|
1 /* |
|
2 * Copyright 2000-2006 Sun Microsystems, Inc. All Rights Reserved. |
|
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 * |
|
5 * This code is free software; you can redistribute it and/or modify it |
|
6 * under the terms of the GNU General Public License version 2 only, as |
|
7 * published by the Free Software Foundation. |
|
8 * |
|
9 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 * version 2 for more details (a copy is included in the LICENSE file that |
|
13 * accompanied this code). |
|
14 * |
|
15 * You should have received a copy of the GNU General Public License version |
|
16 * 2 along with this work; if not, write to the Free Software Foundation, |
|
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 * |
|
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, |
|
20 * CA 95054 USA or visit www.sun.com if you need additional information or |
|
21 * have any questions. |
|
22 * |
|
23 */ |
|
24 |
|
25 # include "incls/_precompiled.incl" |
|
26 # include "incls/_blockOffsetTable.cpp.incl" |
|
27 |
|
28 ////////////////////////////////////////////////////////////////////// |
|
29 // BlockOffsetSharedArray |
|
30 ////////////////////////////////////////////////////////////////////// |
|
31 |
|
32 BlockOffsetSharedArray::BlockOffsetSharedArray(MemRegion reserved, |
|
33 size_t init_word_size): |
|
34 _reserved(reserved), _end(NULL) |
|
35 { |
|
36 size_t size = compute_size(reserved.word_size()); |
|
37 ReservedSpace rs(size); |
|
38 if (!rs.is_reserved()) { |
|
39 vm_exit_during_initialization("Could not reserve enough space for heap offset array"); |
|
40 } |
|
41 if (!_vs.initialize(rs, 0)) { |
|
42 vm_exit_during_initialization("Could not reserve enough space for heap offset array"); |
|
43 } |
|
44 _offset_array = (u_char*)_vs.low_boundary(); |
|
45 resize(init_word_size); |
|
46 if (TraceBlockOffsetTable) { |
|
47 gclog_or_tty->print_cr("BlockOffsetSharedArray::BlockOffsetSharedArray: "); |
|
48 gclog_or_tty->print_cr(" " |
|
49 " rs.base(): " INTPTR_FORMAT |
|
50 " rs.size(): " INTPTR_FORMAT |
|
51 " rs end(): " INTPTR_FORMAT, |
|
52 rs.base(), rs.size(), rs.base() + rs.size()); |
|
53 gclog_or_tty->print_cr(" " |
|
54 " _vs.low_boundary(): " INTPTR_FORMAT |
|
55 " _vs.high_boundary(): " INTPTR_FORMAT, |
|
56 _vs.low_boundary(), |
|
57 _vs.high_boundary()); |
|
58 } |
|
59 } |
|
60 |
|
61 void BlockOffsetSharedArray::resize(size_t new_word_size) { |
|
62 assert(new_word_size <= _reserved.word_size(), "Resize larger than reserved"); |
|
63 size_t new_size = compute_size(new_word_size); |
|
64 size_t old_size = _vs.committed_size(); |
|
65 size_t delta; |
|
66 char* high = _vs.high(); |
|
67 _end = _reserved.start() + new_word_size; |
|
68 if (new_size > old_size) { |
|
69 delta = ReservedSpace::page_align_size_up(new_size - old_size); |
|
70 assert(delta > 0, "just checking"); |
|
71 if (!_vs.expand_by(delta)) { |
|
72 // Do better than this for Merlin |
|
73 vm_exit_out_of_memory(delta, "offset table expansion"); |
|
74 } |
|
75 assert(_vs.high() == high + delta, "invalid expansion"); |
|
76 } else { |
|
77 delta = ReservedSpace::page_align_size_down(old_size - new_size); |
|
78 if (delta == 0) return; |
|
79 _vs.shrink_by(delta); |
|
80 assert(_vs.high() == high - delta, "invalid expansion"); |
|
81 } |
|
82 } |
|
83 |
|
84 bool BlockOffsetSharedArray::is_card_boundary(HeapWord* p) const { |
|
85 assert(p >= _reserved.start(), "just checking"); |
|
86 size_t delta = pointer_delta(p, _reserved.start()); |
