hotspot/src/share/vm/opto/loopTransform.cpp
changeset 1 489c9b5090e2
child 212 cd4963e67949
equal deleted inserted replaced
0:fd16c54261b3 1:489c9b5090e2
       
     1 /*
       
     2  * Copyright 2000-2007 Sun Microsystems, Inc.  All Rights Reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    21  * have any questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "incls/_precompiled.incl"
       
    26 #include "incls/_loopTransform.cpp.incl"
       
    27 
       
    28 //------------------------------is_loop_exit-----------------------------------
       
    29 // Given an IfNode, return the loop-exiting projection or NULL if both
       
    30 // arms remain in the loop.
       
    31 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
       
    32   if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
       
    33   PhaseIdealLoop *phase = _phase;
       
    34   // Test is an IfNode, has 2 projections.  If BOTH are in the loop
       
    35   // we need loop unswitching instead of peeling.
       
    36   if( !is_member(phase->get_loop( iff->raw_out(0) )) )
       
    37     return iff->raw_out(0);
       
    38   if( !is_member(phase->get_loop( iff->raw_out(1) )) )
       
    39     return iff->raw_out(1);
       
    40   return NULL;
       
    41 }
       
    42 
       
    43 
       
    44 //=============================================================================
       
    45 
       
    46 
       
    47 //------------------------------record_for_igvn----------------------------
       
    48 // Put loop body on igvn work list
       
    49 void IdealLoopTree::record_for_igvn() {
       
    50   for( uint i = 0; i < _body.size(); i++ ) {
       
    51     Node *n = _body.at(i);
       
    52     _phase->_igvn._worklist.push(n);
       
    53   }
       
    54 }
       
    55 
       
    56 //------------------------------compute_profile_trip_cnt----------------------------
       
    57 // Compute loop trip count from profile data as
       
    58 //    (backedge_count + loop_exit_count) / loop_exit_count
       
    59 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
       
    60   if (!_head->is_CountedLoop()) {
       
    61     return;
       
    62   }
       
    63   CountedLoopNode* head = _head->as_CountedLoop();
       
    64   if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
       
    65     return; // Already computed
       
    66   }
       
    67   float trip_cnt = (float)max_jint; // default is big
       
    68 
       
    69   Node* back = head->in(LoopNode::LoopBackControl);
       
    70   while (back != head) {
       
    71     if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
       
    72         back->in(0) &&
       
    73         back->in(0)->is_If() &&
       
    74         back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
       
    75         back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
       
    76       break;
       
    77     }
       
    78     back = phase->idom(back);
       
    79   }
       
    80   if (back != head) {
       
    81     assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
       
    82            back->in(0), "if-projection exists");
       
    83     IfNode* back_if = back->in(0)->as_If();
       
    84     float loop_back_cnt = back_if->_fcnt * back_if->_prob;
       
    85 
       
    86     // Now compute a loop exit count
       
    87     float loop_exit_cnt = 0.0f;
       
    88     for( uint i = 0; i < _body.size(); i++ ) {
       
    89       Node *n = _body[i];
       
    90       if( n->is_If() ) {
       
    91         IfNode *iff = n->as_If();
       
    92         if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
       
    93           Node *exit = is_loop_exit(iff);
       
    94           if( exit ) {
       
    95             float exit_prob = iff->_prob;
       
    96             if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
       
    97             if (exit_prob > PROB_MIN) {
       
    98               float exit_cnt = iff->_fcnt * exit_prob;
       
    99               loop_exit_cnt += exit_cnt;
       
   100             }
       
   101           }
       
   102         }
       
   103       }
       
   104     }
       
   105     if (loop_exit_cnt > 0.0f) {
       
   106       trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
       
   107     } else {
       
   108       // No exit count so use
       
   109       trip_cnt = loop_back_cnt;
       
   110     }
       
   111   }
       
   112 #ifndef PRODUCT
       
   113   if (TraceProfileTripCount) {
       
   114     tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
       
   115   }
       
   116 #endif
       
   117   head->set_profile_trip_cnt(trip_cnt);
       
   118 }
       
   119 
       
   120 //---------------------is_invariant_addition-----------------------------
       
   121 // Return nonzero index of invariant operand for an Add or Sub
       
   122 // of (nonconstant) invariant and variant values. Helper for reassoicate_invariants.
       
   123 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
       
   124   int op = n->Opcode();
       
   125   if (op == Op_AddI || op == Op_SubI) {
       
   126     bool in1_invar = this->is_invariant(n->in(1));
       
   127     bool in2_invar = this->is_invariant(n->in(2));
       
   128     if (in1_invar && !in2_invar) return 1;
       
   129     if (!in1_invar && in2_invar) return 2;
       
   130   }
       
   131   return 0;
       
   132 }
       
   133 
       
   134 //---------------------reassociate_add_sub-----------------------------
       
   135 // Reassociate invariant add and subtract expressions:
       
   136 //
       
   137 // inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
       
   138 // (x + inv2) + inv1  =>  ( inv1 + inv2) + x
       
   139 // inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
       
   140 // inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
       
   141 // (x + inv2) - inv1  =>  (-inv1 + inv2) + x
       
   142 // (x - inv2) + inv1  =>  ( inv1 - inv2) + x
       
   143 // (x - inv2) - inv1  =>  (-inv1 - inv2) + x
       
   144 // inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
       
   145 // inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
       
   146 // (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
       
   147 // (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
       
   148 // inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
       
   149 //
       
   150 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
       
   151   if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
       
   152   if (is_invariant(n1)) return NULL;
       
   153   int inv1_idx = is_invariant_addition(n1, phase);
       
   154   if (!inv1_idx) return NULL;
       
   155   // Don't mess with add of constant (igvn moves them to expression tree root.)
       
   156   if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
       
   157   Node* inv1 = n1->in(inv1_idx);
       
   158   Node* n2 = n1->in(3 - inv1_idx);
       
   159   int inv2_idx = is_invariant_addition(n2, phase);
       
   160   if (!inv2_idx) return NULL;
       
   161   Node* x    = n2->in(3 - inv2_idx);
       
   162   Node* inv2 = n2->in(inv2_idx);
       
   163 
       
   164   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
       
   165   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
       
   166   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
       
   167   if (n1->is_Sub() && inv1_idx == 1) {
       
   168     neg_x    = !neg_x;
       
   169     neg_inv2 = !neg_inv2;
       
   170   }
       
   171   Node* inv1_c = phase->get_ctrl(inv1);
       
   172   Node* inv2_c = phase->get_ctrl(inv2);
       
   173   Node* n_inv1;
       
   174   if (neg_inv1) {
       
   175     Node *zero = phase->_igvn.intcon(0);
       
   176     phase->set_ctrl(zero, phase->C->root());
       
   177     n_inv1 = new (phase->C, 3) SubINode(zero, inv1);
       
   178     phase->register_new_node(n_inv1, inv1_c);
       
   179   } else {
       
   180     n_inv1 = inv1;
       
   181   }
       
   182   Node* inv;
       
   183   if (neg_inv2) {
       
   184     inv = new (phase->C, 3) SubINode(n_inv1, inv2);
       
   185   } else {
       
   186     inv = new (phase->C, 3) AddINode(n_inv1, inv2);
       
   187   }
       
   188   phase->register_new_node(inv, phase->get_early_ctrl(inv));
       
   189 
       
   190   Node* addx;
       
   191   if (neg_x) {
       
   192     addx = new (phase->C, 3) SubINode(inv, x);
       
   193   } else {
       
   194     addx = new (phase->C, 3) AddINode(x, inv);
       
   195   }
       
   196   phase->register_new_node(addx, phase->get_ctrl(x));
       
   197   phase->_igvn.hash_delete(n1);
       
   198   phase->_igvn.subsume_node(n1, addx);
       
   199   return addx;
       
   200 }
       
   201 
       
   202 //---------------------reassociate_invariants-----------------------------
       
   203 // Reassociate invariant expressions:
       
   204 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
       
   205   for (int i = _body.size() - 1; i >= 0; i--) {
       
   206     Node *n = _body.at(i);
       
   207     for (int j = 0; j < 5; j++) {
       
   208       Node* nn = reassociate_add_sub(n, phase);
       
   209       if (nn == NULL) break;
       
   210       n = nn; // again
       
   211     };
       
   212   }
       
   213 }
       
   214 
       
   215 //------------------------------policy_peeling---------------------------------
       
   216 // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
       
   217 // make some loop-invariant test (usually a null-check) happen before the loop.
       
   218 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
       
   219   Node *test = ((IdealLoopTree*)this)->tail();
       
   220   int  body_size = ((IdealLoopTree*)this)->_body.size();
       
   221   int  uniq      = phase->C->unique();
       
   222   // Peeling does loop cloning which can result in O(N^2) node construction
       
   223   if( body_size > 255 /* Prevent overflow for large body_size */
       
   224       || (body_size * body_size + uniq > MaxNodeLimit) ) {
       
   225     return false;           // too large to safely clone
       
   226   }
       
   227   while( test != _head ) {      // Scan till run off top of loop
       
   228     if( test->is_If() ) {       // Test?
       
   229       Node *ctrl = phase->get_ctrl(test->in(1));
       
   230       if (ctrl->is_top())
       
   231         return false;           // Found dead test on live IF?  No peeling!
       
   232       // Standard IF only has one input value to check for loop invariance
       
   233       assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
       
   234       // Condition is not a member of this loop?
       
   235       if( !is_member(phase->get_loop(ctrl)) &&
       
   236           is_loop_exit(test) )
       
   237         return true;            // Found reason to peel!
       
   238     }
       
   239     // Walk up dominators to loop _head looking for test which is
       
   240     // executed on every path thru loop.
       
   241     test = phase->idom(test);
       
   242   }
       
   243   return false;
       
   244 }
       
   245 
       
   246 //------------------------------peeled_dom_test_elim---------------------------
       
   247 // If we got the effect of peeling, either by actually peeling or by making
       
   248 // a pre-loop which must execute at least once, we can remove all
       
   249 // loop-invariant dominated tests in the main body.
       
