only if they are
       
  1002 // unique users of specific nodes. Such nodes should be put on IGVN worklist
       
  1003 // for the transformations to happen.
       
  1004 bool Node::has_special_unique_user() const {
       
  1005   assert(outcnt() == 1, "match only for unique out");
       
  1006   Node* n = unique_out();
       
  1007   int op  = Opcode();
       
  1008   if( this->is_Store() ) {
       
  1009     // Condition for back-to-back stores folding.
       
  1010     return n->Opcode() == op && n->in(MemNode::Memory) == this;
       
  1011   } else if( op == Op_AddL ) {
       
  1012     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
       
  1013     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
       
  1014   } else if( op == Op_SubI || op == Op_SubL ) {
       
  1015     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
       
  1016     return n->Opcode() == op && n->in(2) == this;
       
  1017   }
       
  1018   return false;
       
  1019 };
       
  1020 
       
  1021 //------------------------------remove_dead_region-----------------------------
       
  1022 // This control node is dead.  Follow the subgraph below it making everything
       
  1023 // using it dead as well.  This will happen normally via the usual IterGVN
       
  1024 // worklist but this call is more efficient.  Do not update use-def info
       
  1025 // inside the dead region, just at the borders.
       
  1026 static bool kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
       
  1027   // Con's are a popular node to re-hit in the hash table again.
       
  1028   if( dead->is_Con() ) return false;
       
  1029 
       
  1030   // Can't put ResourceMark here since igvn->_worklist uses the same arena
       
  1031   // for verify pass with +VerifyOpto and we add/remove elements in it here.
       
  1032   Node_List  nstack(Thread::current()->resource_area());
       
  1033 
       
  1034   Node *top = igvn->C->top();
       
  1035   bool progress = false;
       
  1036   nstack.push(dead);
       
  1037 
       
  1038   while (nstack.size() > 0) {
       
  1039     dead = nstack.pop();
       
  1040     if (dead->outcnt() > 0) {
       
  1041       // Keep dead node on stack until all uses are processed.
       
  1042       nstack.push(dead);
       
  1043       // For all Users of the Dead...    ;-)
       
  1044       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
       
  1045         Node* use = dead->last_out(k);
       
  1046         igvn->hash_delete(use);       // Yank from hash table prior to mod
       
  1047         if (use->in(0) == dead) {     // Found another dead node
       
  1048           assert (!use->is_Con(), "Control for Con node should be Root node.")
       
  1049           use->set_req(0, top);       // Cut dead edge to prevent processing
       
  1050           nstack.push(use);           // the dead node again.
       
  1051         } else {                      // Else found a not-dead user
       
  1052           for (uint j = 1; j < use->req(); j++) {
       
  1053             if (use->in(j) == dead) { // Turn all dead inputs into TOP
       
  1054               use->set_req(j, top);
       
  1055             }
       
  1056           }
       
  1057           igvn->_worklist.push(use);
       
  1058         }
       
  1059         // Refresh the iterator, since any number of kills might have happened.
       
  1060         k = dead->last_outs(kmin);
       
  1061       }
       
  1062     } else { // (dead->outcnt() == 0)
       
  1063       // Done with outputs.
       
  1064       igvn->hash_delete(dead);
       
  1065       igvn->_worklist.remove(dead);
       
  1066       igvn->set_type(dead, Type::TOP);
       
  1067       if (dead->is_macro()) {
       
  1068         igvn->C->remove_macro_node(dead);
       
  1069       }
       
  1070       // Kill all inputs to the dead guy
       
  1071       for (uint i=0; i < dead->req(); i++) {
       
  1072         Node *n = dead->in(i);      // Get input to dead guy
       
  1073         if (n != NULL && !n->is_top()) { // Input is valid?
       
  1074           progress = true;
       
  1075           dead->set_req(i, top);    // Smash input away
       
  1076           if (n->outcnt() == 0) {   // Input also goes dead?
       
  1077             if (!n->is_Con())
       
  1078               nstack.push(n);       // Clear it out as well
       
  1079           } else if (n->outcnt() == 1 &&
       
  1080                      n->has_special_unique_user()) {
       
  1081             igvn->add_users_to_worklist( n );
       
  1082           } else if (n->outcnt() <= 2 && n->is_Store()) {
       
  1083             // Push store's uses on worklist to enable folding optimization for
       
  1084             // store/store and store/load to the same address.
       
  1085             // The restriction (outcnt() <= 2) is the same as in set_req_X()
       
  1086             // and remove_globally_dead_node().
       
  1087             igvn->add_users_to_worklist( n );
       
  1088           }
       
  1089         }
       
  1090       }
       
  1091     } // (dead->outcnt() == 0)
       
  1092   }   // while (nstack.size() > 0) for outputs
       
  1093   return progress;
       
  1094 }
       
  1095 
       
  1096 //------------------------------remove_dead_region-----------------------------
       
  1097 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
       
  1098   Node *n = in(0);
       
  1099   if( !n ) return false;
       
  1100   // Lost control into this guy?  I.e., it became unreachable?
       