|
87 return (delta & right_n_bits(LogN_words)) == (size_t)NoBits; |
|
88 } |
|
89 |
|
90 |
|
91 void BlockOffsetSharedArray::serialize(SerializeOopClosure* soc, |
|
92 HeapWord* start, HeapWord* end) { |
|
93 assert(_offset_array[0] == 0, "objects can't cross covered areas"); |
|
94 assert(start <= end, "bad address range"); |
|
95 size_t start_index = index_for(start); |
|
96 size_t end_index = index_for(end-1)+1; |
|
97 soc->do_region(&_offset_array[start_index], |
|
98 (end_index - start_index) * sizeof(_offset_array[0])); |
|
99 } |
|
100 |
|
101 ////////////////////////////////////////////////////////////////////// |
|
102 // BlockOffsetArray |
|
103 ////////////////////////////////////////////////////////////////////// |
|
104 |
|
105 BlockOffsetArray::BlockOffsetArray(BlockOffsetSharedArray* array, |
|
106 MemRegion mr, bool init_to_zero) : |
|
107 BlockOffsetTable(mr.start(), mr.end()), |
|
108 _array(array), |
|
109 _init_to_zero(init_to_zero) |
|
110 { |
|
111 assert(_bottom <= _end, "arguments out of order"); |
|
112 if (!_init_to_zero) { |
|
113 // initialize cards to point back to mr.start() |
|
114 set_remainder_to_point_to_start(mr.start() + N_words, mr.end()); |
|
115 _array->set_offset_array(0, 0); // set first card to 0 |
|
116 } |
|
117 } |
|
118 |
|
119 |
|
120 // The arguments follow the normal convention of denoting |
|
121 // a right-open interval: [start, end) |
|
122 void |
|
123 BlockOffsetArray:: |
|
124 set_remainder_to_point_to_start(HeapWord* start, HeapWord* end) { |
|
125 |
|
126 if (start >= end) { |
|
127 // The start address is equal to the end address (or to |
|
128 // the right of the end address) so there are not cards |
|
129 // that need to be updated.. |
|
130 return; |
|
131 } |
|
132 |
|
133 // Write the backskip value for each region. |
|
134 // |
|
135 // offset |
|
136 // card 2nd 3rd |
|
137 // | +- 1st | | |
|
138 // v v v v |
|
139 // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+- |
|
140 // |x|0|0|0|0|0|0|0|1|1|1|1|1|1| ... |1|1|1|1|2|2|2|2|2|2| ... |
|
141 // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+- |
|
142 // 11 19 75 |
|
143 // 12 |
|
144 // |
|
145 // offset card is the card that points to the start of an object |
|
146 // x - offset value of offset card |
|
147 // 1st - start of first logarithmic region |
|
148 // 0 corresponds to logarithmic value N_words + 0 and 2**(3 * 0) = 1 |
|
149 // 2nd - start of second logarithmic region |
|
150 // 1 corresponds to logarithmic value N_words + 1 and 2**(3 * 1) = 8 |
|
151 // 3rd - start of third logarithmic region |
|
152 // 2 corresponds to logarithmic value N_words + 2 and 2**(3 * 2) = 64 |
|
153 // |
|
154 // integer below the block offset entry is an example of |
|
155 // the index of the entry |
|
156 // |
|
157 // Given an address, |
|
158 // Find the index for the address |
|
159 // Find the block offset table entry |
|
160 // Convert the entry to a back slide |
|
161 // (e.g., with today's, offset = 0x81 => |
|
162 // back slip = 2**(3*(0x81 - N_words)) = 2**3) = 8 |
|
163 // Move back N (e.g., 8) entries and repeat with the |
|
164 // value of the new entry |
|
165 // |
|
166 size_t start_card = _array->index_for(start); |
|
167 size_t end_card = _array->index_for(end-1); |
|
168 assert(start ==_array->address_for_index(start_card), "Precondition"); |
|
169 assert(end ==_array->address_for_index(end_card)+N_words, "Precondition"); |
|
170 set_remainder_to_point_to_start_incl(start_card, end_card); // closed interval |