   250 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
       
   251   bool progress = true;
       
   252   while( progress ) {
       
   253     progress = false;           // Reset for next iteration
       
   254     Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
       
   255     Node *test = prev->in(0);
       
   256     while( test != loop->_head ) { // Scan till run off top of loop
       
   257 
       
   258       int p_op = prev->Opcode();
       
   259       if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
       
   260           test->is_If() &&      // Test?
       
   261           !test->in(1)->is_Con() && // And not already obvious?
       
   262           // Condition is not a member of this loop?
       
   263           !loop->is_member(get_loop(get_ctrl(test->in(1))))){
       
   264         // Walk loop body looking for instances of this test
       
   265         for( uint i = 0; i < loop->_body.size(); i++ ) {
       
   266           Node *n = loop->_body.at(i);
       
   267           if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
       
   268             // IfNode was dominated by version in peeled loop body
       
   269             progress = true;
       
   270             dominated_by( old_new[prev->_idx], n );
       
   271           }
       
   272         }
       
   273       }
       
   274       prev = test;
       
   275       test = idom(test);
       
   276     } // End of scan tests in loop
       
   277 
       
   278   } // End of while( progress )
       
   279 }
       
   280 
       
   281 //------------------------------do_peeling-------------------------------------
       
   282 // Peel the first iteration of the given loop.
       
   283 // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
       
   284 //         The pre-loop illegally has 2 control users (old & new loops).
       
   285 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
       
   286 //         Do this by making the old-loop fall-in edges act as if they came
       
   287 //         around the loopback from the prior iteration (follow the old-loop
       
   288 //         backedges) and then map to the new peeled iteration.  This leaves
       
   289 //         the pre-loop with only 1 user (the new peeled iteration), but the
       
   290 //         peeled-loop backedge has 2 users.
       
   291 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
       
   292 //         extra backedge user.
       
   293 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
       
   294 
       
   295   C->set_major_progress();
       
   296   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
       
   297   // 'pre' loop from the main and the 'pre' can no longer have it's
       
   298   // iterations adjusted.  Therefore, we need to declare this loop as
       
   299   // no longer a 'main' loop; it will need new pre and post loops before
       
   300   // we can do further RCE.
       
   301   Node *h = loop->_head;
       
   302   if( h->is_CountedLoop() ) {
       
   303     CountedLoopNode *cl = h->as_CountedLoop();
       
   304     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
       
   305     cl->set_trip_count(cl->trip_count() - 1);
       
   306     if( cl->is_main_loop() ) {
       
   307       cl->set_normal_loop();
       
   308 #ifndef PRODUCT
       
   309       if( PrintOpto && VerifyLoopOptimizations ) {
       
   310         tty->print("Peeling a 'main' loop; resetting to 'normal' ");
       
   311         loop->dump_head();
       
   312       }
       
   313 #endif
       
   314     }
       
   315   }
       
   316 
       
   317   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
       
   318   //         The pre-loop illegally has 2 control users (old & new loops).
       
   319   clone_loop( loop, old_new, dom_depth(loop->_head) );
       
   320 
       
   321 
       
   322   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
       
   323   //         Do this by making the old-loop fall-in edges act as if they came
       
   324   //         around the loopback from the prior iteration (follow the old-loop
       
   325   //         backedges) and then map to the new peeled iteration.  This leaves
       
   326   //         the pre-loop with only 1 user (the new peeled iteration), but the
       
   327   //         peeled-loop backedge has 2 users.
       
   328   for (DUIterator_Fast jmax, j = loop->_head->fast_outs(jmax); j < jmax; j++) {
       
   329     Node* old = loop->_head->fast_out(j);
       
   330     if( old->in(0) == loop->_head && old->req() == 3 &&
       
   331         (old->is_Loop() || old->is_Phi()) ) {
       
   332       Node *new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
       
   333       if( !new_exit_value )     // Backedge value is ALSO loop invariant?
       
   334         // Then loop body backedge value remains the same.
       
   335         new_exit_value = old->in(LoopNode::LoopBackControl);
       
   336       _igvn.hash_delete(old);
       
   337       old->set_req(LoopNode::EntryControl, new_exit_value);
       
   338     }
       
   339   }
       
   340 
       
   341 
       
   342   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
       
   343   //         extra backedge user.
       
   344   Node *nnn = old_new[loop->_head->_idx];
       
   345   _igvn.hash_delete(nnn);
       
   346   nnn->set_req(LoopNode::LoopBackControl, C->top());
       
   347   for (DUIterator_Fast j2max, j2 = nnn->fast_outs(j2max); j2 < j2max; j2++) {
       
   348     Node* use = nnn->fast_out(j2);
       
   349     if( use->in(0) == nnn && use->req() == 3 && use->is_Phi() ) {
       
   350       _igvn.hash_delete(use);
       
   351       use->set_req(LoopNode::LoopBackControl, C->top());
       
   352     }
       
   353   }
       
   354 
       
   355 
       
   356   // Step 4: Correct dom-depth info.  Set to loop-head depth.
       
   357   int dd = dom_depth(loop->_head);
       
   358   set_idom(loop->_head, loop->_head->in(1), dd);
       
   359   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
       
   360     Node *old = loop->_body.at(j3);
       
   361     Node *nnn = old_new[old->_idx];
       
   362     if (!has_ctrl(nnn))
       
   363       set_idom(nnn, idom(nnn), dd-1);
       
   364     // While we're at it, remove any SafePoints from the peeled code
       
   365     if( old->Opcode() == Op_SafePoint ) {
       
   366       Node *nnn = old_new[old->_idx];
       
   367       lazy_replace(nnn,nnn->in(TypeFunc::Control));
       
   368     }
       
   369   }
       
   370 
       
   371   // Now force out all loop-invariant dominating tests.  The optimizer
       
   372   // finds some, but we _know_ they are all useless.
       
   373   peeled_dom_test_elim(loop,old_new);
       
   374 
       
   375   loop->record_for_igvn();
       
   376 }
       
   377 
       
   378 //------------------------------policy_maximally_unroll------------------------
       
   379 // Return exact loop trip count, or 0 if not maximally unrolling
       
   380 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
       
   381   CountedLoopNode *cl = _head->as_CountedLoop();
       
   382   assert( cl->is_normal_loop(), "" );
       
   383 
       
   384   Node *init_n = cl->init_trip();
       
   385   Node *limit_n = cl->limit();
       
   386 
       
   387   // Non-constant bounds
       
   388   if( init_n   == NULL || !init_n->is_Con()  ||
       
   389       limit_n  == NULL || !limit_n->is_Con() ||
       
   390       // protect against stride not being a constant
       
   391       !cl->stride_is_con() ) {
       
   392     return false;
       
   393   }
       
   394   int init   = init_n->get_int();
       
   395   int limit  = limit_n->get_int();
       
   396   int span   = limit - init;
       
   397   int stride = cl->stride_con();
       
   398 
       
   399   if (init >= limit || stride > span) {
       
   400     // return a false (no maximally unroll) and the regular unroll/peel
       
   401     // route will make a small mess which CCP will fold away.
       
   402     return false;
       
   403   }
       
   404   uint trip_count = span/stride;   // trip_count can be greater than 2 Gig.
       
   405   assert( (int)trip_count*stride == span, "must divide evenly" );
       
   406 
       
   407   // Real policy: if we maximally unroll, does it get too big?
       
   408   // Allow the unrolled mess to get larger than standard loop
       
   409   // size.  After all, it will no longer be a loop.
       
   410   uint body_size    = _body.size();
       
   411   uint unroll_limit = (uint)LoopUnrollLimit * 4;
       
   412   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
       
   413   cl->set_trip_count(trip_count);
       
   414   if( trip_count <= unroll_limit && body_size <= unroll_limit ) {
       
   415     uint new_body_size = body_size * trip_count;
       
   416     if (new_body_size <= unroll_limit &&
       
   417         body_size == new_body_size / trip_count &&
       
   418         // Unrolling can result in a large amount of node construction
       
   419         new_body_size < MaxNodeLimit - phase->C->unique()) {
       
   420       return true;    // maximally unroll
       
   421     }
       
   422   }
       
   423 
       
   424   return false;               // Do not maximally unroll
       
   425 }
       
   426 
       
   427 
       
   428 //------------------------------policy_unroll----------------------------------
       
   429 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
       
   430 // the loop is a CountedLoop and the body is small enough.
       
   431 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
       
   432 
       
   433   CountedLoopNode *cl = _head->as_CountedLoop();
       
   434   assert( cl->is_normal_loop() || cl->is_main_loop(), "" );
       
   435 
       
   436   // protect against stride not being a constant
       
   437   if( !cl->stride_is_con() ) return false;
       
   438 
       
   439   // protect against over-unrolling
       
   440   if( cl->trip_count() <= 1 ) return false;
       
   441 
       
   442   int future_unroll_ct = cl->unrolled_count() * 2;
       
   443 
       
   444   // Don't unroll if the next round of unrolling would push us
       
   445   // over the expected trip count of the loop.  One is subtracted
       
   446   // from the expected trip count because the pre-loop normally
       
   447   // executes 1 iteration.
       
   448   if (UnrollLimitForProfileCheck > 0 &&
       
   449       cl->profile_trip_cnt() != COUNT_UNKNOWN &&
       
   450       future_unroll_ct        > UnrollLimitForProfileCheck &&
       
   451       (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
       
   452     return false;
       
   453   }
       
   454 
       
   455   // When unroll count is greater than LoopUnrollMin, don't unroll if:
       
   456   //   the residual iterations are more than 10% of the trip count
       
   457   //   and rounds of "unroll,optimize" are not making significant progress
       
   458   //   Progress defined as current size less than 20% larger than previous size.
       
