hotspot/src/share/vm/opto/library_call.cpp
changeset 1 489c9b5090e2
child 202 dc13bf0e5d5d
equal deleted inserted replaced
0:fd16c54261b3 1:489c9b5090e2
       
     1 /*
       
     2  * Copyright 1999-2007 Sun Microsystems, Inc.  All Rights Reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    21  * have any questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "incls/_precompiled.incl"
       
    26 #include "incls/_library_call.cpp.incl"
       
    27 
       
    28 class LibraryIntrinsic : public InlineCallGenerator {
       
    29   // Extend the set of intrinsics known to the runtime:
       
    30  public:
       
    31  private:
       
    32   bool             _is_virtual;
       
    33   vmIntrinsics::ID _intrinsic_id;
       
    34 
       
    35  public:
       
    36   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
       
    37     : InlineCallGenerator(m),
       
    38       _is_virtual(is_virtual),
       
    39       _intrinsic_id(id)
       
    40   {
       
    41   }
       
    42   virtual bool is_intrinsic() const { return true; }
       
    43   virtual bool is_virtual()   const { return _is_virtual; }
       
    44   virtual JVMState* generate(JVMState* jvms);
       
    45   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
       
    46 };
       
    47 
       
    48 
       
    49 // Local helper class for LibraryIntrinsic:
       
    50 class LibraryCallKit : public GraphKit {
       
    51  private:
       
    52   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
       
    53 
       
    54  public:
       
    55   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
       
    56     : GraphKit(caller),
       
    57       _intrinsic(intrinsic)
       
    58   {
       
    59   }
       
    60 
       
    61   ciMethod*         caller()    const    { return jvms()->method(); }
       
    62   int               bci()       const    { return jvms()->bci(); }
       
    63   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
       
    64   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
       
    65   ciMethod*         callee()    const    { return _intrinsic->method(); }
       
    66   ciSignature*      signature() const    { return callee()->signature(); }
       
    67   int               arg_size()  const    { return callee()->arg_size(); }
       
    68 
       
    69   bool try_to_inline();
       
    70 
       
    71   // Helper functions to inline natives
       
    72   void push_result(RegionNode* region, PhiNode* value);
       
    73   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
       
    74   Node* generate_slow_guard(Node* test, RegionNode* region);
       
    75   Node* generate_fair_guard(Node* test, RegionNode* region);
       
    76   Node* generate_negative_guard(Node* index, RegionNode* region,
       
    77                                 // resulting CastII of index:
       
    78                                 Node* *pos_index = NULL);
       
    79   Node* generate_nonpositive_guard(Node* index, bool never_negative,
       
    80                                    // resulting CastII of index:
       
    81                                    Node* *pos_index = NULL);
       
    82   Node* generate_limit_guard(Node* offset, Node* subseq_length,
       
    83                              Node* array_length,
       
    84                              RegionNode* region);
       
    85   Node* generate_current_thread(Node* &tls_output);
       
    86   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
       
    87                               bool disjoint_bases, const char* &name);
       
    88   Node* load_mirror_from_klass(Node* klass);
       
    89   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
       
    90                                       int nargs,
       
    91                                       RegionNode* region, int null_path,
       
    92                                       int offset);
       
    93   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
       
    94                                RegionNode* region, int null_path) {
       
    95     int offset = java_lang_Class::klass_offset_in_bytes();
       
    96     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
       
    97                                          region, null_path,
       
    98                                          offset);
       
    99   }
       
   100   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
       
   101                                      int nargs,
       
   102                                      RegionNode* region, int null_path) {
       
   103     int offset = java_lang_Class::array_klass_offset_in_bytes();
       
   104     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
       
   105                                          region, null_path,
       
   106                                          offset);
       
   107   }
       
   108   Node* generate_access_flags_guard(Node* kls,
       
   109                                     int modifier_mask, int modifier_bits,
       
   110                                     RegionNode* region);
       
   111   Node* generate_interface_guard(Node* kls, RegionNode* region);
       
   112   Node* generate_array_guard(Node* kls, RegionNode* region) {
       
   113     return generate_array_guard_common(kls, region, false, false);
       
   114   }
       
   115   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
       
   116     return generate_array_guard_common(kls, region, false, true);
       
   117   }
       
   118   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
       
   119     return generate_array_guard_common(kls, region, true, false);
       
   120   }
       
   121   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
       
   122     return generate_array_guard_common(kls, region, true, true);
       
   123   }
       
   124   Node* generate_array_guard_common(Node* kls, RegionNode* region,
       
   125                                     bool obj_array, bool not_array);
       
   126   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
       
   127   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
       
   128                                      bool is_virtual = false, bool is_static = false);
       
   129   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
       
   130     return generate_method_call(method_id, false, true);
       
   131   }
       
   132   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
       
   133     return generate_method_call(method_id, true, false);
       
   134   }
       
   135 
       
   136   bool inline_string_compareTo();
       
   137   bool inline_string_indexOf();
       
   138   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
       
   139   Node* pop_math_arg();
       
   140   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
       
   141   bool inline_math_native(vmIntrinsics::ID id);
       
   142   bool inline_trig(vmIntrinsics::ID id);
       
   143   bool inline_trans(vmIntrinsics::ID id);
       
   144   bool inline_abs(vmIntrinsics::ID id);
       
   145   bool inline_sqrt(vmIntrinsics::ID id);
       
   146   bool inline_pow(vmIntrinsics::ID id);
       
   147   bool inline_exp(vmIntrinsics::ID id);
       
   148   bool inline_min_max(vmIntrinsics::ID id);
       
   149   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
       
   150   // This returns Type::AnyPtr, RawPtr, or OopPtr.
       
   151   int classify_unsafe_addr(Node* &base, Node* &offset);
       
   152   Node* make_unsafe_address(Node* base, Node* offset);
       
   153   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
       
   154   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
       
   155   bool inline_unsafe_allocate();
       
   156   bool inline_unsafe_copyMemory();
       
   157   bool inline_native_currentThread();
       
   158   bool inline_native_time_funcs(bool isNano);
       
   159   bool inline_native_isInterrupted();
       
   160   bool inline_native_Class_query(vmIntrinsics::ID id);
       
   161   bool inline_native_subtype_check();
       
   162 
       
   163   bool inline_native_newArray();
       
   164   bool inline_native_getLength();
       
   165   bool inline_array_copyOf(bool is_copyOfRange);
       
   166   bool inline_native_clone(bool is_virtual);
       
   167   bool inline_native_Reflection_getCallerClass();
       
   168   bool inline_native_AtomicLong_get();
       
   169   bool inline_native_AtomicLong_attemptUpdate();
       
   170   bool is_method_invoke_or_aux_frame(JVMState* jvms);
       
   171   // Helper function for inlining native object hash method
       
   172   bool inline_native_hashcode(bool is_virtual, bool is_static);
       
   173   bool inline_native_getClass();
       
   174 
       
   175   // Helper functions for inlining arraycopy
       
   176   bool inline_arraycopy();
       
   177   void generate_arraycopy(const TypePtr* adr_type,
       
   178                           BasicType basic_elem_type,
       
   179                           Node* src,  Node* src_offset,
       
   180                           Node* dest, Node* dest_offset,
       
   181                           Node* copy_length,
       
   182                           int nargs,  // arguments on stack for debug info
       
   183                           bool disjoint_bases = false,
       
   184                           bool length_never_negative = false,
       
   185                           RegionNode* slow_region = NULL);
       
   186   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
       
   187                                                 RegionNode* slow_region);
       
   188   void generate_clear_array(const TypePtr* adr_type,
       
   189                             Node* dest,
       
   190                             BasicType basic_elem_type,
       
   191                             Node* slice_off,
       
   192                             Node* slice_len,
       
   193                             Node* slice_end);
       
   194   bool generate_block_arraycopy(const TypePtr* adr_type,
       
   195                                 BasicType basic_elem_type,
       
   196                                 AllocateNode* alloc,
       
   197                                 Node* src,  Node* src_offset,
       
   198                                 Node* dest, Node* dest_offset,
       
   199                                 Node* dest_size);
       
   200   void generate_slow_arraycopy(const TypePtr* adr_type,
       
   201                                Node* src,  Node* src_offset,
       
   202                                Node* dest, Node* dest_offset,
       
   203                                Node* copy_length,
       
   204                                int nargs);
       
   205   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
       
   206                                      Node* dest_elem_klass,
       
   207                                      Node* src,  Node* src_offset,
       
   208                                      Node* dest, Node* dest_offset,
       
   209                                      Node* copy_length, int nargs);
       
   210   Node* generate_generic_arraycopy(const TypePtr* adr_type,
       
   211                                    Node* src,  Node* src_offset,
       
   212                                    Node* dest, Node* dest_offset,
       
   213                                    Node* copy_length, int nargs);
       
   214   void generate_unchecked_arraycopy(const TypePtr* adr_type,
       
   215                                     BasicType basic_elem_type,
       
   216                                     bool disjoint_bases,
       
   217                                     Node* src,  Node* src_offset,
       
   218                                     Node* dest, Node* dest_offset,
       
   219                                     Node* copy_length);
       
   220   bool inline_unsafe_CAS(BasicType type);
       
   221   bool inline_unsafe_ordered_store(BasicType type);
       
   222   bool inline_fp_conversions(vmIntrinsics::ID id);
       
   223   bool inline_reverseBytes(vmIntrinsics::ID id);
       
   224 };
       
   225 
       
   226 
       
   227 //---------------------------make_vm_intrinsic----------------------------
       
   228 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
       
   229   vmIntrinsics::ID id = m->intrinsic_id();
       
   230   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
       
   231 
       
   232   if (DisableIntrinsic[0] != '\0'
       
   233       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
       
   234     // disabled by a user request on the command line:
       
   235     // example: -XX:DisableIntrinsic=_hashCode,_getClass
       
   236     return NULL;
       
   237   }
       
   238 
       
   239   if (!m->is_loaded()) {
       
   240     // do not attempt to inline unloaded methods
       
   241     return NULL;
       
   242   }
       
   243 
       
   244   // Only a few intrinsics implement a virtual dispatch.
       
   245   // They are expensive calls which are also frequently overridden.
       
   246   if (is_virtual) {
       
   247     switch (id) {
       
   248     case vmIntrinsics::_hashCode:
       
   249     case vmIntrinsics::_clone:
       
   250       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
       
   251       break;
       
   252     default:
       
   253       return NULL;
       
   254     }
       
   255   }
       
   256 
       
   257   // -XX:-InlineNatives disables nearly all intrinsics:
       
   258   if (!InlineNatives) {
       
   259     switch (id) {
       
   260     case vmIntrinsics::_indexOf:
       
   261     case vmIntrinsics::_compareTo:
       
   262       break;  // InlineNatives does not control String.compareTo
       
   263     default:
       
   264       return NULL;
       
   265     }
       
   266   }
       
   267 
       
   268   switch (id) {
       
   269   case vmIntrinsics::_compareTo:
       
   270     if (!SpecialStringCompareTo)  return NULL;
       
   271     break;
       
   272   case vmIntrinsics::_indexOf:
       
   273     if (!SpecialStringIndexOf)  return NULL;
       
   274     break;
       
   275   case vmIntrinsics::_arraycopy:
       
   276     if (!InlineArrayCopy)  return NULL;
       
   277     break;
       
   278   case vmIntrinsics::_copyMemory:
       
   279     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
       
   280     if (!InlineArrayCopy)  return NULL;
       
   281     break;
       
   282   case vmIntrinsics::_hashCode:
       
   283     if (!InlineObjectHash)  return NULL;
       
   284     break;
       
   285   case vmIntrinsics::_clone:
       
   286   case vmIntrinsics::_copyOf:
       
   287   case vmIntrinsics::_copyOfRange:
       
   288     if (!InlineObjectCopy)  return NULL;
       
   289     // These also use the arraycopy intrinsic mechanism:
       
   290     if (!InlineArrayCopy)  return NULL;
       
   291     break;
       
   292   case vmIntrinsics::_checkIndex:
       
   293     // We do not intrinsify this.  The optimizer does fine with it.
       
   294     return NULL;
       
   295 
       
   296   case vmIntrinsics::_get_AtomicLong:
       
   297   case vmIntrinsics::_attemptUpdate:
       
   298     if (!InlineAtomicLong)  return NULL;
       
   299     break;
       
   300 
       
   301   case vmIntrinsics::_Object_init:
       
   302   case vmIntrinsics::_invoke:
       
   303     // We do not intrinsify these; they are marked for other purposes.
       
   304     return NULL;
       
   305 
       
   306   case vmIntrinsics::_getCallerClass:
       
   307     if (!UseNewReflection)  return NULL;
       
   308     if (!InlineReflectionGetCallerClass)  return NULL;
       
   309     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
       
   310     break;
       
   311 
       
   312  default:
       
   313     break;
       
   314   }
       
   315 
       
   316   // -XX:-InlineClassNatives disables natives from the Class class.
       
   317   // The flag applies to all reflective calls, notably Array.newArray
       
   318   // (visible to Java programmers as Array.newInstance).
       
   319   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
       
   320       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
       
   321     if (!InlineClassNatives)  return NULL;
       
   322   }
       
   323 
       
   324   // -XX:-InlineThreadNatives disables natives from the Thread class.
       
   325   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
       
   326     if (!InlineThreadNatives)  return NULL;
       
   327   }
       
   328 
       
   329   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
       
   330   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
       
   331       m->holder()->name() == ciSymbol::java_lang_Float() ||
       
   332       m->holder()->name() == ciSymbol::java_lang_Double()) {
       
   333     if (!InlineMathNatives)  return NULL;
       
   334   }
       
   335 
       
   336   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
       
   337   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
       
   338     if (!InlineUnsafeOps)  return NULL;
       
   339   }
       
   340 
       
   341   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
       
   342 }
       
   343 
       
   344 //----------------------register_library_intrinsics-----------------------
       
   345 // Initialize this file's data structures, for each Compile instance.
       
   346 void Compile::register_library_intrinsics() {
       
   347   // Nothing to do here.
       
   348 }
       
   349 
       
   350 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
       
   351   LibraryCallKit kit(jvms, this);
       
   352   Compile* C = kit.C;
       
   353   int nodes = C->unique();
       
   354 #ifndef PRODUCT
       
   355   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
       
   356     char buf[1000];
       
   357     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
       
   358     tty->print_cr("Intrinsic %s", str);
       
   359   }
       
   360 #endif
       
   361   if (kit.try_to_inline()) {
       
   362     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
       
   363       tty->print("Inlining intrinsic %s%s at bci:%d in",
       
   364                  vmIntrinsics::name_at(intrinsic_id()),
       
   365                  (is_virtual() ? " (virtual)" : ""), kit.bci());
       
   366       kit.caller()->print_short_name(tty);
       
   367       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
       
   368     }
       
   369     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
       
   370     if (C->log()) {
       
   371       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
       
   372                      vmIntrinsics::name_at(intrinsic_id()),
       
   373                      (is_virtual() ? " virtual='1'" : ""),
       
   374                      C->unique() - nodes);
       
   375     }
       
   376     return kit.transfer_exceptions_into_jvms();
       
   377   }
       
   378 
       
   379   if (PrintIntrinsics) {
       
   380     switch (intrinsic_id()) {
       
   381     case vmIntrinsics::_invoke:
       
   382     case vmIntrinsics::_Object_init:
       
   383       // We do not expect to inline these, so do not produce any noise about them.
       
   384       break;
       
   385     default:
       
   386       tty->print("Did not inline intrinsic %s%s at bci:%d in",
       
   387                  vmIntrinsics::name_at(intrinsic_id()),
       
   388                  (is_virtual() ? " (virtual)" : ""), kit.bci());
       
   389       kit.caller()->print_short_name(tty);
       
   390       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
       
   391     }
       
   392   }
       
   393   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
       
   394   return NULL;
       
   395 }
       
   396 
       
   397 bool LibraryCallKit::try_to_inline() {
       
   398   // Handle symbolic names for otherwise undistinguished boolean switches:
       
   399   const bool is_store       = true;
       
   400   const bool is_native_ptr  = true;
       
   401   const bool is_static      = true;
       
   402 
       
   403   switch (intrinsic_id()) {
       
   404   case vmIntrinsics::_hashCode:
       
   405     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
       
   406   case vmIntrinsics::_identityHashCode:
       
   407     return inline_native_hashcode(/*!virtual*/ false, is_static);
       
   408   case vmIntrinsics::_getClass:
       
   409     return inline_native_getClass();
       
   410 
       
   411   case vmIntrinsics::_dsin:
       
   412   case vmIntrinsics::_dcos:
       
   413   case vmIntrinsics::_dtan:
       
   414   case vmIntrinsics::_dabs:
       
   415   case vmIntrinsics::_datan2:
       
   416   case vmIntrinsics::_dsqrt:
       
   417   case vmIntrinsics::_dexp:
       
   418   case vmIntrinsics::_dlog:
       
   419   case vmIntrinsics::_dlog10:
       
   420   case vmIntrinsics::_dpow:
       
   421     return inline_math_native(intrinsic_id());
       
   422 
       
   423   case vmIntrinsics::_min:
       
   424   case vmIntrinsics::_max:
       
   425     return inline_min_max(intrinsic_id());
       
   426 
       
   427   case vmIntrinsics::_arraycopy:
       
   428     return inline_arraycopy();
       
   429 
       
   430   case vmIntrinsics::_compareTo:
       
   431     return inline_string_compareTo();
       
   432   case vmIntrinsics::_indexOf:
       
   433     return inline_string_indexOf();
       
   434 
       
   435   case vmIntrinsics::_getObject:
       
   436     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
       
   437   case vmIntrinsics::_getBoolean:
       
   438     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
       
   439   case vmIntrinsics::_getByte:
       
   440     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
       
   441   case vmIntrinsics::_getShort:
       
   442     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
       
   443   case vmIntrinsics::_getChar:
       
   444     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
       
   445   case vmIntrinsics::_getInt:
       
   446     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
       
   447   case vmIntrinsics::_getLong:
       
   448     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
       
   449   case vmIntrinsics::_getFloat:
       
   450     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
       
   451   case vmIntrinsics::_getDouble:
       
   452     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
       
   453 
       
   454   case vmIntrinsics::_putObject:
       
   455     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
       
   456   case vmIntrinsics::_putBoolean:
       
   457     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
       
   458   case vmIntrinsics::_putByte:
       
   459     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
       
   460   case vmIntrinsics::_putShort:
       
   461     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
       
   462   case vmIntrinsics::_putChar:
       
   463     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
       
   464   case vmIntrinsics::_putInt:
       
   465     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
       
   466   case vmIntrinsics::_putLong:
       
   467     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
       
   468   case vmIntrinsics::_putFloat:
       
   469     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
       
   470   case vmIntrinsics::_putDouble:
       
   471     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
       
   472 
       
   473   case vmIntrinsics::_getByte_raw:
       
   474     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
       
   475   case vmIntrinsics::_getShort_raw:
       
   476     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
       
   477   case vmIntrinsics::_getChar_raw:
       
   478     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
       
   479   case vmIntrinsics::_getInt_raw:
       
   480     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
       
   481   case vmIntrinsics::_getLong_raw:
       
   482     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
       
   483   case vmIntrinsics::_getFloat_raw:
       
   484     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
       
   485   case vmIntrinsics::_getDouble_raw:
       
   486     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
       
   487   case vmIntrinsics::_getAddress_raw:
       
   488     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
       
   489 
       
   490   case vmIntrinsics::_putByte_raw:
       
   491     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
       
   492   case vmIntrinsics::_putShort_raw:
       
   493     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
       
   494   case vmIntrinsics::_putChar_raw:
       
   495     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
       
   496   case vmIntrinsics::_putInt_raw:
       
   497     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
       
   498   case vmIntrinsics::_putLong_raw:
       
   499     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
       
   500   case vmIntrinsics::_putFloat_raw:
       
   501     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
       
   502   case vmIntrinsics::_putDouble_raw:
       
   503     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
       
   504   case vmIntrinsics::_putAddress_raw:
       
   505     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
       
   506 
       
   507   case vmIntrinsics::_getObjectVolatile:
       
   508     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
       
   509   case vmIntrinsics::_getBooleanVolatile:
       
   510     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
       
   511   case vmIntrinsics::_getByteVolatile:
       
   512     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
       
   513   case vmIntrinsics::_getShortVolatile:
       
   514     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
       
   515   case vmIntrinsics::_getCharVolatile:
       
   516     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
       
   517   case vmIntrinsics::_getIntVolatile:
       
   518     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
       
   519   case vmIntrinsics::_getLongVolatile:
       
   520     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
       
   521   case vmIntrinsics::_getFloatVolatile:
       
   522     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
       
   523   case vmIntrinsics::_getDoubleVolatile:
       
   524     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
       
   525 
       
   526   case vmIntrinsics::_putObjectVolatile:
       
   527     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
       
   528   case vmIntrinsics::_putBooleanVolatile:
       
   529     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
       
   530   case vmIntrinsics::_putByteVolatile:
       
   531     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
       
   532   case vmIntrinsics::_putShortVolatile:
       
   533     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
       
   534   case vmIntrinsics::_putCharVolatile:
       
   535     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
       
   536   case vmIntrinsics::_putIntVolatile:
       
   537     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
       
   538   case vmIntrinsics::_putLongVolatile:
       
   539     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
       
   540   case vmIntrinsics::_putFloatVolatile:
       
   541     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
       
   542   case vmIntrinsics::_putDoubleVolatile:
       
   543     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
       
   544 
       
   545   case vmIntrinsics::_prefetchRead:
       
   546     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
       
   547   case vmIntrinsics::_prefetchWrite:
       
   548     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
       
   549   case vmIntrinsics::_prefetchReadStatic:
       
   550     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
       
   551   case vmIntrinsics::_prefetchWriteStatic:
       
   552     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
       
   553 
       
   554   case vmIntrinsics::_compareAndSwapObject:
       
   555     return inline_unsafe_CAS(T_OBJECT);
       
   556   case vmIntrinsics::_compareAndSwapInt:
       
   557     return inline_unsafe_CAS(T_INT);
       
   558   case vmIntrinsics::_compareAndSwapLong:
       
   559     return inline_unsafe_CAS(T_LONG);
       
   560 
       
   561   case vmIntrinsics::_putOrderedObject:
       
   562     return inline_unsafe_ordered_store(T_OBJECT);
       
   563   case vmIntrinsics::_putOrderedInt:
       
   564     return inline_unsafe_ordered_store(T_INT);
       
   565   case vmIntrinsics::_putOrderedLong:
       
   566     return inline_unsafe_ordered_store(T_LONG);
       
   567 
       
   568   case vmIntrinsics::_currentThread:
       
   569     return inline_native_currentThread();
       
   570   case vmIntrinsics::_isInterrupted:
       
   571     return inline_native_isInterrupted();
       
   572 
       
   573   case vmIntrinsics::_currentTimeMillis:
       
   574     return inline_native_time_funcs(false);
       
   575   case vmIntrinsics::_nanoTime:
       
   576     return inline_native_time_funcs(true);
       
   577   case vmIntrinsics::_allocateInstance:
       
   578     return inline_unsafe_allocate();
       
   579   case vmIntrinsics::_copyMemory:
       
   580     return inline_unsafe_copyMemory();
       
   581   case vmIntrinsics::_newArray:
       
   582     return inline_native_newArray();
       
   583   case vmIntrinsics::_getLength:
       
   584     return inline_native_getLength();
       
   585   case vmIntrinsics::_copyOf:
       
   586     return inline_array_copyOf(false);
       
   587   case vmIntrinsics::_copyOfRange:
       
   588     return inline_array_copyOf(true);
       
   589   case vmIntrinsics::_clone:
       
   590     return inline_native_clone(intrinsic()->is_virtual());
       
   591 
       
   592   case vmIntrinsics::_isAssignableFrom:
       
   593     return inline_native_subtype_check();
       
   594 
       
   595   case vmIntrinsics::_isInstance:
       
   596   case vmIntrinsics::_getModifiers:
       
   597   case vmIntrinsics::_isInterface:
       
   598   case vmIntrinsics::_isArray:
       
   599   case vmIntrinsics::_isPrimitive:
       
   600   case vmIntrinsics::_getSuperclass:
       
   601   case vmIntrinsics::_getComponentType:
       
   602   case vmIntrinsics::_getClassAccessFlags:
       
   603     return inline_native_Class_query(intrinsic_id());
       
   604 
       
   605   case vmIntrinsics::_floatToRawIntBits:
       
   606   case vmIntrinsics::_floatToIntBits:
       
   607   case vmIntrinsics::_intBitsToFloat:
       
   608   case vmIntrinsics::_doubleToRawLongBits:
       
   609   case vmIntrinsics::_doubleToLongBits:
       
   610   case vmIntrinsics::_longBitsToDouble:
       
   611     return inline_fp_conversions(intrinsic_id());
       
   612 
       
   613   case vmIntrinsics::_reverseBytes_i:
       
   614   case vmIntrinsics::_reverseBytes_l:
       
   615     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
       
   616 
       
   617   case vmIntrinsics::_get_AtomicLong:
       
   618     return inline_native_AtomicLong_get();
       
   619   case vmIntrinsics::_attemptUpdate:
       
   620     return inline_native_AtomicLong_attemptUpdate();
       
   621 
       
   622   case vmIntrinsics::_getCallerClass:
       
   623     return inline_native_Reflection_getCallerClass();
       
   624 
       
   625   default:
       
   626     // If you get here, it may be that someone has added a new intrinsic
       
   627     // to the list in vmSymbols.hpp without implementing it here.
       
   628 #ifndef PRODUCT
       
   629     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
       
   630       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
       
   631                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
       
   632     }
       
   633 #endif
       
   634     return false;
       
   635   }
       
   636 }
       
   637 
       
   638 //------------------------------push_result------------------------------
       
   639 // Helper function for finishing intrinsics.
       