|
171 } |
|
172 |
|
173 |
|
174 // Unlike the normal convention in this code, the argument here denotes |
|
175 // a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start() |
|
176 // above. |
|
177 void |
|
178 BlockOffsetArray::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card) { |
|
179 if (start_card > end_card) { |
|
180 return; |
|
181 } |
|
182 assert(start_card > _array->index_for(_bottom), "Cannot be first card"); |
|
183 assert(_array->offset_array(start_card-1) <= N_words, |
|
184 "Offset card has an unexpected value"); |
|
185 size_t start_card_for_region = start_card; |
|
186 u_char offset = max_jubyte; |
|
187 for (int i = 0; i <= N_powers-1; i++) { |
|
188 // -1 so that the the card with the actual offset is counted. Another -1 |
|
189 // so that the reach ends in this region and not at the start |
|
190 // of the next. |
|
191 size_t reach = start_card - 1 + (power_to_cards_back(i+1) - 1); |
|
192 offset = N_words + i; |
|
193 if (reach >= end_card) { |
|
194 _array->set_offset_array(start_card_for_region, end_card, offset); |
|
195 start_card_for_region = reach + 1; |
|
196 break; |
|
197 } |
|
198 _array->set_offset_array(start_card_for_region, reach, offset); |
|
199 start_card_for_region = reach + 1; |
|
200 } |
|
201 assert(start_card_for_region > end_card, "Sanity check"); |
|
202 DEBUG_ONLY(check_all_cards(start_card, end_card);) |
|
203 } |
|
204 |
|
205 // The card-interval [start_card, end_card] is a closed interval; this |
|
206 // is an expensive check -- use with care and only under protection of |
|
207 // suitable flag. |
|
208 void BlockOffsetArray::check_all_cards(size_t start_card, size_t end_card) const { |
|
209 |
|
210 if (end_card < start_card) { |
|
211 return; |
|
212 } |
|
213 guarantee(_array->offset_array(start_card) == N_words, "Wrong value in second card"); |
|
214 for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) { |
|
215 u_char entry = _array->offset_array(c); |
|
216 if (c - start_card > power_to_cards_back(1)) { |
|
217 guarantee(entry > N_words, "Should be in logarithmic region"); |
|
218 } |
|
219 size_t backskip = entry_to_cards_back(entry); |
|
220 size_t landing_card = c - backskip; |
|
221 guarantee(landing_card >= (start_card - 1), "Inv"); |
|
222 if (landing_card >= start_card) { |
|
223 guarantee(_array->offset_array(landing_card) <= entry, "monotonicity"); |
|
224 } else { |
|
225 guarantee(landing_card == start_card - 1, "Tautology"); |
|
226 guarantee(_array->offset_array(landing_card) <= N_words, "Offset value"); |
|
227 } |
|
228 } |
|
229 } |
|
230 |
|
231 |
|
232 void |
|
233 BlockOffsetArray::alloc_block(HeapWord* blk_start, HeapWord* blk_end) { |
|
234 assert(blk_start != NULL && blk_end > blk_start, |
|
235 "phantom block"); |
|
236 single_block(blk_start, blk_end); |
|
237 } |
|
238 |
|
239 // Action_mark - update the BOT for the block [blk_start, blk_end). |
|
240 // Current typical use is for splitting a block. |
|
241 // Action_single - udpate the BOT for an allocation. |
|
242 // Action_verify - BOT verification. |
|
243 void |
|
244 BlockOffsetArray::do_block_internal(HeapWord* blk_start, |
|
245 HeapWord* blk_end, |
|
246 Action action) { |
|
247 assert(Universe::heap()->is_in_reserved(blk_start), |
|
248 "reference must be into the heap"); |
|
249 assert(Universe::heap()->is_in_reserved(blk_end-1), |
|
250 "limit must be within the heap"); |
|
251 // This is optimized to make the test fast, assuming we only rarely |