   459   if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
       
   460       future_unroll_ct > LoopUnrollMin &&
       
   461       (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
       
   462       1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
       
   463     return false;
       
   464   }
       
   465 
       
   466   Node *init_n = cl->init_trip();
       
   467   Node *limit_n = cl->limit();
       
   468   // Non-constant bounds.
       
   469   // Protect against over-unrolling when init or/and limit are not constant
       
   470   // (so that trip_count's init value is maxint) but iv range is known.
       
   471   if( init_n   == NULL || !init_n->is_Con()  ||
       
   472       limit_n  == NULL || !limit_n->is_Con() ) {
       
   473     Node* phi = cl->phi();
       
   474     if( phi != NULL ) {
       
   475       assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
       
   476       const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
       
   477       int next_stride = cl->stride_con() * 2; // stride after this unroll
       
   478       if( next_stride > 0 ) {
       
   479         if( iv_type->_lo + next_stride <= iv_type->_lo || // overflow
       
   480             iv_type->_lo + next_stride >  iv_type->_hi ) {
       
   481           return false;  // over-unrolling
       
   482         }
       
   483       } else if( next_stride < 0 ) {
       
   484         if( iv_type->_hi + next_stride >= iv_type->_hi || // overflow
       
   485             iv_type->_hi + next_stride <  iv_type->_lo ) {
       
   486           return false;  // over-unrolling
       
   487         }
       
   488       }
       
   489     }
       
   490   }
       
   491 
       
   492   // Adjust body_size to determine if we unroll or not
       
   493   uint body_size = _body.size();
       
   494   // Key test to unroll CaffeineMark's Logic test
       
   495   int xors_in_loop = 0;
       
   496   // Also count ModL, DivL and MulL which expand mightly
       
   497   for( uint k = 0; k < _body.size(); k++ ) {
       
   498     switch( _body.at(k)->Opcode() ) {
       
   499     case Op_XorI: xors_in_loop++; break; // CaffeineMark's Logic test
       
   500     case Op_ModL: body_size += 30; break;
       
   501     case Op_DivL: body_size += 30; break;
       
   502     case Op_MulL: body_size += 10; break;
       
   503     }
       
   504   }
       
   505 
       
   506   // Check for being too big
       
   507   if( body_size > (uint)LoopUnrollLimit ) {
       
   508     if( xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
       
   509     // Normal case: loop too big
       
   510     return false;
       
   511   }
       
   512 
       
   513   // Check for stride being a small enough constant
       
   514   if( abs(cl->stride_con()) > (1<<3) ) return false;
       
   515 
       
   516   // Unroll once!  (Each trip will soon do double iterations)
       
   517   return true;
       
   518 }
       
   519 
       
   520 //------------------------------policy_align-----------------------------------
       
   521 // Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
       
   522 // expression that does the alignment.  Note that only one array base can be
       
   523 // aligned in a loop (unless the VM guarentees mutual alignment).  Note that
       
   524 // if we vectorize short memory ops into longer memory ops, we may want to
       
   525 // increase alignment.
       
   526 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
       
   527   return false;
       
   528 }
       
   529 
       
   530 //------------------------------policy_range_check-----------------------------
       
   531 // Return TRUE or FALSE if the loop should be range-check-eliminated.
       
   532 // Actually we do iteration-splitting, a more powerful form of RCE.
       
   533 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
       
   534   if( !RangeCheckElimination ) return false;
       
   535 
       
   536   CountedLoopNode *cl = _head->as_CountedLoop();
       
   537   // If we unrolled with no intention of doing RCE and we later
       
   538   // changed our minds, we got no pre-loop.  Either we need to
       
   539   // make a new pre-loop, or we gotta disallow RCE.
       
   540   if( cl->is_main_no_pre_loop() ) return false; // Disallowed for now.
       
   541   Node *trip_counter = cl->phi();
       
   542 
       
   543   // Check loop body for tests of trip-counter plus loop-invariant vs
       
   544   // loop-invariant.
       
   545   for( uint i = 0; i < _body.size(); i++ ) {
       
   546     Node *iff = _body[i];
       
   547     if( iff->Opcode() == Op_If ) { // Test?
       
   548 
       
   549       // Comparing trip+off vs limit
       
   550       Node *bol = iff->in(1);
       
   551       if( bol->req() != 2 ) continue; // dead constant test
       
   552       Node *cmp = bol->in(1);
       
   553 
       
   554       Node *rc_exp = cmp->in(1);
       
   555       Node *limit = cmp->in(2);
       
   556 
       
   557       Node *limit_c = phase->get_ctrl(limit);
       
   558       if( limit_c == phase->C->top() )
       
   559         return false;           // Found dead test on live IF?  No RCE!
       
   560       if( is_member(phase->get_loop(limit_c) ) ) {
       
   561         // Compare might have operands swapped; commute them
       
   562         rc_exp = cmp->in(2);
       
   563         limit  = cmp->in(1);
       
   564         limit_c = phase->get_ctrl(limit);
       
   565         if( is_member(phase->get_loop(limit_c) ) )
       
   566           continue;             // Both inputs are loop varying; cannot RCE
       
   567       }
       
   568 
       
   569       if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
       
   570         continue;
       
   571       }
       
   572       // Yeah!  Found a test like 'trip+off vs limit'
       
   573       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
       
   574       // we need loop unswitching instead of iteration splitting.
       
   575       if( is_loop_exit(iff) )
       
   576         return true;            // Found reason to split iterations
       
   577     } // End of is IF
       
   578   }
       
   579 
       
   580   return false;
       
   581 }
       
   582 
       
   583 //------------------------------policy_peel_only-------------------------------
       
   584 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
       
   585 // for unrolling loops with NO array accesses.
       
   586 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
       
   587 
       
   588   for( uint i = 0; i < _body.size(); i++ )
       
   589     if( _body[i]->is_Mem() )
       
   590       return false;
       
   591 
       
   592   // No memory accesses at all!
       
   593   return true;
       
   594 }
       
   595 
       
   596 //------------------------------clone_up_backedge_goo--------------------------
       
   597 // If Node n lives in the back_ctrl block and cannot float, we clone a private
       
   598 // version of n in preheader_ctrl block and return that, otherwise return n.
       
   599 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n ) {
       
   600   if( get_ctrl(n) != back_ctrl ) return n;
       
   601 
       
   602   Node *x = NULL;               // If required, a clone of 'n'
       
   603   // Check for 'n' being pinned in the backedge.
       
   604   if( n->in(0) && n->in(0) == back_ctrl ) {
       
   605     x = n->clone();             // Clone a copy of 'n' to preheader
       
   606     x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
       
   607   }
       
   608 
       
   609   // Recursive fixup any other input edges into x.
       
   610   // If there are no changes we can just return 'n', otherwise
       
   611   // we need to clone a private copy and change it.
       
   612   for( uint i = 1; i < n->req(); i++ ) {
       
   613     Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i) );
       
   614     if( g != n->in(i) ) {
       
   615       if( !x )
       
   616         x = n->clone();
       
   617       x->set_req(i, g);
       
   618     }
       
   619   }
       
   620   if( x ) {                     // x can legally float to pre-header location
       
   621     register_new_node( x, preheader_ctrl );
       
   622     return x;
       
   623   } else {                      // raise n to cover LCA of uses
       
   624     set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
       
   625   }
       
   626   return n;
       
   627 }
       
   628 
       
   629 //------------------------------insert_pre_post_loops--------------------------
       
   630 // Insert pre and post loops.  If peel_only is set, the pre-loop can not have
       
   631 // more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
       
   632 // alignment.  Useful to unroll loops that do no array accesses.
       
   633 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
       
   634 
       
   635   C->set_major_progress();
       
   636 
       
   637   // Find common pieces of the loop being guarded with pre & post loops
       
   638   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
       
   639   assert( main_head->is_normal_loop(), "" );
       
   640   CountedLoopEndNode *main_end = main_head->loopexit();
       
   641   assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
       
   642   uint dd_main_head = dom_depth(main_head);
       
   643   uint max = main_head->outcnt();
       
   644 
       
   645   Node *pre_header= main_head->in(LoopNode::EntryControl);
       
   646   Node *init      = main_head->init_trip();
       
   647   Node *incr      = main_end ->incr();
       
   648   Node *limit     = main_end ->limit();
       
   649   Node *stride    = main_end ->stride();
       
   650   Node *cmp       = main_end ->cmp_node();
       
   651   BoolTest::mask b_test = main_end->test_trip();
       
   652 
       
   653   // Need only 1 user of 'bol' because I will be hacking the loop bounds.
       
   654   Node *bol = main_end->in(CountedLoopEndNode::TestValue);
       
   655   if( bol->outcnt() != 1 ) {
       
   656     bol = bol->clone();
       
   657     register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
       
   658     _igvn.hash_delete(main_end);
       
   659     main_end->set_req(CountedLoopEndNode::TestValue, bol);
       
   660   }
       
   661   // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
       
   662   if( cmp->outcnt() != 1 ) {
       
   663     cmp = cmp->clone();
       
   664     register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
       
   665     _igvn.hash_delete(bol);
       
   666     bol->set_req(1, cmp);
       
   667   }
       
   668 
       
   669   //------------------------------
       
   670   // Step A: Create Post-Loop.
       
   671   Node* main_exit = main_end->proj_out(false);
       
   672   assert( main_exit->Opcode() == Op_IfFalse, "" );
       
   673   int dd_main_exit = dom_depth(main_exit);
       
   674 
       
   675   // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
       
   676   // loop pre-header illegally has 2 control users (old & new loops).
       
   677   clone_loop( loop, old_new, dd_main_exit );
       
   678   assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
       
   679   CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
       
   680   post_head->set_post_loop(main_head);
       
   681 
       
   682   // Build the main-loop normal exit.
       
   683   IfFalseNode *new_main_exit = new (C, 1) IfFalseNode(main_end);
       
   684   _igvn.register_new_node_with_optimizer( new_main_exit );
       
   685   set_idom(new_main_exit, main_end, dd_main_exit );
       
   686   set_loop(new_main_exit, loop->_parent);
       
   687 
       
   688   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
       
   689   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
       
   690   // (the main-loop trip-counter exit value) because we will be changing
       
   691   // the exit value (via unrolling) so we cannot constant-fold away the zero
       
   692   // trip guard until all unrolling is done.
       
