hotspot/src/share/vm/opto/block.cpp
changeset 1 489c9b5090e2
child 1070 e03de091796e
equal deleted inserted replaced
0:fd16c54261b3 1:489c9b5090e2
       
     1 /*
       
     2  * Copyright 1997-2006 Sun Microsystems, Inc.  All Rights Reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    21  * have any questions.
       
    22  *
       
    23  */
       
    24 
       
    25 // Optimization - Graph Style
       
    26 
       
    27 #include "incls/_precompiled.incl"
       
    28 #include "incls/_block.cpp.incl"
       
    29 
       
    30 
       
    31 //-----------------------------------------------------------------------------
       
    32 void Block_Array::grow( uint i ) {
       
    33   assert(i >= Max(), "must be an overflow");
       
    34   debug_only(_limit = i+1);
       
    35   if( i < _size )  return;
       
    36   if( !_size ) {
       
    37     _size = 1;
       
    38     _blocks = (Block**)_arena->Amalloc( _size * sizeof(Block*) );
       
    39     _blocks[0] = NULL;
       
    40   }
       
    41   uint old = _size;
       
    42   while( i >= _size ) _size <<= 1;      // Double to fit
       
    43   _blocks = (Block**)_arena->Arealloc( _blocks, old*sizeof(Block*),_size*sizeof(Block*));
       
    44   Copy::zero_to_bytes( &_blocks[old], (_size-old)*sizeof(Block*) );
       
    45 }
       
    46 
       
    47 //=============================================================================
       
    48 void Block_List::remove(uint i) {
       
    49   assert(i < _cnt, "index out of bounds");
       
    50   Copy::conjoint_words_to_lower((HeapWord*)&_blocks[i+1], (HeapWord*)&_blocks[i], ((_cnt-i-1)*sizeof(Block*)));
       
    51   pop(); // shrink list by one block
       
    52 }
       
    53 
       
    54 void Block_List::insert(uint i, Block *b) {
       
    55   push(b); // grow list by one block
       
    56   Copy::conjoint_words_to_higher((HeapWord*)&_blocks[i], (HeapWord*)&_blocks[i+1], ((_cnt-i-1)*sizeof(Block*)));
       
    57   _blocks[i] = b;
       
    58 }
       
    59 
       
    60 
       
    61 //=============================================================================
       
    62 
       
    63 uint Block::code_alignment() {
       
    64   // Check for Root block
       
    65   if( _pre_order == 0 ) return CodeEntryAlignment;
       
    66   // Check for Start block
       
    67   if( _pre_order == 1 ) return InteriorEntryAlignment;
       
    68   // Check for loop alignment
       
    69   Node *h = head();
       
    70   if( h->is_Loop() && h->as_Loop()->is_inner_loop() )  {
       
    71     // Pre- and post-loops have low trip count so do not bother with
       
    72     // NOPs for align loop head.  The constants are hidden from tuning
       
    73     // but only because my "divide by 4" heuristic surely gets nearly
       
    74     // all possible gain (a "do not align at all" heuristic has a
       
    75     // chance of getting a really tiny gain).
       
    76     if( h->is_CountedLoop() && (h->as_CountedLoop()->is_pre_loop() ||
       
    77                                 h->as_CountedLoop()->is_post_loop()) )
       
    78       return (OptoLoopAlignment > 4) ? (OptoLoopAlignment>>2) : 1;
       
    79     // Loops with low backedge frequency should not be aligned.
       
    80     Node *n = h->in(LoopNode::LoopBackControl)->in(0);
       
    81     if( n->is_MachIf() && n->as_MachIf()->_prob < 0.01 ) {
       
    82       return 1;             // Loop does not loop, more often than not!
       
    83     }
       
    84     return OptoLoopAlignment; // Otherwise align loop head
       
    85   }
       
    86   return 1;                     // no particular alignment
       
    87 }
       
    88 
       
    89 //-----------------------------------------------------------------------------
       
    90 // Compute the size of first 'inst_cnt' instructions in this block.
       
    91 // Return the number of instructions left to compute if the block has
       
    92 // less then 'inst_cnt' instructions.
       
    93 uint Block::compute_first_inst_size(uint& sum_size, uint inst_cnt,
       
    94                                     PhaseRegAlloc* ra) {
       
    95   uint last_inst = _nodes.size();
       
    96   for( uint j = 0; j < last_inst && inst_cnt > 0; j++ ) {
       
    97     uint inst_size = _nodes[j]->size(ra);
       
    98     if( inst_size > 0 ) {
       
    99       inst_cnt--;
       
   100       uint sz = sum_size + inst_size;
       
   101       if( sz <= (uint)OptoLoopAlignment ) {
       
   102         // Compute size of instructions which fit into fetch buffer only
       
   103         // since all inst_cnt instructions will not fit even if we align them.
       
   104         sum_size = sz;
       
   105       } else {
       
   106         return 0;
       
   107       }
       
   108     }
       
   109   }
       
   110   return inst_cnt;
       
   111 }
       
   112 
       
   113 //-----------------------------------------------------------------------------
       
   114 uint Block::find_node( const Node *n ) const {
       
   115   for( uint i = 0; i < _nodes.size(); i++ ) {
       
   116     if( _nodes[i] == n )
       
   117       return i;
       
   118   }
       
   119   ShouldNotReachHere();
       
   120   return 0;
       
   121 }
       
   122 
       
   123 // Find and remove n from block list
       
   124 void Block::find_remove( const Node *n ) {
       
   125   _nodes.remove(find_node(n));
       
   126 }
       
   127 
       
   128 //------------------------------is_Empty---------------------------------------
       
   129 // Return empty status of a block.  Empty blocks contain only the head, other
       
   130 // ideal nodes, and an optional trailing goto.
       