  1101   // Aggressively kill all unreachable code.
       
  1102   if (can_reshape && n->is_top()) {
       
  1103     return kill_dead_code(this, phase->is_IterGVN());
       
  1104   }
       
  1105 
       
  1106   if( n->is_Region() && n->as_Region()->is_copy() ) {
       
  1107     Node *m = n->nonnull_req();
       
  1108     set_req(0, m);
       
  1109     return true;
       
  1110   }
       
  1111   return false;
       
  1112 }
       
  1113 
       
  1114 //------------------------------Ideal_DU_postCCP-------------------------------
       
  1115 // Idealize graph, using DU info.  Must clone result into new-space
       
  1116 Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
       
  1117   return NULL;                 // Default to no change
       
  1118 }
       
  1119 
       
  1120 //------------------------------hash-------------------------------------------
       
  1121 // Hash function over Nodes.
       
  1122 uint Node::hash() const {
       
  1123   uint sum = 0;
       
  1124   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
       
  1125     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
       
  1126   return (sum>>2) + _cnt + Opcode();
       
  1127 }
       
  1128 
       
  1129 //------------------------------cmp--------------------------------------------
       
  1130 // Compare special parts of simple Nodes
       
  1131 uint Node::cmp( const Node &n ) const {
       
  1132   return 1;                     // Must be same
       
  1133 }
       
  1134 
       
  1135 //------------------------------rematerialize-----------------------------------
       
  1136 // Should we clone rather than spill this instruction?
       
  1137 bool Node::rematerialize() const {
       
  1138   if ( is_Mach() )
       
  1139     return this->as_Mach()->rematerialize();
       
  1140   else
       
  1141     return (_flags & Flag_rematerialize) != 0;
       
  1142 }
       
  1143 
       
  1144 //------------------------------needs_anti_dependence_check---------------------
       
  1145 // Nodes which use memory without consuming it, hence need antidependences.
       
  1146 bool Node::needs_anti_dependence_check() const {
       
  1147   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
       
  1148     return false;
       
  1149   else
       
  1150     return in(1)->bottom_type()->has_memory();
       
  1151 }
       
  1152 
       
  1153 
       
  1154 // Get an integer constant from a ConNode (or CastIINode).
       
  1155 // Return a default value if there is no apparent constant here.
       
  1156 const TypeInt* Node::find_int_type() const {
       
  1157   if (this->is_Type()) {
       
  1158     return this->as_Type()->type()->isa_int();
       
  1159   } else if (this->is_Con()) {
       
  1160     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
       
  1161     return this->bottom_type()->isa_int();
       
  1162   }
       
  1163   return NULL;
       
  1164 }
       
  1165 
       
  1166 // Get a pointer constant from a ConstNode.
       
  1167 // Returns the constant if it is a pointer ConstNode
       
  1168 intptr_t Node::get_ptr() const {
       
  1169   assert( Opcode() == Op_ConP, "" );
       
  1170   return ((ConPNode*)this)->type()->is_ptr()->get_con();
       
  1171 }
       
  1172 
       
  1173 // Get a long constant from a ConNode.
       
  1174 // Return a default value if there is no apparent constant here.
       
  1175 const TypeLong* Node::find_long_type() const {
       
  1176   if (this->is_Type()) {
       
  1177     return this->as_Type()->type()->isa_long();
       
  1178   } else if (this->is_Con()) {
       
  1179     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
       
  1180     return this->bottom_type()->isa_long();
       
  1181   }
       
  1182   return NULL;
       
  1183 }
       
  1184 
       
  1185 // Get a double constant from a ConstNode.
       
  1186 // Returns the constant if it is a double ConstNode
       
  1187 jdouble Node::getd() const {
       
  1188   assert( Opcode() == Op_ConD, "" );
       
  1189   return ((ConDNode*)this)->type()->is_double_constant()->getd();
       
  1190 }
       
  1191 
       
  1192 // Get a float constant from a ConstNode.
       
  1193 // Returns the constant if it is a float ConstNode
       
  1194 jfloat Node::getf() const {
       
  1195   assert( Opcode() == Op_ConF, "" );
       
  1196   return ((ConFNode*)this)->type()->is_float_constant()->getf();
       
  1197 }
       
  1198 
       
  1199 #ifndef PRODUCT
       
  1200 
       
  1201 //----------------------------NotANode----------------------------------------
       
  1202 // Used in debugging code to avoid walking across dead or uninitialized edges.
       
  1203 static inline bool NotANode(const Node* n) {
       
  1204   if (n == NULL)                   return true;
       
  1205   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
       
  1206   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
       
  1207   return false;
       
  1208 }
       
  1209 
       
  1210 
       
  1211 //------------------------------find------------------------------------------
       
  1212 // Find a neighbor of this Node with the given _idx
       
  1213 // If idx is negative, find its absolute value, following both _in and _out.
       
  1214 static void find_recur( Node* &result, Node *n, int idx, bool only_ctrl,
       
  1215                         VectorSet &old_space, VectorSet &new_space ) {
       
  1216   int node_idx = (idx >= 0) ? idx : -idx;
       
  1217   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
       
  1218   // Contained in new_space or old_space?
       