   693   Node *zer_opaq = new (C, 2) Opaque1Node(incr);
       
   694   Node *zer_cmp  = new (C, 3) CmpINode( zer_opaq, limit );
       
   695   Node *zer_bol  = new (C, 2) BoolNode( zer_cmp, b_test );
       
   696   register_new_node( zer_opaq, new_main_exit );
       
   697   register_new_node( zer_cmp , new_main_exit );
       
   698   register_new_node( zer_bol , new_main_exit );
       
   699 
       
   700   // Build the IfNode
       
   701   IfNode *zer_iff = new (C, 2) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
       
   702   _igvn.register_new_node_with_optimizer( zer_iff );
       
   703   set_idom(zer_iff, new_main_exit, dd_main_exit);
       
   704   set_loop(zer_iff, loop->_parent);
       
   705 
       
   706   // Plug in the false-path, taken if we need to skip post-loop
       
   707   _igvn.hash_delete( main_exit );
       
   708   main_exit->set_req(0, zer_iff);
       
   709   _igvn._worklist.push(main_exit);
       
   710   set_idom(main_exit, zer_iff, dd_main_exit);
       
   711   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
       
   712   // Make the true-path, must enter the post loop
       
   713   Node *zer_taken = new (C, 1) IfTrueNode( zer_iff );
       
   714   _igvn.register_new_node_with_optimizer( zer_taken );
       
   715   set_idom(zer_taken, zer_iff, dd_main_exit);
       
   716   set_loop(zer_taken, loop->_parent);
       
   717   // Plug in the true path
       
   718   _igvn.hash_delete( post_head );
       
   719   post_head->set_req(LoopNode::EntryControl, zer_taken);
       
   720   set_idom(post_head, zer_taken, dd_main_exit);
       
   721 
       
   722   // Step A3: Make the fall-in values to the post-loop come from the
       
   723   // fall-out values of the main-loop.
       
   724   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
       
   725     Node* main_phi = main_head->fast_out(i);
       
   726     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
       
   727       Node *post_phi = old_new[main_phi->_idx];
       
   728       Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
       
   729                                               post_head->init_control(),
       
   730                                               main_phi->in(LoopNode::LoopBackControl));
       
   731       _igvn.hash_delete(post_phi);
       
   732       post_phi->set_req( LoopNode::EntryControl, fallmain );
       
   733     }
       
   734   }
       
   735 
       
   736   // Update local caches for next stanza
       
   737   main_exit = new_main_exit;
       
   738 
       
   739 
       
   740   //------------------------------
       
   741   // Step B: Create Pre-Loop.
       
   742 
       
   743   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
       
   744   // loop pre-header illegally has 2 control users (old & new loops).
       
   745   clone_loop( loop, old_new, dd_main_head );
       
   746   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
       
   747   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
       
   748   pre_head->set_pre_loop(main_head);
       
   749   Node *pre_incr = old_new[incr->_idx];
       
   750 
       
   751   // Find the pre-loop normal exit.
       
   752   Node* pre_exit = pre_end->proj_out(false);
       
   753   assert( pre_exit->Opcode() == Op_IfFalse, "" );
       
   754   IfFalseNode *new_pre_exit = new (C, 1) IfFalseNode(pre_end);
       
   755   _igvn.register_new_node_with_optimizer( new_pre_exit );
       
   756   set_idom(new_pre_exit, pre_end, dd_main_head);
       
   757   set_loop(new_pre_exit, loop->_parent);
       
   758 
       
   759   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
       
   760   // pre-loop, the main-loop may not execute at all.  Later in life this
       
   761   // zero-trip guard will become the minimum-trip guard when we unroll
       
   762   // the main-loop.
       
   763   Node *min_opaq = new (C, 2) Opaque1Node(limit);
       
   764   Node *min_cmp  = new (C, 3) CmpINode( pre_incr, min_opaq );
       
   765   Node *min_bol  = new (C, 2) BoolNode( min_cmp, b_test );
       
   766   register_new_node( min_opaq, new_pre_exit );
       
   767   register_new_node( min_cmp , new_pre_exit );
       
   768   register_new_node( min_bol , new_pre_exit );
       
   769 
       
   770   // Build the IfNode
       
   771   IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_FAIR, COUNT_UNKNOWN );
       
   772   _igvn.register_new_node_with_optimizer( min_iff );
       
   773   set_idom(min_iff, new_pre_exit, dd_main_head);
       
   774   set_loop(min_iff, loop->_parent);
       
   775 
       
   776   // Plug in the false-path, taken if we need to skip main-loop
       
   777   _igvn.hash_delete( pre_exit );
       
   778   pre_exit->set_req(0, min_iff);
       
   779   set_idom(pre_exit, min_iff, dd_main_head);
       
   780   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
       
   781   // Make the true-path, must enter the main loop
       
   782   Node *min_taken = new (C, 1) IfTrueNode( min_iff );
       
   783   _igvn.register_new_node_with_optimizer( min_taken );
       
   784   set_idom(min_taken, min_iff, dd_main_head);
       
   785   set_loop(min_taken, loop->_parent);
       
   786   // Plug in the true path
       
   787   _igvn.hash_delete( main_head );
       
   788   main_head->set_req(LoopNode::EntryControl, min_taken);
       
   789   set_idom(main_head, min_taken, dd_main_head);
       
   790 
       
   791   // Step B3: Make the fall-in values to the main-loop come from the
       
   792   // fall-out values of the pre-loop.
       
   793   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
       
   794     Node* main_phi = main_head->fast_out(i2);
       
   795     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
       
   796       Node *pre_phi = old_new[main_phi->_idx];
       
   797       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
       
   798                                              main_head->init_control(),
       
   799                                              pre_phi->in(LoopNode::LoopBackControl));
       
   800       _igvn.hash_delete(main_phi);
       
   801       main_phi->set_req( LoopNode::EntryControl, fallpre );
       
   802     }
       
   803   }
       
   804 
       
   805   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
       
   806   // RCE and alignment may change this later.
       
   807   Node *cmp_end = pre_end->cmp_node();
       
   808   assert( cmp_end->in(2) == limit, "" );
       
   809   Node *pre_limit = new (C, 3) AddINode( init, stride );
       
   810 
       
   811   // Save the original loop limit in this Opaque1 node for
       
   812   // use by range check elimination.
       
   813   Node *pre_opaq  = new (C, 3) Opaque1Node(pre_limit, limit);
       
   814 
       
   815   register_new_node( pre_limit, pre_head->in(0) );
       
   816   register_new_node( pre_opaq , pre_head->in(0) );
       
   817 
       
   818   // Since no other users of pre-loop compare, I can hack limit directly
       
   819   assert( cmp_end->outcnt() == 1, "no other users" );
       
   820   _igvn.hash_delete(cmp_end);
       
   821   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
       
   822 
       
   823   // Special case for not-equal loop bounds:
       
   824   // Change pre loop test, main loop test, and the
       
   825   // main loop guard test to use lt or gt depending on stride
       
   826   // direction:
       
   827   // positive stride use <
       
   828   // negative stride use >
       
   829 
       
   830   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
       
   831 
       
   832     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
       
   833     // Modify pre loop end condition
       
   834     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
       
   835     BoolNode* new_bol0 = new (C, 2) BoolNode(pre_bol->in(1), new_test);
       
   836     register_new_node( new_bol0, pre_head->in(0) );
       
   837     _igvn.hash_delete(pre_end);
       
   838     pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
       
   839     // Modify main loop guard condition
       
   840     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
       
   841     BoolNode* new_bol1 = new (C, 2) BoolNode(min_bol->in(1), new_test);
       
   842     register_new_node( new_bol1, new_pre_exit );
       
   843     _igvn.hash_delete(min_iff);
       
   844     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
       
   845     // Modify main loop end condition
       
   846     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
       
   847     BoolNode* new_bol2 = new (C, 2) BoolNode(main_bol->in(1), new_test);
       
   848     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
       
   849     _igvn.hash_delete(main_end);
       
   850     main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
       
   851   }
       
   852 
       
   853   // Flag main loop
       
   854   main_head->set_main_loop();
       
   855   if( peel_only ) main_head->set_main_no_pre_loop();
       
   856 
       
   857   // It's difficult to be precise about the trip-counts
       
   858   // for the pre/post loops.  They are usually very short,
       
   859   // so guess that 4 trips is a reasonable value.
       
   860   post_head->set_profile_trip_cnt(4.0);
       
   861   pre_head->set_profile_trip_cnt(4.0);
       
   862 
       
   863   // Now force out all loop-invariant dominating tests.  The optimizer
       
   864   // finds some, but we _know_ they are all useless.
       
   865   peeled_dom_test_elim(loop,old_new);
       
   866 }
       
   867 
       
   868 //------------------------------is_invariant-----------------------------
       
   869 // Return true if n is invariant
       
   870 bool IdealLoopTree::is_invariant(Node* n) const {
       
   871   Node *n_c = _phase->get_ctrl(n);
       
   872   if (n_c->is_top()) return false;
       
   873   return !is_member(_phase->get_loop(n_c));
       
   874 }
       
   875 
       
   876 
       
   877 //------------------------------do_unroll--------------------------------------
       
   878 // Unroll the loop body one step - make each trip do 2 iterations.
       