   131 int Block::is_Empty() const {
       
   132 
       
   133   // Root or start block is not considered empty
       
   134   if (head()->is_Root() || head()->is_Start()) {
       
   135     return not_empty;
       
   136   }
       
   137 
       
   138   int success_result = completely_empty;
       
   139   int end_idx = _nodes.size()-1;
       
   140 
       
   141   // Check for ending goto
       
   142   if ((end_idx > 0) && (_nodes[end_idx]->is_Goto())) {
       
   143     success_result = empty_with_goto;
       
   144     end_idx--;
       
   145   }
       
   146 
       
   147   // Unreachable blocks are considered empty
       
   148   if (num_preds() <= 1) {
       
   149     return success_result;
       
   150   }
       
   151 
       
   152   // Ideal nodes are allowable in empty blocks: skip them  Only MachNodes
       
   153   // turn directly into code, because only MachNodes have non-trivial
       
   154   // emit() functions.
       
   155   while ((end_idx > 0) && !_nodes[end_idx]->is_Mach()) {
       
   156     end_idx--;
       
   157   }
       
   158 
       
   159   // No room for any interesting instructions?
       
   160   if (end_idx == 0) {
       
   161     return success_result;
       
   162   }
       
   163 
       
   164   return not_empty;
       
   165 }
       
   166 
       
   167 //------------------------------has_uncommon_code------------------------------
       
   168 // Return true if the block's code implies that it is not likely to be
       
   169 // executed infrequently.  Check to see if the block ends in a Halt or
       
   170 // a low probability call.
       
   171 bool Block::has_uncommon_code() const {
       
   172   Node* en = end();
       
   173 
       
   174   if (en->is_Goto())
       
   175     en = en->in(0);
       
   176   if (en->is_Catch())
       
   177     en = en->in(0);
       
   178   if (en->is_Proj() && en->in(0)->is_MachCall()) {
       
   179     MachCallNode* call = en->in(0)->as_MachCall();
       
   180     if (call->cnt() != COUNT_UNKNOWN && call->cnt() <= PROB_UNLIKELY_MAG(4)) {
       
   181       // This is true for slow-path stubs like new_{instance,array},
       
   182       // slow_arraycopy, complete_monitor_locking, uncommon_trap.
       
   183       // The magic number corresponds to the probability of an uncommon_trap,
       
   184       // even though it is a count not a probability.
       
   185       return true;
       
   186     }
       
   187   }
       
   188 
       
   189   int op = en->is_Mach() ? en->as_Mach()->ideal_Opcode() : en->Opcode();
       
   190   return op == Op_Halt;
       
   191 }
       
   192 
       
   193 //------------------------------is_uncommon------------------------------------
       
   194 // True if block is low enough frequency or guarded by a test which
       
   195 // mostly does not go here.
       
   196 bool Block::is_uncommon( Block_Array &bbs ) const {
       
   197   // Initial blocks must never be moved, so are never uncommon.
       
   198   if (head()->is_Root() || head()->is_Start())  return false;
       
   199 
       
   200   // Check for way-low freq
       
   201   if( _freq < BLOCK_FREQUENCY(0.00001f) ) return true;
       
   202 
       
   203   // Look for code shape indicating uncommon_trap or slow path
       
   204   if (has_uncommon_code()) return true;
       
   205 
       
   206   const float epsilon = 0.05f;
       
   207   const float guard_factor = PROB_UNLIKELY_MAG(4) / (1.f - epsilon);
       
   208   uint uncommon_preds = 0;
       
   209   uint freq_preds = 0;
       
   210   uint uncommon_for_freq_preds = 0;
       
   211 
       
   212   for( uint i=1; i<num_preds(); i++ ) {
       
   213     Block* guard = bbs[pred(i)->_idx];
       
   214     // Check to see if this block follows its guard 1 time out of 10000
       
   215     // or less.
       
   216     //
       
   217     // See list of magnitude-4 unlikely probabilities in cfgnode.hpp which
       
   218     // we intend to be "uncommon", such as slow-path TLE allocation,
       
   219     // predicted call failure, and uncommon trap triggers.
       
   220     //
       
   221     // Use an epsilon value of 5% to allow for variability in frequency
       
   222     // predictions and floating point calculations. The net effect is
       
   223     // that guard_factor is set to 9500.
       
   224     //
       
   225     // Ignore low-frequency blocks.
       
   226     // The next check is (guard->_freq < 1.e-5 * 9500.).
       
   227     if(guard->_freq*BLOCK_FREQUENCY(guard_factor) < BLOCK_FREQUENCY(0.00001f)) {
       
   228       uncommon_preds++;
       
   229     } else {
       
   230       freq_preds++;
       
   231       if( _freq < guard->_freq * guard_factor ) {
       
   232         uncommon_for_freq_preds++;
       
   233       }
       
   234     }
       
   235   }
       
   236   if( num_preds() > 1 &&
       
   237       // The block is uncommon if all preds are uncommon or
       
   238       (uncommon_preds == (num_preds()-1) ||
       
   239       // it is uncommon for all frequent preds.
       
