hotspot/src/share/vm/opto/lcm.cpp
changeset 1 489c9b5090e2
child 360 21d113ecbf6a
equal deleted inserted replaced
0:fd16c54261b3 1:489c9b5090e2
       
     1 /*
       
     2  * Copyright 1998-2007 Sun Microsystems, Inc.  All Rights Reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    21  * have any questions.
       
    22  *
       
    23  */
       
    24 
       
    25 // Optimization - Graph Style
       
    26 
       
    27 #include "incls/_precompiled.incl"
       
    28 #include "incls/_lcm.cpp.incl"
       
    29 
       
    30 //------------------------------implicit_null_check----------------------------
       
    31 // Detect implicit-null-check opportunities.  Basically, find NULL checks
       
    32 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
       
    33 // I can generate a memory op if there is not one nearby.
       
    34 // The proj is the control projection for the not-null case.
       
    35 // The val is the pointer being checked for nullness.
       
    36 void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
       
    37   // Assume if null check need for 0 offset then always needed
       
    38   // Intel solaris doesn't support any null checks yet and no
       
    39   // mechanism exists (yet) to set the switches at an os_cpu level
       
    40   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
       
    41 
       
    42   // Make sure the ptr-is-null path appears to be uncommon!
       
    43   float f = end()->as_MachIf()->_prob;
       
    44   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
       
    45   if( f > PROB_UNLIKELY_MAG(4) ) return;
       
    46 
       
    47   uint bidx = 0;                // Capture index of value into memop
       
    48   bool was_store;               // Memory op is a store op
       
    49 
       
    50   // Get the successor block for if the test ptr is non-null
       
    51   Block* not_null_block;  // this one goes with the proj
       
    52   Block* null_block;
       
    53   if (_nodes[_nodes.size()-1] == proj) {
       
    54     null_block     = _succs[0];
       
    55     not_null_block = _succs[1];
       
    56   } else {
       
    57     assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
       
    58     not_null_block = _succs[0];
       
    59     null_block     = _succs[1];
       
    60   }
       
    61 
       
    62   // Search the exception block for an uncommon trap.
       
    63   // (See Parse::do_if and Parse::do_ifnull for the reason
       
    64   // we need an uncommon trap.  Briefly, we need a way to
       
    65   // detect failure of this optimization, as in 6366351.)
       
    66   {
       
    67     bool found_trap = false;
       
    68     for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
       
    69       Node* nn = null_block->_nodes[i1];
       
    70       if (nn->is_MachCall() &&
       
    71           nn->as_MachCall()->entry_point() ==
       
    72           SharedRuntime::uncommon_trap_blob()->instructions_begin()) {
       
    73         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
       
    74         if (trtype->isa_int() && trtype->is_int()->is_con()) {
       
    75           jint tr_con = trtype->is_int()->get_con();
       
    76           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
       
    77           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
       
    78           assert((int)reason < (int)BitsPerInt, "recode bit map");
       
    79           if (is_set_nth_bit(allowed_reasons, (int) reason)
       
    80               && action != Deoptimization::Action_none) {
       
    81             // This uncommon trap is sure to recompile, eventually.
       
    82             // When that happens, C->too_many_traps will prevent
       
    83             // this transformation from happening again.
       
    84             found_trap = true;
       
    85           }
       
    86         }
       
    87         break;
       
    88       }
       
    89     }
       
    90     if (!found_trap) {
       
    91       // We did not find an uncommon trap.
       
    92       return;
       
    93     }
       
    94   }
       
    95 
       
    96   // Search the successor block for a load or store who's base value is also
       
    97   // the tested value.  There may be several.
       
    98   Node_List *out = new Node_List(Thread::current()->resource_area());
       
    99   MachNode *best = NULL;        // Best found so far
       
   100   for (DUIterator i = val->outs(); val->has_out(i); i++) {
       
   101     Node *m = val->out(i);
       
   102     if( !m->is_Mach() ) continue;
       
   103     MachNode *mach = m->as_Mach();
       
   104     was_store = false;
       
   105     switch( mach->ideal_Opcode() ) {
       
   106     case Op_LoadB:
       
   107     case Op_LoadC:
       
   108     case Op_LoadD:
       
   109     case Op_LoadF:
       
   110     case Op_LoadI:
       
   111     case Op_LoadL:
       
   112     case Op_LoadP:
       
   113     case Op_LoadS:
       
   114     case Op_LoadKlass:
       
   115     case Op_LoadRange:
       
   116     case Op_LoadD_unaligned:
       
   117     case Op_LoadL_unaligned:
       
   118       break;
       
   119     case Op_StoreB:
       
   120     case Op_StoreC:
       
   121     case Op_StoreCM:
       
   122     case Op_StoreD:
       
   123     case Op_StoreF:
       
   124     case Op_StoreI:
       
   125     case Op_StoreL:
       
   126     case Op_StoreP:
       
   127       was_store = true;         // Memory op is a store op
       
   128       // Stores will have their address in slot 2 (memory in slot 1).
       