   879 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
       
   880   assert( LoopUnrollLimit, "" );
       
   881 #ifndef PRODUCT
       
   882   if( PrintOpto && VerifyLoopOptimizations ) {
       
   883     tty->print("Unrolling ");
       
   884     loop->dump_head();
       
   885   }
       
   886 #endif
       
   887   CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
       
   888   CountedLoopEndNode *loop_end = loop_head->loopexit();
       
   889   assert( loop_end, "" );
       
   890 
       
   891   // Remember loop node count before unrolling to detect
       
   892   // if rounds of unroll,optimize are making progress
       
   893   loop_head->set_node_count_before_unroll(loop->_body.size());
       
   894 
       
   895   Node *ctrl  = loop_head->in(LoopNode::EntryControl);
       
   896   Node *limit = loop_head->limit();
       
   897   Node *init  = loop_head->init_trip();
       
   898   Node *strid = loop_head->stride();
       
   899 
       
   900   Node *opaq = NULL;
       
   901   if( adjust_min_trip ) {       // If not maximally unrolling, need adjustment
       
   902     assert( loop_head->is_main_loop(), "" );
       
   903     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
       
   904     Node *iff = ctrl->in(0);
       
   905     assert( iff->Opcode() == Op_If, "" );
       
   906     Node *bol = iff->in(1);
       
   907     assert( bol->Opcode() == Op_Bool, "" );
       
   908     Node *cmp = bol->in(1);
       
   909     assert( cmp->Opcode() == Op_CmpI, "" );
       
   910     opaq = cmp->in(2);
       
   911     // Occasionally it's possible for a pre-loop Opaque1 node to be
       
   912     // optimized away and then another round of loop opts attempted.
       
   913     // We can not optimize this particular loop in that case.
       
   914     if( opaq->Opcode() != Op_Opaque1 )
       
   915       return;                   // Cannot find pre-loop!  Bail out!
       
   916   }
       
   917 
       
   918   C->set_major_progress();
       
   919 
       
   920   // Adjust max trip count. The trip count is intentionally rounded
       
   921   // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
       
   922   // the main, unrolled, part of the loop will never execute as it is protected
       
   923   // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
       
   924   // and later determined that part of the unrolled loop was dead.
       
   925   loop_head->set_trip_count(loop_head->trip_count() / 2);
       
   926 
       
   927   // Double the count of original iterations in the unrolled loop body.
       
   928   loop_head->double_unrolled_count();
       
   929 
       
   930   // -----------
       
   931   // Step 2: Cut back the trip counter for an unroll amount of 2.
       
   932   // Loop will normally trip (limit - init)/stride_con.  Since it's a
       
   933   // CountedLoop this is exact (stride divides limit-init exactly).
       
   934   // We are going to double the loop body, so we want to knock off any
       
   935   // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
       
   936   Node *span = new (C, 3) SubINode( limit, init );
       
   937   register_new_node( span, ctrl );
       
   938   Node *trip = new (C, 3) DivINode( 0, span, strid );
       
   939   register_new_node( trip, ctrl );
       
   940   Node *mtwo = _igvn.intcon(-2);
       
   941   set_ctrl(mtwo, C->root());
       
   942   Node *rond = new (C, 3) AndINode( trip, mtwo );
       
   943   register_new_node( rond, ctrl );
       
   944   Node *spn2 = new (C, 3) MulINode( rond, strid );
       
   945   register_new_node( spn2, ctrl );
       
   946   Node *lim2 = new (C, 3) AddINode( spn2, init );
       
   947   register_new_node( lim2, ctrl );
       
   948 
       
   949   // Hammer in the new limit
       
   950   Node *ctrl2 = loop_end->in(0);
       
   951   Node *cmp2 = new (C, 3) CmpINode( loop_head->incr(), lim2 );
       
   952   register_new_node( cmp2, ctrl2 );
       
   953   Node *bol2 = new (C, 2) BoolNode( cmp2, loop_end->test_trip() );
       
   954   register_new_node( bol2, ctrl2 );
       
   955   _igvn.hash_delete(loop_end);
       
   956   loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
       
   957 
       
   958   // Step 3: Find the min-trip test guaranteed before a 'main' loop.
       
   959   // Make it a 1-trip test (means at least 2 trips).
       
   960   if( adjust_min_trip ) {
       
   961     // Guard test uses an 'opaque' node which is not shared.  Hence I
       
   962     // can edit it's inputs directly.  Hammer in the new limit for the
       
   963     // minimum-trip guard.
       
   964     assert( opaq->outcnt() == 1, "" );
       
   965     _igvn.hash_delete(opaq);
       
   966     opaq->set_req(1, lim2);
       
   967   }
       
   968 
       
   969   // ---------
       
   970   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
       
   971   // represents the odd iterations; since the loop trips an even number of
       
   972   // times its backedge is never taken.  Kill the backedge.
       
   973   uint dd = dom_depth(loop_head);
       
   974   clone_loop( loop, old_new, dd );
       
   975 
       
   976   // Make backedges of the clone equal to backedges of the original.
       
   977   // Make the fall-in from the original come from the fall-out of the clone.
       
   978   for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
       
   979     Node* phi = loop_head->fast_out(j);
       
   980     if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
       
   981       Node *newphi = old_new[phi->_idx];
       
   982       _igvn.hash_delete( phi );
       
   983       _igvn.hash_delete( newphi );
       
   984 
       
   985       phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
       
   986       newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
       
   987       phi   ->set_req(LoopNode::LoopBackControl, C->top());
       
   988     }
       
   989   }
       
   990   Node *clone_head = old_new[loop_head->_idx];
       
   991   _igvn.hash_delete( clone_head );
       
   992   loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
       
   993   clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
       
   994   loop_head ->set_req(LoopNode::LoopBackControl, C->top());
       
   995   loop->_head = clone_head;     // New loop header
       
   996 
       
   997   set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
       
   998   set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
       
   999 
       
  1000   // Kill the clone's backedge
       
  1001   Node *newcle = old_new[loop_end->_idx];
       
  1002   _igvn.hash_delete( newcle );
       
  1003   Node *one = _igvn.intcon(1);
       
  1004   set_ctrl(one, C->root());
       
  1005   newcle->set_req(1, one);
       
  1006   // Force clone into same loop body
       
  1007   uint max = loop->_body.size();
       
  1008   for( uint k = 0; k < max; k++ ) {
       
  1009     Node *old = loop->_body.at(k);
       
  1010     Node *nnn = old_new[old->_idx];
       
  1011     loop->_body.push(nnn);
       
  1012     if (!has_ctrl(old))
       
  1013       set_loop(nnn, loop);
       
  1014   }
       
  1015 }
       
  1016 
       
  1017 //------------------------------do_maximally_unroll----------------------------
       
  1018 
       
  1019 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
       
  1020   CountedLoopNode *cl = loop->_head->as_CountedLoop();
       
  1021   assert( cl->trip_count() > 0, "");
       
  1022 
       
  1023   // If loop is tripping an odd number of times, peel odd iteration
       
  1024   if( (cl->trip_count() & 1) == 1 ) {
       
  1025     do_peeling( loop, old_new );
       
  1026   }
       
  1027 
       
  1028   // Now its tripping an even number of times remaining.  Double loop body.
       
  1029   // Do not adjust pre-guards; they are not needed and do not exist.
       
  1030   if( cl->trip_count() > 0 ) {
       
  1031     do_unroll( loop, old_new, false );
       
  1032   }
       
  1033 }
       
  1034 
       
  1035 //------------------------------dominates_backedge---------------------------------
       
  1036 // Returns true if ctrl is executed on every complete iteration
       
  1037 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
       
  1038   assert(ctrl->is_CFG(), "must be control");
       
  1039   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
       
  1040   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
       
  1041 }
       
  1042 
       
  1043 //------------------------------add_constraint---------------------------------
       
  1044 // Constrain the main loop iterations so the condition:
       
  1045 //    scale_con * I + offset  <  limit
       
  1046 // always holds true.  That is, either increase the number of iterations in
       
  1047 // the pre-loop or the post-loop until the condition holds true in the main
       
  1048 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
       
  1049 // stride and scale are constants (offset and limit often are).
       
  1050 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
       
  1051 
       
  1052   // Compute "I :: (limit-offset)/scale_con"
       
  1053   Node *con = new (C, 3) SubINode( limit, offset );
       
  1054   register_new_node( con, pre_ctrl );
       
  1055   Node *scale = _igvn.intcon(scale_con);
       
  1056   set_ctrl(scale, C->root());
       
  1057   Node *X = new (C, 3) DivINode( 0, con, scale );
       
  1058   register_new_node( X, pre_ctrl );
       
  1059 
       
  1060   // For positive stride, the pre-loop limit always uses a MAX function
       
  1061   // and the main loop a MIN function.  For negative stride these are
       
  1062   // reversed.
       
  1063 
       
  1064   // Also for positive stride*scale the affine function is increasing, so the
       
  1065   // pre-loop must check for underflow and the post-loop for overflow.
       
  1066   // Negative stride*scale reverses this; pre-loop checks for overflow and
       
  1067   // post-loop for underflow.
       
  1068   if( stride_con*scale_con > 0 ) {
       
  1069     // Compute I < (limit-offset)/scale_con
       
  1070     // Adjust main-loop last iteration to be MIN/MAX(main_loop,X)
       
  1071     *main_limit = (stride_con > 0)
       
  1072       ? (Node*)(new (C, 3) MinINode( *main_limit, X ))
       
  1073       : (Node*)(new (C, 3) MaxINode( *main_limit, X ));
       
  1074     register_new_node( *main_limit, pre_ctrl );
       
  1075 
       
  1076   } else {
       
  1077     // Compute (limit-offset)/scale_con + SGN(-scale_con) <= I
       
  1078     // Add the negation of the main-loop constraint to the pre-loop.
       
  1079     // See footnote [++] below for a derivation of the limit expression.
       