   240        uncommon_for_freq_preds == freq_preds) ) {
       
   241     return true;
       
   242   }
       
   243   return false;
       
   244 }
       
   245 
       
   246 //------------------------------dump-------------------------------------------
       
   247 #ifndef PRODUCT
       
   248 void Block::dump_bidx(const Block* orig) const {
       
   249   if (_pre_order) tty->print("B%d",_pre_order);
       
   250   else tty->print("N%d", head()->_idx);
       
   251 
       
   252   if (Verbose && orig != this) {
       
   253     // Dump the original block's idx
       
   254     tty->print(" (");
       
   255     orig->dump_bidx(orig);
       
   256     tty->print(")");
       
   257   }
       
   258 }
       
   259 
       
   260 void Block::dump_pred(const Block_Array *bbs, Block* orig) const {
       
   261   if (is_connector()) {
       
   262     for (uint i=1; i<num_preds(); i++) {
       
   263       Block *p = ((*bbs)[pred(i)->_idx]);
       
   264       p->dump_pred(bbs, orig);
       
   265     }
       
   266   } else {
       
   267     dump_bidx(orig);
       
   268     tty->print(" ");
       
   269   }
       
   270 }
       
   271 
       
   272 void Block::dump_head( const Block_Array *bbs ) const {
       
   273   // Print the basic block
       
   274   dump_bidx(this);
       
   275   tty->print(": #\t");
       
   276 
       
   277   // Print the incoming CFG edges and the outgoing CFG edges
       
   278   for( uint i=0; i<_num_succs; i++ ) {
       
   279     non_connector_successor(i)->dump_bidx(_succs[i]);
       
   280     tty->print(" ");
       
   281   }
       
   282   tty->print("<- ");
       
   283   if( head()->is_block_start() ) {
       
   284     for (uint i=1; i<num_preds(); i++) {
       
   285       Node *s = pred(i);
       
   286       if (bbs) {
       
   287         Block *p = (*bbs)[s->_idx];
       
   288         p->dump_pred(bbs, p);
       
   289       } else {
       
   290         while (!s->is_block_start())
       
   291           s = s->in(0);
       
   292         tty->print("N%d ", s->_idx );
       
   293       }
       
   294     }
       
   295   } else
       
   296     tty->print("BLOCK HEAD IS JUNK  ");
       
   297 
       
   298   // Print loop, if any
       
   299   const Block *bhead = this;    // Head of self-loop
       
   300   Node *bh = bhead->head();
       
   301   if( bbs && bh->is_Loop() && !head()->is_Root() ) {
       
   302     LoopNode *loop = bh->as_Loop();
       
   303     const Block *bx = (*bbs)[loop->in(LoopNode::LoopBackControl)->_idx];
       
   304     while (bx->is_connector()) {
       
   305       bx = (*bbs)[bx->pred(1)->_idx];
       
   306     }
       
   307     tty->print("\tLoop: B%d-B%d ", bhead->_pre_order, bx->_pre_order);
       
   308     // Dump any loop-specific bits, especially for CountedLoops.
       
   309     loop->dump_spec(tty);
       
   310   }
       
   311   tty->print(" Freq: %g",_freq);
       
   312   if( Verbose || WizardMode ) {
       
   313     tty->print(" IDom: %d/#%d", _idom ? _idom->_pre_order : 0, _dom_depth);
       
   314     tty->print(" RegPressure: %d",_reg_pressure);
       
   315     tty->print(" IHRP Index: %d",_ihrp_index);
       
   316     tty->print(" FRegPressure: %d",_freg_pressure);
       
   317     tty->print(" FHRP Index: %d",_fhrp_index);
       
   318   }
       
   319   tty->print_cr("");
       
   320 }
       
   321 
       
   322 void Block::dump() const { dump(0); }
       
   323 
       
   324 void Block::dump( const Block_Array *bbs ) const {
       
   325   dump_head(bbs);
       
   326   uint cnt = _nodes.size();
       
   327   for( uint i=0; i<cnt; i++ )
       
   328     _nodes[i]->dump();
       
   329   tty->print("\n");
       
   330 }
       
   331 #endif
       
   332 
       
   333 //=============================================================================
       
   334 //------------------------------PhaseCFG---------------------------------------
       
   335 PhaseCFG::PhaseCFG( Arena *a, RootNode *r, Matcher &m ) :
       
   336   Phase(CFG),
       
   337   _bbs(a),
       
   338   _root(r)
       
   339 #ifndef PRODUCT
       
   340   , _trace_opto_pipelining(TraceOptoPipelining || C->method_has_option("TraceOptoPipelining"))
       
   341 #endif
       
   342 {
       
   343   ResourceMark rm;
       
   344   // I'll need a few machine-specific GotoNodes.  Make an Ideal GotoNode,
       
   345   // then Match it into a machine-specific Node.  Then clone the machine
       
   346   // Node on demand.
       
   347   Node *x = new (C, 1) GotoNode(NULL);
       
   348   x->init_req(0, x);
       
   349   _goto = m.match_tree(x);
       
   350   assert(_goto != NULL, "");
       
   351   _goto->set_req(0,_goto);
       
   352 
       
   353   // Build the CFG in Reverse Post Order
       
   354   _num_blocks = build_cfg();
       
   355   _broot = _bbs[_root->_idx];
       
   356 }
       
   357 
       
   358 //------------------------------build_cfg--------------------------------------
       
   359 // Build a proper looking CFG.  Make every block begin with either a StartNode
       
   360 // or a RegionNode.  Make every block end with either a Goto, If or Return.
       
   361 // The RootNode both starts and ends it's own block.  Do this with a recursive
       
   362 // backwards walk over the control edges.
       
   363 uint PhaseCFG::build_cfg() {
       
   364   Arena *a = Thread::current()->resource_area();
       
   365   VectorSet visited(a);
       
   366 
       
   367   // Allocate stack with enough space to avoid frequent realloc
       
   368   Node_Stack nstack(a, C->unique() >> 1);
       
   369   nstack.push(_root, 0);
       
   370   uint sum = 0;                 // Counter for blocks
       
   371 
       
   372   while (nstack.is_nonempty()) {
       
   373     // node and in's index from stack's top
       
   374     // 'np' is _root (see above) or RegionNode, StartNode: we push on stack
       
   375     // only nodes which point to the start of basic block (see below).
       