   129       // If the value being nul-checked is in another slot, it means we
       
   130       // are storing the checked value, which does NOT check the value!
       
   131       if( mach->in(2) != val ) continue;
       
   132       break;                    // Found a memory op?
       
   133     case Op_StrComp:
       
   134       // Not a legit memory op for implicit null check regardless of
       
   135       // embedded loads
       
   136       continue;
       
   137     default:                    // Also check for embedded loads
       
   138       if( !mach->needs_anti_dependence_check() )
       
   139         continue;               // Not an memory op; skip it
       
   140       break;
       
   141     }
       
   142     // check if the offset is not too high for implicit exception
       
   143     {
       
   144       intptr_t offset = 0;
       
   145       const TypePtr *adr_type = NULL;  // Do not need this return value here
       
   146       const Node* base = mach->get_base_and_disp(offset, adr_type);
       
   147       if (base == NULL || base == NodeSentinel) {
       
   148         // cannot reason about it; is probably not implicit null exception
       
   149       } else {
       
   150         const TypePtr* tptr = base->bottom_type()->is_ptr();
       
   151         // Give up if offset is not a compile-time constant
       
   152         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
       
   153           continue;
       
   154         offset += tptr->_offset; // correct if base is offseted
       
   155         if( MacroAssembler::needs_explicit_null_check(offset) )
       
   156           continue;             // Give up is reference is beyond 4K page size
       
   157       }
       
   158     }
       
   159 
       
   160     // Check ctrl input to see if the null-check dominates the memory op
       
   161     Block *cb = cfg->_bbs[mach->_idx];
       
   162     cb = cb->_idom;             // Always hoist at least 1 block
       
   163     if( !was_store ) {          // Stores can be hoisted only one block
       
   164       while( cb->_dom_depth > (_dom_depth + 1))
       
   165         cb = cb->_idom;         // Hoist loads as far as we want
       
   166       // The non-null-block should dominate the memory op, too. Live
       
   167       // range spilling will insert a spill in the non-null-block if it is
       
   168       // needs to spill the memory op for an implicit null check.
       
   169       if (cb->_dom_depth == (_dom_depth + 1)) {
       
   170         if (cb != not_null_block) continue;
       
   171         cb = cb->_idom;
       
   172       }
       
   173     }
       
   174     if( cb != this ) continue;
       
   175 
       
   176     // Found a memory user; see if it can be hoisted to check-block
       
   177     uint vidx = 0;              // Capture index of value into memop
       
   178     uint j;
       
   179     for( j = mach->req()-1; j > 0; j-- ) {
       
   180       if( mach->in(j) == val ) vidx = j;
       
   181       // Block of memory-op input
       
   182       Block *inb = cfg->_bbs[mach->in(j)->_idx];
       
   183       Block *b = this;          // Start from nul check
       
   184       while( b != inb && b->_dom_depth > inb->_dom_depth )
       
   185         b = b->_idom;           // search upwards for input
       
   186       // See if input dominates null check
       
   187       if( b != inb )
       
   188         break;
       
   189     }
       
   190     if( j > 0 )
       
   191       continue;
       
   192     Block *mb = cfg->_bbs[mach->_idx];
       
   193     // Hoisting stores requires more checks for the anti-dependence case.
       
   194     // Give up hoisting if we have to move the store past any load.
       
   195     if( was_store ) {
       
   196       Block *b = mb;            // Start searching here for a local load
       
   197       // mach use (faulting) trying to hoist
       
   198       // n might be blocker to hoisting
       
   199       while( b != this ) {
       
   200         uint k;
       
   201         for( k = 1; k < b->_nodes.size(); k++ ) {
       
   202           Node *n = b->_nodes[k];
       
   203           if( n->needs_anti_dependence_check() &&
       
   204               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
       
   205             break;              // Found anti-dependent load
       
   206         }
       
   207         if( k < b->_nodes.size() )
       
   208           break;                // Found anti-dependent load
       
   209         // Make sure control does not do a merge (would have to check allpaths)
       
   210         if( b->num_preds() != 2 ) break;
       
   211         b = cfg->_bbs[b->pred(1)->_idx]; // Move up to predecessor block
       
   212       }
       
   213       if( b != this ) continue;
       
   214     }
       
   215 
       
   216     // Make sure this memory op is not already being used for a NullCheck
       
   217     Node *e = mb->end();
       
   218     if( e->is_MachNullCheck() && e->in(1) == mach )
       
   219       continue;                 // Already being used as a NULL check
       
   220 
       
   221     // Found a candidate!  Pick one with least dom depth - the highest
       
   222     // in the dom tree should be closest to the null check.
       
   223     if( !best ||
       
   224         cfg->_bbs[mach->_idx]->_dom_depth < cfg->_bbs[best->_idx]->_dom_depth ) {
       
   225       best = mach;
       
   226       bidx = vidx;
       
   227 
       
   228     }
       
   229   }
       
   230   // No candidate!
       