   640 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
       
   641   record_for_igvn(region);
       
   642   set_control(_gvn.transform(region));
       
   643   BasicType value_type = value->type()->basic_type();
       
   644   push_node(value_type, _gvn.transform(value));
       
   645 }
       
   646 
       
   647 //------------------------------generate_guard---------------------------
       
   648 // Helper function for generating guarded fast-slow graph structures.
       
   649 // The given 'test', if true, guards a slow path.  If the test fails
       
   650 // then a fast path can be taken.  (We generally hope it fails.)
       
   651 // In all cases, GraphKit::control() is updated to the fast path.
       
   652 // The returned value represents the control for the slow path.
       
   653 // The return value is never 'top'; it is either a valid control
       
   654 // or NULL if it is obvious that the slow path can never be taken.
       
   655 // Also, if region and the slow control are not NULL, the slow edge
       
   656 // is appended to the region.
       
   657 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
       
   658   if (stopped()) {
       
   659     // Already short circuited.
       
   660     return NULL;
       
   661   }
       
   662 
       
   663   // Build an if node and its projections.
       
   664   // If test is true we take the slow path, which we assume is uncommon.
       
   665   if (_gvn.type(test) == TypeInt::ZERO) {
       
   666     // The slow branch is never taken.  No need to build this guard.
       
   667     return NULL;
       
   668   }
       
   669 
       
   670   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
       
   671 
       
   672   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
       
   673   if (if_slow == top()) {
       
   674     // The slow branch is never taken.  No need to build this guard.
       
   675     return NULL;
       
   676   }
       
   677 
       
   678   if (region != NULL)
       
   679     region->add_req(if_slow);
       
   680 
       
   681   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
       
   682   set_control(if_fast);
       
   683 
       
   684   return if_slow;
       
   685 }
       
   686 
       
   687 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
       
   688   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
       
   689 }
       
   690 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
       
   691   return generate_guard(test, region, PROB_FAIR);
       
   692 }
       
   693 
       
   694 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
       
   695                                                      Node* *pos_index) {
       
   696   if (stopped())
       
   697     return NULL;                // already stopped
       
   698   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
       
   699     return NULL;                // index is already adequately typed
       
   700   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
       
   701   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
       
   702   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
       
   703   if (is_neg != NULL && pos_index != NULL) {
       
   704     // Emulate effect of Parse::adjust_map_after_if.
       
   705     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
       
   706     ccast->set_req(0, control());
       
   707     (*pos_index) = _gvn.transform(ccast);
       
   708   }
       
   709   return is_neg;
       
   710 }
       
   711 
       
   712 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
       
   713                                                         Node* *pos_index) {
       
   714   if (stopped())
       
   715     return NULL;                // already stopped
       
   716   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
       
   717     return NULL;                // index is already adequately typed
       
   718   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
       
   719   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
       
   720   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
       
   721   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
       
   722   if (is_notp != NULL && pos_index != NULL) {
       
   723     // Emulate effect of Parse::adjust_map_after_if.
       
   724     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
       
   725     ccast->set_req(0, control());
       
   726     (*pos_index) = _gvn.transform(ccast);
       
   727   }
       
   728   return is_notp;
       
   729 }
       
   730 
       
   731 // Make sure that 'position' is a valid limit index, in [0..length].
       
   732 // There are two equivalent plans for checking this:
       
   733 //   A. (offset + copyLength)  unsigned<=  arrayLength
       
   734 //   B. offset  <=  (arrayLength - copyLength)
       
   735 // We require that all of the values above, except for the sum and
       
   736 // difference, are already known to be non-negative.
       
   737 // Plan A is robust in the face of overflow, if offset and copyLength
       
   738 // are both hugely positive.
       
   739 //
       
   740 // Plan B is less direct and intuitive, but it does not overflow at
       
   741 // all, since the difference of two non-negatives is always
       
   742 // representable.  Whenever Java methods must perform the equivalent
       
   743 // check they generally use Plan B instead of Plan A.
       
   744 // For the moment we use Plan A.
       
   745 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
       
   746                                                   Node* subseq_length,
       
   747                                                   Node* array_length,
       
   748                                                   RegionNode* region) {
       
   749   if (stopped())
       
   750     return NULL;                // already stopped
       
   751   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
       
   752   if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
       
   753     return NULL;                // common case of whole-array copy
       
   754   Node* last = subseq_length;
       
   755   if (!zero_offset)             // last += offset
       
   756     last = _gvn.transform( new (C, 3) AddINode(last, offset));
       
   757   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
       
   758   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
       
   759   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
       
   760   return is_over;
       
   761 }
       
   762 
       
   763 
       
   764 //--------------------------generate_current_thread--------------------
       
   765 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
       
   766   ciKlass*    thread_klass = env()->Thread_klass();
       
   767   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
       
   768   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
       
   769   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
       
   770   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
       
   771   tls_output = thread;
       
   772   return threadObj;
       
   773 }
       
   774 
       
   775 
       
   776 //------------------------------inline_string_compareTo------------------------
       
   777 bool LibraryCallKit::inline_string_compareTo() {
       
   778 
       
   779   const int value_offset = java_lang_String::value_offset_in_bytes();
       
   780   const int count_offset = java_lang_String::count_offset_in_bytes();
       
   781   const int offset_offset = java_lang_String::offset_offset_in_bytes();
       
   782 
       
   783   _sp += 2;
       
   784   Node *argument = pop();  // pop non-receiver first:  it was pushed second
       
   785   Node *receiver = pop();
       
   786 
       
   787   // Null check on self without removing any arguments.  The argument
       
   788   // null check technically happens in the wrong place, which can lead to
       
   789   // invalid stack traces when string compare is inlined into a method
       
   790   // which handles NullPointerExceptions.
       
   791   _sp += 2;
       
   792   receiver = do_null_check(receiver, T_OBJECT);
       
   793   argument = do_null_check(argument, T_OBJECT);
       
   794   _sp -= 2;
       
   795   if (stopped()) {
       
   796     return true;
       
   797   }
       
   798 
       
   799   ciInstanceKlass* klass = env()->String_klass();
       
   800   const TypeInstPtr* string_type =
       
   801     TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
       
   802 
       
   803   Node* compare =
       
   804     _gvn.transform(new (C, 7) StrCompNode(
       
   805                         control(),
       
   806                         memory(TypeAryPtr::CHARS),
       
   807                         memory(string_type->add_offset(value_offset)),
       
   808                         memory(string_type->add_offset(count_offset)),
       
   809                         memory(string_type->add_offset(offset_offset)),
       
   810                         receiver,
       
   811                         argument));
       
   812   push(compare);
       
   813   return true;
       
   814 }
       
   815 
       
   816 // Java version of String.indexOf(constant string)
       
   817 // class StringDecl {
       
   818 //   StringDecl(char[] ca) {
       
   819 //     offset = 0;
       
   820 //     count = ca.length;
       
   821 //     value = ca;
       
   822 //   }
       
   823 //   int offset;
       
   824 //   int count;
       
   825 //   char[] value;
       
   826 // }
       
   827 //
       
   828 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
       
   829 //                             int targetOffset, int cache_i, int md2) {
       
   830 //   int cache = cache_i;
       
   831 //   int sourceOffset = string_object.offset;
       
   832 //   int sourceCount = string_object.count;
       
   833 //   int targetCount = target_object.length;
       
   834 //
       
   835 //   int targetCountLess1 = targetCount - 1;
       
   836 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
       
   837 //
       
   838 //   char[] source = string_object.value;
       
   839 //   char[] target = target_object;
       
   840 //   int lastChar = target[targetCountLess1];
       
   841 //
       
   842 //  outer_loop:
       
   843 //   for (int i = sourceOffset; i < sourceEnd; ) {
       
   844 //     int src = source[i + targetCountLess1];
       
   845 //     if (src == lastChar) {
       
   846 //       // With random strings and a 4-character alphabet,
       
   847 //       // reverse matching at this point sets up 0.8% fewer
       
   848 //       // frames, but (paradoxically) makes 0.3% more probes.
       
   849 //       // Since those probes are nearer the lastChar probe,
       
   850 //       // there is may be a net D$ win with reverse matching.
       
   851 //       // But, reversing loop inhibits unroll of inner loop
       
   852 //       // for unknown reason.  So, does running outer loop from
       
   853 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
       
   854 //       for (int j = 0; j < targetCountLess1; j++) {
       
   855 //         if (target[targetOffset + j] != source[i+j]) {
       
   856 //           if ((cache & (1 << source[i+j])) == 0) {
       
   857 //             if (md2 < j+1) {
       
   858 //               i += j+1;
       
   859 //               continue outer_loop;
       
   860 //             }
       
   861 //           }
       
   862 //           i += md2;
       
   863 //           continue outer_loop;
       
   864 //         }
       
   865 //       }
       
   866 //       return i - sourceOffset;
       
   867 //     }
       
   868 //     if ((cache & (1 << src)) == 0) {
       
   869 //       i += targetCountLess1;
       
   870 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
       
   871 //     i++;
       
   872 //   }
       
   873 //   return -1;
       
   874 // }
       
   875 
       
   876 //------------------------------string_indexOf------------------------
       
   877 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
       
   878                                      jint cache_i, jint md2_i) {
       
   879 
       
   880   Node* no_ctrl  = NULL;
       
   881   float likely   = PROB_LIKELY(0.9);
       
   882   float unlikely = PROB_UNLIKELY(0.9);
       
   883 
       
   884   const int value_offset  = java_lang_String::value_offset_in_bytes();
       
   885   const int count_offset  = java_lang_String::count_offset_in_bytes();
       
   886   const int offset_offset = java_lang_String::offset_offset_in_bytes();
       
   887 
       
   888   ciInstanceKlass* klass = env()->String_klass();
       
   889   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
       
   890   const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
       
   891 
       
   892   Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
       
   893   Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
       
   894   Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
       
   895   Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
       
   896   Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
       
   897   Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
       
   898 
       
   899   Node* target = _gvn.transform(ConPNode::make(C, target_array));
       
   900   jint target_length = target_array->length();
       
   901   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
       
   902   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
       
   903 
       
   904   IdealKit kit(gvn(), control(), merged_memory());
       
   905 #define __ kit.
       
   906   Node* zero             = __ ConI(0);
       
   907   Node* one              = __ ConI(1);
       
   908   Node* cache            = __ ConI(cache_i);
       
   909   Node* md2              = __ ConI(md2_i);
       
   910   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
       
   911   Node* targetCount      = __ ConI(target_length);
       
   912   Node* targetCountLess1 = __ ConI(target_length - 1);
       
   913   Node* targetOffset     = __ ConI(targetOffset_i);
       
   914   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
       
   915 
       
   916   IdealVariable rtn(kit), i(kit), j(kit); __ declares_done();
       
   917   Node* outer_loop = __ make_label(2 /* goto */);
       
   918   Node* return_    = __ make_label(1);
       
   919 
       
   920   __ set(rtn,__ ConI(-1));
       
   921   __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
       
   922        Node* i2  = __ AddI(__ value(i), targetCountLess1);
       
   923        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
       
   924        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
       
   925        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
       
   926          __ loop(j, zero, BoolTest::lt, targetCountLess1); {
       
   927               Node* tpj = __ AddI(targetOffset, __ value(j));
       
   928               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
       
   929               Node* ipj  = __ AddI(__ value(i), __ value(j));
       
   930               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
       
   931               __ if_then(targ, BoolTest::ne, src2); {
       
   932                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
       
   933                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
       
   934                     __ increment(i, __ AddI(__ value(j), one));
       
   935                     __ goto_(outer_loop);
       
   936                   } __ end_if(); __ dead(j);
       
   937                 }__ end_if(); __ dead(j);
       
   938                 __ increment(i, md2);
       
   939                 __ goto_(outer_loop);
       
   940               }__ end_if();
       
   941               __ increment(j, one);
       
   942          }__ end_loop(); __ dead(j);
       
   943          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
       
   944          __ goto_(return_);
       
   945        }__ end_if();
       
   946        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
       
   947          __ increment(i, targetCountLess1);
       
   948        }__ end_if();
       
   949        __ increment(i, one);
       
   950        __ bind(outer_loop);
       
   951   }__ end_loop(); __ dead(i);
       
   952   __ bind(return_);
       
   953   __ drain_delay_transform();
       
   954 
       
   955   set_control(__ ctrl());
       
   956   Node* result = __ value(rtn);
       
   957 #undef __
       
   958   C->set_has_loops(true);
       
   959   return result;
       
   960 }
       
   961 
       
   962 
       
   963 //------------------------------inline_string_indexOf------------------------
       
   964 bool LibraryCallKit::inline_string_indexOf() {
       
   965 
       
   966   _sp += 2;
       
   967   Node *argument = pop();  // pop non-receiver first:  it was pushed second
       
   968   Node *receiver = pop();
       
   969 
       
   970   // don't intrinsify is argument isn't a constant string.
       
   971   if (!argument->is_Con()) {
       
   972     return false;
       
   973   }
       
   974   const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
       
   975   if (str_type == NULL) {
       
   976     return false;
       
   977   }
       
   978   ciInstanceKlass* klass = env()->String_klass();
       
   979   ciObject* str_const = str_type->const_oop();
       
   980   if (str_const == NULL || str_const->klass() != klass) {
       
   981     return false;
       
   982   }
       
   983   ciInstance* str = str_const->as_instance();
       
   984   assert(str != NULL, "must be instance");
       
   985 
       
   986   const int value_offset  = java_lang_String::value_offset_in_bytes();
       
   987   const int count_offset  = java_lang_String::count_offset_in_bytes();
       
   988   const int offset_offset = java_lang_String::offset_offset_in_bytes();
       
   989 
       
   990   ciObject* v = str->field_value_by_offset(value_offset).as_object();
       
   991   int       o = str->field_value_by_offset(offset_offset).as_int();
       
   992   int       c = str->field_value_by_offset(count_offset).as_int();
       
   993   ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
       
   994 
       
   995   // constant strings have no offset and count == length which
       
   996   // simplifies the resulting code somewhat so lets optimize for that.
       
   997   if (o != 0 || c != pat->length()) {
       
   998     return false;
       
   999   }
       
  1000 
       
  1001   // Null check on self without removing any arguments.  The argument
       
  1002   // null check technically happens in the wrong place, which can lead to
       
  1003   // invalid stack traces when string compare is inlined into a method
       
  1004   // which handles NullPointerExceptions.
       
  1005   _sp += 2;
       
  1006   receiver = do_null_check(receiver, T_OBJECT);
       
  1007   // No null check on the argument is needed since it's a constant String oop.
       
  1008   _sp -= 2;
       
  1009   if (stopped()) {
       
  1010     return true;
       
  1011   }
       
  1012 
       
  1013   // The null string as a pattern always returns 0 (match at beginning of string)
       
  1014   if (c == 0) {
       
  1015     push(intcon(0));
       
  1016     return true;
       
  1017   }
       
  1018 
       
  1019   jchar lastChar = pat->char_at(o + (c - 1));
       
  1020   int cache = 0;
       
  1021   int i;
       
  1022   for (i = 0; i < c - 1; i++) {
       
  1023     assert(i < pat->length(), "out of range");
       
  1024     cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
       
  1025   }
       
  1026 
       
  1027   int md2 = c;
       
  1028   for (i = 0; i < c - 1; i++) {
       
  1029     assert(i < pat->length(), "out of range");
       
  1030     if (pat->char_at(o + i) == lastChar) {
       
  1031       md2 = (c - 1) - i;
       
  1032     }
       
  1033   }
       
  1034 
       
  1035   Node* result = string_indexOf(receiver, pat, o, cache, md2);
       
  1036   push(result);
       
  1037   return true;
       
  1038 }
       
  1039 
       
  1040 //--------------------------pop_math_arg--------------------------------
       
  1041 // Pop a double argument to a math function from the stack
       
  1042 // rounding it if necessary.
       
  1043 Node * LibraryCallKit::pop_math_arg() {
       
  1044   Node *arg = pop_pair();
       
  1045   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
       
  1046     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
       
  1047   return arg;
       
  1048 }
       
  1049 
       
  1050 //------------------------------inline_trig----------------------------------
       
  1051 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
       
  1052 // argument reduction which will turn into a fast/slow diamond.
       
  1053 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
       
  1054   _sp += arg_size();            // restore stack pointer
       
  1055   Node* arg = pop_math_arg();
       
  1056   Node* trig = NULL;
       
  1057 
       
  1058   switch (id) {
       
  1059   case vmIntrinsics::_dsin:
       
  1060     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
       
  1061     break;
       
  1062   case vmIntrinsics::_dcos:
       
  1063     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
       
  1064     break;
       
  1065   case vmIntrinsics::_dtan:
       
  1066     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
       
  1067     break;
       
  1068   default:
       
  1069     assert(false, "bad intrinsic was passed in");
       
  1070     return false;
       
  1071   }
       
  1072 
       
  1073   // Rounding required?  Check for argument reduction!
       
  1074   if( Matcher::strict_fp_requires_explicit_rounding ) {
       
  1075 
       
  1076     static const double     pi_4 =  0.7853981633974483;
       
  1077     static const double neg_pi_4 = -0.7853981633974483;
       
  1078     // pi/2 in 80-bit extended precision
       
  1079     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
       
  1080     // -pi/2 in 80-bit extended precision
       
  1081     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
       
  1082     // Cutoff value for using this argument reduction technique
       
  1083     //static const double    pi_2_minus_epsilon =  1.564660403643354;
       
  1084     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
       
  1085 
       
  1086     // Pseudocode for sin:
       
  1087     // if (x <= Math.PI / 4.0) {
       
  1088     //   if (x >= -Math.PI / 4.0) return  fsin(x);
       
  1089     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
       
  1090     // } else {
       
  1091     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
       
  1092     // }
       
  1093     // return StrictMath.sin(x);
       
  1094 
       
  1095     // Pseudocode for cos:
       
  1096     // if (x <= Math.PI / 4.0) {
       
  1097     //   if (x >= -Math.PI / 4.0) return  fcos(x);
       
  1098     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
       
  1099     // } else {
       
  1100     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
       
  1101     // }
       
  1102     // return StrictMath.cos(x);
       
  1103 
       
  1104     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
       
  1105     // requires a special machine instruction to load it.  Instead we'll try
       
  1106     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
       
  1107     // probably do the math inside the SIN encoding.
       
  1108 
       
  1109     // Make the merge point
       
  1110     RegionNode *r = new (C, 3) RegionNode(3);
       
  1111     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
       
  1112 
       
  1113     // Flatten arg so we need only 1 test
       
  1114     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
       
  1115     // Node for PI/4 constant
       
  1116     Node *pi4 = makecon(TypeD::make(pi_4));
       
  1117     // Check PI/4 : abs(arg)
       
  1118     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
       
  1119     // Check: If PI/4 < abs(arg) then go slow
       
  1120     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
       
  1121     // Branch either way
       
  1122     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
       
  1123     set_control(opt_iff(r,iff));
       
  1124 
       
  1125     // Set fast path result
       
  1126     phi->init_req(2,trig);
       
  1127 
       
  1128     // Slow path - non-blocking leaf call
       
  1129     Node* call = NULL;
       
  1130     switch (id) {
       
  1131     case vmIntrinsics::_dsin:
       
  1132       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
       
  1133                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
       
  1134                                "Sin", NULL, arg, top());
       
  1135       break;
       
  1136     case vmIntrinsics::_dcos:
       
  1137       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
       
  1138                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
       
  1139                                "Cos", NULL, arg, top());
       
  1140       break;
       
  1141     case vmIntrinsics::_dtan:
       
  1142       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
       
  1143                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
       
  1144                                "Tan", NULL, arg, top());
       
  1145       break;
       
  1146     }
       
  1147     assert(control()->in(0) == call, "");
       
  1148     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
       
  1149     r->init_req(1,control());
       
  1150     phi->init_req(1,slow_result);
       
  1151 
       
  1152     // Post-merge
       
  1153     set_control(_gvn.transform(r));
       
  1154     record_for_igvn(r);
       
  1155     trig = _gvn.transform(phi);
       
  1156 
       
  1157     C->set_has_split_ifs(true); // Has chance for split-if optimization
       
  1158   }
       
  1159   // Push result back on JVM stack
       
  1160   push_pair(trig);
       
  1161   return true;
       
  1162 }
       
  1163 
       
  1164 //------------------------------inline_sqrt-------------------------------------
       
  1165 // Inline square root instruction, if possible.
       
  1166 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
       
  1167   assert(id == vmIntrinsics::_dsqrt, "Not square root");
       
  1168   _sp += arg_size();        // restore stack pointer
       
  1169   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
       
  1170   return true;
       
  1171 }
       
  1172 
       
  1173 //------------------------------inline_abs-------------------------------------
       
  1174 // Inline absolute value instruction, if possible.
       
  1175 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
       
  1176   assert(id == vmIntrinsics::_dabs, "Not absolute value");
       
  1177   _sp += arg_size();        // restore stack pointer
       
  1178   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
       
  1179   return true;
       
  1180 }
       
  1181 
       
  1182 //------------------------------inline_exp-------------------------------------
       
  1183 // Inline exp instructions, if possible.  The Intel hardware only misses
       
  1184 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
       
  1185 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
       
  1186   assert(id == vmIntrinsics::_dexp, "Not exp");
       
  1187 
       
  1188   // If this inlining ever returned NaN in the past, we do not intrinsify it
       
  1189   // every again.  NaN results requires StrictMath.exp handling.
       
  1190   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
       
  1191 
       
  1192   // Do not intrinsify on older platforms which lack cmove.
       
  1193   if (ConditionalMoveLimit == 0)  return false;
       
  1194 
       
  1195   _sp += arg_size();        // restore stack pointer
       
  1196   Node *x = pop_math_arg();
       
  1197   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
       
  1198 
       
  1199   //-------------------
       
  1200   //result=(result.isNaN())? StrictMath::exp():result;
       
  1201   // Check: If isNaN() by checking result!=result? then go to Strict Math
       
  1202   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
       
  1203   // Build the boolean node
       
  1204   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
       
  1205 
       
  1206   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
       
  1207     // End the current control-flow path
       
  1208     push_pair(x);
       
  1209     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
       
  1210     // to handle.  Recompile without intrinsifying Math.exp
       
  1211     uncommon_trap(Deoptimization::Reason_intrinsic,
       
  1212                   Deoptimization::Action_make_not_entrant);
       
  1213   }
       
  1214 
       
  1215   C->set_has_split_ifs(true); // Has chance for split-if optimization
       
  1216 
       
  1217   push_pair(result);
       
  1218 
       
  1219   return true;
       
  1220 }
       
  1221 
       
  1222 //------------------------------inline_pow-------------------------------------
       
  1223 // Inline power instructions, if possible.
       
  1224 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
       
  1225   assert(id == vmIntrinsics::_dpow, "Not pow");
       
  1226 
       
  1227   // If this inlining ever returned NaN in the past, we do not intrinsify it
       
  1228   // every again.  NaN results requires StrictMath.pow handling.
       
  1229   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
       
  1230 
       
  1231   // Do not intrinsify on older platforms which lack cmove.
       
  1232   if (ConditionalMoveLimit == 0)  return false;
       
  1233 
       
  1234   // Pseudocode for pow
       
  1235   // if (x <= 0.0) {
       
  1236   //   if ((double)((int)y)==y) { // if y is int
       
  1237   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
       
  1238   //   } else {
       
  1239   //     result = NaN;
       
  1240   //   }
       
  1241   // } else {
       
  1242   //   result = DPow(x,y);
       
  1243   // }
       
  1244   // if (result != result)?  {
       
  1245   //   ucommon_trap();
       
  1246   // }
       
  1247   // return result;
       
  1248 
       
  1249   _sp += arg_size();        // restore stack pointer
       
  1250   Node* y = pop_math_arg();
       
  1251   Node* x = pop_math_arg();
       
  1252 
       
  1253   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
       
  1254 
       
  1255   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
       
  1256   // inside of something) then skip the fancy tests and just check for
       
  1257   // NaN result.
       
  1258   Node *result = NULL;
       
  1259   if( jvms()->depth() >= 1 ) {
       
  1260     result = fast_result;
       
  1261   } else {
       
  1262 
       
  1263     // Set the merge point for If node with condition of (x <= 0.0)
       
  1264     // There are four possible paths to region node and phi node
       
  1265     RegionNode *r = new (C, 4) RegionNode(4);
       
  1266     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
       
  1267 
       
  1268     // Build the first if node: if (x <= 0.0)
       
  1269     // Node for 0 constant
       
  1270     Node *zeronode = makecon(TypeD::ZERO);
       
  1271     // Check x:0
       
  1272     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
       
  1273     // Check: If (x<=0) then go complex path
       
  1274     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
       
  1275     // Branch either way
       
  1276     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
       
  1277     Node *opt_test = _gvn.transform(if1);
       
  1278     //assert( opt_test->is_If(), "Expect an IfNode");
       
  1279     IfNode *opt_if1 = (IfNode*)opt_test;
       
  1280     // Fast path taken; set region slot 3
       
  1281     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
       
  1282     r->init_req(3,fast_taken); // Capture fast-control
       
  1283 
       
  1284     // Fast path not-taken, i.e. slow path
       
  1285     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
       
  1286 
       
  1287     // Set fast path result
       
  1288     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
       
  1289     phi->init_req(3, fast_result);
       
  1290 
       
  1291     // Complex path
       
  1292     // Build the second if node (if y is int)
       
  1293     // Node for (int)y
       
  1294     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
       
  1295     // Node for (double)((int) y)
       
  1296     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
       
  1297     // Check (double)((int) y) : y
       
  1298     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
       
  1299     // Check if (y isn't int) then go to slow path
       
  1300 
       
  1301     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
       
  1302     // Branch eith way
       
  1303     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
       
  1304     Node *slow_path = opt_iff(r,if2); // Set region path 2
       
  1305 
       
  1306     // Calculate DPow(abs(x), y)*(1 & (int)y)
       
  1307     // Node for constant 1
       
  1308     Node *conone = intcon(1);
       
  1309     // 1& (int)y
       
  1310     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
       
  1311     // zero node
       
  1312     Node *conzero = intcon(0);
       
  1313     // Check (1&(int)y)==0?
       