   376     Node *np = nstack.node();
       
   377     // idx > 0, except for the first node (_root) pushed on stack
       
   378     // at the beginning when idx == 0.
       
   379     // We will use the condition (idx == 0) later to end the build.
       
   380     uint idx = nstack.index();
       
   381     Node *proj = np->in(idx);
       
   382     const Node *x = proj->is_block_proj();
       
   383     // Does the block end with a proper block-ending Node?  One of Return,
       
   384     // If or Goto? (This check should be done for visited nodes also).
       
   385     if (x == NULL) {                    // Does not end right...
       
   386       Node *g = _goto->clone(); // Force it to end in a Goto
       
   387       g->set_req(0, proj);
       
   388       np->set_req(idx, g);
       
   389       x = proj = g;
       
   390     }
       
   391     if (!visited.test_set(x->_idx)) { // Visit this block once
       
   392       // Skip any control-pinned middle'in stuff
       
   393       Node *p = proj;
       
   394       do {
       
   395         proj = p;                   // Update pointer to last Control
       
   396         p = p->in(0);               // Move control forward
       
   397       } while( !p->is_block_proj() &&
       
   398                !p->is_block_start() );
       
   399       // Make the block begin with one of Region or StartNode.
       
   400       if( !p->is_block_start() ) {
       
   401         RegionNode *r = new (C, 2) RegionNode( 2 );
       
   402         r->init_req(1, p);         // Insert RegionNode in the way
       
   403         proj->set_req(0, r);        // Insert RegionNode in the way
       
   404         p = r;
       
   405       }
       
   406       // 'p' now points to the start of this basic block
       
   407 
       
   408       // Put self in array of basic blocks
       
   409       Block *bb = new (_bbs._arena) Block(_bbs._arena,p);
       
   410       _bbs.map(p->_idx,bb);
       
   411       _bbs.map(x->_idx,bb);
       
   412       if( x != p )                  // Only for root is x == p
       
   413         bb->_nodes.push((Node*)x);
       
   414 
       
   415       // Now handle predecessors
       
   416       ++sum;                        // Count 1 for self block
       
   417       uint cnt = bb->num_preds();
       
   418       for (int i = (cnt - 1); i > 0; i-- ) { // For all predecessors
       
   419         Node *prevproj = p->in(i);  // Get prior input
       
   420         assert( !prevproj->is_Con(), "dead input not removed" );
       
   421         // Check to see if p->in(i) is a "control-dependent" CFG edge -
       
   422         // i.e., it splits at the source (via an IF or SWITCH) and merges
       
   423         // at the destination (via a many-input Region).
       
   424         // This breaks critical edges.  The RegionNode to start the block
       
   425         // will be added when <p,i> is pulled off the node stack
       
   426         if ( cnt > 2 ) {             // Merging many things?
       
   427           assert( prevproj== bb->pred(i),"");
       
   428           if(prevproj->is_block_proj() != prevproj) { // Control-dependent edge?
       
   429             // Force a block on the control-dependent edge
       
   430             Node *g = _goto->clone();       // Force it to end in a Goto
       
   431             g->set_req(0,prevproj);
       
   432             p->set_req(i,g);
       
   433           }
       
   434         }
       
   435         nstack.push(p, i);  // 'p' is RegionNode or StartNode
       
   436       }
       
   437     } else { // Post-processing visited nodes
       
   438       nstack.pop();                 // remove node from stack
       
   439       // Check if it the fist node pushed on stack at the beginning.
       
   440       if (idx == 0) break;          // end of the build
       
   441       // Find predecessor basic block
       
   442       Block *pb = _bbs[x->_idx];
       
   443       // Insert into nodes array, if not already there
       
   444       if( !_bbs.lookup(proj->_idx) ) {
       
   445         assert( x != proj, "" );
       
   446         // Map basic block of projection
       
   447         _bbs.map(proj->_idx,pb);
       
   448         pb->_nodes.push(proj);
       
   449       }
       
   450       // Insert self as a child of my predecessor block
       
   451       pb->_succs.map(pb->_num_succs++, _bbs[np->_idx]);
       
   452       assert( pb->_nodes[ pb->_nodes.size() - pb->_num_succs ]->is_block_proj(),
       
   453               "too many control users, not a CFG?" );
       
   454     }
       
   455   }
       
   456   // Return number of basic blocks for all children and self
       
   457   return sum;
       
   458 }
       
   459 
       
   460 //------------------------------insert_goto_at---------------------------------
       
   461 // Inserts a goto & corresponding basic block between
       
   462 // block[block_no] and its succ_no'th successor block
       
   463 void PhaseCFG::insert_goto_at(uint block_no, uint succ_no) {
       
   464   // get block with block_no
       
   465   assert(block_no < _num_blocks, "illegal block number");
       
   466   Block* in  = _blocks[block_no];
       
   467   // get successor block succ_no
       
   468   assert(succ_no < in->_num_succs, "illegal successor number");
       
   469   Block* out = in->_succs[succ_no];
       
   470   // get ProjNode corresponding to the succ_no'th successor of the in block
       
   471   ProjNode* proj = in->_nodes[in->_nodes.size() - in->_num_succs + succ_no]->as_Proj();
       
   472   // create region for basic block
       
   473   RegionNode* region = new (C, 2) RegionNode(2);
       
   474   region->init_req(1, proj);
       
   475   // setup corresponding basic block
       
   476   Block* block = new (_bbs._arena) Block(_bbs._arena, region);
       
   477   _bbs.map(region->_idx, block);
       