   231   if( !best ) return;
       
   232 
       
   233   // ---- Found an implicit null check
       
   234   extern int implicit_null_checks;
       
   235   implicit_null_checks++;
       
   236 
       
   237   // Hoist the memory candidate up to the end of the test block.
       
   238   Block *old_block = cfg->_bbs[best->_idx];
       
   239   old_block->find_remove(best);
       
   240   add_inst(best);
       
   241   cfg->_bbs.map(best->_idx,this);
       
   242 
       
   243   // Move the control dependence
       
   244   if (best->in(0) && best->in(0) == old_block->_nodes[0])
       
   245     best->set_req(0, _nodes[0]);
       
   246 
       
   247   // Check for flag-killing projections that also need to be hoisted
       
   248   // Should be DU safe because no edge updates.
       
   249   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
       
   250     Node* n = best->fast_out(j);
       
   251     if( n->Opcode() == Op_MachProj ) {
       
   252       cfg->_bbs[n->_idx]->find_remove(n);
       
   253       add_inst(n);
       
   254       cfg->_bbs.map(n->_idx,this);
       
   255     }
       
   256   }
       
   257 
       
   258   Compile *C = cfg->C;
       
   259   // proj==Op_True --> ne test; proj==Op_False --> eq test.
       
   260   // One of two graph shapes got matched:
       
   261   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
       
   262   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
       
   263   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
       
   264   // then we are replacing a 'ne' test with a 'eq' NULL check test.
       
   265   // We need to flip the projections to keep the same semantics.
       
   266   if( proj->Opcode() == Op_IfTrue ) {
       
   267     // Swap order of projections in basic block to swap branch targets
       
   268     Node *tmp1 = _nodes[end_idx()+1];
       
   269     Node *tmp2 = _nodes[end_idx()+2];
       
   270     _nodes.map(end_idx()+1, tmp2);
       
   271     _nodes.map(end_idx()+2, tmp1);
       
   272     Node *tmp = new (C, 1) Node(C->top()); // Use not NULL input
       
   273     tmp1->replace_by(tmp);
       
   274     tmp2->replace_by(tmp1);
       
   275     tmp->replace_by(tmp2);
       
   276     tmp->destruct();
       
   277   }
       
   278 
       
   279   // Remove the existing null check; use a new implicit null check instead.
       
   280   // Since schedule-local needs precise def-use info, we need to correct
       
   281   // it as well.
       
   282   Node *old_tst = proj->in(0);
       
   283   MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
       
   284   _nodes.map(end_idx(),nul_chk);
       
   285   cfg->_bbs.map(nul_chk->_idx,this);
       
   286   // Redirect users of old_test to nul_chk
       
   287   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
       
   288     old_tst->last_out(i2)->set_req(0, nul_chk);
       
   289   // Clean-up any dead code
       
   290   for (uint i3 = 0; i3 < old_tst->req(); i3++)
       
   291     old_tst->set_req(i3, NULL);
       
   292 
       
   293   cfg->latency_from_uses(nul_chk);
       
   294   cfg->latency_from_uses(best);
       
   295 }
       
   296 
       
   297 
       
   298 //------------------------------select-----------------------------------------
       
   299 // Select a nice fellow from the worklist to schedule next. If there is only
       
   300 // one choice, then use it. Projections take top priority for correctness
       
   301 // reasons - if I see a projection, then it is next.  There are a number of
       
   302 // other special cases, for instructions that consume condition codes, et al.
       
   303 // These are chosen immediately. Some instructions are required to immediately
       
   304 // precede the last instruction in the block, and these are taken last. Of the
       
   305 // remaining cases (most), choose the instruction with the greatest latency
       
   306 // (that is, the most number of pseudo-cycles required to the end of the
       
   307 // routine). If there is a tie, choose the instruction with the most inputs.
       
   308 Node *Block::select(PhaseCFG *cfg, Node_List &worklist, int *ready_cnt, VectorSet &next_call, uint sched_slot) {
       
   309 
       
   310   // If only a single entry on the stack, use it
       
   311   uint cnt = worklist.size();
       
   312   if (cnt == 1) {
       
   313     Node *n = worklist[0];
       
   314     worklist.map(0,worklist.pop());
       
   315     return n;
       
   316   }
       
   317 
       
   318   uint choice  = 0; // Bigger is most important
       
   319   uint latency = 0; // Bigger is scheduled first
       
   320   uint score   = 0; // Bigger is better
       
   321   uint idx;         // Index in worklist
       
   322 
       
   323   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
       
   324     // Order in worklist is used to break ties.
       
   325     // See caller for how this is used to delay scheduling
       
   326     // of induction variable increments to after the other
       
   327     // uses of the phi are scheduled.
       