  1080     Node *incr = _igvn.intcon(scale_con > 0 ? -1 : 1);
       
  1081     set_ctrl(incr, C->root());
       
  1082     Node *adj = new (C, 3) AddINode( X, incr );
       
  1083     register_new_node( adj, pre_ctrl );
       
  1084     *pre_limit = (scale_con > 0)
       
  1085       ? (Node*)new (C, 3) MinINode( *pre_limit, adj )
       
  1086       : (Node*)new (C, 3) MaxINode( *pre_limit, adj );
       
  1087     register_new_node( *pre_limit, pre_ctrl );
       
  1088 
       
  1089 //   [++] Here's the algebra that justifies the pre-loop limit expression:
       
  1090 //
       
  1091 //   NOT( scale_con * I + offset  <  limit )
       
  1092 //      ==
       
  1093 //   scale_con * I + offset  >=  limit
       
  1094 //      ==
       
  1095 //   SGN(scale_con) * I  >=  (limit-offset)/|scale_con|
       
  1096 //      ==
       
  1097 //   (limit-offset)/|scale_con|   <=  I * SGN(scale_con)
       
  1098 //      ==
       
  1099 //   (limit-offset)/|scale_con|-1  <  I * SGN(scale_con)
       
  1100 //      ==
       
  1101 //   ( if (scale_con > 0) /*common case*/
       
  1102 //       (limit-offset)/scale_con - 1  <  I
       
  1103 //     else
       
  1104 //       (limit-offset)/scale_con + 1  >  I
       
  1105 //    )
       
  1106 //   ( if (scale_con > 0) /*common case*/
       
  1107 //       (limit-offset)/scale_con + SGN(-scale_con)  <  I
       
  1108 //     else
       
  1109 //       (limit-offset)/scale_con + SGN(-scale_con)  >  I
       
  1110   }
       
  1111 }
       
  1112 
       
  1113 
       
  1114 //------------------------------is_scaled_iv---------------------------------
       
  1115 // Return true if exp is a constant times an induction var
       
  1116 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
       
  1117   if (exp == iv) {
       
  1118     if (p_scale != NULL) {
       
  1119       *p_scale = 1;
       
  1120     }
       
  1121     return true;
       
  1122   }
       
  1123   int opc = exp->Opcode();
       
  1124   if (opc == Op_MulI) {
       
  1125     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
       
  1126       if (p_scale != NULL) {
       
  1127         *p_scale = exp->in(2)->get_int();
       
  1128       }
       
  1129       return true;
       
  1130     }
       
  1131     if (exp->in(2) == iv && exp->in(1)->is_Con()) {
       
  1132       if (p_scale != NULL) {
       
  1133         *p_scale = exp->in(1)->get_int();
       
  1134       }
       
  1135       return true;
       
  1136     }
       
  1137   } else if (opc == Op_LShiftI) {
       
  1138     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
       
  1139       if (p_scale != NULL) {
       
  1140         *p_scale = 1 << exp->in(2)->get_int();
       
  1141       }
       
  1142       return true;
       
  1143     }
       
  1144   }
       
  1145   return false;
       
  1146 }
       
  1147 
       
  1148 //-----------------------------is_scaled_iv_plus_offset------------------------------
       
  1149 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
       
  1150 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
       
  1151   if (is_scaled_iv(exp, iv, p_scale)) {
       
  1152     if (p_offset != NULL) {
       
  1153       Node *zero = _igvn.intcon(0);
       
  1154       set_ctrl(zero, C->root());
       
  1155       *p_offset = zero;
       
  1156     }
       
  1157     return true;
       
  1158   }
       
  1159   int opc = exp->Opcode();
       
  1160   if (opc == Op_AddI) {
       
  1161     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
       
  1162       if (p_offset != NULL) {
       
  1163         *p_offset = exp->in(2);
       
  1164       }
       
  1165       return true;
       
  1166     }
       
  1167     if (exp->in(2)->is_Con()) {
       
  1168       Node* offset2 = NULL;
       
  1169       if (depth < 2 &&
       
  1170           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
       
  1171                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
       
  1172         if (p_offset != NULL) {
       
  1173           Node *ctrl_off2 = get_ctrl(offset2);
       
  1174           Node* offset = new (C, 3) AddINode(offset2, exp->in(2));
       
  1175           register_new_node(offset, ctrl_off2);
       
  1176           *p_offset = offset;
       
  1177         }
       
  1178         return true;
       
  1179       }
       
  1180     }
       
  1181   } else if (opc == Op_SubI) {
       
  1182     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
       
  1183       if (p_offset != NULL) {
       
  1184         Node *zero = _igvn.intcon(0);
       
  1185         set_ctrl(zero, C->root());
       
  1186         Node *ctrl_off = get_ctrl(exp->in(2));
       
  1187         Node* offset = new (C, 3) SubINode(zero, exp->in(2));
       
  1188         register_new_node(offset, ctrl_off);
       
  1189         *p_offset = offset;
       
  1190       }
       
  1191       return true;
       
  1192     }
       
  1193     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
       
  1194       if (p_offset != NULL) {
       
  1195         *p_scale *= -1;
       
  1196         *p_offset = exp->in(1);
       
  1197       }
       
  1198       return true;
       
  1199     }
       
  1200   }
       
  1201   return false;
       
  1202 }
       
  1203 
       
  1204 //------------------------------do_range_check---------------------------------
       
  1205 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
       
  1206 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
       
  1207 #ifndef PRODUCT
       
  1208   if( PrintOpto && VerifyLoopOptimizations ) {
       
  1209     tty->print("Range Check Elimination ");
       
  1210     loop->dump_head();
       
  1211   }
       
  1212 #endif
       
  1213   assert( RangeCheckElimination, "" );
       
  1214   CountedLoopNode *cl = loop->_head->as_CountedLoop();
       
  1215   assert( cl->is_main_loop(), "" );
       
  1216 
       
  1217   // Find the trip counter; we are iteration splitting based on it
       
  1218   Node *trip_counter = cl->phi();
       
  1219   // Find the main loop limit; we will trim it's iterations
       
  1220   // to not ever trip end tests
       
  1221   Node *main_limit = cl->limit();
       
  1222   // Find the pre-loop limit; we will expand it's iterations to
       
  1223   // not ever trip low tests.
       
  1224   Node *ctrl  = cl->in(LoopNode::EntryControl);
       
  1225   assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
       
  1226   Node *iffm = ctrl->in(0);
       
  1227   assert( iffm->Opcode() == Op_If, "" );
       
  1228   Node *p_f = iffm->in(0);
       
  1229   assert( p_f->Opcode() == Op_IfFalse, "" );
       
  1230   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
       
  1231   assert( pre_end->loopnode()->is_pre_loop(), "" );
       
  1232   Node *pre_opaq1 = pre_end->limit();
       
  1233   // Occasionally it's possible for a pre-loop Opaque1 node to be
       
  1234   // optimized away and then another round of loop opts attempted.
       
  1235   // We can not optimize this particular loop in that case.
       
  1236   if( pre_opaq1->Opcode() != Op_Opaque1 )
       
  1237     return;
       
  1238   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
       
  1239   Node *pre_limit = pre_opaq->in(1);
       
  1240 
       
  1241   // Where do we put new limit calculations
       
  1242   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
       
  1243 
       
  1244   // Ensure the original loop limit is available from the
       
  1245   // pre-loop Opaque1 node.
       
  1246   Node *orig_limit = pre_opaq->original_loop_limit();
       
  1247   if( orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP )
       
  1248     return;
       
  1249 
       
  1250   // Need to find the main-loop zero-trip guard
       
  1251   Node *bolzm = iffm->in(1);
       
  1252   assert( bolzm->Opcode() == Op_Bool, "" );
       
  1253   Node *cmpzm = bolzm->in(1);
       
  1254   assert( cmpzm->is_Cmp(), "" );
       
  1255   Node *opqzm = cmpzm->in(2);
       
  1256   if( opqzm->Opcode() != Op_Opaque1 )
       
  1257     return;
       
  1258   assert( opqzm->in(1) == main_limit, "do not understand situation" );
       
  1259 
       
  1260   // Must know if its a count-up or count-down loop
       
  1261 
       
  1262   // protect against stride not being a constant
       
  1263   if ( !cl->stride_is_con() ) {
       
  1264     return;
       
  1265   }
       
  1266   int stride_con = cl->stride_con();
       
  1267   Node *zero = _igvn.intcon(0);
       
  1268   Node *one  = _igvn.intcon(1);
       
  1269   set_ctrl(zero, C->root());
       
  1270   set_ctrl(one,  C->root());
       
  1271 
       
  1272   // Range checks that do not dominate the loop backedge (ie.
       
  1273   // conditionally executed) can lengthen the pre loop limit beyond
       
  1274   // the original loop limit. To prevent this, the pre limit is
       
  1275   // (for stride > 0) MINed with the original loop limit (MAXed
       
  1276   // stride < 0) when some range_check (rc) is conditionally
       
  1277   // executed.
       
  1278   bool conditional_rc = false;
       
  1279 
       
  1280   // Check loop body for tests of trip-counter plus loop-invariant vs
       
  1281   // loop-invariant.
       
  1282   for( uint i = 0; i < loop->_body.size(); i++ ) {
       
  1283     Node *iff = loop->_body[i];
       
  1284     if( iff->Opcode() == Op_If ) { // Test?
       
  1285 
       
  1286       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
       
  1287       // we need loop unswitching instead of iteration splitting.
       
  1288       Node *exit = loop->is_loop_exit(iff);
       
  1289       if( !exit ) continue;
       
  1290       int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
       
  1291 
       
  1292       // Get boolean condition to test
       
  1293       Node *i1 = iff->in(1);
       
  1294       if( !i1->is_Bool() ) continue;
       
  1295       BoolNode *bol = i1->as_Bool();
       
  1296       BoolTest b_test = bol->_test;
       
  1297       // Flip sense of test if exit condition is flipped
       
  1298       if( flip )
       
  1299         b_test = b_test.negate();
       
  1300 
       
  1301       // Get compare
       
  1302       Node *cmp = bol->in(1);
       
  1303 
       
  1304       // Look for trip_counter + offset vs limit
       
  1305       Node *rc_exp = cmp->in(1);
       
  1306       Node *limit  = cmp->in(2);
       
  1307       jint scale_con= 1;        // Assume trip counter not scaled
       
  1308 
       
  1309       Node *limit_c = get_ctrl(limit);
       
  1310       if( loop->is_member(get_loop(limit_c) ) ) {
       
  1311         // Compare might have operands swapped; commute them
       
  1312         b_test = b_test.commute();
       
  1313         rc_exp = cmp->in(2);
       
  1314         limit  = cmp->in(1);
       
  1315         limit_c = get_ctrl(limit);
       
  1316         if( loop->is_member(get_loop(limit_c) ) )
       
  1317           continue;             // Both inputs are loop varying; cannot RCE
       
  1318       }
       
  1319       // Here we know 'limit' is loop invariant
       
  1320 
       
  1321       // 'limit' maybe pinned below the zero trip test (probably from a
       
  1322       // previous round of rce), in which case, it can't be used in the
       
  1323       // zero trip test expression which must occur before the zero test's if.
       