  1219   VectorSet *v = Compile::current()->node_arena()->contains(n) ? &new_space : &old_space;
       
  1220   if( v->test(n->_idx) ) return;
       
  1221   if( (int)n->_idx == node_idx
       
  1222       debug_only(|| n->debug_idx() == node_idx) ) {
       
  1223     if (result != NULL)
       
  1224       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
       
  1225                  (uintptr_t)result, (uintptr_t)n, node_idx);
       
  1226     result = n;
       
  1227   }
       
  1228   v->set(n->_idx);
       
  1229   for( uint i=0; i<n->len(); i++ ) {
       
  1230     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
       
  1231     find_recur( result, n->in(i), idx, only_ctrl, old_space, new_space );
       
  1232   }
       
  1233   // Search along forward edges also:
       
  1234   if (idx < 0 && !only_ctrl) {
       
  1235     for( uint j=0; j<n->outcnt(); j++ ) {
       
  1236       find_recur( result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
       
  1237     }
       
  1238   }
       
  1239 #ifdef ASSERT
       
  1240   // Search along debug_orig edges last:
       
  1241   for (Node* orig = n->debug_orig(); orig != NULL; orig = orig->debug_orig()) {
       
  1242     if (NotANode(orig))  break;
       
  1243     find_recur( result, orig, idx, only_ctrl, old_space, new_space );
       
  1244   }
       
  1245 #endif //ASSERT
       
  1246 }
       
  1247 
       
  1248 // call this from debugger:
       
  1249 Node* find_node(Node* n, int idx) {
       
  1250   return n->find(idx);
       
  1251 }
       
  1252 
       
  1253 //------------------------------find-------------------------------------------
       
  1254 Node* Node::find(int idx) const {
       
  1255   ResourceArea *area = Thread::current()->resource_area();
       
  1256   VectorSet old_space(area), new_space(area);
       
  1257   Node* result = NULL;
       
  1258   find_recur( result, (Node*) this, idx, false, old_space, new_space );
       
  1259   return result;
       
  1260 }
       
  1261 
       
  1262 //------------------------------find_ctrl--------------------------------------
       
  1263 // Find an ancestor to this node in the control history with given _idx
       
  1264 Node* Node::find_ctrl(int idx) const {
       
  1265   ResourceArea *area = Thread::current()->resource_area();
       
  1266   VectorSet old_space(area), new_space(area);
       
  1267   Node* result = NULL;
       
  1268   find_recur( result, (Node*) this, idx, true, old_space, new_space );
       
  1269   return result;
       
  1270 }
       
  1271 #endif
       
  1272 
       
  1273 
       
  1274 
       
  1275 #ifndef PRODUCT
       
  1276 int Node::_in_dump_cnt = 0;
       
  1277 
       
  1278 // -----------------------------Name-------------------------------------------
       
  1279 extern const char *NodeClassNames[];
       
  1280 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
       
  1281 
       
  1282 static bool is_disconnected(const Node* n) {
       
  1283   for (uint i = 0; i < n->req(); i++) {
       
  1284     if (n->in(i) != NULL)  return false;
       
  1285   }
       
  1286   return true;
       
  1287 }
       
  1288 
       
  1289 #ifdef ASSERT
       
  1290 static void dump_orig(Node* orig) {
       
  1291   Compile* C = Compile::current();
       
  1292   if (NotANode(orig))  orig = NULL;
       
  1293   if (orig != NULL && !C->node_arena()->contains(orig))  orig = NULL;
       
  1294   if (orig == NULL)  return;
       
  1295   tty->print(" !orig=");
       
  1296   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
       
  1297   if (NotANode(fast))  fast = NULL;
       
  1298   while (orig != NULL) {
       
  1299     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
       
  1300     if (discon)  tty->print("[");
       
  1301     if (!Compile::current()->node_arena()->contains(orig))
       
  1302       tty->print("o");
       
  1303     tty->print("%d", orig->_idx);
       
  1304     if (discon)  tty->print("]");
       
  1305     orig = orig->debug_orig();
       
  1306     if (NotANode(orig))  orig = NULL;
       
  1307     if (orig != NULL && !C->node_arena()->contains(orig))  orig = NULL;
       
  1308     if (orig != NULL)  tty->print(",");
       
  1309     if (fast != NULL) {
       
  1310       // Step fast twice for each single step of orig:
       
  1311       fast = fast->debug_orig();
       
  1312       if (NotANode(fast))  fast = NULL;
       
  1313       if (fast != NULL && fast != orig) {
       
  1314         fast = fast->debug_orig();
       
  1315         if (NotANode(fast))  fast = NULL;
       
  1316       }
       
  1317       if (fast == orig) {
       
  1318         tty->print("...");
       
  1319         break;
       
  1320       }
       
  1321     }
       
  1322   }
       
  1323 }
       
  1324 
       
  1325 void Node::set_debug_orig(Node* orig) {
       
  1326   _debug_orig = orig;
       