   328     Node *n = worklist[i];      // Get Node on worklist
       
   329 
       
   330     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
       
   331     if( n->is_Proj() ||         // Projections always win
       
   332         n->Opcode()== Op_Con || // So does constant 'Top'
       
   333         iop == Op_CreateEx ||   // Create-exception must start block
       
   334         iop == Op_CheckCastPP
       
   335         ) {
       
   336       worklist.map(i,worklist.pop());
       
   337       return n;
       
   338     }
       
   339 
       
   340     // Final call in a block must be adjacent to 'catch'
       
   341     Node *e = end();
       
   342     if( e->is_Catch() && e->in(0)->in(0) == n )
       
   343       continue;
       
   344 
       
   345     // Memory op for an implicit null check has to be at the end of the block
       
   346     if( e->is_MachNullCheck() && e->in(1) == n )
       
   347       continue;
       
   348 
       
   349     uint n_choice  = 2;
       
   350 
       
   351     // See if this instruction is consumed by a branch. If so, then (as the
       
   352     // branch is the last instruction in the basic block) force it to the
       
   353     // end of the basic block
       
   354     if ( must_clone[iop] ) {
       
   355       // See if any use is a branch
       
   356       bool found_machif = false;
       
   357 
       
   358       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
       
   359         Node* use = n->fast_out(j);
       
   360 
       
   361         // The use is a conditional branch, make them adjacent
       
   362         if (use->is_MachIf() && cfg->_bbs[use->_idx]==this ) {
       
   363           found_machif = true;
       
   364           break;
       
   365         }
       
   366 
       
   367         // More than this instruction pending for successor to be ready,
       
   368         // don't choose this if other opportunities are ready
       
   369         if (ready_cnt[use->_idx] > 1)
       
   370           n_choice = 1;
       
   371       }
       
   372 
       
   373       // loop terminated, prefer not to use this instruction
       
   374       if (found_machif)
       
   375         continue;
       
   376     }
       
   377 
       
   378     // See if this has a predecessor that is "must_clone", i.e. sets the
       
   379     // condition code. If so, choose this first
       
   380     for (uint j = 0; j < n->req() ; j++) {
       
   381       Node *inn = n->in(j);
       
   382       if (inn) {
       
   383         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
       
   384           n_choice = 3;
       
   385           break;
       
   386         }
       
   387       }
       
   388     }
       
   389 
       
   390     // MachTemps should be scheduled last so they are near their uses
       
   391     if (n->is_MachTemp()) {
       
   392       n_choice = 1;
       
   393     }
       
   394 
       
   395     uint n_latency = cfg->_node_latency.at_grow(n->_idx);
       
   396     uint n_score   = n->req();   // Many inputs get high score to break ties
       
   397 
       
   398     // Keep best latency found
       
   399     if( choice < n_choice ||
       
   400         ( choice == n_choice &&
       
   401           ( latency < n_latency ||
       
   402             ( latency == n_latency &&
       
   403               ( score < n_score ))))) {
       
   404       choice  = n_choice;
       
   405       latency = n_latency;
       
   406       score   = n_score;
       
   407       idx     = i;               // Also keep index in worklist
       
   408     }
       
   409   } // End of for all ready nodes in worklist
       
   410 
       
   411   Node *n = worklist[idx];      // Get the winner
       
   412 
       
   413   worklist.map(idx,worklist.pop());     // Compress worklist
       
   414   return n;
       
   415 }
       
   416 
       
   417 
       
   418 //------------------------------set_next_call----------------------------------
       
   419 void Block::set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs ) {
       
   420   if( next_call.test_set(n->_idx) ) return;
       
   421   for( uint i=0; i<n->len(); i++ ) {
       
   422     Node *m = n->in(i);
       
   423     if( !m ) continue;  // must see all nodes in block that precede call
       
   424     if( bbs[m->_idx] == this )
       
   425       set_next_call( m, next_call, bbs );
       
   426   }
       
   427 }
       
   428 
       
   429 //------------------------------needed_for_next_call---------------------------
       
   430 // Set the flag 'next_call' for each Node that is needed for the next call to
       
   431 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
       
   432 // next subroutine call get priority - basically it moves things NOT needed
       
   433 // for the next call till after the call.  This prevents me from trying to
       
   434 // carry lots of stuff live across a call.
       
   435 void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs) {
       
   436   // Find the next control-defining Node in this block
       
   437   Node* call = NULL;
       
   438   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
       
   439     Node* m = this_call->fast_out(i);
       
   440     if( bbs[m->_idx] == this && // Local-block user
       
   441         m != this_call &&       // Not self-start node
       
   442         m->is_Call() )
       
   443       call = m;
       
   444       break;
       
   445   }
       
   446   if (call == NULL)  return;    // No next call (e.g., block end is near)
       
   447   // Set next-call for all inputs to this call
       
   448   set_next_call(call, next_call, bbs);
       
   449 }
       
   450 
       
   451 //------------------------------sched_call-------------------------------------
       
   452 uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
       
   453   RegMask regs;
       
   454 
       
   455   // Schedule all the users of the call right now.  All the users are
       
   456   // projection Nodes, so they must be scheduled next to the call.
       
   457   // Collect all the defined registers.
       