  1314     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
       
  1315     // Check if (1&(int)y)!=0?, if so the result is negative
       
  1316     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
       
  1317     // abs(x)
       
  1318     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
       
  1319     // abs(x)^y
       
  1320     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
       
  1321     // -abs(x)^y
       
  1322     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
       
  1323     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
       
  1324     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
       
  1325     // Set complex path fast result
       
  1326     phi->init_req(2, signresult);
       
  1327 
       
  1328     static const jlong nan_bits = CONST64(0x7ff8000000000000);
       
  1329     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
       
  1330     r->init_req(1,slow_path);
       
  1331     phi->init_req(1,slow_result);
       
  1332 
       
  1333     // Post merge
       
  1334     set_control(_gvn.transform(r));
       
  1335     record_for_igvn(r);
       
  1336     result=_gvn.transform(phi);
       
  1337   }
       
  1338 
       
  1339   //-------------------
       
  1340   //result=(result.isNaN())? uncommon_trap():result;
       
  1341   // Check: If isNaN() by checking result!=result? then go to Strict Math
       
  1342   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
       
  1343   // Build the boolean node
       
  1344   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
       
  1345 
       
  1346   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
       
  1347     // End the current control-flow path
       
  1348     push_pair(x);
       
  1349     push_pair(y);
       
  1350     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
       
  1351     // to handle.  Recompile without intrinsifying Math.pow.
       
  1352     uncommon_trap(Deoptimization::Reason_intrinsic,
       
  1353                   Deoptimization::Action_make_not_entrant);
       
  1354   }
       
  1355 
       
  1356   C->set_has_split_ifs(true); // Has chance for split-if optimization
       
  1357 
       
  1358   push_pair(result);
       
  1359 
       
  1360   return true;
       
  1361 }
       
  1362 
       
  1363 //------------------------------inline_trans-------------------------------------
       
  1364 // Inline transcendental instructions, if possible.  The Intel hardware gets
       
  1365 // these right, no funny corner cases missed.
       
  1366 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
       
  1367   _sp += arg_size();        // restore stack pointer
       
  1368   Node* arg = pop_math_arg();
       
  1369   Node* trans = NULL;
       
  1370 
       
  1371   switch (id) {
       
  1372   case vmIntrinsics::_dlog:
       
  1373     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
       
  1374     break;
       
  1375   case vmIntrinsics::_dlog10:
       
  1376     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
       
  1377     break;
       
  1378   default:
       
  1379     assert(false, "bad intrinsic was passed in");
       
  1380     return false;
       
  1381   }
       
  1382 
       
  1383   // Push result back on JVM stack
       
  1384   push_pair(trans);
       
  1385   return true;
       
  1386 }
       
  1387 
       
  1388 //------------------------------runtime_math-----------------------------
       
  1389 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
       
  1390   Node* a = NULL;
       
  1391   Node* b = NULL;
       
  1392 
       
  1393   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
       
  1394          "must be (DD)D or (D)D type");
       
  1395 
       
  1396   // Inputs
       
  1397   _sp += arg_size();        // restore stack pointer
       
  1398   if (call_type == OptoRuntime::Math_DD_D_Type()) {
       
  1399     b = pop_math_arg();
       
  1400   }
       
  1401   a = pop_math_arg();
       
  1402 
       
  1403   const TypePtr* no_memory_effects = NULL;
       
  1404   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
       
  1405                                  no_memory_effects,
       
  1406                                  a, top(), b, b ? top() : NULL);
       
  1407   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
       
  1408 #ifdef ASSERT
       
  1409   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
       
  1410   assert(value_top == top(), "second value must be top");
       
  1411 #endif
       
  1412 
       
  1413   push_pair(value);
       
  1414   return true;
       
  1415 }
       
  1416 
       
  1417 //------------------------------inline_math_native-----------------------------
       
  1418 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
       
  1419   switch (id) {
       
  1420     // These intrinsics are not properly supported on all hardware
       
  1421   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
       
  1422     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
       
  1423   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
       
  1424     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
       
  1425   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
       
  1426     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
       
  1427 
       
  1428   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
       
  1429     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
       
  1430   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
       
  1431     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
       
  1432 
       
  1433     // These intrinsics are supported on all hardware
       
  1434   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
       
  1435   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
       
  1436 
       
  1437     // These intrinsics don't work on X86.  The ad implementation doesn't
       
  1438     // handle NaN's properly.  Instead of returning infinity, the ad
       
  1439     // implementation returns a NaN on overflow. See bug: 6304089
       
  1440     // Once the ad implementations are fixed, change the code below
       
  1441     // to match the intrinsics above
       
  1442 
       
  1443   case vmIntrinsics::_dexp:  return
       
  1444     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
       
  1445   case vmIntrinsics::_dpow:  return
       
  1446     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
       
  1447 
       
  1448    // These intrinsics are not yet correctly implemented
       
  1449   case vmIntrinsics::_datan2:
       
  1450     return false;
       
  1451 
       
  1452   default:
       
  1453     ShouldNotReachHere();
       
  1454     return false;
       
  1455   }
       
  1456 }
       
  1457 
       
  1458 static bool is_simple_name(Node* n) {
       
  1459   return (n->req() == 1         // constant
       
  1460           || (n->is_Type() && n->as_Type()->type()->singleton())
       
  1461           || n->is_Proj()       // parameter or return value
       
  1462           || n->is_Phi()        // local of some sort
       
  1463           );
       
  1464 }
       
  1465 
       
  1466 //----------------------------inline_min_max-----------------------------------
       
  1467 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
       
  1468   push(generate_min_max(id, argument(0), argument(1)));
       
  1469 
       
  1470   return true;
       
  1471 }
       
  1472 
       
  1473 Node*
       
  1474 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
       
  1475   // These are the candidate return value:
       
  1476   Node* xvalue = x0;
       
  1477   Node* yvalue = y0;
       
  1478 
       
  1479   if (xvalue == yvalue) {
       
  1480     return xvalue;
       
  1481   }
       
  1482 
       
  1483   bool want_max = (id == vmIntrinsics::_max);
       
  1484 
       
  1485   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
       
  1486   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
       
  1487   if (txvalue == NULL || tyvalue == NULL)  return top();
       
  1488   // This is not really necessary, but it is consistent with a
       
  1489   // hypothetical MaxINode::Value method:
       
  1490   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
       
  1491 
       
  1492   // %%% This folding logic should (ideally) be in a different place.
       
  1493   // Some should be inside IfNode, and there to be a more reliable
       
  1494   // transformation of ?: style patterns into cmoves.  We also want
       
  1495   // more powerful optimizations around cmove and min/max.
       
  1496 
       
  1497   // Try to find a dominating comparison of these guys.
       
  1498   // It can simplify the index computation for Arrays.copyOf
       
  1499   // and similar uses of System.arraycopy.
       
  1500   // First, compute the normalized version of CmpI(x, y).
       
  1501   int   cmp_op = Op_CmpI;
       
  1502   Node* xkey = xvalue;
       
  1503   Node* ykey = yvalue;
       
  1504   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
       
  1505   if (ideal_cmpxy->is_Cmp()) {
       
  1506     // E.g., if we have CmpI(length - offset, count),
       
  1507     // it might idealize to CmpI(length, count + offset)
       
  1508     cmp_op = ideal_cmpxy->Opcode();
       
  1509     xkey = ideal_cmpxy->in(1);
       
  1510     ykey = ideal_cmpxy->in(2);
       
  1511   }
       
  1512 
       
  1513   // Start by locating any relevant comparisons.
       
  1514   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
       
  1515   Node* cmpxy = NULL;
       
  1516   Node* cmpyx = NULL;
       
  1517   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
       
  1518     Node* cmp = start_from->fast_out(k);
       
  1519     if (cmp->outcnt() > 0 &&            // must have prior uses
       
  1520         cmp->in(0) == NULL &&           // must be context-independent
       
  1521         cmp->Opcode() == cmp_op) {      // right kind of compare
       
  1522       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
       
  1523       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
       
  1524     }
       
  1525   }
       
  1526 
       
  1527   const int NCMPS = 2;
       
  1528   Node* cmps[NCMPS] = { cmpxy, cmpyx };
       
  1529   int cmpn;
       
  1530   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
       
  1531     if (cmps[cmpn] != NULL)  break;     // find a result
       
  1532   }
       
  1533   if (cmpn < NCMPS) {
       
  1534     // Look for a dominating test that tells us the min and max.
       
  1535     int depth = 0;                // Limit search depth for speed
       
  1536     Node* dom = control();
       
  1537     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
       
  1538       if (++depth >= 100)  break;
       
  1539       Node* ifproj = dom;
       
  1540       if (!ifproj->is_Proj())  continue;
       
  1541       Node* iff = ifproj->in(0);
       
  1542       if (!iff->is_If())  continue;
       
  1543       Node* bol = iff->in(1);
       
  1544       if (!bol->is_Bool())  continue;
       
  1545       Node* cmp = bol->in(1);
       
  1546       if (cmp == NULL)  continue;
       
  1547       for (cmpn = 0; cmpn < NCMPS; cmpn++)
       
  1548         if (cmps[cmpn] == cmp)  break;
       
  1549       if (cmpn == NCMPS)  continue;
       
  1550       BoolTest::mask btest = bol->as_Bool()->_test._test;
       
  1551       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
       
  1552       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
       
  1553       // At this point, we know that 'x btest y' is true.
       
  1554       switch (btest) {
       
  1555       case BoolTest::eq:
       
  1556         // They are proven equal, so we can collapse the min/max.
       
  1557         // Either value is the answer.  Choose the simpler.
       
  1558         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
       
  1559           return yvalue;
       
  1560         return xvalue;
       
  1561       case BoolTest::lt:          // x < y
       
  1562       case BoolTest::le:          // x <= y
       
  1563         return (want_max ? yvalue : xvalue);
       
  1564       case BoolTest::gt:          // x > y
       
  1565       case BoolTest::ge:          // x >= y
       
  1566         return (want_max ? xvalue : yvalue);
       
  1567       }
       
  1568     }
       
  1569   }
       
  1570 
       
  1571   // We failed to find a dominating test.
       
  1572   // Let's pick a test that might GVN with prior tests.
       
  1573   Node*          best_bol   = NULL;
       
  1574   BoolTest::mask best_btest = BoolTest::illegal;
       
  1575   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
       
  1576     Node* cmp = cmps[cmpn];
       
  1577     if (cmp == NULL)  continue;
       
  1578     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
       
  1579       Node* bol = cmp->fast_out(j);
       
  1580       if (!bol->is_Bool())  continue;
       
  1581       BoolTest::mask btest = bol->as_Bool()->_test._test;
       
  1582       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
       
  1583       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
       
  1584       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
       
  1585         best_bol   = bol->as_Bool();
       
  1586         best_btest = btest;
       
  1587       }
       
  1588     }
       
  1589   }
       
  1590 
       
  1591   Node* answer_if_true  = NULL;
       
  1592   Node* answer_if_false = NULL;
       
  1593   switch (best_btest) {
       
  1594   default:
       
  1595     if (cmpxy == NULL)
       
  1596       cmpxy = ideal_cmpxy;
       
  1597     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
       
  1598     // and fall through:
       
  1599   case BoolTest::lt:          // x < y
       
  1600   case BoolTest::le:          // x <= y
       
  1601     answer_if_true  = (want_max ? yvalue : xvalue);
       
  1602     answer_if_false = (want_max ? xvalue : yvalue);
       
  1603     break;
       
  1604   case BoolTest::gt:          // x > y
       
  1605   case BoolTest::ge:          // x >= y
       
  1606     answer_if_true  = (want_max ? xvalue : yvalue);
       
  1607     answer_if_false = (want_max ? yvalue : xvalue);
       
  1608     break;
       
  1609   }
       
  1610 
       
  1611   jint hi, lo;
       
  1612   if (want_max) {
       
  1613     // We can sharpen the minimum.
       
  1614     hi = MAX2(txvalue->_hi, tyvalue->_hi);
       
  1615     lo = MAX2(txvalue->_lo, tyvalue->_lo);
       
  1616   } else {
       
  1617     // We can sharpen the maximum.
       
  1618     hi = MIN2(txvalue->_hi, tyvalue->_hi);
       
  1619     lo = MIN2(txvalue->_lo, tyvalue->_lo);
       
  1620   }
       
  1621 
       
  1622   // Use a flow-free graph structure, to avoid creating excess control edges
       
  1623   // which could hinder other optimizations.
       
  1624   // Since Math.min/max is often used with arraycopy, we want
       
  1625   // tightly_coupled_allocation to be able to see beyond min/max expressions.
       
  1626   Node* cmov = CMoveNode::make(C, NULL, best_bol,
       
  1627                                answer_if_false, answer_if_true,
       
  1628                                TypeInt::make(lo, hi, widen));
       
  1629 
       
  1630   return _gvn.transform(cmov);
       
  1631 
       
  1632   /*
       
  1633   // This is not as desirable as it may seem, since Min and Max
       
  1634   // nodes do not have a full set of optimizations.
       
  1635   // And they would interfere, anyway, with 'if' optimizations
       
  1636   // and with CMoveI canonical forms.
       
  1637   switch (id) {
       
  1638   case vmIntrinsics::_min:
       
  1639     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
       
  1640   case vmIntrinsics::_max:
       
  1641     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
       
  1642   default:
       
  1643     ShouldNotReachHere();
       
  1644   }
       
  1645   */
       
  1646 }
       
  1647 
       
  1648 inline int
       
  1649 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
       
  1650   const TypePtr* base_type = TypePtr::NULL_PTR;
       
  1651   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
       
  1652   if (base_type == NULL) {
       
  1653     // Unknown type.
       
  1654     return Type::AnyPtr;
       
  1655   } else if (base_type == TypePtr::NULL_PTR) {
       
  1656     // Since this is a NULL+long form, we have to switch to a rawptr.
       
  1657     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
       
  1658     offset = MakeConX(0);
       
  1659     return Type::RawPtr;
       
  1660   } else if (base_type->base() == Type::RawPtr) {
       
  1661     return Type::RawPtr;
       
  1662   } else if (base_type->isa_oopptr()) {
       
  1663     // Base is never null => always a heap address.
       
  1664     if (base_type->ptr() == TypePtr::NotNull) {
       
  1665       return Type::OopPtr;
       
  1666     }
       
  1667     // Offset is small => always a heap address.
       
  1668     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
       
  1669     if (offset_type != NULL &&
       
  1670         base_type->offset() == 0 &&     // (should always be?)
       
  1671         offset_type->_lo >= 0 &&
       
  1672         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
       
  1673       return Type::OopPtr;
       
  1674     }
       
  1675     // Otherwise, it might either be oop+off or NULL+addr.
       
  1676     return Type::AnyPtr;
       
  1677   } else {
       
  1678     // No information:
       
  1679     return Type::AnyPtr;
       
  1680   }
       
  1681 }
       
  1682 
       
  1683 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
       
  1684   int kind = classify_unsafe_addr(base, offset);
       
  1685   if (kind == Type::RawPtr) {
       
  1686     return basic_plus_adr(top(), base, offset);
       
  1687   } else {
       
  1688     return basic_plus_adr(base, offset);
       
  1689   }
       
  1690 }
       
  1691 
       
  1692 //----------------------------inline_reverseBytes_int/long-------------------
       
  1693 // inline Int.reverseBytes(int)
       
  1694 // inline Long.reverseByes(long)
       
  1695 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
       
  1696   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l, "not reverse Bytes");
       
  1697   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI)) return false;
       
  1698   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL)) return false;
       
  1699   _sp += arg_size();        // restore stack pointer
       
  1700   switch (id) {
       
  1701   case vmIntrinsics::_reverseBytes_i:
       
  1702     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
       
  1703     break;
       
  1704   case vmIntrinsics::_reverseBytes_l:
       
  1705     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
       
  1706     break;
       
  1707   default:
       
  1708     ;
       
  1709   }
       
  1710   return true;
       
  1711 }
       
  1712 
       
  1713 //----------------------------inline_unsafe_access----------------------------
       
  1714 
       
  1715 const static BasicType T_ADDRESS_HOLDER = T_LONG;
       
  1716 
       
  1717 // Interpret Unsafe.fieldOffset cookies correctly:
       
  1718 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
       
  1719 
       
  1720 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
       
  1721   if (callee()->is_static())  return false;  // caller must have the capability!
       
  1722 
       
  1723 #ifndef PRODUCT
       
  1724   {
       
  1725     ResourceMark rm;
       
  1726     // Check the signatures.
       
  1727     ciSignature* sig = signature();
       
  1728 #ifdef ASSERT
       
  1729     if (!is_store) {
       
  1730       // Object getObject(Object base, int/long offset), etc.
       
  1731       BasicType rtype = sig->return_type()->basic_type();
       
  1732       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
       
  1733           rtype = T_ADDRESS;  // it is really a C void*
       
  1734       assert(rtype == type, "getter must return the expected value");
       
  1735       if (!is_native_ptr) {
       
  1736         assert(sig->count() == 2, "oop getter has 2 arguments");
       
  1737         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
       
  1738         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
       
  1739       } else {
       
  1740         assert(sig->count() == 1, "native getter has 1 argument");
       
  1741         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
       
  1742       }
       
  1743     } else {
       
  1744       // void putObject(Object base, int/long offset, Object x), etc.
       
  1745       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
       
  1746       if (!is_native_ptr) {
       
  1747         assert(sig->count() == 3, "oop putter has 3 arguments");
       
  1748         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
       
  1749         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
       
  1750       } else {
       
  1751         assert(sig->count() == 2, "native putter has 2 arguments");
       
  1752         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
       
  1753       }
       
  1754       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
       
  1755       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
       
  1756         vtype = T_ADDRESS;  // it is really a C void*
       
  1757       assert(vtype == type, "putter must accept the expected value");
       
  1758     }
       
  1759 #endif // ASSERT
       
  1760  }
       
  1761 #endif //PRODUCT
       
  1762 
       
  1763   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
       
  1764 
       
  1765   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
       
  1766 
       
  1767   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
       
  1768   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
       
  1769 
       
  1770   debug_only(int saved_sp = _sp);
       
  1771   _sp += nargs;
       
  1772 
       
  1773   Node* val;
       
  1774   debug_only(val = (Node*)(uintptr_t)-1);
       
  1775 
       
  1776 
       
  1777   if (is_store) {
       
  1778     // Get the value being stored.  (Pop it first; it was pushed last.)
       
  1779     switch (type) {
       
  1780     case T_DOUBLE:
       
  1781     case T_LONG:
       
  1782     case T_ADDRESS:
       
  1783       val = pop_pair();
       
  1784       break;
       
  1785     default:
       
  1786       val = pop();
       
  1787     }
       
  1788   }
       
  1789 
       
  1790   // Build address expression.  See the code in inline_unsafe_prefetch.
       
  1791   Node *adr;
       
  1792   Node *heap_base_oop = top();
       
  1793   if (!is_native_ptr) {
       
  1794     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
       
  1795     Node* offset = pop_pair();
       
  1796     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
       
  1797     Node* base   = pop();
       
  1798     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
       
  1799     // to be plain byte offsets, which are also the same as those accepted
       
  1800     // by oopDesc::field_base.
       
  1801     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
       
  1802            "fieldOffset must be byte-scaled");
       
  1803     // 32-bit machines ignore the high half!
       
  1804     offset = ConvL2X(offset);
       
  1805     adr = make_unsafe_address(base, offset);
       
  1806     heap_base_oop = base;
       
  1807   } else {
       
  1808     Node* ptr = pop_pair();
       
  1809     // Adjust Java long to machine word:
       
  1810     ptr = ConvL2X(ptr);
       
  1811     adr = make_unsafe_address(NULL, ptr);
       
  1812   }
       
  1813 
       
  1814   // Pop receiver last:  it was pushed first.
       
  1815   Node *receiver = pop();
       
  1816 
       
  1817   assert(saved_sp == _sp, "must have correct argument count");
       
  1818 
       
  1819   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
       
  1820 
       
  1821   // First guess at the value type.
       
  1822   const Type *value_type = Type::get_const_basic_type(type);
       
  1823 
       
  1824   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
       
  1825   // there was not enough information to nail it down.
       
  1826   Compile::AliasType* alias_type = C->alias_type(adr_type);
       
  1827   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
       
  1828 
       
  1829   // We will need memory barriers unless we can determine a unique
       
  1830   // alias category for this reference.  (Note:  If for some reason
       
  1831   // the barriers get omitted and the unsafe reference begins to "pollute"
       
  1832   // the alias analysis of the rest of the graph, either Compile::can_alias
       
  1833   // or Compile::must_alias will throw a diagnostic assert.)
       
  1834   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
       
  1835 
       
  1836   if (!is_store && type == T_OBJECT) {
       
  1837     // Attempt to infer a sharper value type from the offset and base type.
       
  1838     ciKlass* sharpened_klass = NULL;
       
  1839 
       
  1840     // See if it is an instance field, with an object type.
       
  1841     if (alias_type->field() != NULL) {
       
  1842       assert(!is_native_ptr, "native pointer op cannot use a java address");
       
  1843       if (alias_type->field()->type()->is_klass()) {
       
  1844         sharpened_klass = alias_type->field()->type()->as_klass();
       
  1845       }
       
  1846     }
       
  1847 
       
  1848     // See if it is a narrow oop array.
       
  1849     if (adr_type->isa_aryptr()) {
       
  1850       if (adr_type->offset() >= objArrayOopDesc::header_size() * wordSize) {
       
  1851         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
       
  1852         if (elem_type != NULL) {
       
  1853           sharpened_klass = elem_type->klass();
       
  1854         }
       
  1855       }
       
  1856     }
       
  1857 
       
  1858     if (sharpened_klass != NULL) {
       
  1859       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
       
  1860 
       
  1861       // Sharpen the value type.
       
  1862       value_type = tjp;
       
  1863 
       
  1864 #ifndef PRODUCT
       
  1865       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
       
  1866         tty->print("  from base type:  ");   adr_type->dump();
       
  1867         tty->print("  sharpened value: "); value_type->dump();
       
  1868       }
       
  1869 #endif
       
  1870     }
       
  1871   }
       
  1872 
       
  1873   // Null check on self without removing any arguments.  The argument
       
  1874   // null check technically happens in the wrong place, which can lead to
       
  1875   // invalid stack traces when the primitive is inlined into a method
       
  1876   // which handles NullPointerExceptions.
       
  1877   _sp += nargs;
       
  1878   do_null_check(receiver, T_OBJECT);
       
  1879   _sp -= nargs;
       
  1880   if (stopped()) {
       
  1881     return true;
       
  1882   }
       
  1883   // Heap pointers get a null-check from the interpreter,
       
  1884   // as a courtesy.  However, this is not guaranteed by Unsafe,
       
  1885   // and it is not possible to fully distinguish unintended nulls
       
  1886   // from intended ones in this API.
       
  1887 
       
  1888   if (is_volatile) {
       
  1889     // We need to emit leading and trailing CPU membars (see below) in
       
  1890     // addition to memory membars when is_volatile. This is a little
       
  1891     // too strong, but avoids the need to insert per-alias-type
       
  1892     // volatile membars (for stores; compare Parse::do_put_xxx), which
       
  1893     // we cannot do effctively here because we probably only have a
       
  1894     // rough approximation of type.
       
  1895     need_mem_bar = true;
       
  1896     // For Stores, place a memory ordering barrier now.
       
  1897     if (is_store)
       
  1898       insert_mem_bar(Op_MemBarRelease);
       
  1899   }
       
  1900 
       
  1901   // Memory barrier to prevent normal and 'unsafe' accesses from
       
  1902   // bypassing each other.  Happens after null checks, so the
       
  1903   // exception paths do not take memory state from the memory barrier,
       
  1904   // so there's no problems making a strong assert about mixing users
       
  1905   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
       
  1906   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
       
  1907   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
       
  1908 
       
  1909   if (!is_store) {
       
  1910     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
       
  1911     // load value and push onto stack
       
  1912     switch (type) {
       
  1913     case T_BOOLEAN:
       
  1914     case T_CHAR:
       
  1915     case T_BYTE:
       
  1916     case T_SHORT:
       
  1917     case T_INT:
       
  1918     case T_FLOAT:
       
  1919     case T_OBJECT:
       
  1920       push( p );
       
  1921       break;
       
  1922     case T_ADDRESS:
       
  1923       // Cast to an int type.
       
  1924       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
       
  1925       p = ConvX2L(p);
       
  1926       push_pair(p);
       
  1927       break;
       
  1928     case T_DOUBLE:
       
  1929     case T_LONG:
       
  1930       push_pair( p );
       
  1931       break;
       
  1932     default: ShouldNotReachHere();
       
  1933     }
       
  1934   } else {
       
  1935     // place effect of store into memory
       
  1936     switch (type) {
       
  1937     case T_DOUBLE:
       
  1938       val = dstore_rounding(val);
       
  1939       break;
       
  1940     case T_ADDRESS:
       
  1941       // Repackage the long as a pointer.
       
  1942       val = ConvL2X(val);
       
  1943       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
       
  1944       break;
       
  1945     }
       
  1946 
       
  1947     if (type != T_OBJECT ) {
       
  1948       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
       
  1949     } else {
       
  1950       // Possibly an oop being stored to Java heap or native memory
       
  1951       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
       
  1952         // oop to Java heap.
       