  1327   if (BreakAtNode == 0)  return;
       
  1328   if (NotANode(orig))  orig = NULL;
       
  1329   int trip = 10;
       
  1330   while (orig != NULL) {
       
  1331     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
       
  1332       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
       
  1333                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
       
  1334       BREAKPOINT;
       
  1335     }
       
  1336     orig = orig->debug_orig();
       
  1337     if (NotANode(orig))  orig = NULL;
       
  1338     if (trip-- <= 0)  break;
       
  1339   }
       
  1340 }
       
  1341 #endif //ASSERT
       
  1342 
       
  1343 //------------------------------dump------------------------------------------
       
  1344 // Dump a Node
       
  1345 void Node::dump() const {
       
  1346   Compile* C = Compile::current();
       
  1347   bool is_new = C->node_arena()->contains(this);
       
  1348   _in_dump_cnt++;
       
  1349   tty->print("%c%d\t%s\t=== ",
       
  1350              is_new ? ' ' : 'o', _idx, Name());
       
  1351 
       
  1352   // Dump the required and precedence inputs
       
  1353   dump_req();
       
  1354   dump_prec();
       
  1355   // Dump the outputs
       
  1356   dump_out();
       
  1357 
       
  1358   if (is_disconnected(this)) {
       
  1359 #ifdef ASSERT
       
  1360     tty->print("  [%d]",debug_idx());
       
  1361     dump_orig(debug_orig());
       
  1362 #endif
       
  1363     tty->cr();
       
  1364     _in_dump_cnt--;
       
  1365     return;                     // don't process dead nodes
       
  1366   }
       
  1367 
       
  1368   // Dump node-specific info
       
  1369   dump_spec(tty);
       
  1370 #ifdef ASSERT
       
  1371   // Dump the non-reset _debug_idx
       
  1372   if( Verbose && WizardMode ) {
       
  1373     tty->print("  [%d]",debug_idx());
       
  1374   }
       
  1375 #endif
       
  1376 
       
  1377   const Type *t = bottom_type();
       
  1378 
       
  1379   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
       
  1380     const TypeInstPtr  *toop = t->isa_instptr();
       
  1381     const TypeKlassPtr *tkls = t->isa_klassptr();
       
  1382     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
       
  1383     if( klass && klass->is_loaded() && klass->is_interface() ) {
       
  1384       tty->print("  Interface:");
       
  1385     } else if( toop ) {
       
  1386       tty->print("  Oop:");
       
  1387     } else if( tkls ) {
       
  1388       tty->print("  Klass:");
       
  1389     }
       
  1390     t->dump();
       
  1391   } else if( t == Type::MEMORY ) {
       
  1392     tty->print("  Memory:");
       
  1393     MemNode::dump_adr_type(this, adr_type(), tty);
       
  1394   } else if( Verbose || WizardMode ) {
       
  1395     tty->print("  Type:");
       
  1396     if( t ) {
       
  1397       t->dump();
       
  1398     } else {
       
  1399       tty->print("no type");
       
  1400     }
       
  1401   }
       
  1402   if (is_new) {
       
  1403     debug_only(dump_orig(debug_orig()));
       
  1404     Node_Notes* nn = C->node_notes_at(_idx);
       
  1405     if (nn != NULL && !nn->is_clear()) {
       
  1406       if (nn->jvms() != NULL) {
       
  1407         tty->print(" !jvms:");
       
  1408         nn->jvms()->dump_spec(tty);
       
  1409       }
       
  1410     }
       
  1411   }
       
  1412   tty->cr();
       
  1413   _in_dump_cnt--;
       
  1414 }
       
  1415 
       
  1416 //------------------------------dump_req--------------------------------------
       
  1417 void Node::dump_req() const {
       
  1418   // Dump the required input edges
       
  1419   for (uint i = 0; i < req(); i++) {    // For all required inputs
       
  1420     Node* d = in(i);
       
  1421     if (d == NULL) {
       
  1422       tty->print("_ ");
       
  1423     } else if (NotANode(d)) {
       
  1424       tty->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
       
  1425     } else {
       
  1426       tty->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
       
  1427     }
       
  1428   }
       
  1429 }
       
  1430 
       
  1431 
       
  1432 //------------------------------dump_prec-------------------------------------
       
  1433 void Node::dump_prec() const {
       
  1434   // Dump the precedence edges
       
  1435   int any_prec = 0;
       
  1436   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
       
  1437     Node* p = in(i);
       
  1438     if (p != NULL) {
       
  1439       if( !any_prec++ ) tty->print(" |");
       
  1440       if (NotANode(p)) { tty->print("NotANode "); continue; }
       
  1441       tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
       
  1442     }
       
  1443   }
       
  1444 }
       
  1445 
       
  1446 //------------------------------dump_out--------------------------------------
       
  1447 void Node::dump_out() const {
       
  1448   // Delimit the output edges
       
  1449   tty->print(" [[");
       
  1450   // Dump the output edges
       
  1451   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
       
  1452     Node* u = _out[i];
       
  1453     if (u == NULL) {
       
  1454       tty->print("_ ");
       
  1455     } else if (NotANode(u)) {
       
  1456       tty->print("NotANode ");
       
  1457     } else {
       
  1458       tty->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
       
  1459     }
       
  1460   }
       
  1461   tty->print("]] ");
       
  1462 }
       
  1463 
       
  1464 //------------------------------dump_nodes-------------------------------------
       
  1465 
       
  1466 // Helper class  for dump_nodes. Wraps an old and new VectorSet.
       