   478   C->regalloc()->set_bad(region->_idx);
       
   479   // add a goto node
       
   480   Node* gto = _goto->clone(); // get a new goto node
       
   481   gto->set_req(0, region);
       
   482   // add it to the basic block
       
   483   block->_nodes.push(gto);
       
   484   _bbs.map(gto->_idx, block);
       
   485   C->regalloc()->set_bad(gto->_idx);
       
   486   // hook up successor block
       
   487   block->_succs.map(block->_num_succs++, out);
       
   488   // remap successor's predecessors if necessary
       
   489   for (uint i = 1; i < out->num_preds(); i++) {
       
   490     if (out->pred(i) == proj) out->head()->set_req(i, gto);
       
   491   }
       
   492   // remap predecessor's successor to new block
       
   493   in->_succs.map(succ_no, block);
       
   494   // add new basic block to basic block list
       
   495   _blocks.insert(block_no + 1, block);
       
   496   _num_blocks++;
       
   497 }
       
   498 
       
   499 //------------------------------no_flip_branch---------------------------------
       
   500 // Does this block end in a multiway branch that cannot have the default case
       
   501 // flipped for another case?
       
   502 static bool no_flip_branch( Block *b ) {
       
   503   int branch_idx = b->_nodes.size() - b->_num_succs-1;
       
   504   if( branch_idx < 1 ) return false;
       
   505   Node *bra = b->_nodes[branch_idx];
       
   506   if( bra->is_Catch() ) return true;
       
   507   if( bra->is_Mach() ) {
       
   508     if( bra->is_MachNullCheck() ) return true;
       
   509     int iop = bra->as_Mach()->ideal_Opcode();
       
   510     if( iop == Op_FastLock || iop == Op_FastUnlock )
       
   511       return true;
       
   512   }
       
   513   return false;
       
   514 }
       
   515 
       
   516 //------------------------------convert_NeverBranch_to_Goto--------------------
       
   517 // Check for NeverBranch at block end.  This needs to become a GOTO to the
       
   518 // true target.  NeverBranch are treated as a conditional branch that always
       
   519 // goes the same direction for most of the optimizer and are used to give a
       
   520 // fake exit path to infinite loops.  At this late stage they need to turn
       
   521 // into Goto's so that when you enter the infinite loop you indeed hang.
       
   522 void PhaseCFG::convert_NeverBranch_to_Goto(Block *b) {
       
   523   // Find true target
       
   524   int end_idx = b->end_idx();
       
   525   int idx = b->_nodes[end_idx+1]->as_Proj()->_con;
       
   526   Block *succ = b->_succs[idx];
       
   527   Node* gto = _goto->clone(); // get a new goto node
       
   528   gto->set_req(0, b->head());
       
   529   Node *bp = b->_nodes[end_idx];
       
   530   b->_nodes.map(end_idx,gto); // Slam over NeverBranch
       
   531   _bbs.map(gto->_idx, b);
       
   532   C->regalloc()->set_bad(gto->_idx);
       
   533   b->_nodes.pop();              // Yank projections
       
   534   b->_nodes.pop();              // Yank projections
       
   535   b->_succs.map(0,succ);        // Map only successor
       
   536   b->_num_succs = 1;
       
   537   // remap successor's predecessors if necessary
       
   538   uint j;
       
   539   for( j = 1; j < succ->num_preds(); j++)
       
   540     if( succ->pred(j)->in(0) == bp )
       
   541       succ->head()->set_req(j, gto);
       
   542   // Kill alternate exit path
       
   543   Block *dead = b->_succs[1-idx];
       
   544   for( j = 1; j < dead->num_preds(); j++)
       
   545     if( dead->pred(j)->in(0) == bp )
       
   546       break;
       
   547   // Scan through block, yanking dead path from
       
   548   // all regions and phis.
       
   549   dead->head()->del_req(j);
       
   550   for( int k = 1; dead->_nodes[k]->is_Phi(); k++ )
       
   551     dead->_nodes[k]->del_req(j);
       
   552 }
       
   553 
       
   554 //------------------------------MoveToNext-------------------------------------
       
   555 // Helper function to move block bx to the slot following b_index. Return
       
   556 // true if the move is successful, otherwise false
       
   557 bool PhaseCFG::MoveToNext(Block* bx, uint b_index) {
       
   558   if (bx == NULL) return false;
       
   559 
       
   560   // Return false if bx is already scheduled.
       
   561   uint bx_index = bx->_pre_order;
       
   562   if ((bx_index <= b_index) && (_blocks[bx_index] == bx)) {
       
   563     return false;
       
   564   }
       
   565 
       
   566   // Find the current index of block bx on the block list
       
   567   bx_index = b_index + 1;
       
   568   while( bx_index < _num_blocks && _blocks[bx_index] != bx ) bx_index++;
       
   569   assert(_blocks[bx_index] == bx, "block not found");
       
   570 
       
   571   // If the previous block conditionally falls into bx, return false,
       
   572   // because moving bx will create an extra jump.
       
   573   for(uint k = 1; k < bx->num_preds(); k++ ) {
       
   574     Block* pred = _bbs[bx->pred(k)->_idx];
       
   575     if (pred == _blocks[bx_index-1]) {
       
   576       if (pred->_num_succs != 1) {
       
   577         return false;
       
   578       }
       
   579     }
       
   580   }
       
   581 
       
   582   // Reinsert bx just past block 'b'
       
   583   _blocks.remove(bx_index);
       
   584   _blocks.insert(b_index + 1, bx);
       
   585   return true;
       
   586 }
       
   587 
       
   588 //------------------------------MoveToEnd--------------------------------------
       
   589 // Move empty and uncommon blocks to the end.
       