  1953         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, val->bottom_type(), type);
       
  1954       } else {
       
  1955 
       
  1956         // We can't tell at compile time if we are storing in the Java heap or outside
       
  1957         // of it. So we need to emit code to conditionally do the proper type of
       
  1958         // store.
       
  1959 
       
  1960         IdealKit kit(gvn(), control(),  merged_memory());
       
  1961         kit.declares_done();
       
  1962         // QQQ who knows what probability is here??
       
  1963         kit.if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
       
  1964           (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, val->bottom_type(), type);
       
  1965         } kit.else_(); {
       
  1966           (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
       
  1967         } kit.end_if();
       
  1968       }
       
  1969     }
       
  1970   }
       
  1971 
       
  1972   if (is_volatile) {
       
  1973     if (!is_store)
       
  1974       insert_mem_bar(Op_MemBarAcquire);
       
  1975     else
       
  1976       insert_mem_bar(Op_MemBarVolatile);
       
  1977   }
       
  1978 
       
  1979   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
       
  1980 
       
  1981   return true;
       
  1982 }
       
  1983 
       
  1984 //----------------------------inline_unsafe_prefetch----------------------------
       
  1985 
       
  1986 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
       
  1987 #ifndef PRODUCT
       
  1988   {
       
  1989     ResourceMark rm;
       
  1990     // Check the signatures.
       
  1991     ciSignature* sig = signature();
       
  1992 #ifdef ASSERT
       
  1993     // Object getObject(Object base, int/long offset), etc.
       
  1994     BasicType rtype = sig->return_type()->basic_type();
       
  1995     if (!is_native_ptr) {
       
  1996       assert(sig->count() == 2, "oop prefetch has 2 arguments");
       
  1997       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
       
  1998       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
       
  1999     } else {
       
  2000       assert(sig->count() == 1, "native prefetch has 1 argument");
       
  2001       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
       
  2002     }
       
  2003 #endif // ASSERT
       
  2004   }
       
  2005 #endif // !PRODUCT
       
  2006 
       
  2007   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
       
  2008 
       
  2009   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
       
  2010   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
       
  2011 
       
  2012   debug_only(int saved_sp = _sp);
       
  2013   _sp += nargs;
       
  2014 
       
  2015   // Build address expression.  See the code in inline_unsafe_access.
       
  2016   Node *adr;
       
  2017   if (!is_native_ptr) {
       
  2018     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
       
  2019     Node* offset = pop_pair();
       
  2020     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
       
  2021     Node* base   = pop();
       
  2022     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
       
  2023     // to be plain byte offsets, which are also the same as those accepted
       
  2024     // by oopDesc::field_base.
       
  2025     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
       
  2026            "fieldOffset must be byte-scaled");
       
  2027     // 32-bit machines ignore the high half!
       
  2028     offset = ConvL2X(offset);
       
  2029     adr = make_unsafe_address(base, offset);
       
  2030   } else {
       
  2031     Node* ptr = pop_pair();
       
  2032     // Adjust Java long to machine word:
       
  2033     ptr = ConvL2X(ptr);
       
  2034     adr = make_unsafe_address(NULL, ptr);
       
  2035   }
       
  2036 
       
  2037   if (is_static) {
       
  2038     assert(saved_sp == _sp, "must have correct argument count");
       
  2039   } else {
       
  2040     // Pop receiver last:  it was pushed first.
       
  2041     Node *receiver = pop();
       
  2042     assert(saved_sp == _sp, "must have correct argument count");
       
  2043 
       
  2044     // Null check on self without removing any arguments.  The argument
       
  2045     // null check technically happens in the wrong place, which can lead to
       
  2046     // invalid stack traces when the primitive is inlined into a method
       
  2047     // which handles NullPointerExceptions.
       
  2048     _sp += nargs;
       
  2049     do_null_check(receiver, T_OBJECT);
       
  2050     _sp -= nargs;
       
  2051     if (stopped()) {
       
  2052       return true;
       
  2053     }
       
  2054   }
       
  2055 
       
  2056   // Generate the read or write prefetch
       
  2057   Node *prefetch;
       
  2058   if (is_store) {
       
  2059     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
       
  2060   } else {
       
  2061     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
       
  2062   }
       
  2063   prefetch->init_req(0, control());
       
  2064   set_i_o(_gvn.transform(prefetch));
       
  2065 
       
  2066   return true;
       
  2067 }
       
  2068 
       
  2069 //----------------------------inline_unsafe_CAS----------------------------
       
  2070 
       
  2071 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
       
  2072   // This basic scheme here is the same as inline_unsafe_access, but
       
  2073   // differs in enough details that combining them would make the code
       
  2074   // overly confusing.  (This is a true fact! I originally combined
       
  2075   // them, but even I was confused by it!) As much code/comments as
       
  2076   // possible are retained from inline_unsafe_access though to make
       
  2077   // the correspondances clearer. - dl
       
  2078 
       
  2079   if (callee()->is_static())  return false;  // caller must have the capability!
       
  2080 
       
  2081 #ifndef PRODUCT
       
  2082   {
       
  2083     ResourceMark rm;
       
  2084     // Check the signatures.
       
  2085     ciSignature* sig = signature();
       
  2086 #ifdef ASSERT
       
  2087     BasicType rtype = sig->return_type()->basic_type();
       
  2088     assert(rtype == T_BOOLEAN, "CAS must return boolean");
       
  2089     assert(sig->count() == 4, "CAS has 4 arguments");
       
  2090     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
       
  2091     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
       
  2092 #endif // ASSERT
       
  2093   }
       
  2094 #endif //PRODUCT
       
  2095 
       
  2096   // number of stack slots per value argument (1 or 2)
       
  2097   int type_words = type2size[type];
       
  2098 
       
  2099   // Cannot inline wide CAS on machines that don't support it natively
       
  2100   if (type2aelembytes[type] > BytesPerInt && !VM_Version::supports_cx8())
       
  2101     return false;
       
  2102 
       
  2103   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
       
  2104 
       
  2105   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
       
  2106   int nargs = 1 + 1 + 2  + type_words + type_words;
       
  2107 
       
  2108   // pop arguments: newval, oldval, offset, base, and receiver
       
  2109   debug_only(int saved_sp = _sp);
       
  2110   _sp += nargs;
       
  2111   Node* newval   = (type_words == 1) ? pop() : pop_pair();
       
  2112   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
       
  2113   Node *offset   = pop_pair();
       
  2114   Node *base     = pop();
       
  2115   Node *receiver = pop();
       
  2116   assert(saved_sp == _sp, "must have correct argument count");
       
  2117 
       
  2118   //  Null check receiver.
       
  2119   _sp += nargs;
       
  2120   do_null_check(receiver, T_OBJECT);
       
  2121   _sp -= nargs;
       
  2122   if (stopped()) {
       
  2123     return true;
       
  2124   }
       
  2125 
       
  2126   // Build field offset expression.
       
  2127   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
       
  2128   // to be plain byte offsets, which are also the same as those accepted
       
  2129   // by oopDesc::field_base.
       
  2130   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
       
  2131   // 32-bit machines ignore the high half of long offsets
       
  2132   offset = ConvL2X(offset);
       
  2133   Node* adr = make_unsafe_address(base, offset);
       
  2134   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
       
  2135 
       
  2136   // (Unlike inline_unsafe_access, there seems no point in trying
       
  2137   // to refine types. Just use the coarse types here.
       
  2138   const Type *value_type = Type::get_const_basic_type(type);
       
  2139   Compile::AliasType* alias_type = C->alias_type(adr_type);
       
  2140   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
       
  2141   int alias_idx = C->get_alias_index(adr_type);
       
  2142 
       
  2143   // Memory-model-wise, a CAS acts like a little synchronized block,
       
  2144   // so needs barriers on each side.  These don't't translate into
       
  2145   // actual barriers on most machines, but we still need rest of
       
  2146   // compiler to respect ordering.
       
  2147 
       
  2148   insert_mem_bar(Op_MemBarRelease);
       
  2149   insert_mem_bar(Op_MemBarCPUOrder);
       
  2150 
       
  2151   // 4984716: MemBars must be inserted before this
       
  2152   //          memory node in order to avoid a false
       
  2153   //          dependency which will confuse the scheduler.
       
  2154   Node *mem = memory(alias_idx);
       
  2155 
       
  2156   // For now, we handle only those cases that actually exist: ints,
       
  2157   // longs, and Object. Adding others should be straightforward.
       
  2158   Node* cas;
       
  2159   switch(type) {
       
  2160   case T_INT:
       
  2161     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
       
  2162     break;
       
  2163   case T_LONG:
       
  2164     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
       
  2165     break;
       
  2166   case T_OBJECT:
       
  2167     // reference stores need a store barrier.
       
  2168     // (They don't if CAS fails, but it isn't worth checking.)
       
  2169     pre_barrier(control(), base, adr, alias_idx, newval, value_type, T_OBJECT);
       
  2170     cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
       
  2171     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
       
  2172     break;
       
  2173   default:
       
  2174     ShouldNotReachHere();
       
  2175     break;
       
  2176   }
       
  2177 
       
  2178   // SCMemProjNodes represent the memory state of CAS. Their main
       
  2179   // role is to prevent CAS nodes from being optimized away when their
       
  2180   // results aren't used.
       
  2181   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
       
  2182   set_memory(proj, alias_idx);
       
  2183 
       
  2184   // Add the trailing membar surrounding the access
       
  2185   insert_mem_bar(Op_MemBarCPUOrder);
       
  2186   insert_mem_bar(Op_MemBarAcquire);
       
  2187 
       
  2188   push(cas);
       
  2189   return true;
       
  2190 }
       
  2191 
       
  2192 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
       
  2193   // This is another variant of inline_unsafe_access, differing in
       
  2194   // that it always issues store-store ("release") barrier and ensures
       
  2195   // store-atomicity (which only matters for "long").
       
  2196 
       
  2197   if (callee()->is_static())  return false;  // caller must have the capability!
       
  2198 
       
  2199 #ifndef PRODUCT
       
  2200   {
       
  2201     ResourceMark rm;
       
  2202     // Check the signatures.
       
  2203     ciSignature* sig = signature();
       
  2204 #ifdef ASSERT
       
  2205     BasicType rtype = sig->return_type()->basic_type();
       
  2206     assert(rtype == T_VOID, "must return void");
       
  2207     assert(sig->count() == 3, "has 3 arguments");
       
  2208     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
       
  2209     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
       
  2210 #endif // ASSERT
       
  2211   }
       
  2212 #endif //PRODUCT
       
  2213 
       
  2214   // number of stack slots per value argument (1 or 2)
       
  2215   int type_words = type2size[type];
       
  2216 
       
  2217   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
       
  2218 
       
  2219   // Argument words:  "this" plus oop plus offset plus value;
       
  2220   int nargs = 1 + 1 + 2 + type_words;
       
  2221 
       
  2222   // pop arguments: val, offset, base, and receiver
       
  2223   debug_only(int saved_sp = _sp);
       
  2224   _sp += nargs;
       
  2225   Node* val      = (type_words == 1) ? pop() : pop_pair();
       
  2226   Node *offset   = pop_pair();
       
  2227   Node *base     = pop();
       
  2228   Node *receiver = pop();
       
  2229   assert(saved_sp == _sp, "must have correct argument count");
       
  2230 
       
  2231   //  Null check receiver.
       
  2232   _sp += nargs;
       
  2233   do_null_check(receiver, T_OBJECT);
       
  2234   _sp -= nargs;
       
  2235   if (stopped()) {
       
  2236     return true;
       
  2237   }
       
  2238 
       
  2239   // Build field offset expression.
       
  2240   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
       
  2241   // 32-bit machines ignore the high half of long offsets
       
  2242   offset = ConvL2X(offset);
       
  2243   Node* adr = make_unsafe_address(base, offset);
       
  2244   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
       
  2245   const Type *value_type = Type::get_const_basic_type(type);
       
  2246   Compile::AliasType* alias_type = C->alias_type(adr_type);
       
  2247 
       
  2248   insert_mem_bar(Op_MemBarRelease);
       
  2249   insert_mem_bar(Op_MemBarCPUOrder);
       
  2250   // Ensure that the store is atomic for longs:
       
  2251   bool require_atomic_access = true;
       
  2252   Node* store;
       
  2253   if (type == T_OBJECT) // reference stores need a store barrier.
       
  2254     store = store_oop_to_unknown(control(), base, adr, adr_type, val, value_type, type);
       
  2255   else {
       
  2256     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
       
  2257   }
       
  2258   insert_mem_bar(Op_MemBarCPUOrder);
       
  2259   return true;
       
  2260 }
       
  2261 
       
  2262 bool LibraryCallKit::inline_unsafe_allocate() {
       
  2263   if (callee()->is_static())  return false;  // caller must have the capability!
       
  2264   int nargs = 1 + 1;
       
  2265   assert(signature()->size() == nargs-1, "alloc has 1 argument");
       
  2266   null_check_receiver(callee());  // check then ignore argument(0)
       
  2267   _sp += nargs;  // set original stack for use by uncommon_trap
       
  2268   Node* cls = do_null_check(argument(1), T_OBJECT);
       
  2269   _sp -= nargs;
       
  2270   if (stopped())  return true;
       
  2271 
       
  2272   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
       
  2273   _sp += nargs;  // set original stack for use by uncommon_trap
       
  2274   kls = do_null_check(kls, T_OBJECT);
       
  2275   _sp -= nargs;
       
  2276   if (stopped())  return true;  // argument was like int.class
       
  2277 
       
  2278   // Note:  The argument might still be an illegal value like
       
  2279   // Serializable.class or Object[].class.   The runtime will handle it.
       
  2280   // But we must make an explicit check for initialization.
       
  2281   Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
       
  2282   Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
       
  2283   Node* bits = intcon(instanceKlass::fully_initialized);
       
  2284   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
       
  2285   // The 'test' is non-zero if we need to take a slow path.
       
  2286 
       
  2287   Node* obj = new_instance(kls, test);
       
  2288   push(obj);
       
  2289 
       
  2290   return true;
       
  2291 }
       
  2292 
       
  2293 //------------------------inline_native_time_funcs--------------
       
  2294 // inline code for System.currentTimeMillis() and System.nanoTime()
       
  2295 // these have the same type and signature
       
  2296 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
       
  2297   address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
       
  2298                               CAST_FROM_FN_PTR(address, os::javaTimeMillis);
       
  2299   const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
       
  2300   const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
       
  2301   const TypePtr* no_memory_effects = NULL;
       
  2302   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
       
  2303   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
       
  2304 #ifdef ASSERT
       
  2305   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
       
  2306   assert(value_top == top(), "second value must be top");
       
  2307 #endif
       
  2308   push_pair(value);
       
  2309   return true;
       
  2310 }
       
  2311 
       
  2312 //------------------------inline_native_currentThread------------------
       
  2313 bool LibraryCallKit::inline_native_currentThread() {
       
  2314   Node* junk = NULL;
       
  2315   push(generate_current_thread(junk));
       
  2316   return true;
       
  2317 }
       
  2318 
       
  2319 //------------------------inline_native_isInterrupted------------------
       
  2320 bool LibraryCallKit::inline_native_isInterrupted() {
       
  2321   const int nargs = 1+1;  // receiver + boolean
       
  2322   assert(nargs == arg_size(), "sanity");
       
  2323   // Add a fast path to t.isInterrupted(clear_int):
       
  2324   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
       
  2325   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
       
  2326   // So, in the common case that the interrupt bit is false,
       
  2327   // we avoid making a call into the VM.  Even if the interrupt bit
       
  2328   // is true, if the clear_int argument is false, we avoid the VM call.
       
  2329   // However, if the receiver is not currentThread, we must call the VM,
       
  2330   // because there must be some locking done around the operation.
       
  2331 
       
  2332   // We only go to the fast case code if we pass two guards.
       
  2333   // Paths which do not pass are accumulated in the slow_region.
       
  2334   RegionNode* slow_region = new (C, 1) RegionNode(1);
       
  2335   record_for_igvn(slow_region);
       
  2336   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
       
  2337   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
       
  2338   enum { no_int_result_path   = 1,
       
  2339          no_clear_result_path = 2,
       
  2340          slow_result_path     = 3
       
  2341   };
       
  2342 
       
  2343   // (a) Receiving thread must be the current thread.
       
  2344   Node* rec_thr = argument(0);
       
  2345   Node* tls_ptr = NULL;
       
  2346   Node* cur_thr = generate_current_thread(tls_ptr);
       
  2347   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
       
  2348   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
       
  2349 
       
  2350   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
       
  2351   if (!known_current_thread)
       
  2352     generate_slow_guard(bol_thr, slow_region);
       
  2353 
       
  2354   // (b) Interrupt bit on TLS must be false.
       
  2355   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
       
  2356   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
       
  2357   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
       
  2358   Node* int_bit = make_load(NULL, p, TypeInt::BOOL, T_INT);
       
  2359   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
       
  2360   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
       
  2361 
       
  2362   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
       
  2363 
       
  2364   // First fast path:  if (!TLS._interrupted) return false;
       
  2365   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
       
  2366   result_rgn->init_req(no_int_result_path, false_bit);
       
  2367   result_val->init_req(no_int_result_path, intcon(0));
       
  2368 
       
  2369   // drop through to next case
       
  2370   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
       
  2371 
       
  2372   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
       
  2373   Node* clr_arg = argument(1);
       
  2374   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
       
  2375   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
       
  2376   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
       
  2377 
       
  2378   // Second fast path:  ... else if (!clear_int) return true;
       
  2379   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
       
  2380   result_rgn->init_req(no_clear_result_path, false_arg);
       
  2381   result_val->init_req(no_clear_result_path, intcon(1));
       
  2382 
       
  2383   // drop through to next case
       
  2384   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
       
  2385 
       
  2386   // (d) Otherwise, go to the slow path.
       
  2387   slow_region->add_req(control());
       
  2388   set_control( _gvn.transform(slow_region) );
       
  2389 
       
  2390   if (stopped()) {
       
  2391     // There is no slow path.
       
  2392     result_rgn->init_req(slow_result_path, top());
       
  2393     result_val->init_req(slow_result_path, top());
       
  2394   } else {
       
  2395     // non-virtual because it is a private non-static
       
  2396     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
       
  2397 
       
  2398     Node* slow_val = set_results_for_java_call(slow_call);
       
  2399     // this->control() comes from set_results_for_java_call
       
  2400 
       
  2401     // If we know that the result of the slow call will be true, tell the optimizer!
       
  2402     if (known_current_thread)  slow_val = intcon(1);
       
  2403 
       
  2404     Node* fast_io  = slow_call->in(TypeFunc::I_O);
       
  2405     Node* fast_mem = slow_call->in(TypeFunc::Memory);
       
  2406     // These two phis are pre-filled with copies of of the fast IO and Memory
       
  2407     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
       
  2408     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
       
  2409 
       
  2410     result_rgn->init_req(slow_result_path, control());
       
  2411     io_phi    ->init_req(slow_result_path, i_o());
       
  2412     mem_phi   ->init_req(slow_result_path, reset_memory());
       
  2413     result_val->init_req(slow_result_path, slow_val);
       
  2414 
       
  2415     set_all_memory( _gvn.transform(mem_phi) );
       
  2416     set_i_o(        _gvn.transform(io_phi) );
       
  2417   }
       
  2418 
       
  2419   push_result(result_rgn, result_val);
       
  2420   C->set_has_split_ifs(true); // Has chance for split-if optimization
       
  2421 
       
  2422   return true;
       
  2423 }
       
  2424 
       
  2425 //---------------------------load_mirror_from_klass----------------------------
       
  2426 // Given a klass oop, load its java mirror (a java.lang.Class oop).
       
  2427 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
       
  2428   Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
       
  2429   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
       
  2430 }
       
  2431 
       
  2432 //-----------------------load_klass_from_mirror_common-------------------------
       
  2433 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
       
  2434 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
       
  2435 // and branch to the given path on the region.
       
  2436 // If never_see_null, take an uncommon trap on null, so we can optimistically
       
  2437 // compile for the non-null case.
       
  2438 // If the region is NULL, force never_see_null = true.
       
  2439 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
       
  2440                                                     bool never_see_null,
       
  2441                                                     int nargs,
       
  2442                                                     RegionNode* region,
       
  2443                                                     int null_path,
       
  2444                                                     int offset) {
       
  2445   if (region == NULL)  never_see_null = true;
       
  2446   Node* p = basic_plus_adr(mirror, offset);
       
  2447   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
       
  2448   Node* kls = _gvn.transform(new (C, 3) LoadKlassNode(0, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
       
  2449   _sp += nargs; // any deopt will start just before call to enclosing method
       
  2450   Node* null_ctl = top();
       
  2451   kls = null_check_oop(kls, &null_ctl, never_see_null);
       
  2452   if (region != NULL) {
       
  2453     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
       
  2454     region->init_req(null_path, null_ctl);
       
  2455   } else {
       
  2456     assert(null_ctl == top(), "no loose ends");
       
  2457   }
       
  2458   _sp -= nargs;
       
  2459   return kls;
       
  2460 }
       
  2461 
       
  2462 //--------------------(inline_native_Class_query helpers)---------------------
       
  2463 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
       
  2464 // Fall through if (mods & mask) == bits, take the guard otherwise.
       
  2465 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
       
  2466   // Branch around if the given klass has the given modifier bit set.
       
  2467   // Like generate_guard, adds a new path onto the region.
       
  2468   Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
       
  2469   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
       
  2470   Node* mask = intcon(modifier_mask);
       
  2471   Node* bits = intcon(modifier_bits);
       
  2472   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
       
  2473   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
       
  2474   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
       
  2475   return generate_fair_guard(bol, region);
       
  2476 }
       
  2477 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
       
  2478   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
       
  2479 }
       
  2480 
       
  2481 //-------------------------inline_native_Class_query-------------------
       
  2482 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
       
  2483   int nargs = 1+0;  // just the Class mirror, in most cases
       
  2484   const Type* return_type = TypeInt::BOOL;
       
  2485   Node* prim_return_value = top();  // what happens if it's a primitive class?
       
  2486   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
       
  2487   bool expect_prim = false;     // most of these guys expect to work on refs
       
  2488 
       
  2489   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
       
  2490 
       
  2491   switch (id) {
       
  2492   case vmIntrinsics::_isInstance:
       
  2493     nargs = 1+1;  // the Class mirror, plus the object getting queried about
       
  2494     // nothing is an instance of a primitive type
       
  2495     prim_return_value = intcon(0);
       
  2496     break;
       
  2497   case vmIntrinsics::_getModifiers:
       
  2498     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
       
  2499     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
       
  2500     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
       
  2501     break;
       
  2502   case vmIntrinsics::_isInterface:
       
  2503     prim_return_value = intcon(0);
       
  2504     break;
       
  2505   case vmIntrinsics::_isArray:
       
  2506     prim_return_value = intcon(0);
       
  2507     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
       
  2508     break;
       
  2509   case vmIntrinsics::_isPrimitive:
       
  2510     prim_return_value = intcon(1);
       
  2511     expect_prim = true;  // obviously
       
  2512     break;
       
  2513   case vmIntrinsics::_getSuperclass:
       
  2514     prim_return_value = null();
       
  2515     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
       
  2516     break;
       
  2517   case vmIntrinsics::_getComponentType:
       
  2518     prim_return_value = null();
       
  2519     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
       
  2520     break;
       
  2521   case vmIntrinsics::_getClassAccessFlags:
       
  2522     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
       
  2523     return_type = TypeInt::INT;  // not bool!  6297094
       
  2524     break;
       
  2525   default:
       
  2526     ShouldNotReachHere();
       
  2527   }
       
  2528 
       
  2529   Node* mirror =                      argument(0);
       
  2530   Node* obj    = (nargs <= 1)? top(): argument(1);
       
  2531 
       
  2532   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
       
  2533   if (mirror_con == NULL)  return false;  // cannot happen?
       
  2534 
       
  2535 #ifndef PRODUCT
       
  2536   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
       
  2537     ciType* k = mirror_con->java_mirror_type();
       
  2538     if (k) {
       
  2539       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
       
  2540       k->print_name();
       
  2541       tty->cr();
       
  2542     }
       
  2543   }
       
  2544 #endif
       
  2545 
       
  2546   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
       
  2547   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
       
  2548   record_for_igvn(region);
       
  2549   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
       
  2550 
       
  2551   // The mirror will never be null of Reflection.getClassAccessFlags, however
       
  2552   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
       
  2553   // if it is. See bug 4774291.
       
  2554 
       
  2555   // For Reflection.getClassAccessFlags(), the null check occurs in
       
  2556   // the wrong place; see inline_unsafe_access(), above, for a similar
       
  2557   // situation.
       
  2558   _sp += nargs;  // set original stack for use by uncommon_trap
       
  2559   mirror = do_null_check(mirror, T_OBJECT);
       
  2560   _sp -= nargs;
       
  2561   // If mirror or obj is dead, only null-path is taken.
       
  2562   if (stopped())  return true;
       
  2563 
       
  2564   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
       
  2565 
       
  2566   // Now load the mirror's klass metaobject, and null-check it.
       
  2567   // Side-effects region with the control path if the klass is null.
       
  2568   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
       
  2569                                      region, _prim_path);
       
  2570   // If kls is null, we have a primitive mirror.
       
  2571   phi->init_req(_prim_path, prim_return_value);
       
  2572   if (stopped()) { push_result(region, phi); return true; }
       
  2573 
       
  2574   Node* p;  // handy temp
       
  2575   Node* null_ctl;
       
  2576 
       
  2577   // Now that we have the non-null klass, we can perform the real query.
       
  2578   // For constant classes, the query will constant-fold in LoadNode::Value.
       