  1324       if( limit_c == ctrl ) {
       
  1325         continue;  // Don't rce this check but continue looking for other candidates.
       
  1326       }
       
  1327 
       
  1328       // Check for scaled induction variable plus an offset
       
  1329       Node *offset = NULL;
       
  1330 
       
  1331       if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
       
  1332         continue;
       
  1333       }
       
  1334 
       
  1335       Node *offset_c = get_ctrl(offset);
       
  1336       if( loop->is_member( get_loop(offset_c) ) )
       
  1337         continue;               // Offset is not really loop invariant
       
  1338       // Here we know 'offset' is loop invariant.
       
  1339 
       
  1340       // As above for the 'limit', the 'offset' maybe pinned below the
       
  1341       // zero trip test.
       
  1342       if( offset_c == ctrl ) {
       
  1343         continue; // Don't rce this check but continue looking for other candidates.
       
  1344       }
       
  1345 
       
  1346       // At this point we have the expression as:
       
  1347       //   scale_con * trip_counter + offset :: limit
       
  1348       // where scale_con, offset and limit are loop invariant.  Trip_counter
       
  1349       // monotonically increases by stride_con, a constant.  Both (or either)
       
  1350       // stride_con and scale_con can be negative which will flip about the
       
  1351       // sense of the test.
       
  1352 
       
  1353       // Adjust pre and main loop limits to guard the correct iteration set
       
  1354       if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
       
  1355         if( b_test._test == BoolTest::lt ) { // Range checks always use lt
       
  1356           // The overflow limit: scale*I+offset < limit
       
  1357           add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
       
  1358           // The underflow limit: 0 <= scale*I+offset.
       
  1359           // Some math yields: -scale*I-(offset+1) < 0
       
  1360           Node *plus_one = new (C, 3) AddINode( offset, one );
       
  1361           register_new_node( plus_one, pre_ctrl );
       
  1362           Node *neg_offset = new (C, 3) SubINode( zero, plus_one );
       
  1363           register_new_node( neg_offset, pre_ctrl );
       
  1364           add_constraint( stride_con, -scale_con, neg_offset, zero, pre_ctrl, &pre_limit, &main_limit );
       
  1365           if (!conditional_rc) {
       
  1366             conditional_rc = !loop->dominates_backedge(iff);
       
  1367           }
       
  1368         } else {
       
  1369 #ifndef PRODUCT
       
  1370           if( PrintOpto )
       
  1371             tty->print_cr("missed RCE opportunity");
       
  1372 #endif
       
  1373           continue;             // In release mode, ignore it
       
  1374         }
       
  1375       } else {                  // Otherwise work on normal compares
       
  1376         switch( b_test._test ) {
       
  1377         case BoolTest::ge:      // Convert X >= Y to -X <= -Y
       
  1378           scale_con = -scale_con;
       
  1379           offset = new (C, 3) SubINode( zero, offset );
       
  1380           register_new_node( offset, pre_ctrl );
       
  1381           limit  = new (C, 3) SubINode( zero, limit  );
       
  1382           register_new_node( limit, pre_ctrl );
       
  1383           // Fall into LE case
       
  1384         case BoolTest::le:      // Convert X <= Y to X < Y+1
       
  1385           limit = new (C, 3) AddINode( limit, one );
       
  1386           register_new_node( limit, pre_ctrl );
       
  1387           // Fall into LT case
       
  1388         case BoolTest::lt:
       
  1389           add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
       
  1390           if (!conditional_rc) {
       
  1391             conditional_rc = !loop->dominates_backedge(iff);
       
  1392           }
       
  1393           break;
       
  1394         default:
       
  1395 #ifndef PRODUCT
       
  1396           if( PrintOpto )
       
  1397             tty->print_cr("missed RCE opportunity");
       
  1398 #endif
       
  1399           continue;             // Unhandled case
       
  1400         }
       
  1401       }
       
  1402 
       
  1403       // Kill the eliminated test
       
  1404       C->set_major_progress();
       
  1405       Node *kill_con = _igvn.intcon( 1-flip );
       
  1406       set_ctrl(kill_con, C->root());
       
  1407       _igvn.hash_delete(iff);
       
  1408       iff->set_req(1, kill_con);
       
  1409       _igvn._worklist.push(iff);
       
  1410       // Find surviving projection
       
  1411       assert(iff->is_If(), "");
       
  1412       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
       
  1413       // Find loads off the surviving projection; remove their control edge
       
  1414       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
       
  1415         Node* cd = dp->fast_out(i); // Control-dependent node
       
  1416         if( cd->is_Load() ) {   // Loads can now float around in the loop
       
  1417           _igvn.hash_delete(cd);
       
  1418           // Allow the load to float around in the loop, or before it
       
  1419           // but NOT before the pre-loop.
       
  1420           cd->set_req(0, ctrl);   // ctrl, not NULL
       
  1421           _igvn._worklist.push(cd);
       
  1422           --i;
       
  1423           --imax;
       
  1424         }
       
  1425       }
       
  1426 
       
  1427     } // End of is IF
       
  1428 
       
  1429   }
       
  1430 
       
  1431   // Update loop limits
       
  1432   if (conditional_rc) {
       
  1433     pre_limit = (stride_con > 0) ? (Node*)new (C,3) MinINode(pre_limit, orig_limit)
       
  1434                                  : (Node*)new (C,3) MaxINode(pre_limit, orig_limit);
       
  1435     register_new_node(pre_limit, pre_ctrl);
       
  1436   }
       
  1437   _igvn.hash_delete(pre_opaq);
       
  1438   pre_opaq->set_req(1, pre_limit);
       
  1439 
       
  1440   // Note:: we are making the main loop limit no longer precise;
       
  1441   // need to round up based on stride.
       
  1442   if( stride_con != 1 && stride_con != -1 ) { // Cutout for common case
       
  1443     // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
       
  1444     // Hopefully, compiler will optimize for powers of 2.
       
  1445     Node *ctrl = get_ctrl(main_limit);
       
  1446     Node *stride = cl->stride();
       
  1447     Node *init = cl->init_trip();
       
  1448     Node *span = new (C, 3) SubINode(main_limit,init);
       
  1449     register_new_node(span,ctrl);
       
  1450     Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
       
  1451     Node *add = new (C, 3) AddINode(span,rndup);
       
  1452     register_new_node(add,ctrl);
       
  1453     Node *div = new (C, 3) DivINode(0,add,stride);
       
  1454     register_new_node(div,ctrl);
       
  1455     Node *mul = new (C, 3) MulINode(div,stride);
       
  1456     register_new_node(mul,ctrl);
       
  1457     Node *newlim = new (C, 3) AddINode(mul,init);
       
  1458     register_new_node(newlim,ctrl);
       
  1459     main_limit = newlim;
       
  1460   }
       
  1461 
       
  1462   Node *main_cle = cl->loopexit();
       
  1463   Node *main_bol = main_cle->in(1);
       
  1464   // Hacking loop bounds; need private copies of exit test
       
  1465   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
       
  1466     _igvn.hash_delete(main_cle);
       
  1467     main_bol = main_bol->clone();// Clone a private BoolNode
       
  1468     register_new_node( main_bol, main_cle->in(0) );
       
  1469     main_cle->set_req(1,main_bol);
       
  1470   }
       
  1471   Node *main_cmp = main_bol->in(1);
       
  1472   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
       
  1473     _igvn.hash_delete(main_bol);
       
  1474     main_cmp = main_cmp->clone();// Clone a private CmpNode
       
  1475     register_new_node( main_cmp, main_cle->in(0) );
       
  1476     main_bol->set_req(1,main_cmp);
       
  1477   }
       
  1478   // Hack the now-private loop bounds
       
  1479   _igvn.hash_delete(main_cmp);
       
  1480   main_cmp->set_req(2, main_limit);
       
  1481   _igvn._worklist.push(main_cmp);
       
  1482   // The OpaqueNode is unshared by design
       
  1483   _igvn.hash_delete(opqzm);
       
  1484   assert( opqzm->outcnt() == 1, "cannot hack shared node" );
       
  1485   opqzm->set_req(1,main_limit);
       
  1486   _igvn._worklist.push(opqzm);
       
  1487 }
       
  1488 
       
  1489 //------------------------------DCE_loop_body----------------------------------
       
  1490 // Remove simplistic dead code from loop body
       
  1491 void IdealLoopTree::DCE_loop_body() {
       
  1492   for( uint i = 0; i < _body.size(); i++ )
       
  1493     if( _body.at(i)->outcnt() == 0 )
       
  1494       _body.map( i--, _body.pop() );
       
  1495 }
       
  1496 
       
  1497 
       
  1498 //------------------------------adjust_loop_exit_prob--------------------------
       
  1499 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
       
  1500 // Replace with a 1-in-10 exit guess.
       