   590 void PhaseCFG::MoveToEnd(Block *b, uint i) {
       
   591   int e = b->is_Empty();
       
   592   if (e != Block::not_empty) {
       
   593     if (e == Block::empty_with_goto) {
       
   594       // Remove the goto, but leave the block.
       
   595       b->_nodes.pop();
       
   596     }
       
   597     // Mark this block as a connector block, which will cause it to be
       
   598     // ignored in certain functions such as non_connector_successor().
       
   599     b->set_connector();
       
   600   }
       
   601   // Move the empty block to the end, and don't recheck.
       
   602   _blocks.remove(i);
       
   603   _blocks.push(b);
       
   604 }
       
   605 
       
   606 //------------------------------RemoveEmpty------------------------------------
       
   607 // Remove empty basic blocks and useless branches.
       
   608 void PhaseCFG::RemoveEmpty() {
       
   609   // Move uncommon blocks to the end
       
   610   uint last = _num_blocks;
       
   611   uint i;
       
   612   assert( _blocks[0] == _broot, "" );
       
   613   for( i = 1; i < last; i++ ) {
       
   614     Block *b = _blocks[i];
       
   615 
       
   616     // Check for NeverBranch at block end.  This needs to become a GOTO to the
       
   617     // true target.  NeverBranch are treated as a conditional branch that
       
   618     // always goes the same direction for most of the optimizer and are used
       
   619     // to give a fake exit path to infinite loops.  At this late stage they
       
   620     // need to turn into Goto's so that when you enter the infinite loop you
       
   621     // indeed hang.
       
   622     if( b->_nodes[b->end_idx()]->Opcode() == Op_NeverBranch )
       
   623       convert_NeverBranch_to_Goto(b);
       
   624 
       
   625     // Look for uncommon blocks and move to end.
       
   626     if( b->is_uncommon(_bbs) ) {
       
   627       MoveToEnd(b, i);
       
   628       last--;                   // No longer check for being uncommon!
       
   629       if( no_flip_branch(b) ) { // Fall-thru case must follow?
       
   630         b = _blocks[i];         // Find the fall-thru block
       
   631         MoveToEnd(b, i);
       
   632         last--;
       
   633       }
       
   634       i--;                      // backup block counter post-increment
       
   635     }
       
   636   }
       
   637 
       
   638   // Remove empty blocks
       
   639   uint j1;
       
   640   last = _num_blocks;
       
   641   for( i=0; i < last; i++ ) {
       
   642     Block *b = _blocks[i];
       
   643     if (i > 0) {
       
   644       if (b->is_Empty() != Block::not_empty) {
       
   645         MoveToEnd(b, i);
       
   646         last--;
       
   647         i--;
       
   648       }
       
   649     }
       
   650   } // End of for all blocks
       
   651 
       
   652   // Fixup final control flow for the blocks.  Remove jump-to-next
       
   653   // block.  If neither arm of a IF follows the conditional branch, we
       
   654   // have to add a second jump after the conditional.  We place the
       
   655   // TRUE branch target in succs[0] for both GOTOs and IFs.
       
   656   for( i=0; i < _num_blocks; i++ ) {
       
   657     Block *b = _blocks[i];
       
   658     b->_pre_order = i;          // turn pre-order into block-index
       
   659 
       
   660     // Connector blocks need no further processing.
       
   661     if (b->is_connector()) {
       
   662       assert((i+1) == _num_blocks || _blocks[i+1]->is_connector(),
       
   663              "All connector blocks should sink to the end");
       
   664       continue;
       
   665     }
       
   666     assert(b->is_Empty() != Block::completely_empty,
       
   667            "Empty blocks should be connectors");
       
   668 
       
   669     Block *bnext = (i < _num_blocks-1) ? _blocks[i+1] : NULL;
       
   670     Block *bs0 = b->non_connector_successor(0);
       
   671 
       
   672     // Check for multi-way branches where I cannot negate the test to
       
   673     // exchange the true and false targets.
       
   674     if( no_flip_branch( b ) ) {
       
   675       // Find fall through case - if must fall into its target
       
   676       int branch_idx = b->_nodes.size() - b->_num_succs;
       
   677       for (uint j2 = 0; j2 < b->_num_succs; j2++) {
       
   678         const ProjNode* p = b->_nodes[branch_idx + j2]->as_Proj();
       
   679         if (p->_con == 0) {
       
   680           // successor j2 is fall through case
       
   681           if (b->non_connector_successor(j2) != bnext) {
       
   682             // but it is not the next block => insert a goto
       
   683             insert_goto_at(i, j2);
       
   684           }
       
   685           // Put taken branch in slot 0
       
   686           if( j2 == 0 && b->_num_succs == 2) {
       
   687             // Flip targets in succs map
       
   688             Block *tbs0 = b->_succs[0];
       
   689             Block *tbs1 = b->_succs[1];
       
   690             b->_succs.map( 0, tbs1 );
       
   691             b->_succs.map( 1, tbs0 );
       
   692           }
       
   693           break;
       
   694         }
       
   695       }
       
   696       // Remove all CatchProjs
       
   697       for (j1 = 0; j1 < b->_num_succs; j1++) b->_nodes.pop();
       
   698 
       
   699     } else if (b->_num_succs == 1) {
       
   700       // Block ends in a Goto?
       
   701       if (bnext == bs0) {
       
   702         // We fall into next block; remove the Goto
       
   703         b->_nodes.pop();
       
   704       }
       
   705 
       
   706     } else if( b->_num_succs == 2 ) { // Block ends in a If?
       