|
252 // cross boundaries. |
|
253 uintptr_t end_ui = (uintptr_t)(blk_end - 1); |
|
254 uintptr_t start_ui = (uintptr_t)blk_start; |
|
255 // Calculate the last card boundary preceding end of blk |
|
256 intptr_t boundary_before_end = (intptr_t)end_ui; |
|
257 clear_bits(boundary_before_end, right_n_bits(LogN)); |
|
258 if (start_ui <= (uintptr_t)boundary_before_end) { |
|
259 // blk starts at or crosses a boundary |
|
260 // Calculate index of card on which blk begins |
|
261 size_t start_index = _array->index_for(blk_start); |
|
262 // Index of card on which blk ends |
|
263 size_t end_index = _array->index_for(blk_end - 1); |
|
264 // Start address of card on which blk begins |
|
265 HeapWord* boundary = _array->address_for_index(start_index); |
|
266 assert(boundary <= blk_start, "blk should start at or after boundary"); |
|
267 if (blk_start != boundary) { |
|
268 // blk starts strictly after boundary |
|
269 // adjust card boundary and start_index forward to next card |
|
270 boundary += N_words; |
|
271 start_index++; |
|
272 } |
|
273 assert(start_index <= end_index, "monotonicity of index_for()"); |
|
274 assert(boundary <= (HeapWord*)boundary_before_end, "tautology"); |
|
275 switch (action) { |
|
276 case Action_mark: { |
|
277 if (init_to_zero()) { |
|
278 _array->set_offset_array(start_index, boundary, blk_start); |
|
279 break; |
|
280 } // Else fall through to the next case |
|
281 } |
|
282 case Action_single: { |
|
283 _array->set_offset_array(start_index, boundary, blk_start); |
|
284 // We have finished marking the "offset card". We need to now |
|
285 // mark the subsequent cards that this blk spans. |
|
286 if (start_index < end_index) { |
|
287 HeapWord* rem_st = _array->address_for_index(start_index) + N_words; |
|
288 HeapWord* rem_end = _array->address_for_index(end_index) + N_words; |
|
289 set_remainder_to_point_to_start(rem_st, rem_end); |
|
290 } |
|
291 break; |
|
292 } |
|
293 case Action_check: { |
|
294 _array->check_offset_array(start_index, boundary, blk_start); |
|
295 // We have finished checking the "offset card". We need to now |
|
296 // check the subsequent cards that this blk spans. |
|
297 check_all_cards(start_index + 1, end_index); |
|
298 break; |
|
299 } |
|
300 default: |
|
301 ShouldNotReachHere(); |
|
302 } |
|
303 } |
|
304 } |
|
305 |
|
306 // The range [blk_start, blk_end) represents a single contiguous block |
|
307 // of storage; modify the block offset table to represent this |
|
308 // information; Right-open interval: [blk_start, blk_end) |
|
309 // NOTE: this method does _not_ adjust _unallocated_block. |
|
310 void |
|
311 BlockOffsetArray::single_block(HeapWord* blk_start, |
|
312 HeapWord* blk_end) { |
|
313 do_block_internal(blk_start, blk_end, Action_single); |
|
314 } |
|
315 |
|
316 void BlockOffsetArray::verify() const { |
|
317 // For each entry in the block offset table, verify that |
|
318 // the entry correctly finds the start of an object at the |
|
319 // first address covered by the block or to the left of that |
|
320 // first address. |
|
321 |
|
322 size_t next_index = 1; |
|
323 size_t last_index = last_active_index(); |
|
324 |
|
325 // Use for debugging. Initialize to NULL to distinguish the |
|
326 // first iteration through the while loop. |
|
327 HeapWord* last_p = NULL; |
|
328 HeapWord* last_start = NULL; |
|
329 oop last_o = NULL; |
|
330 |
|
331 while (next_index <= last_index) { |
|
332 // Use an address past the start of the address for |