   458   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
       
   459     Node* n = mcall->fast_out(i);
       
   460     assert( n->Opcode()==Op_MachProj, "" );
       
   461     --ready_cnt[n->_idx];
       
   462     assert( !ready_cnt[n->_idx], "" );
       
   463     // Schedule next to call
       
   464     _nodes.map(node_cnt++, n);
       
   465     // Collect defined registers
       
   466     regs.OR(n->out_RegMask());
       
   467     // Check for scheduling the next control-definer
       
   468     if( n->bottom_type() == Type::CONTROL )
       
   469       // Warm up next pile of heuristic bits
       
   470       needed_for_next_call(n, next_call, bbs);
       
   471 
       
   472     // Children of projections are now all ready
       
   473     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
       
   474       Node* m = n->fast_out(j); // Get user
       
   475       if( bbs[m->_idx] != this ) continue;
       
   476       if( m->is_Phi() ) continue;
       
   477       if( !--ready_cnt[m->_idx] )
       
   478         worklist.push(m);
       
   479     }
       
   480 
       
   481   }
       
   482 
       
   483   // Act as if the call defines the Frame Pointer.
       
   484   // Certainly the FP is alive and well after the call.
       
   485   regs.Insert(matcher.c_frame_pointer());
       
   486 
       
   487   // Set all registers killed and not already defined by the call.
       
   488   uint r_cnt = mcall->tf()->range()->cnt();
       
   489   int op = mcall->ideal_Opcode();
       
   490   MachProjNode *proj = new (matcher.C, 1) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
       
   491   bbs.map(proj->_idx,this);
       
   492   _nodes.insert(node_cnt++, proj);
       
   493 
       
   494   // Select the right register save policy.
       
   495   const char * save_policy;
       
   496   switch (op) {
       
   497     case Op_CallRuntime:
       
   498     case Op_CallLeaf:
       
   499     case Op_CallLeafNoFP:
       
   500       // Calling C code so use C calling convention
       
   501       save_policy = matcher._c_reg_save_policy;
       
   502       break;
       
   503 
       
   504     case Op_CallStaticJava:
       
   505     case Op_CallDynamicJava:
       
   506       // Calling Java code so use Java calling convention
       
   507       save_policy = matcher._register_save_policy;
       
   508       break;
       
   509 
       
   510     default:
       
   511       ShouldNotReachHere();
       
   512   }
       
   513 
       
   514   // When using CallRuntime mark SOE registers as killed by the call
       
   515   // so values that could show up in the RegisterMap aren't live in a
       
   516   // callee saved register since the register wouldn't know where to
       
   517   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
       
   518   // have debug info on them.  Strictly speaking this only needs to be
       
   519   // done for oops since idealreg2debugmask takes care of debug info
       
   520   // references but there no way to handle oops differently than other
       
   521   // pointers as far as the kill mask goes.
       
   522   bool exclude_soe = op == Op_CallRuntime;
       
   523 
       
   524   // Fill in the kill mask for the call
       
   525   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
       
   526     if( !regs.Member(r) ) {     // Not already defined by the call
       
   527       // Save-on-call register?
       
   528       if ((save_policy[r] == 'C') ||
       
   529           (save_policy[r] == 'A') ||
       
   530           ((save_policy[r] == 'E') && exclude_soe)) {
       
   531         proj->_rout.Insert(r);
       
   532       }
       
   533     }
       
   534   }
       
   535 
       
   536   return node_cnt;
       
   537 }
       
   538 
       
   539 
       
   540 //------------------------------schedule_local---------------------------------
       
   541 // Topological sort within a block.  Someday become a real scheduler.
       
   542 bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, int *ready_cnt, VectorSet &next_call) {
       
   543   // Already "sorted" are the block start Node (as the first entry), and
       
   544   // the block-ending Node and any trailing control projections.  We leave
       
   545   // these alone.  PhiNodes and ParmNodes are made to follow the block start
       
   546   // Node.  Everything else gets topo-sorted.
       
   547 
       
   548 #ifndef PRODUCT
       
   549     if (cfg->trace_opto_pipelining()) {
       
   550       tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
       
   551       for (uint i = 0;i < _nodes.size();i++) {
       
   552         tty->print("# ");
       
   553         _nodes[i]->fast_dump();
       
   554       }
       
   555       tty->print_cr("#");
       
   556     }
       
   557 #endif
       
   558 
       
   559   // RootNode is already sorted
       
   560   if( _nodes.size() == 1 ) return true;
       
   561 
       
   562   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
       
   563   uint node_cnt = end_idx();
       
   564   uint phi_cnt = 1;
       
   565   uint i;
       
   566   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
       
   567     Node *n = _nodes[i];
       
   568     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
       
   569         (n->is_Proj()  && n->in(0) == head()) ) {
       
   570       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
       
   571       _nodes.map(i,_nodes[phi_cnt]);
       
   572       _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
       
   573     } else {                    // All others
       
   574       // Count block-local inputs to 'n'
       
   575       uint cnt = n->len();      // Input count
       
   576       uint local = 0;
       
   577       for( uint j=0; j<cnt; j++ ) {
       
   578         Node *m = n->in(j);
       
   579         if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
       
   580           local++;              // One more block-local input
       
   581       }
       
   582       ready_cnt[n->_idx] = local; // Count em up
       
   583 
       
   584       // A few node types require changing a required edge to a precedence edge
       
   585       // before allocation.
       