  1501 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
       
  1502   Node *test = tail();
       
  1503   while( test != _head ) {
       
  1504     uint top = test->Opcode();
       
  1505     if( top == Op_IfTrue || top == Op_IfFalse ) {
       
  1506       int test_con = ((ProjNode*)test)->_con;
       
  1507       assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
       
  1508       IfNode *iff = test->in(0)->as_If();
       
  1509       if( iff->outcnt() == 2 ) {        // Ignore dead tests
       
  1510         Node *bol = iff->in(1);
       
  1511         if( bol && bol->req() > 1 && bol->in(1) &&
       
  1512             ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
       
  1513              (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
       
  1514              (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
       
  1515              (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
       
  1516              (bol->in(1)->Opcode() == Op_CompareAndSwapP )))
       
  1517           return;               // Allocation loops RARELY take backedge
       
  1518         // Find the OTHER exit path from the IF
       
  1519         Node* ex = iff->proj_out(1-test_con);
       
  1520         float p = iff->_prob;
       
  1521         if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
       
  1522           if( top == Op_IfTrue ) {
       
  1523             if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
       
  1524               iff->_prob = PROB_STATIC_FREQUENT;
       
  1525             }
       
  1526           } else {
       
  1527             if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
       
  1528               iff->_prob = PROB_STATIC_INFREQUENT;
       
  1529             }
       
  1530           }
       
  1531         }
       
  1532       }
       
  1533     }
       
  1534     test = phase->idom(test);
       
  1535   }
       
  1536 }
       
  1537 
       
  1538 
       
  1539 //------------------------------policy_do_remove_empty_loop--------------------
       
  1540 // Micro-benchmark spamming.  Policy is to always remove empty loops.
       
  1541 // The 'DO' part is to replace the trip counter with the value it will
       
  1542 // have on the last iteration.  This will break the loop.
       
  1543 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
       
  1544   // Minimum size must be empty loop
       
  1545   if( _body.size() > 7/*number of nodes in an empty loop*/ ) return false;
       
  1546 
       
  1547   if( !_head->is_CountedLoop() ) return false;     // Dead loop
       
  1548   CountedLoopNode *cl = _head->as_CountedLoop();
       
  1549   if( !cl->loopexit() ) return false; // Malformed loop
       
  1550   if( !phase->is_member(this,phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue)) ) )
       
  1551     return false;             // Infinite loop
       
  1552 #ifndef PRODUCT
       
  1553   if( PrintOpto )
       
  1554     tty->print_cr("Removing empty loop");
       
  1555 #endif
       
  1556 #ifdef ASSERT
       
  1557   // Ensure only one phi which is the iv.
       
  1558   Node* iv = NULL;
       
  1559   for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
       
  1560     Node* n = cl->fast_out(i);
       
  1561     if (n->Opcode() == Op_Phi) {
       
  1562       assert(iv == NULL, "Too many phis" );
       
  1563       iv = n;
       
  1564     }
       
  1565   }
       
  1566   assert(iv == cl->phi(), "Wrong phi" );
       
  1567 #endif
       
  1568   // Replace the phi at loop head with the final value of the last
       
  1569   // iteration.  Then the CountedLoopEnd will collapse (backedge never
       
  1570   // taken) and all loop-invariant uses of the exit values will be correct.
       
  1571   Node *phi = cl->phi();
       
  1572   Node *final = new (phase->C, 3) SubINode( cl->limit(), cl->stride() );
       
  1573   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
       
  1574   phase->_igvn.hash_delete(phi);
       
  1575   phase->_igvn.subsume_node(phi,final);
       
  1576   phase->C->set_major_progress();
       
  1577   return true;
       
  1578 }
       
  1579 
       
  1580 
       
  1581 //=============================================================================
       
  1582 //------------------------------iteration_split_impl---------------------------
       
  1583 void IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
       
  1584   // Check and remove empty loops (spam micro-benchmarks)
       
  1585   if( policy_do_remove_empty_loop(phase) )
       
  1586     return;                     // Here we removed an empty loop
       
  1587 
       
  1588   bool should_peel = policy_peeling(phase); // Should we peel?
       
  1589 
       
  1590   bool should_unswitch = policy_unswitching(phase);
       
  1591 
       
  1592   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
       
  1593   // This removes loop-invariant tests (usually null checks).
       
  1594   if( !_head->is_CountedLoop() ) { // Non-counted loop
       
  1595     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
       
  1596       return;
       
  1597     }
       
  1598     if( should_peel ) {            // Should we peel?
       
  1599 #ifndef PRODUCT
       
  1600       if (PrintOpto) tty->print_cr("should_peel");
       
  1601 #endif
       
  1602       phase->do_peeling(this,old_new);
       
  1603     } else if( should_unswitch ) {
       
  1604       phase->do_unswitching(this, old_new);
       
  1605     }
       
  1606     return;
       
  1607   }
       
  1608   CountedLoopNode *cl = _head->as_CountedLoop();
       
  1609 
       
  1610   if( !cl->loopexit() ) return; // Ignore various kinds of broken loops
       
  1611 
       
  1612   // Do nothing special to pre- and post- loops
       
  1613   if( cl->is_pre_loop() || cl->is_post_loop() ) return;
       
  1614 
       
  1615   // Compute loop trip count from profile data
       
  1616   compute_profile_trip_cnt(phase);
       
  1617 
       
  1618   // Before attempting fancy unrolling, RCE or alignment, see if we want
       
  1619   // to completely unroll this loop or do loop unswitching.
       
  1620   if( cl->is_normal_loop() ) {
       
  1621     bool should_maximally_unroll =  policy_maximally_unroll(phase);
       
  1622     if( should_maximally_unroll ) {
       
  1623       // Here we did some unrolling and peeling.  Eventually we will
       
  1624       // completely unroll this loop and it will no longer be a loop.
       
  1625       phase->do_maximally_unroll(this,old_new);
       
  1626       return;
       
  1627     }
       
  1628     if (should_unswitch) {
       
  1629       phase->do_unswitching(this, old_new);
       
  1630       return;
       
  1631     }
       
  1632   }
       
  1633 
       
  1634 
       
  1635   // Counted loops may be peeled, may need some iterations run up
       
  1636   // front for RCE, and may want to align loop refs to a cache
       
  1637   // line.  Thus we clone a full loop up front whose trip count is
       
  1638   // at least 1 (if peeling), but may be several more.
       
  1639 
       
  1640   // The main loop will start cache-line aligned with at least 1
       
  1641   // iteration of the unrolled body (zero-trip test required) and
       
  1642   // will have some range checks removed.
       
  1643 
       
  1644   // A post-loop will finish any odd iterations (leftover after
       
  1645   // unrolling), plus any needed for RCE purposes.
       
  1646 
       
  1647   bool should_unroll = policy_unroll(phase);
       
  1648 
       
  1649   bool should_rce = policy_range_check(phase);
       
  1650 
       
  1651   bool should_align = policy_align(phase);
       
  1652 
       
  1653   // If not RCE'ing (iteration splitting) or Aligning, then we do not
       
  1654   // need a pre-loop.  We may still need to peel an initial iteration but
       
  1655   // we will not be needing an unknown number of pre-iterations.
       
  1656   //
       
  1657   // Basically, if may_rce_align reports FALSE first time through,
       
  1658   // we will not be able to later do RCE or Aligning on this loop.
       
  1659   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
       
  1660 
       
  1661   // If we have any of these conditions (RCE, alignment, unrolling) met, then
       
  1662   // we switch to the pre-/main-/post-loop model.  This model also covers
       
  1663   // peeling.
       
  1664   if( should_rce || should_align || should_unroll ) {
       
  1665     if( cl->is_normal_loop() )  // Convert to 'pre/main/post' loops
       
  1666       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
       
  1667 
       
  1668     // Adjust the pre- and main-loop limits to let the pre and post loops run
       
  1669     // with full checks, but the main-loop with no checks.  Remove said
       
  1670     // checks from the main body.
       
  1671     if( should_rce )
       
  1672       phase->do_range_check(this,old_new);
       
  1673 
       
  1674     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
       
  1675     // twice as many iterations as before) and the main body limit (only do
       
  1676     // an even number of trips).  If we are peeling, we might enable some RCE
       
  1677     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
       
  1678     // peeling.
       
  1679     if( should_unroll && !should_peel )
       
  1680       phase->do_unroll(this,old_new, true);
       
  1681 
       
  1682     // Adjust the pre-loop limits to align the main body
       
  1683     // iterations.
       
  1684     if( should_align )
       
  1685       Unimplemented();
       
  1686 
       
  1687   } else {                      // Else we have an unchanged counted loop
       
  1688     if( should_peel )           // Might want to peel but do nothing else
       
  1689       phase->do_peeling(this,old_new);
       
  1690   }
       
  1691 }
       
  1692 
       
  1693 
       
  1694 //=============================================================================
       
  1695 //------------------------------iteration_split--------------------------------
       
  1696 void IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
       
  1697   // Recursively iteration split nested loops
       
  1698   if( _child ) _child->iteration_split( phase, old_new );
       
  1699 
       
  1700   // Clean out prior deadwood
       
  1701   DCE_loop_body();
       
  1702 
       
  1703 
       
  1704   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
       
  1705   // Replace with a 1-in-10 exit guess.
       
  1706   if( _parent /*not the root loop*/ &&
       
  1707       !_irreducible &&
       
  1708       // Also ignore the occasional dead backedge
       
  1709       !tail()->is_top() ) {
       
  1710     adjust_loop_exit_prob(phase);
       
  1711   }
       
  1712 
       
  1713 
       
  1714   // Gate unrolling, RCE and peeling efforts.
       
  1715   if( !_child &&                // If not an inner loop, do not split
       
  1716       !_irreducible &&
       
  1717       !tail()->is_top() ) {     // Also ignore the occasional dead backedge
       
  1718     if (!_has_call) {
       
  1719       iteration_split_impl( phase, old_new );
       
  1720     } else if (policy_unswitching(phase)) {
       
  1721       phase->do_unswitching(this, old_new);
       
  1722     }
       
  1723   }
       
  1724 
       
  1725   // Minor offset re-organization to remove loop-fallout uses of
       
  1726   // trip counter.
       
  1727   if( _head->is_CountedLoop() ) phase->reorg_offsets( this );
       
  1728   if( _next ) _next->iteration_split( phase, old_new );
       
  1729 }