|
333 // the entry. |
|
334 HeapWord* p = _array->address_for_index(next_index) + 1; |
|
335 if (p >= _end) { |
|
336 // That's all of the allocated block table. |
|
337 return; |
|
338 } |
|
339 // block_start() asserts that start <= p. |
|
340 HeapWord* start = block_start(p); |
|
341 // First check if the start is an allocated block and only |
|
342 // then if it is a valid object. |
|
343 oop o = oop(start); |
|
344 assert(!Universe::is_fully_initialized() || |
|
345 _sp->is_free_block(start) || |
|
346 o->is_oop_or_null(), "Bad object was found"); |
|
347 next_index++; |
|
348 last_p = p; |
|
349 last_start = start; |
|
350 last_o = o; |
|
351 } |
|
352 } |
|
353 |
|
354 ////////////////////////////////////////////////////////////////////// |
|
355 // BlockOffsetArrayNonContigSpace |
|
356 ////////////////////////////////////////////////////////////////////// |
|
357 |
|
358 // The block [blk_start, blk_end) has been allocated; |
|
359 // adjust the block offset table to represent this information; |
|
360 // NOTE: Clients of BlockOffsetArrayNonContigSpace: consider using |
|
361 // the somewhat more lightweight split_block() or |
|
362 // (when init_to_zero()) mark_block() wherever possible. |
|
363 // right-open interval: [blk_start, blk_end) |
|
364 void |
|
365 BlockOffsetArrayNonContigSpace::alloc_block(HeapWord* blk_start, |
|
366 HeapWord* blk_end) { |
|
367 assert(blk_start != NULL && blk_end > blk_start, |
|
368 "phantom block"); |
|
369 single_block(blk_start, blk_end); |
|
370 allocated(blk_start, blk_end); |
|
371 } |
|
372 |
|
373 // Adjust BOT to show that a previously whole block has been split |
|
374 // into two. We verify the BOT for the first part (prefix) and |
|
375 // update the BOT for the second part (suffix). |
|
376 // blk is the start of the block |
|
377 // blk_size is the size of the original block |
|
378 // left_blk_size is the size of the first part of the split |
|
379 void BlockOffsetArrayNonContigSpace::split_block(HeapWord* blk, |
|
380 size_t blk_size, |
|
381 size_t left_blk_size) { |
|
382 // Verify that the BOT shows [blk, blk + blk_size) to be one block. |
|
383 verify_single_block(blk, blk_size); |
|
384 // Update the BOT to indicate that [blk + left_blk_size, blk + blk_size) |
|
385 // is one single block. |
|
386 assert(blk_size > 0, "Should be positive"); |
|
387 assert(left_blk_size > 0, "Should be positive"); |
|
388 assert(left_blk_size < blk_size, "Not a split"); |
|
389 |
|
390 // Start addresses of prefix block and suffix block. |
|
391 HeapWord* pref_addr = blk; |
|
392 HeapWord* suff_addr = blk + left_blk_size; |
|
393 HeapWord* end_addr = blk + blk_size; |
|
394 |
|
395 // Indices for starts of prefix block and suffix block. |
|
396 size_t pref_index = _array->index_for(pref_addr); |
|
397 if (_array->address_for_index(pref_index) != pref_addr) { |
|
398 // pref_addr deos not begin pref_index |
|
399 pref_index++; |
|
400 } |
|
401 |
|
402 size_t suff_index = _array->index_for(suff_addr); |
|
403 if (_array->address_for_index(suff_index) != suff_addr) { |
|
404 // suff_addr does not begin suff_index |
|
405 suff_index++; |
|
406 } |
|
407 |
|
408 // Definition: A block B, denoted [B_start, B_end) __starts__ |
|
409 // a card C, denoted [C_start, C_end), where C_start and C_end |
|
410 // are the heap addresses that card C covers, iff |
|
411 // B_start <= C_start < B_end. |
|
412 // |
|
413 // We say that a card C "is started by" a block B, iff |