   586       if( UseConcMarkSweepGC ) {
       
   587         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
       
   588           // Note: Required edges with an index greater than oper_input_base
       
   589           // are not supported by the allocator.
       
   590           // Note2: Can only depend on unmatched edge being last,
       
   591           // can not depend on its absolute position.
       
   592           Node *oop_store = n->in(n->req() - 1);
       
   593           n->del_req(n->req() - 1);
       
   594           n->add_prec(oop_store);
       
   595           assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
       
   596         }
       
   597       }
       
   598       if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ) {
       
   599         Node *x = n->in(TypeFunc::Parms);
       
   600         n->del_req(TypeFunc::Parms);
       
   601         n->add_prec(x);
       
   602       }
       
   603     }
       
   604   }
       
   605   for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
       
   606     ready_cnt[_nodes[i2]->_idx] = 0;
       
   607 
       
   608   // All the prescheduled guys do not hold back internal nodes
       
   609   uint i3;
       
   610   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
       
   611     Node *n = _nodes[i3];       // Get pre-scheduled
       
   612     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
       
   613       Node* m = n->fast_out(j);
       
   614       if( cfg->_bbs[m->_idx] ==this ) // Local-block user
       
   615         ready_cnt[m->_idx]--;   // Fix ready count
       
   616     }
       
   617   }
       
   618 
       
   619   Node_List delay;
       
   620   // Make a worklist
       
   621   Node_List worklist;
       
   622   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
       
   623     Node *m = _nodes[i4];
       
   624     if( !ready_cnt[m->_idx] ) {   // Zero ready count?
       
   625       if (m->is_iteratively_computed()) {
       
   626         // Push induction variable increments last to allow other uses
       
   627         // of the phi to be scheduled first. The select() method breaks
       
   628         // ties in scheduling by worklist order.
       
   629         delay.push(m);
       
   630       } else {
       
   631         worklist.push(m);         // Then on to worklist!
       
   632       }
       
   633     }
       
   634   }
       
   635   while (delay.size()) {
       
   636     Node* d = delay.pop();
       
   637     worklist.push(d);
       
   638   }
       
   639 
       
   640   // Warm up the 'next_call' heuristic bits
       
   641   needed_for_next_call(_nodes[0], next_call, cfg->_bbs);
       
   642 
       
   643 #ifndef PRODUCT
       
   644     if (cfg->trace_opto_pipelining()) {
       
   645       for (uint j=0; j<_nodes.size(); j++) {
       
   646         Node     *n = _nodes[j];
       
   647         int     idx = n->_idx;
       
   648         tty->print("#   ready cnt:%3d  ", ready_cnt[idx]);
       
   649         tty->print("latency:%3d  ", cfg->_node_latency.at_grow(idx));
       
   650         tty->print("%4d: %s\n", idx, n->Name());
       
   651       }
       
   652     }
       
   653 #endif
       
   654 
       
   655   // Pull from worklist and schedule
       
   656   while( worklist.size() ) {    // Worklist is not ready
       
   657 
       
   658 #ifndef PRODUCT
       
   659     if (cfg->trace_opto_pipelining()) {
       
   660       tty->print("#   ready list:");
       
   661       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
       
   662         Node *n = worklist[i];      // Get Node on worklist
       
   663         tty->print(" %d", n->_idx);
       
   664       }
       
   665       tty->cr();
       
   666     }
       
   667 #endif
       
   668 
       
   669     // Select and pop a ready guy from worklist
       
   670     Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
       
   671     _nodes.map(phi_cnt++,n);    // Schedule him next
       
   672 
       
   673 #ifndef PRODUCT
       
   674     if (cfg->trace_opto_pipelining()) {
       
   675       tty->print("#    select %d: %s", n->_idx, n->Name());
       
   676       tty->print(", latency:%d", cfg->_node_latency.at_grow(n->_idx));
       
   677       n->dump();
       
   678       if (Verbose) {
       
   679         tty->print("#   ready list:");
       
   680         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
       
   681           Node *n = worklist[i];      // Get Node on worklist
       
   682           tty->print(" %d", n->_idx);
       
   683         }
       
   684         tty->cr();
       
   685       }
       
   686     }
       
   687 
       
   688 #endif
       
   689     if( n->is_MachCall() ) {
       
   690       MachCallNode *mcall = n->as_MachCall();
       
   691       phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
       
   692       continue;
       
   693     }
       
   694     // Children are now all ready
       
   695     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
       
   696       Node* m = n->fast_out(i5); // Get user
       
   697       if( cfg->_bbs[m->_idx] != this ) continue;
       
   698       if( m->is_Phi() ) continue;
       
   699       if( !--ready_cnt[m->_idx] )
       
   700         worklist.push(m);
       
   701     }
       
   702   }
       
   703 
       
   704   if( phi_cnt != end_idx() ) {
       
   705     // did not schedule all.  Retry, Bailout, or Die
       
   706     Compile* C = matcher.C;
       
   707     if (C->subsume_loads() == true && !C->failing()) {
       
   708       // Retry with subsume_loads == false
       
   709       // If this is the first failure, the sentinel string will "stick"
       
   710       // to the Compile object, and the C2Compiler will see it and retry.
       