  1467 class OldNewVectorSet : public StackObj {
       
  1468    Arena*    _node_arena;
       
  1469    VectorSet _old_vset, _new_vset;
       
  1470    VectorSet* select(Node* n) {
       
  1471      return _node_arena->contains(n) ? &_new_vset : &_old_vset;
       
  1472    }
       
  1473   public:
       
  1474   OldNewVectorSet(Arena* node_arena, ResourceArea* area) :
       
  1475      _node_arena(node_arena),
       
  1476      _old_vset(area), _new_vset(area) {}
       
  1477 
       
  1478   void set(Node* n)      { select(n)->set(n->_idx); }
       
  1479   bool test_set(Node* n) { return select(n)->test_set(n->_idx) != 0; }
       
  1480   bool test(Node* n)     { return select(n)->test(n->_idx) != 0; }
       
  1481   void del(Node* n)      { (*select(n)) >>= n->_idx; }
       
  1482 };
       
  1483 
       
  1484 
       
  1485 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
       
  1486   Node* s = (Node*)start; // remove const
       
  1487   if (NotANode(s)) return;
       
  1488 
       
  1489   Compile* C = Compile::current();
       
  1490   ResourceArea *area = Thread::current()->resource_area();
       
  1491   Node_Stack      stack(area, MIN2((uint)ABS(d), C->unique() >> 1));
       
  1492   OldNewVectorSet visited(C->node_arena(), area);
       
  1493   OldNewVectorSet on_stack(C->node_arena(), area);
       
  1494 
       
  1495   visited.set(s);
       
  1496   on_stack.set(s);
       
  1497   stack.push(s, 0);
       
  1498   if (d < 0) s->dump();
       
  1499 
       
  1500   // Do a depth first walk over edges
       
  1501   while (stack.is_nonempty()) {
       
  1502     Node* tp  = stack.node();
       
  1503     uint  idx = stack.index();
       
  1504     uint  limit = d > 0 ? tp->len() : tp->outcnt();
       
  1505     if (idx >= limit) {
       
  1506       // no more arcs to visit
       
  1507       if (d > 0) tp->dump();
       
  1508       on_stack.del(tp);
       
  1509       stack.pop();
       
  1510     } else {
       
  1511       // process the "idx"th arc
       
  1512       stack.set_index(idx + 1);
       
  1513       Node* n = d > 0 ? tp->in(idx) : tp->raw_out(idx);
       
  1514 
       
  1515       if (NotANode(n))  continue;
       
  1516       // do not recurse through top or the root (would reach unrelated stuff)
       
  1517       if (n->is_Root() || n->is_top())  continue;
       
  1518       if (only_ctrl && !n->is_CFG()) continue;
       
  1519 
       
  1520       if (!visited.test_set(n)) {  // forward arc
       
  1521         // Limit depth
       
  1522         if (stack.size() < (uint)ABS(d)) {
       
  1523           if (d < 0) n->dump();
       
  1524           stack.push(n, 0);
       
  1525           on_stack.set(n);
       
  1526         }
       
  1527       } else {  // back or cross arc
       
  1528         if (on_stack.test(n)) {  // back arc
       
  1529           // print loop if there are no phis or regions in the mix
       
  1530           bool found_loop_breaker = false;
       
  1531           int k;
       
  1532           for (k = stack.size() - 1; k >= 0; k--) {
       
  1533             Node* m = stack.node_at(k);
       
  1534             if (m->is_Phi() || m->is_Region() || m->is_Root() || m->is_Start()) {
       
  1535               found_loop_breaker = true;
       
  1536               break;
       
  1537             }
       
  1538             if (m == n) // Found loop head
       
  1539               break;
       
  1540           }
       
  1541           assert(k >= 0, "n must be on stack");
       
  1542 
       
  1543           if (!found_loop_breaker) {
       
  1544             tty->print("# %s LOOP FOUND:", only_ctrl ? "CONTROL" : "DATA");
       
  1545             for (int i = stack.size() - 1; i >= k; i--) {
       
  1546               Node* m = stack.node_at(i);
       
  1547               bool mnew = C->node_arena()->contains(m);
       
  1548               tty->print(" %s%d:%s", (mnew? "": "o"), m->_idx, m->Name());
       
  1549               if (i != 0) tty->print(d > 0? " <-": " ->");
       
  1550             }
       
  1551             tty->cr();
       
  1552           }
       
  1553         }
       
  1554       }
       
  1555     }
       
  1556   }
       
  1557 }
       
  1558 
       
  1559 //------------------------------dump-------------------------------------------
       
  1560 void Node::dump(int d) const {
       
  1561   dump_nodes(this, d, false);
       
  1562 }
       
  1563 
       
  1564 //------------------------------dump_ctrl--------------------------------------
       
  1565 // Dump a Node's control history to depth
       
  1566 void Node::dump_ctrl(int d) const {
       
  1567   dump_nodes(this, d, true);
       
  1568 }
       
  1569 
       
  1570 // VERIFICATION CODE
       
  1571 // For each input edge to a node (ie - for each Use-Def edge), verify that
       
  1572 // there is a corresponding Def-Use edge.
       