|
414 // B "starts" C. |
|
415 // |
|
416 // Note that the cardinality of the set of cards {C} |
|
417 // started by a block B can be 0, 1, or more. |
|
418 // |
|
419 // Below, pref_index and suff_index are, respectively, the |
|
420 // first (least) card indices that the prefix and suffix of |
|
421 // the split start; end_index is one more than the index of |
|
422 // the last (greatest) card that blk starts. |
|
423 size_t end_index = _array->index_for(end_addr - 1) + 1; |
|
424 |
|
425 // Calculate the # cards that the prefix and suffix affect. |
|
426 size_t num_pref_cards = suff_index - pref_index; |
|
427 |
|
428 size_t num_suff_cards = end_index - suff_index; |
|
429 // Change the cards that need changing |
|
430 if (num_suff_cards > 0) { |
|
431 HeapWord* boundary = _array->address_for_index(suff_index); |
|
432 // Set the offset card for suffix block |
|
433 _array->set_offset_array(suff_index, boundary, suff_addr); |
|
434 // Change any further cards that need changing in the suffix |
|
435 if (num_pref_cards > 0) { |
|
436 if (num_pref_cards >= num_suff_cards) { |
|
437 // Unilaterally fix all of the suffix cards: closed card |
|
438 // index interval in args below. |
|
439 set_remainder_to_point_to_start_incl(suff_index + 1, end_index - 1); |
|
440 } else { |
|
441 // Unilaterally fix the first (num_pref_cards - 1) following |
|
442 // the "offset card" in the suffix block. |
|
443 set_remainder_to_point_to_start_incl(suff_index + 1, |
|
444 suff_index + num_pref_cards - 1); |
|
445 // Fix the appropriate cards in the remainder of the |
|
446 // suffix block -- these are the last num_pref_cards |
|
447 // cards in each power block of the "new" range plumbed |
|
448 // from suff_addr. |
|
449 bool more = true; |
|
450 uint i = 1; |
|
451 while (more && (i < N_powers)) { |
|
452 size_t back_by = power_to_cards_back(i); |
|
453 size_t right_index = suff_index + back_by - 1; |
|
454 size_t left_index = right_index - num_pref_cards + 1; |
|
455 if (right_index >= end_index - 1) { // last iteration |
|
456 right_index = end_index - 1; |
|
457 more = false; |
|
458 } |
|
459 if (back_by > num_pref_cards) { |
|
460 // Fill in the remainder of this "power block", if it |
|
461 // is non-null. |
|
462 if (left_index <= right_index) { |
|
463 _array->set_offset_array(left_index, right_index, |
|
464 N_words + i - 1); |
|
465 } else { |
|
466 more = false; // we are done |
|
467 } |
|
468 i++; |
|
469 break; |
|
470 } |
|
471 i++; |
|
472 } |
|
473 while (more && (i < N_powers)) { |
|
474 size_t back_by = power_to_cards_back(i); |
|
475 size_t right_index = suff_index + back_by - 1; |
|
476 size_t left_index = right_index - num_pref_cards + 1; |
|
477 if (right_index >= end_index - 1) { // last iteration |
|
478 right_index = end_index - 1; |
|
479 if (left_index > right_index) { |
|
480 break; |
|
481 } |
|
482 more = false; |
|
483 } |
|
484 assert(left_index <= right_index, "Error"); |
|
485 _array->set_offset_array(left_index, right_index, N_words + i - 1); |
|
486 i++; |
|
487 } |
|
488 } |
|
489 } // else no more cards to fix in suffix |
|
490 } // else nothing needs to be done |
|
491 // Verify that we did the right thing |
|
492 verify_single_block(pref_addr, left_blk_size); |
|
493 verify_single_block(suff_addr, blk_size - left_blk_size); |
|
494 } |
|
495 |
|
496 |
|
497 // Mark the BOT such that if [blk_start, blk_end) straddles a card |
|
498 // boundary, the card following the first such boundary is marked |