  2579   Node* query_value = top();
       
  2580   switch (id) {
       
  2581   case vmIntrinsics::_isInstance:
       
  2582     // nothing is an instance of a primitive type
       
  2583     query_value = gen_instanceof(obj, kls);
       
  2584     break;
       
  2585 
       
  2586   case vmIntrinsics::_getModifiers:
       
  2587     p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
       
  2588     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
       
  2589     break;
       
  2590 
       
  2591   case vmIntrinsics::_isInterface:
       
  2592     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
       
  2593     if (generate_interface_guard(kls, region) != NULL)
       
  2594       // A guard was added.  If the guard is taken, it was an interface.
       
  2595       phi->add_req(intcon(1));
       
  2596     // If we fall through, it's a plain class.
       
  2597     query_value = intcon(0);
       
  2598     break;
       
  2599 
       
  2600   case vmIntrinsics::_isArray:
       
  2601     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
       
  2602     if (generate_array_guard(kls, region) != NULL)
       
  2603       // A guard was added.  If the guard is taken, it was an array.
       
  2604       phi->add_req(intcon(1));
       
  2605     // If we fall through, it's a plain class.
       
  2606     query_value = intcon(0);
       
  2607     break;
       
  2608 
       
  2609   case vmIntrinsics::_isPrimitive:
       
  2610     query_value = intcon(0); // "normal" path produces false
       
  2611     break;
       
  2612 
       
  2613   case vmIntrinsics::_getSuperclass:
       
  2614     // The rules here are somewhat unfortunate, but we can still do better
       
  2615     // with random logic than with a JNI call.
       
  2616     // Interfaces store null or Object as _super, but must report null.
       
  2617     // Arrays store an intermediate super as _super, but must report Object.
       
  2618     // Other types can report the actual _super.
       
  2619     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
       
  2620     if (generate_interface_guard(kls, region) != NULL)
       
  2621       // A guard was added.  If the guard is taken, it was an interface.
       
  2622       phi->add_req(null());
       
  2623     if (generate_array_guard(kls, region) != NULL)
       
  2624       // A guard was added.  If the guard is taken, it was an array.
       
  2625       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
       
  2626     // If we fall through, it's a plain class.  Get its _super.
       
  2627     p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
       
  2628     kls = _gvn.transform(new (C, 3) LoadKlassNode(0, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
       
  2629     null_ctl = top();
       
  2630     kls = null_check_oop(kls, &null_ctl);
       
  2631     if (null_ctl != top()) {
       
  2632       // If the guard is taken, Object.superClass is null (both klass and mirror).
       
  2633       region->add_req(null_ctl);
       
  2634       phi   ->add_req(null());
       
  2635     }
       
  2636     if (!stopped()) {
       
  2637       query_value = load_mirror_from_klass(kls);
       
  2638     }
       
  2639     break;
       
  2640 
       
  2641   case vmIntrinsics::_getComponentType:
       
  2642     if (generate_array_guard(kls, region) != NULL) {
       
  2643       // Be sure to pin the oop load to the guard edge just created:
       
  2644       Node* is_array_ctrl = region->in(region->req()-1);
       
  2645       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
       
  2646       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
       
  2647       phi->add_req(cmo);
       
  2648     }
       
  2649     query_value = null();  // non-array case is null
       
  2650     break;
       
  2651 
       
  2652   case vmIntrinsics::_getClassAccessFlags:
       
  2653     p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
       
  2654     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
       
  2655     break;
       
  2656 
       
  2657   default:
       
  2658     ShouldNotReachHere();
       
  2659   }
       
  2660 
       
  2661   // Fall-through is the normal case of a query to a real class.
       
  2662   phi->init_req(1, query_value);
       
  2663   region->init_req(1, control());
       
  2664 
       
  2665   push_result(region, phi);
       
  2666   C->set_has_split_ifs(true); // Has chance for split-if optimization
       
  2667 
       
  2668   return true;
       
  2669 }
       
  2670 
       
  2671 //--------------------------inline_native_subtype_check------------------------
       
  2672 // This intrinsic takes the JNI calls out of the heart of
       
  2673 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
       
  2674 bool LibraryCallKit::inline_native_subtype_check() {
       
  2675   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
       
  2676 
       
  2677   // Pull both arguments off the stack.
       
  2678   Node* args[2];                // two java.lang.Class mirrors: superc, subc
       
  2679   args[0] = argument(0);
       
  2680   args[1] = argument(1);
       
  2681   Node* klasses[2];             // corresponding Klasses: superk, subk
       
  2682   klasses[0] = klasses[1] = top();
       
  2683 
       
  2684   enum {
       
  2685     // A full decision tree on {superc is prim, subc is prim}:
       
  2686     _prim_0_path = 1,           // {P,N} => false
       
  2687                                 // {P,P} & superc!=subc => false
       
  2688     _prim_same_path,            // {P,P} & superc==subc => true
       
  2689     _prim_1_path,               // {N,P} => false
       
  2690     _ref_subtype_path,          // {N,N} & subtype check wins => true
       
  2691     _both_ref_path,             // {N,N} & subtype check loses => false
       
  2692     PATH_LIMIT
       
  2693   };
       
  2694 
       
  2695   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
       
  2696   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
       
  2697   record_for_igvn(region);
       
  2698 
       
  2699   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
       
  2700   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
       
  2701   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
       
  2702 
       
  2703   // First null-check both mirrors and load each mirror's klass metaobject.
       
  2704   int which_arg;
       
  2705   for (which_arg = 0; which_arg <= 1; which_arg++) {
       
  2706     Node* arg = args[which_arg];
       
  2707     _sp += nargs;  // set original stack for use by uncommon_trap
       
  2708     arg = do_null_check(arg, T_OBJECT);
       
  2709     _sp -= nargs;
       
  2710     if (stopped())  break;
       
  2711     args[which_arg] = _gvn.transform(arg);
       
  2712 
       
  2713     Node* p = basic_plus_adr(arg, class_klass_offset);
       
  2714     Node* kls = new (C, 3) LoadKlassNode(0, immutable_memory(), p, adr_type, kls_type);
       
  2715     klasses[which_arg] = _gvn.transform(kls);
       
  2716   }
       
  2717 
       
  2718   // Having loaded both klasses, test each for null.
       
  2719   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
       
  2720   for (which_arg = 0; which_arg <= 1; which_arg++) {
       
  2721     Node* kls = klasses[which_arg];
       
  2722     Node* null_ctl = top();
       
  2723     _sp += nargs;  // set original stack for use by uncommon_trap
       
  2724     kls = null_check_oop(kls, &null_ctl, never_see_null);
       
  2725     _sp -= nargs;
       
  2726     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
       
  2727     region->init_req(prim_path, null_ctl);
       
  2728     if (stopped())  break;
       
  2729     klasses[which_arg] = kls;
       
  2730   }
       
  2731 
       
  2732   if (!stopped()) {
       
  2733     // now we have two reference types, in klasses[0..1]
       
  2734     Node* subk   = klasses[1];  // the argument to isAssignableFrom
       
  2735     Node* superk = klasses[0];  // the receiver
       
  2736     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
       
  2737     // now we have a successful reference subtype check
       
  2738     region->set_req(_ref_subtype_path, control());
       
  2739   }
       
  2740 
       
  2741   // If both operands are primitive (both klasses null), then
       
  2742   // we must return true when they are identical primitives.
       
  2743   // It is convenient to test this after the first null klass check.
       
  2744   set_control(region->in(_prim_0_path)); // go back to first null check
       
  2745   if (!stopped()) {
       
  2746     // Since superc is primitive, make a guard for the superc==subc case.
       
  2747     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
       
  2748     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
       
  2749     generate_guard(bol_eq, region, PROB_FAIR);
       
  2750     if (region->req() == PATH_LIMIT+1) {
       
  2751       // A guard was added.  If the added guard is taken, superc==subc.
       
  2752       region->swap_edges(PATH_LIMIT, _prim_same_path);
       
  2753       region->del_req(PATH_LIMIT);
       
  2754     }
       
  2755     region->set_req(_prim_0_path, control()); // Not equal after all.
       
  2756   }
       
  2757 
       
  2758   // these are the only paths that produce 'true':
       
  2759   phi->set_req(_prim_same_path,   intcon(1));
       
  2760   phi->set_req(_ref_subtype_path, intcon(1));
       
  2761 
       
  2762   // pull together the cases:
       
  2763   assert(region->req() == PATH_LIMIT, "sane region");
       
  2764   for (uint i = 1; i < region->req(); i++) {
       
  2765     Node* ctl = region->in(i);
       
  2766     if (ctl == NULL || ctl == top()) {
       
  2767       region->set_req(i, top());
       
  2768       phi   ->set_req(i, top());
       
  2769     } else if (phi->in(i) == NULL) {
       
  2770       phi->set_req(i, intcon(0)); // all other paths produce 'false'
       
  2771     }
       
  2772   }
       
  2773 
       
  2774   set_control(_gvn.transform(region));
       
  2775   push(_gvn.transform(phi));
       
  2776 
       
  2777   return true;
       
  2778 }
       
  2779 
       
  2780 //---------------------generate_array_guard_common------------------------
       
  2781 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
       
  2782                                                   bool obj_array, bool not_array) {
       
  2783   // If obj_array/non_array==false/false:
       
  2784   // Branch around if the given klass is in fact an array (either obj or prim).
       
  2785   // If obj_array/non_array==false/true:
       
  2786   // Branch around if the given klass is not an array klass of any kind.
       
  2787   // If obj_array/non_array==true/true:
       
  2788   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
       
  2789   // If obj_array/non_array==true/false:
       
  2790   // Branch around if the kls is an oop array (Object[] or subtype)
       
  2791   //
       
  2792   // Like generate_guard, adds a new path onto the region.
       
  2793   jint  layout_con = 0;
       
  2794   Node* layout_val = get_layout_helper(kls, layout_con);
       
  2795   if (layout_val == NULL) {
       
  2796     bool query = (obj_array
       
  2797                   ? Klass::layout_helper_is_objArray(layout_con)
       
  2798                   : Klass::layout_helper_is_javaArray(layout_con));
       
  2799     if (query == not_array) {
       
  2800       return NULL;                       // never a branch
       
  2801     } else {                             // always a branch
       
  2802       Node* always_branch = control();
       
  2803       if (region != NULL)
       
  2804         region->add_req(always_branch);
       
  2805       set_control(top());
       
  2806       return always_branch;
       
  2807     }
       
  2808   }
       
  2809   // Now test the correct condition.
       
  2810   jint  nval = (obj_array
       
  2811                 ? ((jint)Klass::_lh_array_tag_type_value
       
  2812                    <<    Klass::_lh_array_tag_shift)
       
  2813                 : Klass::_lh_neutral_value);
       
  2814   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
       
  2815   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
       
  2816   // invert the test if we are looking for a non-array
       
  2817   if (not_array)  btest = BoolTest(btest).negate();
       
  2818   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
       
  2819   return generate_fair_guard(bol, region);
       
  2820 }
       
  2821 
       
  2822 
       
  2823 //-----------------------inline_native_newArray--------------------------
       
  2824 bool LibraryCallKit::inline_native_newArray() {
       
  2825   int nargs = 2;
       
  2826   Node* mirror    = argument(0);
       
  2827   Node* count_val = argument(1);
       
  2828 
       
  2829   _sp += nargs;  // set original stack for use by uncommon_trap
       
  2830   mirror = do_null_check(mirror, T_OBJECT);
       
  2831   _sp -= nargs;
       
  2832 
       
  2833   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
       
  2834   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
       
  2835   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
       
  2836                                                       TypeInstPtr::NOTNULL);
       
  2837   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
       
  2838   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
       
  2839                                                       TypePtr::BOTTOM);
       
  2840 
       
  2841   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
       
  2842   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
       
  2843                                                   nargs,
       
  2844                                                   result_reg, _slow_path);
       
  2845   Node* normal_ctl   = control();
       
  2846   Node* no_array_ctl = result_reg->in(_slow_path);
       
  2847 
       
  2848   // Generate code for the slow case.  We make a call to newArray().
       
  2849   set_control(no_array_ctl);
       
  2850   if (!stopped()) {
       
  2851     // Either the input type is void.class, or else the
       
  2852     // array klass has not yet been cached.  Either the
       
  2853     // ensuing call will throw an exception, or else it
       
  2854     // will cache the array klass for next time.
       
  2855     PreserveJVMState pjvms(this);
       
  2856     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
       
  2857     Node* slow_result = set_results_for_java_call(slow_call);
       
  2858     // this->control() comes from set_results_for_java_call
       
  2859     result_reg->set_req(_slow_path, control());
       
  2860     result_val->set_req(_slow_path, slow_result);
       
  2861     result_io ->set_req(_slow_path, i_o());
       
  2862     result_mem->set_req(_slow_path, reset_memory());
       
  2863   }
       
  2864 
       
  2865   set_control(normal_ctl);
       
  2866   if (!stopped()) {
       
  2867     // Normal case:  The array type has been cached in the java.lang.Class.
       
  2868     // The following call works fine even if the array type is polymorphic.
       
  2869     // It could be a dynamic mix of int[], boolean[], Object[], etc.
       
  2870     _sp += nargs;  // set original stack for use by uncommon_trap
       
  2871     Node* obj = new_array(klass_node, count_val);
       
  2872     _sp -= nargs;
       
  2873     result_reg->init_req(_normal_path, control());
       
  2874     result_val->init_req(_normal_path, obj);
       
  2875     result_io ->init_req(_normal_path, i_o());
       
  2876     result_mem->init_req(_normal_path, reset_memory());
       
  2877   }
       
  2878 
       
  2879   // Return the combined state.
       
  2880   set_i_o(        _gvn.transform(result_io)  );
       
  2881   set_all_memory( _gvn.transform(result_mem) );
       
  2882   push_result(result_reg, result_val);
       
  2883   C->set_has_split_ifs(true); // Has chance for split-if optimization
       
  2884 
       
  2885   return true;
       
  2886 }
       
  2887 
       
  2888 //----------------------inline_native_getLength--------------------------
       
  2889 bool LibraryCallKit::inline_native_getLength() {
       
  2890   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
       
  2891 
       
  2892   int nargs = 1;
       
  2893   Node* array = argument(0);
       
  2894 
       
  2895   _sp += nargs;  // set original stack for use by uncommon_trap
       
  2896   array = do_null_check(array, T_OBJECT);
       
  2897   _sp -= nargs;
       
  2898 
       
  2899   // If array is dead, only null-path is taken.
       
  2900   if (stopped())  return true;
       
  2901 
       
  2902   // Deoptimize if it is a non-array.
       
  2903   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
       
  2904 
       
  2905   if (non_array != NULL) {
       
  2906     PreserveJVMState pjvms(this);
       
  2907     set_control(non_array);
       
  2908     _sp += nargs;  // push the arguments back on the stack
       
  2909     uncommon_trap(Deoptimization::Reason_intrinsic,
       
  2910                   Deoptimization::Action_maybe_recompile);
       
  2911   }
       
  2912 
       
  2913   // If control is dead, only non-array-path is taken.
       
  2914   if (stopped())  return true;
       
  2915 
       
  2916   // The works fine even if the array type is polymorphic.
       
  2917   // It could be a dynamic mix of int[], boolean[], Object[], etc.
       
  2918   push( load_array_length(array) );
       
  2919 
       
  2920   C->set_has_split_ifs(true); // Has chance for split-if optimization
       
  2921 
       
  2922   return true;
       
  2923 }
       
  2924 
       
  2925 //------------------------inline_array_copyOf----------------------------
       
  2926 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
       
  2927   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
       
  2928 
       
  2929   // Restore the stack and pop off the arguments.
       
  2930   int nargs = 3 + (is_copyOfRange? 1: 0);
       
  2931   Node* original          = argument(0);
       
  2932   Node* start             = is_copyOfRange? argument(1): intcon(0);
       
  2933   Node* end               = is_copyOfRange? argument(2): argument(1);
       
  2934   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
       
  2935 
       
  2936   _sp += nargs;  // set original stack for use by uncommon_trap
       
  2937   array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
       
  2938   original          = do_null_check(original, T_OBJECT);
       
  2939   _sp -= nargs;
       
  2940 
       
  2941   // Check if a null path was taken unconditionally.
       
  2942   if (stopped())  return true;
       
  2943 
       
  2944   Node* orig_length = load_array_length(original);
       
  2945 
       
  2946   Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nargs,
       
  2947                                             NULL, 0);
       
  2948   _sp += nargs;  // set original stack for use by uncommon_trap
       
  2949   klass_node = do_null_check(klass_node, T_OBJECT);
       
  2950   _sp -= nargs;
       
  2951 
       
  2952   RegionNode* bailout = new (C, 1) RegionNode(1);
       
  2953   record_for_igvn(bailout);
       
  2954 
       
  2955   // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
       
  2956   // Bail out if that is so.
       
  2957   Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
       
  2958   if (not_objArray != NULL) {
       
  2959     // Improve the klass node's type from the new optimistic assumption:
       
  2960     ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
       
  2961     const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
       
  2962     Node* cast = new (C, 2) CastPPNode(klass_node, akls);
       
  2963     cast->init_req(0, control());
       
  2964     klass_node = _gvn.transform(cast);
       
  2965   }
       
  2966 
       
  2967   // Bail out if either start or end is negative.
       
  2968   generate_negative_guard(start, bailout, &start);
       
  2969   generate_negative_guard(end,   bailout, &end);
       
  2970 
       
  2971   Node* length = end;
       
  2972   if (_gvn.type(start) != TypeInt::ZERO) {
       
  2973     length = _gvn.transform( new (C, 3) SubINode(end, start) );
       
  2974   }
       
  2975 
       
  2976   // Bail out if length is negative.
       
  2977   // ...Not needed, since the new_array will throw the right exception.
       
  2978   //generate_negative_guard(length, bailout, &length);
       
  2979 
       
  2980   if (bailout->req() > 1) {
       
  2981     PreserveJVMState pjvms(this);
       
  2982     set_control( _gvn.transform(bailout) );
       
  2983     _sp += nargs;  // push the arguments back on the stack
       
  2984     uncommon_trap(Deoptimization::Reason_intrinsic,
       
  2985                   Deoptimization::Action_maybe_recompile);
       
  2986   }
       
  2987 
       
  2988   if (!stopped()) {
       
  2989     // How many elements will we copy from the original?
       
  2990     // The answer is MinI(orig_length - start, length).
       
  2991     Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
       
  2992     Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
       
  2993 
       
  2994     _sp += nargs;  // set original stack for use by uncommon_trap
       
  2995     Node* newcopy = new_array(klass_node, length);
       
  2996     _sp -= nargs;
       
  2997 
       
  2998     // Generate a direct call to the right arraycopy function(s).
       
  2999     // We know the copy is disjoint but we might not know if the
       
  3000     // oop stores need checking.
       
  3001     // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
       
  3002     // This will fail a store-check if x contains any non-nulls.
       
  3003     bool disjoint_bases = true;
       
  3004     bool length_never_negative = true;
       
  3005     generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
       
  3006                        original, start, newcopy, intcon(0), moved,
       
  3007                        nargs, disjoint_bases, length_never_negative);
       
  3008 
       
  3009     push(newcopy);
       
  3010   }
       
  3011 
       
  3012   C->set_has_split_ifs(true); // Has chance for split-if optimization
       
  3013 
       
  3014   return true;
       
  3015 }
       
  3016 
       
  3017 
       
  3018 //----------------------generate_virtual_guard---------------------------
       
  3019 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
       
  3020 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
       
  3021                                              RegionNode* slow_region) {
       
  3022   ciMethod* method = callee();
       
  3023   int vtable_index = method->vtable_index();
       
  3024   // Get the methodOop out of the appropriate vtable entry.
       
  3025   int entry_offset  = (instanceKlass::vtable_start_offset() +
       
  3026                      vtable_index*vtableEntry::size()) * wordSize +
       
  3027                      vtableEntry::method_offset_in_bytes();
       
  3028   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
       
  3029   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
       
  3030 
       
  3031   // Compare the target method with the expected method (e.g., Object.hashCode).
       
  3032   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
       
  3033 
       
  3034   Node* native_call = makecon(native_call_addr);
       
  3035   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
       
  3036   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
       
  3037 
       
  3038   return generate_slow_guard(test_native, slow_region);
       
  3039 }
       
  3040 
       
  3041 //-----------------------generate_method_call----------------------------
       
  3042 // Use generate_method_call to make a slow-call to the real
       
  3043 // method if the fast path fails.  An alternative would be to
       
  3044 // use a stub like OptoRuntime::slow_arraycopy_Java.
       
  3045 // This only works for expanding the current library call,
       
  3046 // not another intrinsic.  (E.g., don't use this for making an
       
  3047 // arraycopy call inside of the copyOf intrinsic.)
       
  3048 CallJavaNode*
       
  3049 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
       
  3050   // When compiling the intrinsic method itself, do not use this technique.
       
  3051   guarantee(callee() != C->method(), "cannot make slow-call to self");
       
  3052 
       
  3053   ciMethod* method = callee();
       
  3054   // ensure the JVMS we have will be correct for this call
       
  3055   guarantee(method_id == method->intrinsic_id(), "must match");
       
  3056 
       
  3057   const TypeFunc* tf = TypeFunc::make(method);
       
  3058   int tfdc = tf->domain()->cnt();
       
  3059   CallJavaNode* slow_call;
       
  3060   if (is_static) {
       
  3061     assert(!is_virtual, "");
       
  3062     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
       
  3063                                 SharedRuntime::get_resolve_static_call_stub(),
       
  3064                                 method, bci());
       
  3065   } else if (is_virtual) {
       
  3066     null_check_receiver(method);
       
  3067     int vtable_index = methodOopDesc::invalid_vtable_index;
       
  3068     if (UseInlineCaches) {
       
  3069       // Suppress the vtable call
       
  3070     } else {
       
  3071       // hashCode and clone are not a miranda methods,
       
  3072       // so the vtable index is fixed.
       
  3073       // No need to use the linkResolver to get it.
       
  3074        vtable_index = method->vtable_index();
       
  3075     }
       
  3076     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
       
  3077                                 SharedRuntime::get_resolve_virtual_call_stub(),
       
  3078                                 method, vtable_index, bci());
       
  3079   } else {  // neither virtual nor static:  opt_virtual
       
  3080     null_check_receiver(method);
       
  3081     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
       
  3082                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
       
  3083                                 method, bci());
       
  3084     slow_call->set_optimized_virtual(true);
       
  3085   }
       
  3086   set_arguments_for_java_call(slow_call);
       
  3087   set_edges_for_java_call(slow_call);
       
  3088   return slow_call;
       
  3089 }
       
  3090 
       
  3091 
       
  3092 //------------------------------inline_native_hashcode--------------------
       
  3093 // Build special case code for calls to hashCode on an object.
       
  3094 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
       
  3095   assert(is_static == callee()->is_static(), "correct intrinsic selection");
       
  3096   assert(!(is_virtual && is_static), "either virtual, special, or static");
       
  3097 
       
  3098   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
       
  3099 
       
  3100   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
       
  3101   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
       
  3102                                                       TypeInt::INT);
       
  3103   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
       
  3104   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
       
  3105                                                       TypePtr::BOTTOM);
       
  3106   Node* obj = NULL;
       
  3107   if (!is_static) {
       
  3108     // Check for hashing null object
       
  3109     obj = null_check_receiver(callee());
       
  3110     if (stopped())  return true;        // unconditionally null
       
  3111     result_reg->init_req(_null_path, top());
       
  3112     result_val->init_req(_null_path, top());
       
  3113   } else {
       
  3114     // Do a null check, and return zero if null.
       
  3115     // System.identityHashCode(null) == 0
       
  3116     obj = argument(0);
       
  3117     Node* null_ctl = top();
       
  3118     obj = null_check_oop(obj, &null_ctl);
       
  3119     result_reg->init_req(_null_path, null_ctl);
       
  3120     result_val->init_req(_null_path, _gvn.intcon(0));
       
  3121   }
       
  3122 
       
  3123   // Unconditionally null?  Then return right away.
       
  3124   if (stopped()) {
       
  3125     set_control( result_reg->in(_null_path) );
       
  3126     if (!stopped())
       
  3127       push(      result_val ->in(_null_path) );
       
  3128     return true;
       
  3129   }
       
  3130 
       
  3131   // After null check, get the object's klass.
       
  3132   Node* obj_klass = load_object_klass(obj);
       
  3133 
       
  3134   // This call may be virtual (invokevirtual) or bound (invokespecial).
       
  3135   // For each case we generate slightly different code.
       
  3136 
       
  3137   // We only go to the fast case code if we pass a number of guards.  The
       
  3138   // paths which do not pass are accumulated in the slow_region.
       
  3139   RegionNode* slow_region = new (C, 1) RegionNode(1);
       
  3140   record_for_igvn(slow_region);
       
  3141 
       
  3142   // If this is a virtual call, we generate a funny guard.  We pull out
       
  3143   // the vtable entry corresponding to hashCode() from the target object.
       
  3144   // If the target method which we are calling happens to be the native
       
  3145   // Object hashCode() method, we pass the guard.  We do not need this
       
  3146   // guard for non-virtual calls -- the caller is known to be the native
       
  3147   // Object hashCode().
       
  3148   if (is_virtual) {
       
  3149     generate_virtual_guard(obj_klass, slow_region);
       
  3150   }
       
  3151 
       
  3152   // Get the header out of the object, use LoadMarkNode when available
       
  3153   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
       
  3154   Node* header = make_load(NULL, header_addr, TypeRawPtr::BOTTOM, T_ADDRESS);
       
  3155   header = _gvn.transform( new (C, 2) CastP2XNode(NULL, header) );
       
  3156 
       
  3157   // Test the header to see if it is unlocked.
       