   711       C->record_failure(C2Compiler::retry_no_subsuming_loads());
       
   712     }
       
   713     // assert( phi_cnt == end_idx(), "did not schedule all" );
       
   714     return false;
       
   715   }
       
   716 
       
   717 #ifndef PRODUCT
       
   718   if (cfg->trace_opto_pipelining()) {
       
   719     tty->print_cr("#");
       
   720     tty->print_cr("# after schedule_local");
       
   721     for (uint i = 0;i < _nodes.size();i++) {
       
   722       tty->print("# ");
       
   723       _nodes[i]->fast_dump();
       
   724     }
       
   725     tty->cr();
       
   726   }
       
   727 #endif
       
   728 
       
   729 
       
   730   return true;
       
   731 }
       
   732 
       
   733 //--------------------------catch_cleanup_fix_all_inputs-----------------------
       
   734 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
       
   735   for (uint l = 0; l < use->len(); l++) {
       
   736     if (use->in(l) == old_def) {
       
   737       if (l < use->req()) {
       
   738         use->set_req(l, new_def);
       
   739       } else {
       
   740         use->rm_prec(l);
       
   741         use->add_prec(new_def);
       
   742         l--;
       
   743       }
       
   744     }
       
   745   }
       
   746 }
       
   747 
       
   748 //------------------------------catch_cleanup_find_cloned_def------------------
       
   749 static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
       
   750   assert( use_blk != def_blk, "Inter-block cleanup only");
       
   751 
       
   752   // The use is some block below the Catch.  Find and return the clone of the def
       
   753   // that dominates the use. If there is no clone in a dominating block, then
       
   754   // create a phi for the def in a dominating block.
       
   755 
       
   756   // Find which successor block dominates this use.  The successor
       
   757   // blocks must all be single-entry (from the Catch only; I will have
       
   758   // split blocks to make this so), hence they all dominate.
       
   759   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
       
   760     use_blk = use_blk->_idom;
       
   761 
       
   762   // Find the successor
       
   763   Node *fixup = NULL;
       
   764 
       
   765   uint j;
       
   766   for( j = 0; j < def_blk->_num_succs; j++ )
       
   767     if( use_blk == def_blk->_succs[j] )
       
   768       break;
       
   769 
       
   770   if( j == def_blk->_num_succs ) {
       
   771     // Block at same level in dom-tree is not a successor.  It needs a
       
   772     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
       
   773     Node_Array inputs = new Node_List(Thread::current()->resource_area());
       
   774     for(uint k = 1; k < use_blk->num_preds(); k++) {
       
   775       inputs.map(k, catch_cleanup_find_cloned_def(bbs[use_blk->pred(k)->_idx], def, def_blk, bbs, n_clone_idx));
       
   776     }
       
   777 
       
   778     // Check to see if the use_blk already has an identical phi inserted.
       
   779     // If it exists, it will be at the first position since all uses of a
       
   780     // def are processed together.
       
   781     Node *phi = use_blk->_nodes[1];
       
   782     if( phi->is_Phi() ) {
       
   783       fixup = phi;
       
   784       for (uint k = 1; k < use_blk->num_preds(); k++) {
       
   785         if (phi->in(k) != inputs[k]) {
       
   786           // Not a match
       
   787           fixup = NULL;
       
   788           break;
       
   789         }
       
   790       }
       
   791     }
       
   792 
       
   793     // If an existing PhiNode was not found, make a new one.
       
   794     if (fixup == NULL) {
       
   795       Node *new_phi = PhiNode::make(use_blk->head(), def);
       
   796       use_blk->_nodes.insert(1, new_phi);
       
   797       bbs.map(new_phi->_idx, use_blk);
       
   798       for (uint k = 1; k < use_blk->num_preds(); k++) {
       
   799         new_phi->set_req(k, inputs[k]);
       
   800       }
       
   801       fixup = new_phi;
       
   802     }
       
   803 
       
   804   } else {
       
   805     // Found the use just below the Catch.  Make it use the clone.
       
   806     fixup = use_blk->_nodes[n_clone_idx];
       
   807   }
       
   808 
       
   809   return fixup;
       
   810 }
       
   811 
       
   812 //--------------------------catch_cleanup_intra_block--------------------------
       
   813 // Fix all input edges in use that reference "def".  The use is in the same
       
   814 // block as the def and both have been cloned in each successor block.
       
   815 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
       
   816 
       
   817   // Both the use and def have been cloned. For each successor block,
       
   818   // get the clone of the use, and make its input the clone of the def
       
   819   // found in that block.
       