  1573 //------------------------------verify_edges-----------------------------------
       
  1574 void Node::verify_edges(Unique_Node_List &visited) {
       
  1575   uint i, j, idx;
       
  1576   int  cnt;
       
  1577   Node *n;
       
  1578 
       
  1579   // Recursive termination test
       
  1580   if (visited.member(this))  return;
       
  1581   visited.push(this);
       
  1582 
       
  1583   // Walk over all input edges, checking for correspondance
       
  1584   for( i = 0; i < len(); i++ ) {
       
  1585     n = in(i);
       
  1586     if (n != NULL && !n->is_top()) {
       
  1587       // Count instances of (Node *)this
       
  1588       cnt = 0;
       
  1589       for (idx = 0; idx < n->_outcnt; idx++ ) {
       
  1590         if (n->_out[idx] == (Node *)this)  cnt++;
       
  1591       }
       
  1592       assert( cnt > 0,"Failed to find Def-Use edge." );
       
  1593       // Check for duplicate edges
       
  1594       // walk the input array downcounting the input edges to n
       
  1595       for( j = 0; j < len(); j++ ) {
       
  1596         if( in(j) == n ) cnt--;
       
  1597       }
       
  1598       assert( cnt == 0,"Mismatched edge count.");
       
  1599     } else if (n == NULL) {
       
  1600       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
       
  1601     } else {
       
  1602       assert(n->is_top(), "sanity");
       
  1603       // Nothing to check.
       
  1604     }
       
  1605   }
       
  1606   // Recursive walk over all input edges
       
  1607   for( i = 0; i < len(); i++ ) {
       
  1608     n = in(i);
       
  1609     if( n != NULL )
       
  1610       in(i)->verify_edges(visited);
       
  1611   }
       
  1612 }
       
  1613 
       
  1614 //------------------------------verify_recur-----------------------------------
       
  1615 static const Node *unique_top = NULL;
       
  1616 
       
  1617 void Node::verify_recur(const Node *n, int verify_depth,
       
  1618                         VectorSet &old_space, VectorSet &new_space) {
       
  1619   if ( verify_depth == 0 )  return;
       
  1620   if (verify_depth > 0)  --verify_depth;
       
  1621 
       
  1622   Compile* C = Compile::current();
       
  1623 
       
  1624   // Contained in new_space or old_space?
       
  1625   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
       
  1626   // Check for visited in the proper space.  Numberings are not unique
       
  1627   // across spaces so we need a seperate VectorSet for each space.
       
  1628   if( v->test_set(n->_idx) ) return;
       
  1629 
       
  1630   if (n->is_Con() && n->bottom_type() == Type::TOP) {
       
  1631     if (C->cached_top_node() == NULL)
       
  1632       C->set_cached_top_node((Node*)n);
       
  1633     assert(C->cached_top_node() == n, "TOP node must be unique");
       
  1634   }
       
  1635 
       
  1636   for( uint i = 0; i < n->len(); i++ ) {
       
  1637     Node *x = n->in(i);
       
  1638     if (!x || x->is_top()) continue;
       
  1639 
       
  1640     // Verify my input has a def-use edge to me
       
  1641     if (true /*VerifyDefUse*/) {
       
  1642       // Count use-def edges from n to x
       
  1643       int cnt = 0;
       
  1644       for( uint j = 0; j < n->len(); j++ )
       
  1645         if( n->in(j) == x )
       
  1646           cnt++;
       
  1647       // Count def-use edges from x to n
       
  1648       uint max = x->_outcnt;
       
  1649       for( uint k = 0; k < max; k++ )
       
  1650         if (x->_out[k] == n)
       
  1651           cnt--;
       
  1652       assert( cnt == 0, "mismatched def-use edge counts" );
       
  1653     }
       
  1654 
       
  1655     verify_recur(x, verify_depth, old_space, new_space);
       
  1656   }
       
  1657 
       
  1658 }
       
  1659 
       
  1660 //------------------------------verify-----------------------------------------
       
  1661 // Check Def-Use info for my subgraph
       
  1662 void Node::verify() const {
       
  1663   Compile* C = Compile::current();
       
  1664   Node* old_top = C->cached_top_node();
       
  1665   ResourceMark rm;
       
  1666   ResourceArea *area = Thread::current()->resource_area();
       
  1667   VectorSet old_space(area), new_space(area);
       
  1668   verify_recur(this, -1, old_space, new_space);
       
  1669   C->set_cached_top_node(old_top);
       
  1670 }
       
  1671 #endif
       
  1672 
       
  1673 
       
  1674 //------------------------------walk-------------------------------------------
       
  1675 // Graph walk, with both pre-order and post-order functions
       
  1676 void Node::walk(NFunc pre, NFunc post, void *env) {
       
  1677   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
       
  1678   walk_(pre, post, env, visited);
       
  1679 }
       
  1680 
       
  1681 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
       
  1682   if( visited.test_set(_idx) ) return;
       
  1683   pre(*this,env);               // Call the pre-order walk function
       
  1684   for( uint i=0; i<_max; i++ )
       
  1685     if( in(i) )                 // Input exists and is not walked?
       