|
499 // with the appropriate offset. |
|
500 // NOTE: this method does _not_ adjust _unallocated_block or |
|
501 // any cards subsequent to the first one. |
|
502 void |
|
503 BlockOffsetArrayNonContigSpace::mark_block(HeapWord* blk_start, |
|
504 HeapWord* blk_end) { |
|
505 do_block_internal(blk_start, blk_end, Action_mark); |
|
506 } |
|
507 |
|
508 HeapWord* BlockOffsetArrayNonContigSpace::block_start_unsafe( |
|
509 const void* addr) const { |
|
510 assert(_array->offset_array(0) == 0, "objects can't cross covered areas"); |
|
511 |
|
512 assert(_bottom <= addr && addr < _end, |
|
513 "addr must be covered by this Array"); |
|
514 // Must read this exactly once because it can be modified by parallel |
|
515 // allocation. |
|
516 HeapWord* ub = _unallocated_block; |
|
517 if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) { |
|
518 assert(ub < _end, "tautology (see above)"); |
|
519 return ub; |
|
520 } |
|
521 |
|
522 // Otherwise, find the block start using the table. |
|
523 size_t index = _array->index_for(addr); |
|
524 HeapWord* q = _array->address_for_index(index); |
|
525 |
|
526 uint offset = _array->offset_array(index); // Extend u_char to uint. |
|
527 while (offset >= N_words) { |
|
528 // The excess of the offset from N_words indicates a power of Base |
|
529 // to go back by. |
|
530 size_t n_cards_back = entry_to_cards_back(offset); |
|
531 q -= (N_words * n_cards_back); |
|
532 assert(q >= _sp->bottom(), "Went below bottom!"); |
|
533 index -= n_cards_back; |
|
534 offset = _array->offset_array(index); |
|
535 } |
|
536 assert(offset < N_words, "offset too large"); |
|
537 index--; |
|
538 q -= offset; |
|
539 HeapWord* n = q; |
|
540 |
|
541 while (n <= addr) { |
|
542 debug_only(HeapWord* last = q); // for debugging |
|
543 q = n; |
|
544 n += _sp->block_size(n); |
|
545 } |
|
546 assert(q <= addr, "wrong order for current and arg"); |
|
547 assert(addr <= n, "wrong order for arg and next"); |
|
548 return q; |
|
549 } |
|
550 |
|
551 HeapWord* BlockOffsetArrayNonContigSpace::block_start_careful( |
|
552 const void* addr) const { |
|
553 assert(_array->offset_array(0) == 0, "objects can't cross covered areas"); |
|
554 |
|
555 assert(_bottom <= addr && addr < _end, |
|
556 "addr must be covered by this Array"); |
|
557 // Must read this exactly once because it can be modified by parallel |
|
558 // allocation. |
|
559 HeapWord* ub = _unallocated_block; |
|
560 if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) { |
|
561 assert(ub < _end, "tautology (see above)"); |
|
562 return ub; |
|
563 } |
|
564 |
|
565 // Otherwise, find the block start using the table, but taking |
|
566 // care (cf block_start_unsafe() above) not to parse any objects/blocks |
|
567 // on the cards themsleves. |
|
568 size_t index = _array->index_for(addr); |
|
569 assert(_array->address_for_index(index) == addr, |
|
570 "arg should be start of card"); |
|
571 |
|
572 HeapWord* q = (HeapWord*)addr; |
|
573 uint offset; |
|
574 do { |
|
575 offset = _array->offset_array(index); |
|
576 if (offset < N_words) { |
|
577 q -= offset; |
|
578 } else { |
|
579 size_t n_cards_back = entry_to_cards_back(offset); |
|
580 q -= (n_cards_back * N_words); |
|
581 index -= n_cards_back; |
|
582 } |
|
583 } while (offset >= N_words); |
|
584 assert(q <= addr, "block start should be to left of arg"); |
|
585 return q; |
|
586 } |
|
587 |
|
588 #ifndef PRODUCT |
|
589 // Verification & debugging - ensure that the offset table reflects the fact |