   707       // Get opcode of 1st projection (matches _succs[0])
       
   708       // Note: Since this basic block has 2 exits, the last 2 nodes must
       
   709       //       be projections (in any order), the 3rd last node must be
       
   710       //       the IfNode (we have excluded other 2-way exits such as
       
   711       //       CatchNodes already).
       
   712       MachNode *iff   = b->_nodes[b->_nodes.size()-3]->as_Mach();
       
   713       ProjNode *proj0 = b->_nodes[b->_nodes.size()-2]->as_Proj();
       
   714       ProjNode *proj1 = b->_nodes[b->_nodes.size()-1]->as_Proj();
       
   715 
       
   716       // Assert that proj0 and succs[0] match up. Similarly for proj1 and succs[1].
       
   717       assert(proj0->raw_out(0) == b->_succs[0]->head(), "Mismatch successor 0");
       
   718       assert(proj1->raw_out(0) == b->_succs[1]->head(), "Mismatch successor 1");
       
   719 
       
   720       Block *bs1 = b->non_connector_successor(1);
       
   721 
       
   722       // Check for neither successor block following the current
       
   723       // block ending in a conditional. If so, move one of the
       
   724       // successors after the current one, provided that the
       
   725       // successor was previously unscheduled, but moveable
       
   726       // (i.e., all paths to it involve a branch).
       
   727       if( bnext != bs0 && bnext != bs1 ) {
       
   728 
       
   729         // Choose the more common successor based on the probability
       
   730         // of the conditional branch.
       
   731         Block *bx = bs0;
       
   732         Block *by = bs1;
       
   733 
       
   734         // _prob is the probability of taking the true path. Make
       
   735         // p the probability of taking successor #1.
       
   736         float p = iff->as_MachIf()->_prob;
       
   737         if( proj0->Opcode() == Op_IfTrue ) {
       
   738           p = 1.0 - p;
       
   739         }
       
   740 
       
   741         // Prefer successor #1 if p > 0.5
       
   742         if (p > PROB_FAIR) {
       
   743           bx = bs1;
       
   744           by = bs0;
       
   745         }
       
   746 
       
   747         // Attempt the more common successor first
       
   748         if (MoveToNext(bx, i)) {
       
   749           bnext = bx;
       
   750         } else if (MoveToNext(by, i)) {
       
   751           bnext = by;
       
   752         }
       
   753       }
       
   754 
       
   755       // Check for conditional branching the wrong way.  Negate
       
   756       // conditional, if needed, so it falls into the following block
       
   757       // and branches to the not-following block.
       
   758 
       
   759       // Check for the next block being in succs[0].  We are going to branch
       
   760       // to succs[0], so we want the fall-thru case as the next block in
       
   761       // succs[1].
       
   762       if (bnext == bs0) {
       
   763         // Fall-thru case in succs[0], so flip targets in succs map
       
   764         Block *tbs0 = b->_succs[0];
       
   765         Block *tbs1 = b->_succs[1];
       
   766         b->_succs.map( 0, tbs1 );
       
   767         b->_succs.map( 1, tbs0 );
       
   768         // Flip projection for each target
       
   769         { ProjNode *tmp = proj0; proj0 = proj1; proj1 = tmp; }
       
   770 
       
   771       } else if( bnext == bs1 ) { // Fall-thru is already in succs[1]
       
   772 
       
   773       } else {                  // Else need a double-branch
       
   774 
       
   775         // The existing conditional branch need not change.
       
   776         // Add a unconditional branch to the false target.
       
   777         // Alas, it must appear in its own block and adding a
       
   778         // block this late in the game is complicated.  Sigh.
       
   779         insert_goto_at(i, 1);
       
   780       }
       
   781 
       
   782       // Make sure we TRUE branch to the target
       
   783       if( proj0->Opcode() == Op_IfFalse )
       
   784         iff->negate();
       
   785 
       
   786       b->_nodes.pop();          // Remove IfFalse & IfTrue projections
       
   787       b->_nodes.pop();
       
   788 
       
   789     } else {
       
   790       // Multi-exit block, e.g. a switch statement
       
   791       // But we don't need to do anything here
       
   792     }
       
   793 
       
   794   } // End of for all blocks
       
   795 
       
   796 }
       
   797 
       
   798 
       
   799 //------------------------------dump-------------------------------------------
       
   800 #ifndef PRODUCT
       
   801 void PhaseCFG::_dump_cfg( const Node *end, VectorSet &visited  ) const {
       
   802   const Node *x = end->is_block_proj();
       
   803   assert( x, "not a CFG" );
       
   804 
       
   805   // Do not visit this block again
       
   806   if( visited.test_set(x->_idx) ) return;
       
   807 
       
   808   // Skip through this block
       
   809   const Node *p = x;
       
   810   do {
       
   811     p = p->in(0);               // Move control forward
       
   812     assert( !p->is_block_proj() || p->is_Root(), "not a CFG" );
       
   813   } while( !p->is_block_start() );
       
   814 
       
   815   // Recursively visit
       
   816   for( uint i=1; i<p->req(); i++ )
       
   817     _dump_cfg(p->in(i),visited);
       
   818 
       
   819   // Dump the block
       
   820   _bbs[p->_idx]->dump(&_bbs);
       
   821 }
       
   822 
       
   823 void PhaseCFG::dump( ) const {
       
   824   tty->print("\n--- CFG --- %d BBs\n",_num_blocks);
       
   825   if( _blocks.size() ) {        // Did we do basic-block layout?
       