  1686       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
       
  1687   post(*this,env);              // Call the post-order walk function
       
  1688 }
       
  1689 
       
  1690 void Node::nop(Node &, void*) {}
       
  1691 
       
  1692 //------------------------------Registers--------------------------------------
       
  1693 // Do we Match on this edge index or not?  Generally false for Control
       
  1694 // and true for everything else.  Weird for calls & returns.
       
  1695 uint Node::match_edge(uint idx) const {
       
  1696   return idx;                   // True for other than index 0 (control)
       
  1697 }
       
  1698 
       
  1699 // Register classes are defined for specific machines
       
  1700 const RegMask &Node::out_RegMask() const {
       
  1701   ShouldNotCallThis();
       
  1702   return *(new RegMask());
       
  1703 }
       
  1704 
       
  1705 const RegMask &Node::in_RegMask(uint) const {
       
  1706   ShouldNotCallThis();
       
  1707   return *(new RegMask());
       
  1708 }
       
  1709 
       
  1710 //=============================================================================
       
  1711 //-----------------------------------------------------------------------------
       
  1712 void Node_Array::reset( Arena *new_arena ) {
       
  1713   _a->Afree(_nodes,_max*sizeof(Node*));
       
  1714   _max   = 0;
       
  1715   _nodes = NULL;
       
  1716   _a     = new_arena;
       
  1717 }
       
  1718 
       
  1719 //------------------------------clear------------------------------------------
       
  1720 // Clear all entries in _nodes to NULL but keep storage
       
  1721 void Node_Array::clear() {
       
  1722   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
       
  1723 }
       
  1724 
       
  1725 //-----------------------------------------------------------------------------
       
  1726 void Node_Array::grow( uint i ) {
       
  1727   if( !_max ) {
       
  1728     _max = 1;
       
  1729     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
       
  1730     _nodes[0] = NULL;
       
  1731   }
       
  1732   uint old = _max;
       
  1733   while( i >= _max ) _max <<= 1;        // Double to fit
       
  1734   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
       
  1735   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
       
  1736 }
       
  1737 
       
  1738 //-----------------------------------------------------------------------------
       
  1739 void Node_Array::insert( uint i, Node *n ) {
       
  1740   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
       
  1741   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
       
  1742   _nodes[i] = n;
       
  1743 }
       
  1744 
       
  1745 //-----------------------------------------------------------------------------
       
  1746 void Node_Array::remove( uint i ) {
       
  1747   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
       
  1748   _nodes[_max-1] = NULL;
       
  1749 }
       
  1750 
       
  1751 //-----------------------------------------------------------------------------
       
  1752 void Node_Array::sort( C_sort_func_t func) {
       
  1753   qsort( _nodes, _max, sizeof( Node* ), func );
       
  1754 }
       
  1755 
       
  1756 //-----------------------------------------------------------------------------
       
  1757 void Node_Array::dump() const {
       
  1758 #ifndef PRODUCT
       
  1759   for( uint i = 0; i < _max; i++ ) {
       
  1760     Node *nn = _nodes[i];
       
  1761     if( nn != NULL ) {
       
  1762       tty->print("%5d--> ",i); nn->dump();
       
  1763     }
       
  1764   }
       
  1765 #endif
       
  1766 }
       
  1767 
       
  1768 //--------------------------is_iteratively_computed------------------------------
       
  1769 // Operation appears to be iteratively computed (such as an induction variable)
       
  1770 // It is possible for this operation to return false for a loop-varying
       
  1771 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
       
  1772 bool Node::is_iteratively_computed() {
       
  1773   if (ideal_reg()) { // does operation have a result register?
       
  1774     for (uint i = 1; i < req(); i++) {
       
  1775       Node* n = in(i);
       
  1776       if (n != NULL && n->is_Phi()) {
       
  1777         for (uint j = 1; j < n->req(); j++) {
       
  1778           if (n->in(j) == this) {
       
  1779             return true;
       
  1780           }
       
  1781         }
       
  1782       }
       
  1783     }
       
  1784   }
       
  1785   return false;
       
  1786 }
       
  1787 
       
  1788 //--------------------------find_similar------------------------------
       
  1789 // Return a node with opcode "opc" and same inputs as "this" if one can
       
  1790 // be found; Otherwise return NULL;
       