  3158   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
       
  3159   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
       
  3160   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
       
  3161   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
       
  3162   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
       
  3163 
       
  3164   generate_slow_guard(test_unlocked, slow_region);
       
  3165 
       
  3166   // Get the hash value and check to see that it has been properly assigned.
       
  3167   // We depend on hash_mask being at most 32 bits and avoid the use of
       
  3168   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
       
  3169   // vm: see markOop.hpp.
       
  3170   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
       
  3171   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
       
  3172   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
       
  3173   // This hack lets the hash bits live anywhere in the mark object now, as long
       
  3174   // as the shift drops the relevent bits into the low 32 bits.  Note that
       
  3175   // Java spec says that HashCode is an int so there's no point in capturing
       
  3176   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
       
  3177   hshifted_header      = ConvX2I(hshifted_header);
       
  3178   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
       
  3179 
       
  3180   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
       
  3181   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
       
  3182   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
       
  3183 
       
  3184   generate_slow_guard(test_assigned, slow_region);
       
  3185 
       
  3186   Node* init_mem = reset_memory();
       
  3187   // fill in the rest of the null path:
       
  3188   result_io ->init_req(_null_path, i_o());
       
  3189   result_mem->init_req(_null_path, init_mem);
       
  3190 
       
  3191   result_val->init_req(_fast_path, hash_val);
       
  3192   result_reg->init_req(_fast_path, control());
       
  3193   result_io ->init_req(_fast_path, i_o());
       
  3194   result_mem->init_req(_fast_path, init_mem);
       
  3195 
       
  3196   // Generate code for the slow case.  We make a call to hashCode().
       
  3197   set_control(_gvn.transform(slow_region));
       
  3198   if (!stopped()) {
       
  3199     // No need for PreserveJVMState, because we're using up the present state.
       
  3200     set_all_memory(init_mem);
       
  3201     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
       
  3202     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
       
  3203     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
       
  3204     Node* slow_result = set_results_for_java_call(slow_call);
       
  3205     // this->control() comes from set_results_for_java_call
       
  3206     result_reg->init_req(_slow_path, control());
       
  3207     result_val->init_req(_slow_path, slow_result);
       
  3208     result_io  ->set_req(_slow_path, i_o());
       
  3209     result_mem ->set_req(_slow_path, reset_memory());
       
  3210   }
       
  3211 
       
  3212   // Return the combined state.
       
  3213   set_i_o(        _gvn.transform(result_io)  );
       
  3214   set_all_memory( _gvn.transform(result_mem) );
       
  3215   push_result(result_reg, result_val);
       
  3216 
       
  3217   return true;
       
  3218 }
       
  3219 
       
  3220 //---------------------------inline_native_getClass----------------------------
       
  3221 // Build special case code for calls to hashCode on an object.
       
  3222 bool LibraryCallKit::inline_native_getClass() {
       
  3223   Node* obj = null_check_receiver(callee());
       
  3224   if (stopped())  return true;
       
  3225   push( load_mirror_from_klass(load_object_klass(obj)) );
       
  3226   return true;
       
  3227 }
       
  3228 
       
  3229 //-----------------inline_native_Reflection_getCallerClass---------------------
       
  3230 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
       
  3231 //
       
  3232 // NOTE that this code must perform the same logic as
       
  3233 // vframeStream::security_get_caller_frame in that it must skip
       
  3234 // Method.invoke() and auxiliary frames.
       
  3235 
       
  3236 
       
  3237 
       
  3238 
       
  3239 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
       
  3240   ciMethod*       method = callee();
       
  3241 
       
  3242 #ifndef PRODUCT
       
  3243   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
       
  3244     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
       
  3245   }
       
  3246 #endif
       
  3247 
       
  3248   debug_only(int saved_sp = _sp);
       
  3249 
       
  3250   // Argument words:  (int depth)
       
  3251   int nargs = 1;
       
  3252 
       
  3253   _sp += nargs;
       
  3254   Node* caller_depth_node = pop();
       
  3255 
       
  3256   assert(saved_sp == _sp, "must have correct argument count");
       
  3257 
       
  3258   // The depth value must be a constant in order for the runtime call
       
  3259   // to be eliminated.
       
  3260   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
       
  3261   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
       
  3262 #ifndef PRODUCT
       
  3263     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
       
  3264       tty->print_cr("  Bailing out because caller depth was not a constant");
       
  3265     }
       
  3266 #endif
       
  3267     return false;
       
  3268   }
       
  3269   // Note that the JVM state at this point does not include the
       
  3270   // getCallerClass() frame which we are trying to inline. The
       
  3271   // semantics of getCallerClass(), however, are that the "first"
       
  3272   // frame is the getCallerClass() frame, so we subtract one from the
       
  3273   // requested depth before continuing. We don't inline requests of
       
  3274   // getCallerClass(0).
       
  3275   int caller_depth = caller_depth_type->get_con() - 1;
       
  3276   if (caller_depth < 0) {
       
  3277 #ifndef PRODUCT
       
  3278     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
       
  3279       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
       
  3280     }
       
  3281 #endif
       
  3282     return false;
       
  3283   }
       
  3284 
       
  3285   if (!jvms()->has_method()) {
       
  3286 #ifndef PRODUCT
       
  3287     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
       
  3288       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
       
  3289     }
       
  3290 #endif
       
  3291     return false;
       
  3292   }
       
  3293   int _depth = jvms()->depth();  // cache call chain depth
       
  3294 
       
  3295   // Walk back up the JVM state to find the caller at the required
       
  3296   // depth. NOTE that this code must perform the same logic as
       
  3297   // vframeStream::security_get_caller_frame in that it must skip
       
  3298   // Method.invoke() and auxiliary frames. Note also that depth is
       
  3299   // 1-based (1 is the bottom of the inlining).
       
  3300   int inlining_depth = _depth;
       
  3301   JVMState* caller_jvms = NULL;
       
  3302 
       
  3303   if (inlining_depth > 0) {
       
  3304     caller_jvms = jvms();
       
  3305     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
       
  3306     do {
       
  3307       // The following if-tests should be performed in this order
       
  3308       if (is_method_invoke_or_aux_frame(caller_jvms)) {
       
  3309         // Skip a Method.invoke() or auxiliary frame
       
  3310       } else if (caller_depth > 0) {
       
  3311         // Skip real frame
       
  3312         --caller_depth;
       
  3313       } else {
       
  3314         // We're done: reached desired caller after skipping.
       
  3315         break;
       
  3316       }
       
  3317       caller_jvms = caller_jvms->caller();
       
  3318       --inlining_depth;
       
  3319     } while (inlining_depth > 0);
       
  3320   }
       
  3321 
       
  3322   if (inlining_depth == 0) {
       
  3323 #ifndef PRODUCT
       
  3324     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
       
  3325       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
       
  3326       tty->print_cr("  JVM state at this point:");
       
  3327       for (int i = _depth; i >= 1; i--) {
       
  3328         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
       
  3329       }
       
  3330     }
       
  3331 #endif
       
  3332     return false; // Reached end of inlining
       
  3333   }
       
  3334 
       
  3335   // Acquire method holder as java.lang.Class
       
  3336   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
       
  3337   ciInstance*      caller_mirror = caller_klass->java_mirror();
       
  3338   // Push this as a constant
       
  3339   push(makecon(TypeInstPtr::make(caller_mirror)));
       
  3340 #ifndef PRODUCT
       
  3341   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
       
  3342     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
       
  3343     tty->print_cr("  JVM state at this point:");
       
  3344     for (int i = _depth; i >= 1; i--) {
       
  3345       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
       
  3346     }
       
  3347   }
       
  3348 #endif
       
  3349   return true;
       
  3350 }
       
  3351 
       
  3352 // Helper routine for above
       
  3353 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
       
  3354   // Is this the Method.invoke method itself?
       
  3355   if (jvms->method()->intrinsic_id() == vmIntrinsics::_invoke)
       
  3356     return true;
       
  3357 
       
  3358   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
       
  3359   ciKlass* k = jvms->method()->holder();
       
  3360   if (k->is_instance_klass()) {
       
  3361     ciInstanceKlass* ik = k->as_instance_klass();
       
  3362     for (; ik != NULL; ik = ik->super()) {
       
  3363       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
       
  3364           ik == env()->find_system_klass(ik->name())) {
       
  3365         return true;
       
  3366       }
       
  3367     }
       
  3368   }
       
  3369 
       
  3370   return false;
       
  3371 }
       
  3372 
       
  3373 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
       
  3374                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
       
  3375                                      // computing it since there is no lookup field by name function in the
       
  3376                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
       
  3377                                      // Using a static variable here is safe even if we have multiple compilation
       
  3378                                      // threads because the offset is constant.  At worst the same offset will be
       
  3379                                      // computed and  stored multiple
       
  3380 
       
  3381 bool LibraryCallKit::inline_native_AtomicLong_get() {
       
  3382   // Restore the stack and pop off the argument
       
  3383   _sp+=1;
       
  3384   Node *obj = pop();
       
  3385 
       
  3386   // get the offset of the "value" field. Since the CI interfaces
       
  3387   // does not provide a way to look up a field by name, we scan the bytecodes
       
  3388   // to get the field index.  We expect the first 2 instructions of the method
       
  3389   // to be:
       
  3390   //    0 aload_0
       
  3391   //    1 getfield "value"
       
  3392   ciMethod* method = callee();
       
  3393   if (value_field_offset == -1)
       
  3394   {
       
  3395     ciField* value_field;
       
  3396     ciBytecodeStream iter(method);
       
  3397     Bytecodes::Code bc = iter.next();
       
  3398 
       
  3399     if ((bc != Bytecodes::_aload_0) &&
       
  3400               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
       
  3401       return false;
       
  3402     bc = iter.next();
       
  3403     if (bc != Bytecodes::_getfield)
       
  3404       return false;
       
  3405     bool ignore;
       
  3406     value_field = iter.get_field(ignore);
       
  3407     value_field_offset = value_field->offset_in_bytes();
       
  3408   }
       
  3409 
       
  3410   // Null check without removing any arguments.
       
  3411   _sp++;
       
  3412   obj = do_null_check(obj, T_OBJECT);
       
  3413   _sp--;
       
  3414   // Check for locking null object
       
  3415   if (stopped()) return true;
       
  3416 
       
  3417   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
       
  3418   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
       
  3419   int alias_idx = C->get_alias_index(adr_type);
       
  3420 
       
  3421   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
       
  3422 
       
  3423   push_pair(result);
       
  3424 
       
  3425   return true;
       
  3426 }
       
  3427 
       
  3428 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
       
  3429   // Restore the stack and pop off the arguments
       
  3430   _sp+=5;
       
  3431   Node *newVal = pop_pair();
       
  3432   Node *oldVal = pop_pair();
       
  3433   Node *obj = pop();
       
  3434 
       
  3435   // we need the offset of the "value" field which was computed when
       
  3436   // inlining the get() method.  Give up if we don't have it.
       
  3437   if (value_field_offset == -1)
       
  3438     return false;
       
  3439 
       
  3440   // Null check without removing any arguments.
       
  3441   _sp+=5;
       
  3442   obj = do_null_check(obj, T_OBJECT);
       
  3443   _sp-=5;
       
  3444   // Check for locking null object
       
  3445   if (stopped()) return true;
       
  3446 
       
  3447   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
       
  3448   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
       
  3449   int alias_idx = C->get_alias_index(adr_type);
       
  3450 
       
  3451   Node *result = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
       
  3452   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(result));
       
  3453   set_memory(store_proj, alias_idx);
       
  3454 
       
  3455   push(result);
       
  3456   return true;
       
  3457 }
       
  3458 
       
  3459 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
       
  3460   // restore the arguments
       
  3461   _sp += arg_size();
       
  3462 
       
  3463   switch (id) {
       
  3464   case vmIntrinsics::_floatToRawIntBits:
       
  3465     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
       
  3466     break;
       
  3467 
       
  3468   case vmIntrinsics::_intBitsToFloat:
       
  3469     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
       
  3470     break;
       
  3471 
       
  3472   case vmIntrinsics::_doubleToRawLongBits:
       
  3473     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
       
  3474     break;
       
  3475 
       
  3476   case vmIntrinsics::_longBitsToDouble:
       
  3477     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
       
  3478     break;
       
  3479 
       
  3480   case vmIntrinsics::_doubleToLongBits: {
       
  3481     Node* value = pop_pair();
       
  3482 
       
  3483     // two paths (plus control) merge in a wood
       
  3484     RegionNode *r = new (C, 3) RegionNode(3);
       
  3485     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
       
  3486 
       
  3487     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
       
  3488     // Build the boolean node
       
  3489     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
       
  3490 
       
  3491     // Branch either way.
       
  3492     // NaN case is less traveled, which makes all the difference.
       
  3493     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
       
  3494     Node *opt_isnan = _gvn.transform(ifisnan);
       
  3495     assert( opt_isnan->is_If(), "Expect an IfNode");
       
  3496     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
       
  3497     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
       
  3498 
       
  3499     set_control(iftrue);
       
  3500 
       
  3501     static const jlong nan_bits = CONST64(0x7ff8000000000000);
       
  3502     Node *slow_result = longcon(nan_bits); // return NaN
       
  3503     phi->init_req(1, _gvn.transform( slow_result ));
       
  3504     r->init_req(1, iftrue);
       
  3505 
       
  3506     // Else fall through
       
  3507     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
       
  3508     set_control(iffalse);
       
  3509 
       
  3510     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
       
  3511     r->init_req(2, iffalse);
       
  3512 
       
  3513     // Post merge
       
  3514     set_control(_gvn.transform(r));
       
  3515     record_for_igvn(r);
       
  3516 
       
  3517     Node* result = _gvn.transform(phi);
       
  3518     assert(result->bottom_type()->isa_long(), "must be");
       
  3519     push_pair(result);
       
  3520 
       
  3521     C->set_has_split_ifs(true); // Has chance for split-if optimization
       
  3522 
       
  3523     break;
       
  3524   }
       
  3525 
       
  3526   case vmIntrinsics::_floatToIntBits: {
       
  3527     Node* value = pop();
       
  3528 
       
  3529     // two paths (plus control) merge in a wood
       
  3530     RegionNode *r = new (C, 3) RegionNode(3);
       
  3531     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
       
  3532 
       
  3533     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
       
  3534     // Build the boolean node
       
  3535     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
       
  3536 
       
  3537     // Branch either way.
       
  3538     // NaN case is less traveled, which makes all the difference.
       
  3539     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
       
  3540     Node *opt_isnan = _gvn.transform(ifisnan);
       
  3541     assert( opt_isnan->is_If(), "Expect an IfNode");
       
  3542     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
       
  3543     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
       
  3544 
       
  3545     set_control(iftrue);
       
  3546 
       
  3547     static const jint nan_bits = 0x7fc00000;
       
  3548     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
       
  3549     phi->init_req(1, _gvn.transform( slow_result ));
       
  3550     r->init_req(1, iftrue);
       
  3551 
       
  3552     // Else fall through
       
  3553     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
       
  3554     set_control(iffalse);
       
  3555 
       
  3556     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
       
  3557     r->init_req(2, iffalse);
       
  3558 
       
  3559     // Post merge
       
  3560     set_control(_gvn.transform(r));
       
  3561     record_for_igvn(r);
       
  3562 
       
  3563     Node* result = _gvn.transform(phi);
       
  3564     assert(result->bottom_type()->isa_int(), "must be");
       
  3565     push(result);
       
  3566 
       
  3567     C->set_has_split_ifs(true); // Has chance for split-if optimization
       
  3568 
       
  3569     break;
       
  3570   }
       
  3571 
       
  3572   default:
       
  3573     ShouldNotReachHere();
       
  3574   }
       
  3575 
       
  3576   return true;
       
  3577 }
       
  3578 
       
  3579 #ifdef _LP64
       
  3580 #define XTOP ,top() /*additional argument*/
       
  3581 #else  //_LP64
       
  3582 #define XTOP        /*no additional argument*/
       
  3583 #endif //_LP64
       
  3584 
       
  3585 //----------------------inline_unsafe_copyMemory-------------------------
       
  3586 bool LibraryCallKit::inline_unsafe_copyMemory() {
       
  3587   if (callee()->is_static())  return false;  // caller must have the capability!
       
  3588   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
       
  3589   assert(signature()->size() == nargs-1, "copy has 5 arguments");
       
  3590   null_check_receiver(callee());  // check then ignore argument(0)
       
  3591   if (stopped())  return true;
       
  3592 
       
  3593   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
       
  3594 
       
  3595   Node* src_ptr = argument(1);
       
  3596   Node* src_off = ConvL2X(argument(2));
       
  3597   assert(argument(3)->is_top(), "2nd half of long");
       
  3598   Node* dst_ptr = argument(4);
       
  3599   Node* dst_off = ConvL2X(argument(5));
       
  3600   assert(argument(6)->is_top(), "2nd half of long");
       
  3601   Node* size    = ConvL2X(argument(7));
       
  3602   assert(argument(8)->is_top(), "2nd half of long");
       
  3603 
       
  3604   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
       
  3605          "fieldOffset must be byte-scaled");
       
  3606 
       
  3607   Node* src = make_unsafe_address(src_ptr, src_off);
       
  3608   Node* dst = make_unsafe_address(dst_ptr, dst_off);
       
  3609 
       
  3610   // Conservatively insert a memory barrier on all memory slices.
       
  3611   // Do not let writes of the copy source or destination float below the copy.
       
  3612   insert_mem_bar(Op_MemBarCPUOrder);
       
  3613 
       
  3614   // Call it.  Note that the length argument is not scaled.
       
  3615   make_runtime_call(RC_LEAF|RC_NO_FP,
       
  3616                     OptoRuntime::fast_arraycopy_Type(),
       
  3617                     StubRoutines::unsafe_arraycopy(),
       
  3618                     "unsafe_arraycopy",
       
  3619                     TypeRawPtr::BOTTOM,
       
  3620                     src, dst, size XTOP);
       
  3621 
       
  3622   // Do not let reads of the copy destination float above the copy.
       
  3623   insert_mem_bar(Op_MemBarCPUOrder);
       
  3624 
       
  3625   return true;
       
  3626 }
       
  3627 
       
  3628 
       
  3629 //------------------------inline_native_clone----------------------------
       
  3630 // Here are the simple edge cases:
       
  3631 //  null receiver => normal trap
       
  3632 //  virtual and clone was overridden => slow path to out-of-line clone
       
  3633 //  not cloneable or finalizer => slow path to out-of-line Object.clone
       
  3634 //
       
  3635 // The general case has two steps, allocation and copying.
       
  3636 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
       
  3637 //
       
  3638 // Copying also has two cases, oop arrays and everything else.
       
  3639 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
       
  3640 // Everything else uses the tight inline loop supplied by CopyArrayNode.
       
  3641 //
       
  3642 // These steps fold up nicely if and when the cloned object's klass
       
  3643 // can be sharply typed as an object array, a type array, or an instance.
       
  3644 //
       
  3645 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
       
  3646   int nargs = 1;
       
  3647   Node* obj = null_check_receiver(callee());
       
  3648   if (stopped())  return true;
       
  3649   Node* obj_klass = load_object_klass(obj);
       
  3650   const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
       
  3651   const TypeOopPtr*   toop   = ((tklass != NULL)
       
  3652                                 ? tklass->as_instance_type()
       
  3653                                 : TypeInstPtr::NOTNULL);
       
  3654 
       
  3655   // Conservatively insert a memory barrier on all memory slices.
       
  3656   // Do not let writes into the original float below the clone.
       
  3657   insert_mem_bar(Op_MemBarCPUOrder);
       
  3658 
       
  3659   // paths into result_reg:
       
  3660   enum {
       
  3661     _slow_path = 1,     // out-of-line call to clone method (virtual or not)
       
  3662     _objArray_path,     // plain allocation, plus arrayof_oop_arraycopy
       
  3663     _fast_path,         // plain allocation, plus a CopyArray operation
       
  3664     PATH_LIMIT
       
  3665   };
       
  3666   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
       
  3667   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
       
  3668                                                       TypeInstPtr::NOTNULL);
       
  3669   PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
       
  3670   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
       
  3671                                                       TypePtr::BOTTOM);
       
  3672   record_for_igvn(result_reg);
       
  3673 
       
  3674   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
       
  3675   int raw_adr_idx = Compile::AliasIdxRaw;
       
  3676   const bool raw_mem_only = true;
       
  3677 
       
  3678   // paths into alloc_reg (on the fast path, just before the CopyArray):
       
  3679   enum { _typeArray_alloc = 1, _instance_alloc, ALLOC_LIMIT };
       
  3680   RegionNode* alloc_reg = new(C, ALLOC_LIMIT) RegionNode(ALLOC_LIMIT);
       
  3681   PhiNode*    alloc_val = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, raw_adr_type);
       
  3682   PhiNode*    alloc_siz = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, TypeX_X);
       
  3683   PhiNode*    alloc_i_o = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, Type::ABIO);
       
  3684   PhiNode*    alloc_mem = new(C, ALLOC_LIMIT) PhiNode(alloc_reg, Type::MEMORY,
       
  3685                                                       raw_adr_type);
       
  3686   record_for_igvn(alloc_reg);
       
  3687 
       
  3688   bool card_mark = false;  // (see below)
       
  3689 
       
  3690   Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
       
  3691   if (array_ctl != NULL) {
       
  3692     // It's an array.
       
  3693     PreserveJVMState pjvms(this);
       
  3694     set_control(array_ctl);
       
  3695     Node* obj_length = load_array_length(obj);
       
  3696     Node* obj_size = NULL;
       
  3697     _sp += nargs;  // set original stack for use by uncommon_trap
       
  3698     Node* alloc_obj = new_array(obj_klass, obj_length,
       
  3699                                 raw_mem_only, &obj_size);
       
  3700     _sp -= nargs;
       
  3701     assert(obj_size != NULL, "");
       
  3702     Node* raw_obj = alloc_obj->in(1);
       
  3703     assert(raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
       
  3704     if (ReduceBulkZeroing) {
       
  3705       AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
       
  3706       if (alloc != NULL) {
       
  3707         // We will be completely responsible for initializing this object.
       
  3708         alloc->maybe_set_complete(&_gvn);
       
  3709       }
       
  3710     }
       
  3711 
       
  3712     if (!use_ReduceInitialCardMarks()) {
       
  3713       // If it is an oop array, it requires very special treatment,
       
  3714       // because card marking is required on each card of the array.
       
  3715       Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
       
  3716       if (is_obja != NULL) {
       
  3717         PreserveJVMState pjvms2(this);
       
  3718         set_control(is_obja);
       
  3719         // Generate a direct call to the right arraycopy function(s).
       
  3720         bool disjoint_bases = true;
       
  3721         bool length_never_negative = true;
       
  3722         generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
       
  3723                            obj, intcon(0), alloc_obj, intcon(0),
       
  3724                            obj_length, nargs,
       
  3725                            disjoint_bases, length_never_negative);
       
  3726         result_reg->init_req(_objArray_path, control());
       
  3727         result_val->init_req(_objArray_path, alloc_obj);
       
  3728         result_i_o ->set_req(_objArray_path, i_o());
       
  3729         result_mem ->set_req(_objArray_path, reset_memory());
       
  3730       }
       
  3731     }
       
  3732     // We can dispense with card marks if we know the allocation
       
  3733     // comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
       
  3734     // causes the non-eden paths to simulate a fresh allocation,
       
  3735     // insofar that no further card marks are required to initialize
       
  3736     // the object.
       
  3737 
       
  3738     // Otherwise, there are no card marks to worry about.
       
  3739     alloc_val->init_req(_typeArray_alloc, raw_obj);
       
  3740     alloc_siz->init_req(_typeArray_alloc, obj_size);
       
  3741     alloc_reg->init_req(_typeArray_alloc, control());
       
  3742     alloc_i_o->init_req(_typeArray_alloc, i_o());
       
  3743     alloc_mem->init_req(_typeArray_alloc, memory(raw_adr_type));
       
  3744   }
       
  3745 
       
  3746   // We only go to the fast case code if we pass a number of guards.
       
  3747   // The paths which do not pass are accumulated in the slow_region.
       
  3748   RegionNode* slow_region = new (C, 1) RegionNode(1);
       
  3749   record_for_igvn(slow_region);
       
  3750   if (!stopped()) {
       
  3751     // It's an instance.  Make the slow-path tests.
       
  3752     // If this is a virtual call, we generate a funny guard.  We grab
       
  3753     // the vtable entry corresponding to clone() from the target object.
       
  3754     // If the target method which we are calling happens to be the
       
  3755     // Object clone() method, we pass the guard.  We do not need this
       
  3756     // guard for non-virtual calls; the caller is known to be the native
       
  3757     // Object clone().
       
  3758     if (is_virtual) {
       
  3759       generate_virtual_guard(obj_klass, slow_region);
       
  3760     }
       
  3761 
       
  3762     // The object must be cloneable and must not have a finalizer.
       
  3763     // Both of these conditions may be checked in a single test.
       
  3764     // We could optimize the cloneable test further, but we don't care.
       
  3765     generate_access_flags_guard(obj_klass,
       
  3766                                 // Test both conditions:
       
  3767                                 JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
       
  3768                                 // Must be cloneable but not finalizer:
       
  3769                                 JVM_ACC_IS_CLONEABLE,
       
  3770                                 slow_region);
       
  3771   }
       
  3772 
       
  3773   if (!stopped()) {
       
  3774     // It's an instance, and it passed the slow-path tests.
       
  3775     PreserveJVMState pjvms(this);
       
  3776     Node* obj_size = NULL;
       
  3777     Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
       
  3778     assert(obj_size != NULL, "");
       
  3779     Node* raw_obj = alloc_obj->in(1);
       
  3780     assert(raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
       
  3781     if (ReduceBulkZeroing) {
       
  3782       AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
       
  3783       if (alloc != NULL && !alloc->maybe_set_complete(&_gvn))
       
  3784         alloc = NULL;
       
  3785     }
       
  3786     if (!use_ReduceInitialCardMarks()) {
       
  3787       // Put in store barrier for any and all oops we are sticking
       
  3788       // into this object.  (We could avoid this if we could prove
       
  3789       // that the object type contains no oop fields at all.)
       