   826     for( uint i=0; i<_num_blocks; i++ )
       
   827       _blocks[i]->dump(&_bbs);
       
   828   } else {                      // Else do it with a DFS
       
   829     VectorSet visited(_bbs._arena);
       
   830     _dump_cfg(_root,visited);
       
   831   }
       
   832 }
       
   833 
       
   834 void PhaseCFG::dump_headers() {
       
   835   for( uint i = 0; i < _num_blocks; i++ ) {
       
   836     if( _blocks[i] == NULL ) continue;
       
   837     _blocks[i]->dump_head(&_bbs);
       
   838   }
       
   839 }
       
   840 
       
   841 void PhaseCFG::verify( ) const {
       
   842   // Verify sane CFG
       
   843   for( uint i = 0; i < _num_blocks; i++ ) {
       
   844     Block *b = _blocks[i];
       
   845     uint cnt = b->_nodes.size();
       
   846     uint j;
       
   847     for( j = 0; j < cnt; j++ ) {
       
   848       Node *n = b->_nodes[j];
       
   849       assert( _bbs[n->_idx] == b, "" );
       
   850       if( j >= 1 && n->is_Mach() &&
       
   851           n->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
       
   852         assert( j == 1 || b->_nodes[j-1]->is_Phi(),
       
   853                 "CreateEx must be first instruction in block" );
       
   854       }
       
   855       for( uint k = 0; k < n->req(); k++ ) {
       
   856         Node *use = n->in(k);
       
   857         if( use && use != n ) {
       
   858           assert( _bbs[use->_idx] || use->is_Con(),
       
   859                   "must have block; constants for debug info ok" );
       
   860         }
       
   861       }
       
   862     }
       
   863 
       
   864     j = b->end_idx();
       
   865     Node *bp = (Node*)b->_nodes[b->_nodes.size()-1]->is_block_proj();
       
   866     assert( bp, "last instruction must be a block proj" );
       
   867     assert( bp == b->_nodes[j], "wrong number of successors for this block" );
       
   868     if( bp->is_Catch() ) {
       
   869       while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
       
   870       assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
       
   871     }
       
   872     else if( bp->is_Mach() && bp->as_Mach()->ideal_Opcode() == Op_If ) {
       
   873       assert( b->_num_succs == 2, "Conditional branch must have two targets");
       
   874     }
       
   875   }
       
   876 }
       
   877 #endif
       
   878 
       
   879 //=============================================================================
       
   880 //------------------------------UnionFind--------------------------------------
       
   881 UnionFind::UnionFind( uint max ) : _cnt(max), _max(max), _indices(NEW_RESOURCE_ARRAY(uint,max)) {
       
   882   Copy::zero_to_bytes( _indices, sizeof(uint)*max );
       
   883 }
       
   884 
       
   885 void UnionFind::extend( uint from_idx, uint to_idx ) {
       
   886   _nesting.check();
       
   887   if( from_idx >= _max ) {
       
   888     uint size = 16;
       
   889     while( size <= from_idx ) size <<=1;
       
   890     _indices = REALLOC_RESOURCE_ARRAY( uint, _indices, _max, size );
       
   891     _max = size;
       
   892   }
       
   893   while( _cnt <= from_idx ) _indices[_cnt++] = 0;
       
   894   _indices[from_idx] = to_idx;
       
   895 }
       
   896 
       
   897 void UnionFind::reset( uint max ) {
       
   898   assert( max <= max_uint, "Must fit within uint" );
       
   899   // Force the Union-Find mapping to be at least this large
       
   900   extend(max,0);
       
   901   // Initialize to be the ID mapping.
       
   902   for( uint i=0; i<_max; i++ ) map(i,i);
       
   903 }
       
   904 
       
   905 //------------------------------Find_compress----------------------------------
       
   906 // Straight out of Tarjan's union-find algorithm
       
   907 uint UnionFind::Find_compress( uint idx ) {
       
   908   uint cur  = idx;
       
   909   uint next = lookup(cur);
       
   910   while( next != cur ) {        // Scan chain of equivalences
       
   911     assert( next < cur, "always union smaller" );
       
   912     cur = next;                 // until find a fixed-point
       
   913     next = lookup(cur);
       
   914   }
       
   915   // Core of union-find algorithm: update chain of
       
   916   // equivalences to be equal to the root.
       
   917   while( idx != next ) {
       
   918     uint tmp = lookup(idx);
       
   919     map(idx, next);
       
   920     idx = tmp;
       
   921   }
       
   922   return idx;
       
   923 }
       
   924 
       
   925 //------------------------------Find_const-------------------------------------
       
   926 // Like Find above, but no path compress, so bad asymptotic behavior
       
   927 uint UnionFind::Find_const( uint idx ) const {
       
   928   if( idx == 0 ) return idx;    // Ignore the zero idx
       
   929   // Off the end?  This can happen during debugging dumps
       
   930   // when data structures have not finished being updated.
       
   931   if( idx >= _max ) return idx;
       
   932   uint next = lookup(idx);
       
   933   while( next != idx ) {        // Scan chain of equivalences
       
   934     assert( next < idx, "always union smaller" );
       
   935     idx = next;                 // until find a fixed-point
       
   936     next = lookup(idx);
       
   937   }
       
   938   return next;
       
   939 }
       
   940 
       
   941 //------------------------------Union------------------------------------------
       
   942 // union 2 sets together.
       
   943 void UnionFind::Union( uint idx1, uint idx2 ) {
       
   944   uint src = Find(idx1);
       
   945   uint dst = Find(idx2);
       
   946   assert( src, "" );
       
   947   assert( dst, "" );
       
   948   assert( src < _max, "oob" );
       
   949   assert( dst < _max, "oob" );
       
   950   assert( src < dst, "always union smaller" );
       
   951   map(dst,src);
       
   952 }