   820 
       
   821   uint use_idx = blk->find_node(use);
       
   822   uint offset_idx = use_idx - beg;
       
   823   for( uint k = 0; k < blk->_num_succs; k++ ) {
       
   824     // Get clone in each successor block
       
   825     Block *sb = blk->_succs[k];
       
   826     Node *clone = sb->_nodes[offset_idx+1];
       
   827     assert( clone->Opcode() == use->Opcode(), "" );
       
   828 
       
   829     // Make use-clone reference the def-clone
       
   830     catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
       
   831   }
       
   832 }
       
   833 
       
   834 //------------------------------catch_cleanup_inter_block---------------------
       
   835 // Fix all input edges in use that reference "def".  The use is in a different
       
   836 // block than the def.
       
   837 static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, Block_Array &bbs, int n_clone_idx) {
       
   838   if( !use_blk ) return;        // Can happen if the use is a precedence edge
       
   839 
       
   840   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, bbs, n_clone_idx);
       
   841   catch_cleanup_fix_all_inputs(use, def, new_def);
       
   842 }
       
   843 
       
   844 //------------------------------call_catch_cleanup-----------------------------
       
   845 // If we inserted any instructions between a Call and his CatchNode,
       
   846 // clone the instructions on all paths below the Catch.
       
   847 void Block::call_catch_cleanup(Block_Array &bbs) {
       
   848 
       
   849   // End of region to clone
       
   850   uint end = end_idx();
       
   851   if( !_nodes[end]->is_Catch() ) return;
       
   852   // Start of region to clone
       
   853   uint beg = end;
       
   854   while( _nodes[beg-1]->Opcode() != Op_MachProj ||
       
   855         !_nodes[beg-1]->in(0)->is_Call() ) {
       
   856     beg--;
       
   857     assert(beg > 0,"Catch cleanup walking beyond block boundary");
       
   858   }
       
   859   // Range of inserted instructions is [beg, end)
       
   860   if( beg == end ) return;
       
   861 
       
   862   // Clone along all Catch output paths.  Clone area between the 'beg' and
       
   863   // 'end' indices.
       
   864   for( uint i = 0; i < _num_succs; i++ ) {
       
   865     Block *sb = _succs[i];
       
   866     // Clone the entire area; ignoring the edge fixup for now.
       
   867     for( uint j = end; j > beg; j-- ) {
       
   868       Node *clone = _nodes[j-1]->clone();
       
   869       sb->_nodes.insert( 1, clone );
       
   870       bbs.map(clone->_idx,sb);
       
   871     }
       
   872   }
       
   873 
       
   874 
       
   875   // Fixup edges.  Check the def-use info per cloned Node
       
   876   for(uint i2 = beg; i2 < end; i2++ ) {
       
   877     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
       
   878     Node *n = _nodes[i2];        // Node that got cloned
       
   879     // Need DU safe iterator because of edge manipulation in calls.
       
   880     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
       
   881     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
       
   882       out->push(n->fast_out(j1));
       
   883     }
       
   884     uint max = out->size();
       
   885     for (uint j = 0; j < max; j++) {// For all users
       
   886       Node *use = out->pop();
       
   887       Block *buse = bbs[use->_idx];
       
   888       if( use->is_Phi() ) {
       
   889         for( uint k = 1; k < use->req(); k++ )
       
   890           if( use->in(k) == n ) {
       
   891             Node *fixup = catch_cleanup_find_cloned_def(bbs[buse->pred(k)->_idx], n, this, bbs, n_clone_idx);
       
   892             use->set_req(k, fixup);
       
   893           }
       
   894       } else {
       
   895         if (this == buse) {
       
   896           catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
       
   897         } else {
       
   898           catch_cleanup_inter_block(use, buse, n, this, bbs, n_clone_idx);
       
   899         }
       
   900       }
       
   901     } // End for all users
       
   902 
       
   903   } // End of for all Nodes in cloned area
       
   904 
       
   905   // Remove the now-dead cloned ops
       
   906   for(uint i3 = beg; i3 < end; i3++ ) {
       
   907     _nodes[beg]->disconnect_inputs(NULL);
       
   908     _nodes.remove(beg);
       
   909   }
       
   910 
       
   911   // If the successor blocks have a CreateEx node, move it back to the top
       
   912   for(uint i4 = 0; i4 < _num_succs; i4++ ) {
       
   913     Block *sb = _succs[i4];
       
   914     uint new_cnt = end - beg;
       
   915     // Remove any newly created, but dead, nodes.
       
   916     for( uint j = new_cnt; j > 0; j-- ) {
       
   917       Node *n = sb->_nodes[j];
       
   918       if (n->outcnt() == 0 &&
       
   919           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
       
   920         n->disconnect_inputs(NULL);
       
   921         sb->_nodes.remove(j);
       
   922         new_cnt--;
       
   923       }
       
   924     }
       
   925     // If any newly created nodes remain, move the CreateEx node to the top
       
   926     if (new_cnt > 0) {
       
   927       Node *cex = sb->_nodes[1+new_cnt];
       
   928       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
       
   929         sb->_nodes.remove(1+new_cnt);
       
   930         sb->_nodes.insert(1,cex);
       
   931       }
       
   932     }
       
   933   }
       
   934 }