  3790       card_mark = true;
       
  3791     }
       
  3792     alloc_val->init_req(_instance_alloc, raw_obj);
       
  3793     alloc_siz->init_req(_instance_alloc, obj_size);
       
  3794     alloc_reg->init_req(_instance_alloc, control());
       
  3795     alloc_i_o->init_req(_instance_alloc, i_o());
       
  3796     alloc_mem->init_req(_instance_alloc, memory(raw_adr_type));
       
  3797   }
       
  3798 
       
  3799   // Generate code for the slow case.  We make a call to clone().
       
  3800   set_control(_gvn.transform(slow_region));
       
  3801   if (!stopped()) {
       
  3802     PreserveJVMState pjvms(this);
       
  3803     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
       
  3804     Node* slow_result = set_results_for_java_call(slow_call);
       
  3805     // this->control() comes from set_results_for_java_call
       
  3806     result_reg->init_req(_slow_path, control());
       
  3807     result_val->init_req(_slow_path, slow_result);
       
  3808     result_i_o ->set_req(_slow_path, i_o());
       
  3809     result_mem ->set_req(_slow_path, reset_memory());
       
  3810   }
       
  3811 
       
  3812   // The object is allocated, as an array and/or an instance.  Now copy it.
       
  3813   set_control( _gvn.transform(alloc_reg) );
       
  3814   set_i_o(     _gvn.transform(alloc_i_o) );
       
  3815   set_memory(  _gvn.transform(alloc_mem), raw_adr_type );
       
  3816   Node* raw_obj  = _gvn.transform(alloc_val);
       
  3817 
       
  3818   if (!stopped()) {
       
  3819     // Copy the fastest available way.
       
  3820     // (No need for PreserveJVMState, since we're using it all up now.)
       
  3821     Node* src  = obj;
       
  3822     Node* dest = raw_obj;
       
  3823     Node* end  = dest;
       
  3824     Node* size = _gvn.transform(alloc_siz);
       
  3825 
       
  3826     // Exclude the header.
       
  3827     int base_off = sizeof(oopDesc);
       
  3828     src  = basic_plus_adr(src,  base_off);
       
  3829     dest = basic_plus_adr(dest, base_off);
       
  3830     end  = basic_plus_adr(end,  size);
       
  3831 
       
  3832     // Compute the length also, if needed:
       
  3833     Node* countx = size;
       
  3834     countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
       
  3835     countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
       
  3836 
       
  3837     // Select an appropriate instruction to initialize the range.
       
  3838     // The CopyArray instruction (if supported) can be optimized
       
  3839     // into a discrete set of scalar loads and stores.
       
  3840     bool disjoint_bases = true;
       
  3841     generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
       
  3842                                  src, NULL, dest, NULL, countx);
       
  3843 
       
  3844     // Now that the object is properly initialized, type it as an oop.
       
  3845     // Use a secondary InitializeNode memory barrier.
       
  3846     InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, raw_adr_idx,
       
  3847                                                    raw_obj)->as_Initialize();
       
  3848     init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
       
  3849     Node* new_obj = new(C, 2) CheckCastPPNode(control(), raw_obj,
       
  3850                                               TypeInstPtr::NOTNULL);
       
  3851     new_obj = _gvn.transform(new_obj);
       
  3852 
       
  3853     // If necessary, emit some card marks afterwards.  (Non-arrays only.)
       
  3854     if (card_mark) {
       
  3855       Node* no_particular_value = NULL;
       
  3856       Node* no_particular_field = NULL;
       
  3857       post_barrier(control(),
       
  3858                    memory(raw_adr_type),
       
  3859                    new_obj,
       
  3860                    no_particular_field,
       
  3861                    raw_adr_idx,
       
  3862                    no_particular_value,
       
  3863                    T_OBJECT,
       
  3864                    false);
       
  3865     }
       
  3866     // Present the results of the slow call.
       
  3867     result_reg->init_req(_fast_path, control());
       
  3868     result_val->init_req(_fast_path, new_obj);
       
  3869     result_i_o ->set_req(_fast_path, i_o());
       
  3870     result_mem ->set_req(_fast_path, reset_memory());
       
  3871   }
       
  3872 
       
  3873   // Return the combined state.
       
  3874   set_control(    _gvn.transform(result_reg) );
       
  3875   set_i_o(        _gvn.transform(result_i_o) );
       
  3876   set_all_memory( _gvn.transform(result_mem) );
       
  3877 
       
  3878   // Cast the result to a sharper type, since we know what clone does.
       
  3879   Node* new_obj = _gvn.transform(result_val);
       
  3880   Node* cast    = new (C, 2) CheckCastPPNode(control(), new_obj, toop);
       
  3881   push(_gvn.transform(cast));
       
  3882 
       
  3883   return true;
       
  3884 }
       
  3885 
       
  3886 
       
  3887 // constants for computing the copy function
       
  3888 enum {
       
  3889   COPYFUNC_UNALIGNED = 0,
       
  3890   COPYFUNC_ALIGNED = 1,                 // src, dest aligned to HeapWordSize
       
  3891   COPYFUNC_CONJOINT = 0,
       
  3892   COPYFUNC_DISJOINT = 2                 // src != dest, or transfer can descend
       
  3893 };
       
  3894 
       
  3895 // Note:  The condition "disjoint" applies also for overlapping copies
       
  3896 // where an descending copy is permitted (i.e., dest_offset <= src_offset).
       
  3897 static address
       
  3898 select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
       
  3899   int selector =
       
  3900     (aligned  ? COPYFUNC_ALIGNED  : COPYFUNC_UNALIGNED) +
       
  3901     (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
       
  3902 
       
  3903 #define RETURN_STUB(xxx_arraycopy) { \
       
  3904   name = #xxx_arraycopy; \
       
  3905   return StubRoutines::xxx_arraycopy(); }
       
  3906 
       
  3907   switch (t) {
       
  3908   case T_BYTE:
       
  3909   case T_BOOLEAN:
       
  3910     switch (selector) {
       
  3911     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_arraycopy);
       
  3912     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_arraycopy);
       
  3913     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_disjoint_arraycopy);
       
  3914     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
       
  3915     }
       
  3916   case T_CHAR:
       
  3917   case T_SHORT:
       
  3918     switch (selector) {
       
  3919     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_arraycopy);
       
  3920     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_arraycopy);
       
  3921     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_disjoint_arraycopy);
       
  3922     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
       
  3923     }
       
  3924   case T_INT:
       
  3925   case T_FLOAT:
       
  3926     switch (selector) {
       
  3927     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_arraycopy);
       
  3928     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_arraycopy);
       
  3929     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_disjoint_arraycopy);
       
  3930     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_disjoint_arraycopy);
       
  3931     }
       
  3932   case T_DOUBLE:
       
  3933   case T_LONG:
       
  3934     switch (selector) {
       
  3935     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_arraycopy);
       
  3936     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_arraycopy);
       
  3937     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_disjoint_arraycopy);
       
  3938     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
       
  3939     }
       
  3940   case T_ARRAY:
       
  3941   case T_OBJECT:
       
  3942     switch (selector) {
       
  3943     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_arraycopy);
       
  3944     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_arraycopy);
       
  3945     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_disjoint_arraycopy);
       
  3946     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_disjoint_arraycopy);
       
  3947     }
       
  3948   default:
       
  3949     ShouldNotReachHere();
       
  3950     return NULL;
       
  3951   }
       
  3952 
       
  3953 #undef RETURN_STUB
       
  3954 }
       
  3955 
       
  3956 //------------------------------basictype2arraycopy----------------------------
       
  3957 address LibraryCallKit::basictype2arraycopy(BasicType t,
       
  3958                                             Node* src_offset,
       
  3959                                             Node* dest_offset,
       
  3960                                             bool disjoint_bases,
       
  3961                                             const char* &name) {
       
  3962   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
       
  3963   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
       
  3964 
       
  3965   bool aligned = false;
       
  3966   bool disjoint = disjoint_bases;
       
  3967 
       
  3968   // if the offsets are the same, we can treat the memory regions as
       
  3969   // disjoint, because either the memory regions are in different arrays,
       
  3970   // or they are identical (which we can treat as disjoint.)  We can also
       
  3971   // treat a copy with a destination index  less that the source index
       
  3972   // as disjoint since a low->high copy will work correctly in this case.
       
  3973   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
       
  3974       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
       
  3975     // both indices are constants
       
  3976     int s_offs = src_offset_inttype->get_con();
       
  3977     int d_offs = dest_offset_inttype->get_con();
       
  3978     int element_size = type2aelembytes[t];
       
  3979     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
       
  3980               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
       
  3981     if (s_offs >= d_offs)  disjoint = true;
       
  3982   } else if (src_offset == dest_offset && src_offset != NULL) {
       
  3983     // This can occur if the offsets are identical non-constants.
       
  3984     disjoint = true;
       
  3985   }
       
  3986 
       
  3987   return select_arraycopy_function(t, aligned, disjoint, name);
       
  3988 }
       
  3989 
       
  3990 
       
  3991 //------------------------------inline_arraycopy-----------------------
       
  3992 bool LibraryCallKit::inline_arraycopy() {
       
  3993   // Restore the stack and pop off the arguments.
       
  3994   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
       
  3995   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
       
  3996 
       
  3997   Node *src         = argument(0);
       
  3998   Node *src_offset  = argument(1);
       
  3999   Node *dest        = argument(2);
       
  4000   Node *dest_offset = argument(3);
       
  4001   Node *length      = argument(4);
       
  4002 
       
  4003   // Compile time checks.  If any of these checks cannot be verified at compile time,
       
  4004   // we do not make a fast path for this call.  Instead, we let the call remain as it
       
  4005   // is.  The checks we choose to mandate at compile time are:
       
  4006   //
       
  4007   // (1) src and dest are arrays.
       
  4008   const Type* src_type = src->Value(&_gvn);
       
  4009   const Type* dest_type = dest->Value(&_gvn);
       
  4010   const TypeAryPtr* top_src = src_type->isa_aryptr();
       
  4011   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
       
  4012   if (top_src  == NULL || top_src->klass()  == NULL ||
       
  4013       top_dest == NULL || top_dest->klass() == NULL) {
       
  4014     // Conservatively insert a memory barrier on all memory slices.
       
  4015     // Do not let writes into the source float below the arraycopy.
       
  4016     insert_mem_bar(Op_MemBarCPUOrder);
       
  4017 
       
  4018     // Call StubRoutines::generic_arraycopy stub.
       
  4019     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
       
  4020                        src, src_offset, dest, dest_offset, length,
       
  4021                        nargs);
       
  4022 
       
  4023     // Do not let reads from the destination float above the arraycopy.
       
  4024     // Since we cannot type the arrays, we don't know which slices
       
  4025     // might be affected.  We could restrict this barrier only to those
       
  4026     // memory slices which pertain to array elements--but don't bother.
       
  4027     if (!InsertMemBarAfterArraycopy)
       
  4028       // (If InsertMemBarAfterArraycopy, there is already one in place.)
       
  4029       insert_mem_bar(Op_MemBarCPUOrder);
       
  4030     return true;
       
  4031   }
       
  4032 
       
  4033   // (2) src and dest arrays must have elements of the same BasicType
       
  4034   // Figure out the size and type of the elements we will be copying.
       
  4035   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
       
  4036   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
       
  4037   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
       
  4038   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
       
  4039 
       
  4040   if (src_elem != dest_elem || dest_elem == T_VOID) {
       
  4041     // The component types are not the same or are not recognized.  Punt.
       
  4042     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
       
  4043     generate_slow_arraycopy(TypePtr::BOTTOM,
       
  4044                             src, src_offset, dest, dest_offset, length,
       
  4045                             nargs);
       
  4046     return true;
       
  4047   }
       
  4048 
       
  4049   //---------------------------------------------------------------------------
       
  4050   // We will make a fast path for this call to arraycopy.
       
  4051 
       
  4052   // We have the following tests left to perform:
       
  4053   //
       
  4054   // (3) src and dest must not be null.
       
  4055   // (4) src_offset must not be negative.
       
  4056   // (5) dest_offset must not be negative.
       
  4057   // (6) length must not be negative.
       
  4058   // (7) src_offset + length must not exceed length of src.
       
  4059   // (8) dest_offset + length must not exceed length of dest.
       
  4060   // (9) each element of an oop array must be assignable
       
  4061 
       
  4062   RegionNode* slow_region = new (C, 1) RegionNode(1);
       
  4063   record_for_igvn(slow_region);
       
  4064 
       
  4065   // (3) operands must not be null
       
  4066   // We currently perform our null checks with the do_null_check routine.
       
  4067   // This means that the null exceptions will be reported in the caller
       
  4068   // rather than (correctly) reported inside of the native arraycopy call.
       
  4069   // This should be corrected, given time.  We do our null check with the
       
  4070   // stack pointer restored.
       
  4071   _sp += nargs;
       
  4072   src  = do_null_check(src,  T_ARRAY);
       
  4073   dest = do_null_check(dest, T_ARRAY);
       
  4074   _sp -= nargs;
       
  4075 
       
  4076   // (4) src_offset must not be negative.
       
  4077   generate_negative_guard(src_offset, slow_region);
       
  4078 
       
  4079   // (5) dest_offset must not be negative.
       
  4080   generate_negative_guard(dest_offset, slow_region);
       
  4081 
       
  4082   // (6) length must not be negative (moved to generate_arraycopy()).
       
  4083   // generate_negative_guard(length, slow_region);
       
  4084 
       
  4085   // (7) src_offset + length must not exceed length of src.
       
  4086   generate_limit_guard(src_offset, length,
       
  4087                        load_array_length(src),
       
  4088                        slow_region);
       
  4089 
       
  4090   // (8) dest_offset + length must not exceed length of dest.
       
  4091   generate_limit_guard(dest_offset, length,
       
  4092                        load_array_length(dest),
       
  4093                        slow_region);
       
  4094 
       
  4095   // (9) each element of an oop array must be assignable
       
  4096   // The generate_arraycopy subroutine checks this.
       
  4097 
       
  4098   // This is where the memory effects are placed:
       
  4099   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
       
  4100   generate_arraycopy(adr_type, dest_elem,
       
  4101                      src, src_offset, dest, dest_offset, length,
       
  4102                      nargs, false, false, slow_region);
       
  4103 
       
  4104   return true;
       
  4105 }
       
  4106 
       
  4107 //-----------------------------generate_arraycopy----------------------
       
  4108 // Generate an optimized call to arraycopy.
       
  4109 // Caller must guard against non-arrays.
       
  4110 // Caller must determine a common array basic-type for both arrays.
       
  4111 // Caller must validate offsets against array bounds.
       
  4112 // The slow_region has already collected guard failure paths
       
  4113 // (such as out of bounds length or non-conformable array types).
       
  4114 // The generated code has this shape, in general:
       
  4115 //
       
  4116 //     if (length == 0)  return   // via zero_path
       
  4117 //     slowval = -1
       
  4118 //     if (types unknown) {
       
  4119 //       slowval = call generic copy loop
       
  4120 //       if (slowval == 0)  return  // via checked_path
       
  4121 //     } else if (indexes in bounds) {
       
  4122 //       if ((is object array) && !(array type check)) {
       
  4123 //         slowval = call checked copy loop
       
  4124 //         if (slowval == 0)  return  // via checked_path
       
  4125 //       } else {
       
  4126 //         call bulk copy loop
       
  4127 //         return  // via fast_path
       
  4128 //       }
       
  4129 //     }
       
  4130 //     // adjust params for remaining work:
       
  4131 //     if (slowval != -1) {
       
  4132 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
       
  4133 //     }
       
  4134 //   slow_region:
       
  4135 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
       
  4136 //     return  // via slow_call_path
       
  4137 //
       
  4138 // This routine is used from several intrinsics:  System.arraycopy,
       
  4139 // Object.clone (the array subcase), and Arrays.copyOf[Range].
       
  4140 //
       
  4141 void
       
  4142 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
       
  4143                                    BasicType basic_elem_type,
       
  4144                                    Node* src,  Node* src_offset,
       
  4145                                    Node* dest, Node* dest_offset,
       
  4146                                    Node* copy_length,
       
  4147                                    int nargs,
       
  4148                                    bool disjoint_bases,
       
  4149                                    bool length_never_negative,
       
  4150                                    RegionNode* slow_region) {
       
  4151 
       
  4152   if (slow_region == NULL) {
       
  4153     slow_region = new(C,1) RegionNode(1);
       
  4154     record_for_igvn(slow_region);
       
  4155   }
       
  4156 
       
  4157   Node* original_dest      = dest;
       
  4158   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
       
  4159   Node* raw_dest           = NULL;  // used before zeroing, if needed
       
  4160   bool  must_clear_dest    = false;
       
  4161 
       
  4162   // See if this is the initialization of a newly-allocated array.
       
  4163   // If so, we will take responsibility here for initializing it to zero.
       
  4164   // (Note:  Because tightly_coupled_allocation performs checks on the
       
  4165   // out-edges of the dest, we need to avoid making derived pointers
       
  4166   // from it until we have checked its uses.)
       
  4167   if (ReduceBulkZeroing
       
  4168       && !ZeroTLAB              // pointless if already zeroed
       
  4169       && basic_elem_type != T_CONFLICT // avoid corner case
       
  4170       && !_gvn.eqv_uncast(src, dest)
       
  4171       && ((alloc = tightly_coupled_allocation(dest, slow_region))
       
  4172           != NULL)
       
  4173       && alloc->maybe_set_complete(&_gvn)) {
       
  4174     // "You break it, you buy it."
       
  4175     InitializeNode* init = alloc->initialization();
       
  4176     assert(init->is_complete(), "we just did this");
       
  4177     assert(dest->Opcode() == Op_CheckCastPP, "sanity");
       
  4178     assert(dest->in(0)->in(0) == init, "dest pinned");
       
  4179     raw_dest = dest->in(1);  // grab the raw pointer!
       
  4180     original_dest = dest;
       
  4181     dest = raw_dest;
       
  4182     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
       
  4183     // Decouple the original InitializeNode, turning it into a simple membar.
       
  4184     // We will build a new one at the end of this routine.
       
  4185     init->set_req(InitializeNode::RawAddress, top());
       
  4186     // From this point on, every exit path is responsible for
       
  4187     // initializing any non-copied parts of the object to zero.
       
  4188     must_clear_dest = true;
       
  4189   } else {
       
  4190     // No zeroing elimination here.
       
  4191     alloc             = NULL;
       
  4192     //original_dest   = dest;
       
  4193     //must_clear_dest = false;
       
  4194   }
       
  4195 
       
  4196   // Results are placed here:
       
  4197   enum { fast_path        = 1,  // normal void-returning assembly stub
       
  4198          checked_path     = 2,  // special assembly stub with cleanup
       
  4199          slow_call_path   = 3,  // something went wrong; call the VM
       
  4200          zero_path        = 4,  // bypass when length of copy is zero
       
  4201          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
       
  4202          PATH_LIMIT       = 6
       
  4203   };
       
  4204   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
       
  4205   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
       
  4206   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
       
  4207   record_for_igvn(result_region);
       
  4208   _gvn.set_type_bottom(result_i_o);
       
  4209   _gvn.set_type_bottom(result_memory);
       
  4210   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
       
  4211 
       
  4212   // The slow_control path:
       
  4213   Node* slow_control;
       
  4214   Node* slow_i_o = i_o();
       
  4215   Node* slow_mem = memory(adr_type);
       
  4216   debug_only(slow_control = (Node*) badAddress);
       
  4217 
       
  4218   // Checked control path:
       
  4219   Node* checked_control = top();
       
  4220   Node* checked_mem     = NULL;
       
  4221   Node* checked_i_o     = NULL;
       
  4222   Node* checked_value   = NULL;
       
  4223 
       
  4224   if (basic_elem_type == T_CONFLICT) {
       
  4225     assert(!must_clear_dest, "");
       
  4226     Node* cv = generate_generic_arraycopy(adr_type,
       
  4227                                           src, src_offset, dest, dest_offset,
       
  4228                                           copy_length, nargs);
       
  4229     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
       
  4230     checked_control = control();
       
  4231     checked_i_o     = i_o();
       
  4232     checked_mem     = memory(adr_type);
       
  4233     checked_value   = cv;
       
  4234     set_control(top());         // no fast path
       
  4235   }
       
  4236 
       
  4237   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
       
  4238   if (not_pos != NULL) {
       
  4239     PreserveJVMState pjvms(this);
       
  4240     set_control(not_pos);
       
  4241 
       
  4242     // (6) length must not be negative.
       
  4243     if (!length_never_negative) {
       
  4244       generate_negative_guard(copy_length, slow_region);
       
  4245     }
       
  4246 
       
  4247     if (!stopped() && must_clear_dest) {
       
  4248       Node* dest_length = alloc->in(AllocateNode::ALength);
       
  4249       if (_gvn.eqv_uncast(copy_length, dest_length)
       
  4250           || _gvn.find_int_con(dest_length, 1) <= 0) {
       
  4251         // There is no zeroing to do.
       
  4252       } else {
       
  4253         // Clear the whole thing since there are no source elements to copy.
       
  4254         generate_clear_array(adr_type, dest, basic_elem_type,
       
  4255                              intcon(0), NULL,
       
  4256                              alloc->in(AllocateNode::AllocSize));
       
  4257       }
       
  4258     }
       
  4259 
       
  4260     // Present the results of the fast call.
       
  4261     result_region->init_req(zero_path, control());
       
  4262     result_i_o   ->init_req(zero_path, i_o());
       
  4263     result_memory->init_req(zero_path, memory(adr_type));
       
  4264   }
       
  4265 
       
  4266   if (!stopped() && must_clear_dest) {
       
  4267     // We have to initialize the *uncopied* part of the array to zero.
       
  4268     // The copy destination is the slice dest[off..off+len].  The other slices
       
  4269     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
       
  4270     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
       
  4271     Node* dest_length = alloc->in(AllocateNode::ALength);
       
  4272     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
       
  4273                                                           copy_length) );
       
  4274 
       
  4275     // If there is a head section that needs zeroing, do it now.
       
  4276     if (find_int_con(dest_offset, -1) != 0) {
       
  4277       generate_clear_array(adr_type, dest, basic_elem_type,
       
  4278                            intcon(0), dest_offset,
       
  4279                            NULL);
       
  4280     }
       
  4281 
       
  4282     // Next, perform a dynamic check on the tail length.
       
  4283     // It is often zero, and we can win big if we prove this.
       
  4284     // There are two wins:  Avoid generating the ClearArray
       
  4285     // with its attendant messy index arithmetic, and upgrade
       
  4286     // the copy to a more hardware-friendly word size of 64 bits.
       
  4287     Node* tail_ctl = NULL;
       
  4288     if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
       
  4289       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
       
  4290       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
       
  4291       tail_ctl = generate_slow_guard(bol_lt, NULL);
       
  4292       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
       
  4293     }
       
  4294 
       
  4295     // At this point, let's assume there is no tail.
       
  4296     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
       
  4297       // There is no tail.  Try an upgrade to a 64-bit copy.
       
  4298       bool didit = false;
       
  4299       { PreserveJVMState pjvms(this);
       
  4300         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
       
  4301                                          src, src_offset, dest, dest_offset,
       
  4302                                          dest_size);
       
  4303         if (didit) {
       
  4304           // Present the results of the block-copying fast call.
       
  4305           result_region->init_req(bcopy_path, control());
       
  4306           result_i_o   ->init_req(bcopy_path, i_o());
       
  4307           result_memory->init_req(bcopy_path, memory(adr_type));
       
  4308         }
       
  4309       }
       
  4310       if (didit)
       
  4311         set_control(top());     // no regular fast path
       
  4312     }
       
  4313 
       
  4314     // Clear the tail, if any.
       
  4315     if (tail_ctl != NULL) {
       
  4316       Node* notail_ctl = stopped() ? NULL : control();
       
  4317       set_control(tail_ctl);
       
  4318       if (notail_ctl == NULL) {
       
  4319         generate_clear_array(adr_type, dest, basic_elem_type,
       
  4320                              dest_tail, NULL,
       
  4321                              dest_size);
       
  4322       } else {
       
  4323         // Make a local merge.
       
  4324         Node* done_ctl = new(C,3) RegionNode(3);
       
  4325         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
       
  4326         done_ctl->init_req(1, notail_ctl);
       
  4327         done_mem->init_req(1, memory(adr_type));
       
  4328         generate_clear_array(adr_type, dest, basic_elem_type,
       
  4329                              dest_tail, NULL,
       
  4330                              dest_size);
       
  4331         done_ctl->init_req(2, control());
       
  4332         done_mem->init_req(2, memory(adr_type));
       
  4333         set_control( _gvn.transform(done_ctl) );
       
  4334         set_memory(  _gvn.transform(done_mem), adr_type );
       
  4335       }
       
  4336     }
       
  4337   }
       
  4338 
       
  4339   BasicType copy_type = basic_elem_type;
       
  4340   assert(basic_elem_type != T_ARRAY, "caller must fix this");
       
  4341   if (!stopped() && copy_type == T_OBJECT) {
       
  4342     // If src and dest have compatible element types, we can copy bits.
       
  4343     // Types S[] and D[] are compatible if D is a supertype of S.
       
  4344     //
       
  4345     // If they are not, we will use checked_oop_disjoint_arraycopy,
       
  4346     // which performs a fast optimistic per-oop check, and backs off
       
  4347     // further to JVM_ArrayCopy on the first per-oop check that fails.
       