  1791 Node* Node::find_similar(int opc) {
       
  1792   if (req() >= 2) {
       
  1793     Node* def = in(1);
       
  1794     if (def && def->outcnt() >= 2) {
       
  1795       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
       
  1796         Node* use = def->fast_out(i);
       
  1797         if (use->Opcode() == opc &&
       
  1798             use->req() == req()) {
       
  1799           uint j;
       
  1800           for (j = 0; j < use->req(); j++) {
       
  1801             if (use->in(j) != in(j)) {
       
  1802               break;
       
  1803             }
       
  1804           }
       
  1805           if (j == use->req()) {
       
  1806             return use;
       
  1807           }
       
  1808         }
       
  1809       }
       
  1810     }
       
  1811   }
       
  1812   return NULL;
       
  1813 }
       
  1814 
       
  1815 
       
  1816 //--------------------------unique_ctrl_out------------------------------
       
  1817 // Return the unique control out if only one. Null if none or more than one.
       
  1818 Node* Node::unique_ctrl_out() {
       
  1819   Node* found = NULL;
       
  1820   for (uint i = 0; i < outcnt(); i++) {
       
  1821     Node* use = raw_out(i);
       
  1822     if (use->is_CFG() && use != this) {
       
  1823       if (found != NULL) return NULL;
       
  1824       found = use;
       
  1825     }
       
  1826   }
       
  1827   return found;
       
  1828 }
       
  1829 
       
  1830 //=============================================================================
       
  1831 //------------------------------yank-------------------------------------------
       
  1832 // Find and remove
       
  1833 void Node_List::yank( Node *n ) {
       
  1834   uint i;
       
  1835   for( i = 0; i < _cnt; i++ )
       
  1836     if( _nodes[i] == n )
       
  1837       break;
       
  1838 
       
  1839   if( i < _cnt )
       
  1840     _nodes[i] = _nodes[--_cnt];
       
  1841 }
       
  1842 
       
  1843 //------------------------------dump-------------------------------------------
       
  1844 void Node_List::dump() const {
       
  1845 #ifndef PRODUCT
       
  1846   for( uint i = 0; i < _cnt; i++ )
       
  1847     if( _nodes[i] ) {
       
  1848       tty->print("%5d--> ",i);
       
  1849       _nodes[i]->dump();
       
  1850     }
       
  1851 #endif
       
  1852 }
       
  1853 
       
  1854 //=============================================================================
       
  1855 //------------------------------remove-----------------------------------------
       
  1856 void Unique_Node_List::remove( Node *n ) {
       
  1857   if( _in_worklist[n->_idx] ) {
       
  1858     for( uint i = 0; i < size(); i++ )
       
  1859       if( _nodes[i] == n ) {
       
  1860         map(i,Node_List::pop());
       
  1861         _in_worklist >>= n->_idx;
       
  1862         return;
       
  1863       }
       
  1864     ShouldNotReachHere();
       
  1865   }
       
  1866 }
       
  1867 
       
  1868 //-----------------------remove_useless_nodes----------------------------------
       
  1869 // Remove useless nodes from worklist
       
  1870 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
       
  1871 
       
  1872   for( uint i = 0; i < size(); ++i ) {
       
  1873     Node *n = at(i);
       
  1874     assert( n != NULL, "Did not expect null entries in worklist");
       
  1875     if( ! useful.test(n->_idx) ) {
       
  1876       _in_worklist >>= n->_idx;
       
  1877       map(i,Node_List::pop());
       
  1878       // Node *replacement = Node_List::pop();
       
  1879       // if( i != size() ) { // Check if removing last entry
       
  1880       //   _nodes[i] = replacement;
       
  1881       // }
       
  1882       --i;  // Visit popped node
       
  1883       // If it was last entry, loop terminates since size() was also reduced
       
  1884     }
       
  1885   }
       
  1886 }
       
  1887 
       
  1888 //=============================================================================
       
  1889 void Node_Stack::grow() {
       
  1890   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
       
  1891   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
       
  1892   size_t max = old_max << 1;             // max * 2
       
  1893   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
       
  1894   _inode_max = _inodes + max;
       
  1895   _inode_top = _inodes + old_top;        // restore _top
       
  1896 }
       
  1897 
       
  1898 //=============================================================================
       
  1899 uint TypeNode::size_of() const { return sizeof(*this); }
       
  1900 #ifndef PRODUCT
       
  1901 void TypeNode::dump_spec(outputStream *st) const {
       
  1902   if( !Verbose && !WizardMode ) {
       
  1903     // standard dump does this in Verbose and WizardMode
       
  1904     st->print(" #"); _type->dump_on(st);
       
  1905   }
       
  1906 }
       
  1907 #endif
       
  1908 uint TypeNode::hash() const {
       
  1909   return Node::hash() + _type->hash();
       
  1910 }
       
  1911 uint TypeNode::cmp( const Node &n ) const
       
  1912 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
       
  1913 const Type *TypeNode::bottom_type() const { return _type; }
       
  1914 const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
       
  1915 
       
  1916 //------------------------------ideal_reg--------------------------------------
       
  1917 uint TypeNode::ideal_reg() const {
       
  1918   return Matcher::base2reg[_type->base()];
       
  1919 }