  4348     // (Actually, we don't move raw bits only; the GC requires card marks.)
       
  4349 
       
  4350     // Get the klassOop for both src and dest
       
  4351     Node* src_klass  = load_object_klass(src);
       
  4352     Node* dest_klass = load_object_klass(dest);
       
  4353 
       
  4354     // Generate the subtype check.
       
  4355     // This might fold up statically, or then again it might not.
       
  4356     //
       
  4357     // Non-static example:  Copying List<String>.elements to a new String[].
       
  4358     // The backing store for a List<String> is always an Object[],
       
  4359     // but its elements are always type String, if the generic types
       
  4360     // are correct at the source level.
       
  4361     //
       
  4362     // Test S[] against D[], not S against D, because (probably)
       
  4363     // the secondary supertype cache is less busy for S[] than S.
       
  4364     // This usually only matters when D is an interface.
       
  4365     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
       
  4366     // Plug failing path into checked_oop_disjoint_arraycopy
       
  4367     if (not_subtype_ctrl != top()) {
       
  4368       PreserveJVMState pjvms(this);
       
  4369       set_control(not_subtype_ctrl);
       
  4370       // (At this point we can assume disjoint_bases, since types differ.)
       
  4371       int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
       
  4372       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
       
  4373       Node* n1 = new (C, 3) LoadKlassNode(0, immutable_memory(), p1, TypeRawPtr::BOTTOM);
       
  4374       Node* dest_elem_klass = _gvn.transform(n1);
       
  4375       Node* cv = generate_checkcast_arraycopy(adr_type,
       
  4376                                               dest_elem_klass,
       
  4377                                               src, src_offset, dest, dest_offset,
       
  4378                                               copy_length,
       
  4379                                               nargs);
       
  4380       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
       
  4381       checked_control = control();
       
  4382       checked_i_o     = i_o();
       
  4383       checked_mem     = memory(adr_type);
       
  4384       checked_value   = cv;
       
  4385     }
       
  4386     // At this point we know we do not need type checks on oop stores.
       
  4387 
       
  4388     // Let's see if we need card marks:
       
  4389     if (alloc != NULL && use_ReduceInitialCardMarks()) {
       
  4390       // If we do not need card marks, copy using the jint or jlong stub.
       
  4391       copy_type = LP64_ONLY(T_LONG) NOT_LP64(T_INT);
       
  4392       assert(type2aelembytes[basic_elem_type] == type2aelembytes[copy_type],
       
  4393              "sizes agree");
       
  4394     }
       
  4395   }
       
  4396 
       
  4397   if (!stopped()) {
       
  4398     // Generate the fast path, if possible.
       
  4399     PreserveJVMState pjvms(this);
       
  4400     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
       
  4401                                  src, src_offset, dest, dest_offset,
       
  4402                                  ConvI2X(copy_length));
       
  4403 
       
  4404     // Present the results of the fast call.
       
  4405     result_region->init_req(fast_path, control());
       
  4406     result_i_o   ->init_req(fast_path, i_o());
       
  4407     result_memory->init_req(fast_path, memory(adr_type));
       
  4408   }
       
  4409 
       
  4410   // Here are all the slow paths up to this point, in one bundle:
       
  4411   slow_control = top();
       
  4412   if (slow_region != NULL)
       
  4413     slow_control = _gvn.transform(slow_region);
       
  4414   debug_only(slow_region = (RegionNode*)badAddress);
       
  4415 
       
  4416   set_control(checked_control);
       
  4417   if (!stopped()) {
       
  4418     // Clean up after the checked call.
       
  4419     // The returned value is either 0 or -1^K,
       
  4420     // where K = number of partially transferred array elements.
       
  4421     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
       
  4422     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
       
  4423     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
       
  4424 
       
  4425     // If it is 0, we are done, so transfer to the end.
       
  4426     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
       
  4427     result_region->init_req(checked_path, checks_done);
       
  4428     result_i_o   ->init_req(checked_path, checked_i_o);
       
  4429     result_memory->init_req(checked_path, checked_mem);
       
  4430 
       
  4431     // If it is not zero, merge into the slow call.
       
  4432     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
       
  4433     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
       
  4434     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
       
  4435     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
       
  4436     record_for_igvn(slow_reg2);
       
  4437     slow_reg2  ->init_req(1, slow_control);
       
  4438     slow_i_o2  ->init_req(1, slow_i_o);
       
  4439     slow_mem2  ->init_req(1, slow_mem);
       
  4440     slow_reg2  ->init_req(2, control());
       
  4441     slow_i_o2  ->init_req(2, i_o());
       
  4442     slow_mem2  ->init_req(2, memory(adr_type));
       
  4443 
       
  4444     slow_control = _gvn.transform(slow_reg2);
       
  4445     slow_i_o     = _gvn.transform(slow_i_o2);
       
  4446     slow_mem     = _gvn.transform(slow_mem2);
       
  4447 
       
  4448     if (alloc != NULL) {
       
  4449       // We'll restart from the very beginning, after zeroing the whole thing.
       
  4450       // This can cause double writes, but that's OK since dest is brand new.
       
  4451       // So we ignore the low 31 bits of the value returned from the stub.
       
  4452     } else {
       
  4453       // We must continue the copy exactly where it failed, or else
       
  4454       // another thread might see the wrong number of writes to dest.
       
  4455       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
       
  4456       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
       
  4457       slow_offset->init_req(1, intcon(0));
       
  4458       slow_offset->init_req(2, checked_offset);
       
  4459       slow_offset  = _gvn.transform(slow_offset);
       
  4460 
       
  4461       // Adjust the arguments by the conditionally incoming offset.
       
  4462       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
       
  4463       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
       
  4464       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
       
  4465 
       
  4466       // Tweak the node variables to adjust the code produced below:
       
  4467       src_offset  = src_off_plus;
       
  4468       dest_offset = dest_off_plus;
       
  4469       copy_length = length_minus;
       
  4470     }
       
  4471   }
       
  4472 
       
  4473   set_control(slow_control);
       
  4474   if (!stopped()) {
       
  4475     // Generate the slow path, if needed.
       
  4476     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
       
  4477 
       
  4478     set_memory(slow_mem, adr_type);
       
  4479     set_i_o(slow_i_o);
       
  4480 
       
  4481     if (must_clear_dest) {
       
  4482       generate_clear_array(adr_type, dest, basic_elem_type,
       
  4483                            intcon(0), NULL,
       
  4484                            alloc->in(AllocateNode::AllocSize));
       
  4485     }
       
  4486 
       
  4487     if (dest != original_dest) {
       
  4488       // Promote from rawptr to oop, so it looks right in the call's GC map.
       
  4489       dest = _gvn.transform( new(C,2) CheckCastPPNode(control(), dest,
       
  4490                                                       TypeInstPtr::NOTNULL) );
       
  4491 
       
  4492       // Edit the call's debug-info to avoid referring to original_dest.
       
  4493       // (The problem with original_dest is that it isn't ready until
       
  4494       // after the InitializeNode completes, but this stuff is before.)
       
  4495       // Substitute in the locally valid dest_oop.
       
  4496       replace_in_map(original_dest, dest);
       
  4497     }
       
  4498 
       
  4499     generate_slow_arraycopy(adr_type,
       
  4500                             src, src_offset, dest, dest_offset,
       
  4501                             copy_length, nargs);
       
  4502 
       
  4503     result_region->init_req(slow_call_path, control());
       
  4504     result_i_o   ->init_req(slow_call_path, i_o());
       
  4505     result_memory->init_req(slow_call_path, memory(adr_type));
       
  4506   }
       
  4507 
       
  4508   // Remove unused edges.
       
  4509   for (uint i = 1; i < result_region->req(); i++) {
       
  4510     if (result_region->in(i) == NULL)
       
  4511       result_region->init_req(i, top());
       
  4512   }
       
  4513 
       
  4514   // Finished; return the combined state.
       
  4515   set_control( _gvn.transform(result_region) );
       
  4516   set_i_o(     _gvn.transform(result_i_o)    );
       
  4517   set_memory(  _gvn.transform(result_memory), adr_type );
       
  4518 
       
  4519   if (dest != original_dest) {
       
  4520     // Pin the "finished" array node after the arraycopy/zeroing operations.
       
  4521     // Use a secondary InitializeNode memory barrier.
       
  4522     InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
       
  4523                                                    Compile::AliasIdxRaw,
       
  4524                                                    raw_dest)->as_Initialize();
       
  4525     init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
       
  4526     _gvn.hash_delete(original_dest);
       
  4527     original_dest->set_req(0, control());
       
  4528     _gvn.hash_find_insert(original_dest);  // put back into GVN table
       
  4529   }
       
  4530 
       
  4531   // The memory edges above are precise in order to model effects around
       
  4532   // array copyies accurately to allow value numbering of field loads around
       
  4533   // arraycopy.  Such field loads, both before and after, are common in Java
       
  4534   // collections and similar classes involving header/array data structures.
       
  4535   //
       
  4536   // But with low number of register or when some registers are used or killed
       
  4537   // by arraycopy calls it causes registers spilling on stack. See 6544710.
       
  4538   // The next memory barrier is added to avoid it. If the arraycopy can be
       
  4539   // optimized away (which it can, sometimes) then we can manually remove
       
  4540   // the membar also.
       
  4541   if (InsertMemBarAfterArraycopy)
       
  4542     insert_mem_bar(Op_MemBarCPUOrder);
       
  4543 }
       
  4544 
       
  4545 
       
  4546 // Helper function which determines if an arraycopy immediately follows
       
  4547 // an allocation, with no intervening tests or other escapes for the object.
       
  4548 AllocateArrayNode*
       
  4549 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
       
  4550                                            RegionNode* slow_region) {
       
  4551   if (stopped())             return NULL;  // no fast path
       
  4552   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
       
  4553 
       
  4554   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
       
  4555   if (alloc == NULL)  return NULL;
       
  4556 
       
  4557   Node* rawmem = memory(Compile::AliasIdxRaw);
       
  4558   // Is the allocation's memory state untouched?
       
  4559   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
       
  4560     // Bail out if there have been raw-memory effects since the allocation.
       
  4561     // (Example:  There might have been a call or safepoint.)
       
  4562     return NULL;
       
  4563   }
       
  4564   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
       
  4565   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
       
  4566     return NULL;
       
  4567   }
       
  4568 
       
  4569   // There must be no unexpected observers of this allocation.
       
  4570   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
       
  4571     Node* obs = ptr->fast_out(i);
       
  4572     if (obs != this->map()) {
       
  4573       return NULL;
       
  4574     }
       
  4575   }
       
  4576 
       
  4577   // This arraycopy must unconditionally follow the allocation of the ptr.
       
  4578   Node* alloc_ctl = ptr->in(0);
       
  4579   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
       
  4580 
       
  4581   Node* ctl = control();
       
  4582   while (ctl != alloc_ctl) {
       
  4583     // There may be guards which feed into the slow_region.
       
  4584     // Any other control flow means that we might not get a chance
       
  4585     // to finish initializing the allocated object.
       
  4586     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
       
  4587       IfNode* iff = ctl->in(0)->as_If();
       
  4588       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
       
  4589       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
       
  4590       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
       
  4591         ctl = iff->in(0);       // This test feeds the known slow_region.
       
  4592         continue;
       
  4593       }
       
  4594       // One more try:  Various low-level checks bottom out in
       
  4595       // uncommon traps.  If the debug-info of the trap omits
       
  4596       // any reference to the allocation, as we've already
       
  4597       // observed, then there can be no objection to the trap.
       
  4598       bool found_trap = false;
       
  4599       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
       
  4600         Node* obs = not_ctl->fast_out(j);
       
  4601         if (obs->in(0) == not_ctl && obs->is_Call() &&
       
  4602             (obs->as_Call()->entry_point() ==
       
  4603              SharedRuntime::uncommon_trap_blob()->instructions_begin())) {
       
  4604           found_trap = true; break;
       
  4605         }
       
  4606       }
       
  4607       if (found_trap) {
       
  4608         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
       
  4609         continue;
       
  4610       }
       
  4611     }
       
  4612     return NULL;
       
  4613   }
       
  4614 
       
  4615   // If we get this far, we have an allocation which immediately
       
  4616   // precedes the arraycopy, and we can take over zeroing the new object.
       
  4617   // The arraycopy will finish the initialization, and provide
       
  4618   // a new control state to which we will anchor the destination pointer.
       
  4619 
       
  4620   return alloc;
       
  4621 }
       
  4622 
       
  4623 // Helper for initialization of arrays, creating a ClearArray.
       
  4624 // It writes zero bits in [start..end), within the body of an array object.
       
  4625 // The memory effects are all chained onto the 'adr_type' alias category.
       
  4626 //
       
  4627 // Since the object is otherwise uninitialized, we are free
       
  4628 // to put a little "slop" around the edges of the cleared area,
       
  4629 // as long as it does not go back into the array's header,
       
  4630 // or beyond the array end within the heap.
       
  4631 //
       
  4632 // The lower edge can be rounded down to the nearest jint and the
       
  4633 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
       
  4634 //
       
  4635 // Arguments:
       
  4636 //   adr_type           memory slice where writes are generated
       
  4637 //   dest               oop of the destination array
       
  4638 //   basic_elem_type    element type of the destination
       
  4639 //   slice_idx          array index of first element to store
       
  4640 //   slice_len          number of elements to store (or NULL)
       
  4641 //   dest_size          total size in bytes of the array object
       
  4642 //
       
  4643 // Exactly one of slice_len or dest_size must be non-NULL.
       
  4644 // If dest_size is non-NULL, zeroing extends to the end of the object.
       
  4645 // If slice_len is non-NULL, the slice_idx value must be a constant.
       
  4646 void
       
  4647 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
       
  4648                                      Node* dest,
       
  4649                                      BasicType basic_elem_type,
       
  4650                                      Node* slice_idx,
       
  4651                                      Node* slice_len,
       
  4652                                      Node* dest_size) {
       
  4653   // one or the other but not both of slice_len and dest_size:
       
  4654   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
       
  4655   if (slice_len == NULL)  slice_len = top();
       
  4656   if (dest_size == NULL)  dest_size = top();
       
  4657 
       
  4658   // operate on this memory slice:
       
  4659   Node* mem = memory(adr_type); // memory slice to operate on
       
  4660 
       
  4661   // scaling and rounding of indexes:
       
  4662   int scale = exact_log2(type2aelembytes[basic_elem_type]);
       
  4663   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
       
  4664   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
       
  4665   int bump_bit  = (-1 << scale) & BytesPerInt;
       
  4666 
       
  4667   // determine constant starts and ends
       
  4668   const intptr_t BIG_NEG = -128;
       
  4669   assert(BIG_NEG + 2*abase < 0, "neg enough");
       
  4670   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
       
  4671   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
       
  4672   if (slice_len_con == 0) {
       
  4673     return;                     // nothing to do here
       
  4674   }
       
  4675   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
       
  4676   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
       
  4677   if (slice_idx_con >= 0 && slice_len_con >= 0) {
       
  4678     assert(end_con < 0, "not two cons");
       
  4679     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
       
  4680                        BytesPerLong);
       
  4681   }
       
  4682 
       
  4683   if (start_con >= 0 && end_con >= 0) {
       
  4684     // Constant start and end.  Simple.
       
  4685     mem = ClearArrayNode::clear_memory(control(), mem, dest,
       
  4686                                        start_con, end_con, &_gvn);
       
  4687   } else if (start_con >= 0 && dest_size != top()) {
       
  4688     // Constant start, pre-rounded end after the tail of the array.
       
  4689     Node* end = dest_size;
       
  4690     mem = ClearArrayNode::clear_memory(control(), mem, dest,
       
  4691                                        start_con, end, &_gvn);
       
  4692   } else if (start_con >= 0 && slice_len != top()) {
       
  4693     // Constant start, non-constant end.  End needs rounding up.
       
  4694     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
       
  4695     intptr_t end_base  = abase + (slice_idx_con << scale);
       
  4696     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
       
  4697     Node*    end       = ConvI2X(slice_len);
       
  4698     if (scale != 0)
       
  4699       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
       
  4700     end_base += end_round;
       
  4701     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
       
  4702     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
       
  4703     mem = ClearArrayNode::clear_memory(control(), mem, dest,
       
  4704                                        start_con, end, &_gvn);
       
  4705   } else if (start_con < 0 && dest_size != top()) {
       
  4706     // Non-constant start, pre-rounded end after the tail of the array.
       
  4707     // This is almost certainly a "round-to-end" operation.
       
  4708     Node* start = slice_idx;
       
  4709     start = ConvI2X(start);
       
  4710     if (scale != 0)
       
  4711       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
       
  4712     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
       
  4713     if ((bump_bit | clear_low) != 0) {
       
  4714       int to_clear = (bump_bit | clear_low);
       
  4715       // Align up mod 8, then store a jint zero unconditionally
       
  4716       // just before the mod-8 boundary.
       
  4717       // This would only fail if the first array element were immediately
       
  4718       // after the length field, and were also at an even offset mod 8.
       
  4719       assert(((abase + bump_bit) & ~to_clear) - BytesPerInt
       
  4720              >= arrayOopDesc::length_offset_in_bytes() + BytesPerInt,
       
  4721              "store must not trash length field");
       
  4722 
       
  4723       // Bump 'start' up to (or past) the next jint boundary:
       
  4724       start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
       
  4725       // Round bumped 'start' down to jlong boundary in body of array.
       
  4726       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
       
  4727       // Store a zero to the immediately preceding jint:
       
  4728       Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-BytesPerInt)) );
       
  4729       Node* p1 = basic_plus_adr(dest, x1);
       
  4730       mem = StoreNode::make(C, control(), mem, p1, adr_type, intcon(0), T_INT);
       
  4731       mem = _gvn.transform(mem);
       
  4732     }
       
  4733 
       
  4734     Node* end = dest_size; // pre-rounded
       
  4735     mem = ClearArrayNode::clear_memory(control(), mem, dest,
       
  4736                                        start, end, &_gvn);
       
  4737   } else {
       
  4738     // Non-constant start, unrounded non-constant end.
       
  4739     // (Nobody zeroes a random midsection of an array using this routine.)
       
  4740     ShouldNotReachHere();       // fix caller
       
  4741   }
       
  4742 
       
  4743   // Done.
       
  4744   set_memory(mem, adr_type);
       
  4745 }
       
  4746 
       
  4747 
       
  4748 bool
       
  4749 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
       
  4750                                          BasicType basic_elem_type,
       
  4751                                          AllocateNode* alloc,
       
  4752                                          Node* src,  Node* src_offset,
       
  4753                                          Node* dest, Node* dest_offset,
       
  4754                                          Node* dest_size) {
       
  4755   // See if there is an advantage from block transfer.
       
  4756   int scale = exact_log2(type2aelembytes[basic_elem_type]);
       
  4757   if (scale >= LogBytesPerLong)
       
  4758     return false;               // it is already a block transfer
       
  4759 
       
  4760   // Look at the alignment of the starting offsets.
       
  4761   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
       
  4762   const intptr_t BIG_NEG = -128;
       
  4763   assert(BIG_NEG + 2*abase < 0, "neg enough");
       
  4764 
       
  4765   intptr_t src_off  = abase + ((intptr_t) find_int_con(src_offset, -1)  << scale);
       
  4766   intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
       
  4767   if (src_off < 0 || dest_off < 0)
       
  4768     // At present, we can only understand constants.
       
  4769     return false;
       
  4770 
       
  4771   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
       
  4772     // Non-aligned; too bad.
       
  4773     // One more chance:  Pick off an initial 32-bit word.
       
  4774     // This is a common case, since abase can be odd mod 8.
       
  4775     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
       
  4776         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
       
  4777       Node* sptr = basic_plus_adr(src,  src_off);
       
  4778       Node* dptr = basic_plus_adr(dest, dest_off);
       
  4779       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
       
  4780       store_to_memory(control(), dptr, sval, T_INT, adr_type);
       
  4781       src_off += BytesPerInt;
       
  4782       dest_off += BytesPerInt;
       
  4783     } else {
       
  4784       return false;
       
  4785     }
       
  4786   }
       
  4787   assert(src_off % BytesPerLong == 0, "");
       
  4788   assert(dest_off % BytesPerLong == 0, "");
       
  4789 
       
  4790   // Do this copy by giant steps.
       
  4791   Node* sptr  = basic_plus_adr(src,  src_off);
       
  4792   Node* dptr  = basic_plus_adr(dest, dest_off);
       
  4793   Node* countx = dest_size;
       
  4794   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
       
  4795   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
       
  4796 
       
  4797   bool disjoint_bases = true;   // since alloc != NULL
       
  4798   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
       
  4799                                sptr, NULL, dptr, NULL, countx);
       
  4800 
       
  4801   return true;
       
  4802 }
       
  4803 
       
  4804 
       
  4805 // Helper function; generates code for the slow case.
       
  4806 // We make a call to a runtime method which emulates the native method,
       
  4807 // but without the native wrapper overhead.
       
  4808 void
       
  4809 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
       
  4810                                         Node* src,  Node* src_offset,
       
  4811                                         Node* dest, Node* dest_offset,
       
  4812                                         Node* copy_length,
       
  4813                                         int nargs) {
       
  4814   _sp += nargs; // any deopt will start just before call to enclosing method
       
  4815   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
       
  4816                                  OptoRuntime::slow_arraycopy_Type(),
       
  4817                                  OptoRuntime::slow_arraycopy_Java(),
       
  4818                                  "slow_arraycopy", adr_type,
       
  4819                                  src, src_offset, dest, dest_offset,
       
  4820                                  copy_length);
       
  4821   _sp -= nargs;
       
  4822 
       
  4823   // Handle exceptions thrown by this fellow:
       
  4824   make_slow_call_ex(call, env()->Throwable_klass(), false);
       
  4825 }
       
  4826 
       
  4827 // Helper function; generates code for cases requiring runtime checks.
       
  4828 Node*
       
  4829 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
       
  4830                                              Node* dest_elem_klass,
       
  4831                                              Node* src,  Node* src_offset,
       
  4832                                              Node* dest, Node* dest_offset,
       
  4833                                              Node* copy_length,
       
  4834                                              int nargs) {
       
  4835   if (stopped())  return NULL;
       
  4836 
       
  4837   address copyfunc_addr = StubRoutines::checkcast_arraycopy();
       
  4838   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
       
  4839     return NULL;
       
  4840   }
       
  4841 
       
  4842   // Pick out the parameters required to perform a store-check
       
  4843   // for the target array.  This is an optimistic check.  It will
       
  4844   // look in each non-null element's class, at the desired klass's
       
  4845   // super_check_offset, for the desired klass.
       
  4846   int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
       
  4847   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
       
  4848   Node* n3 = new(C, 3) LoadINode(NULL, immutable_memory(), p3, TypeRawPtr::BOTTOM);
       
  4849   Node* check_offset = _gvn.transform(n3);
       
  4850   Node* check_value  = dest_elem_klass;
       
  4851 
       
  4852   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
       
  4853   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
       
  4854 
       
  4855   // (We know the arrays are never conjoint, because their types differ.)
       
  4856   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
       
  4857                                  OptoRuntime::checkcast_arraycopy_Type(),
       
  4858                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
       
  4859                                  // five arguments, of which two are
       
  4860                                  // intptr_t (jlong in LP64)
       
  4861                                  src_start, dest_start,
       
  4862                                  copy_length XTOP,
       
  4863                                  check_offset XTOP,
       
  4864                                  check_value);
       
  4865 
       
  4866   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
       
  4867 }
       
  4868 
       
  4869 
       
  4870 // Helper function; generates code for cases requiring runtime checks.
       
  4871 Node*
       
  4872 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
       
  4873                                            Node* src,  Node* src_offset,
       
  4874                                            Node* dest, Node* dest_offset,
       
  4875                                            Node* copy_length,
       
  4876                                            int nargs) {
       
  4877   if (stopped())  return NULL;
       
  4878 
       
  4879   address copyfunc_addr = StubRoutines::generic_arraycopy();
       
  4880   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
       
  4881     return NULL;
       
  4882   }
       
  4883 
       
  4884   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
       
  4885                     OptoRuntime::generic_arraycopy_Type(),
       
  4886                     copyfunc_addr, "generic_arraycopy", adr_type,
       
  4887                     src, src_offset, dest, dest_offset, copy_length);
       
  4888 
       
  4889   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
       
  4890 }
       
  4891 
       
  4892 // Helper function; generates the fast out-of-line call to an arraycopy stub.
       
  4893 void
       
  4894 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
       
  4895                                              BasicType basic_elem_type,
       
  4896                                              bool disjoint_bases,
       
  4897                                              Node* src,  Node* src_offset,
       
  4898                                              Node* dest, Node* dest_offset,
       
  4899                                              Node* copy_length) {
       
  4900   if (stopped())  return;               // nothing to do
       
  4901 
       
  4902   Node* src_start  = src;
       
  4903   Node* dest_start = dest;
       
  4904   if (src_offset != NULL || dest_offset != NULL) {
       
  4905     assert(src_offset != NULL && dest_offset != NULL, "");
       
  4906     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
       
  4907     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
       
  4908   }
       
  4909 
       
  4910   // Figure out which arraycopy runtime method to call.
       
  4911   const char* copyfunc_name = "arraycopy";
       
  4912   address     copyfunc_addr =
       
  4913       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
       
  4914                           disjoint_bases, copyfunc_name);
       
  4915 
       
  4916   // Call it.  Note that the count_ix value is not scaled to a byte-size.
       
  4917   make_runtime_call(RC_LEAF|RC_NO_FP,
       
  4918                     OptoRuntime::fast_arraycopy_Type(),
       
  4919                     copyfunc_addr, copyfunc_name, adr_type,
       
  4920                     src_start, dest_start, copy_length XTOP);
       
  4921 }