|
590 // that the block [blk_start, blk_end) or [blk, blk + size) is a |
|
591 // single block of storage. NOTE: can't const this because of |
|
592 // call to non-const do_block_internal() below. |
|
593 void BlockOffsetArrayNonContigSpace::verify_single_block( |
|
594 HeapWord* blk_start, HeapWord* blk_end) { |
|
595 if (VerifyBlockOffsetArray) { |
|
596 do_block_internal(blk_start, blk_end, Action_check); |
|
597 } |
|
598 } |
|
599 |
|
600 void BlockOffsetArrayNonContigSpace::verify_single_block( |
|
601 HeapWord* blk, size_t size) { |
|
602 verify_single_block(blk, blk + size); |
|
603 } |
|
604 |
|
605 // Verify that the given block is before _unallocated_block |
|
606 void BlockOffsetArrayNonContigSpace::verify_not_unallocated( |
|
607 HeapWord* blk_start, HeapWord* blk_end) const { |
|
608 if (BlockOffsetArrayUseUnallocatedBlock) { |
|
609 assert(blk_start < blk_end, "Block inconsistency?"); |
|
610 assert(blk_end <= _unallocated_block, "_unallocated_block problem"); |
|
611 } |
|
612 } |
|
613 |
|
614 void BlockOffsetArrayNonContigSpace::verify_not_unallocated( |
|
615 HeapWord* blk, size_t size) const { |
|
616 verify_not_unallocated(blk, blk + size); |
|
617 } |
|
618 #endif // PRODUCT |
|
619 |
|
620 size_t BlockOffsetArrayNonContigSpace::last_active_index() const { |
|
621 if (_unallocated_block == _bottom) { |
|
622 return 0; |
|
623 } else { |
|
624 return _array->index_for(_unallocated_block - 1); |
|
625 } |
|
626 } |
|
627 |
|
628 ////////////////////////////////////////////////////////////////////// |
|
629 // BlockOffsetArrayContigSpace |
|
630 ////////////////////////////////////////////////////////////////////// |
|
631 |
|
632 HeapWord* BlockOffsetArrayContigSpace::block_start_unsafe(const void* addr) const { |
|
633 assert(_array->offset_array(0) == 0, "objects can't cross covered areas"); |
|
634 |
|
635 // Otherwise, find the block start using the table. |
|
636 assert(_bottom <= addr && addr < _end, |
|
637 "addr must be covered by this Array"); |
|
638 size_t index = _array->index_for(addr); |
|
639 // We must make sure that the offset table entry we use is valid. If |
|
640 // "addr" is past the end, start at the last known one and go forward. |
|
641 index = MIN2(index, _next_offset_index-1); |
|
642 HeapWord* q = _array->address_for_index(index); |
|
643 |
|
644 uint offset = _array->offset_array(index); // Extend u_char to uint. |
|
645 while (offset > N_words) { |
|
646 // The excess of the offset from N_words indicates a power of Base |
|
647 // to go back by. |
|
648 size_t n_cards_back = entry_to_cards_back(offset); |
|
649 q -= (N_words * n_cards_back); |
|
650 assert(q >= _sp->bottom(), "Went below bottom!"); |
|
651 index -= n_cards_back; |
|
652 offset = _array->offset_array(index); |
|
653 } |
|
654 while (offset == N_words) { |
|
655 assert(q >= _sp->bottom(), "Went below bottom!"); |
|
656 q -= N_words; |
|
657 index--; |
|
658 offset = _array->offset_array(index); |
|
659 } |
|
660 assert(offset < N_words, "offset too large"); |
|
661 q -= offset; |
|
662 HeapWord* n = q; |
|
663 |
|
664 while (n <= addr) { |
|
665 debug_only(HeapWord* last = q); // for debugging |
|
666 q = n; |
|
667 n += _sp->block_size(n); |
|
668 } |
|
669 assert(q <= addr, "wrong order for current and arg"); |
|
670 assert(addr <= n, "wrong order for arg and next"); |
|
671 return q; |
|
672 } |
|
673 |
|
674 // |
|
675 // _next_offset_threshold |
|
676 // | _next_offset_index |
|
677 // v v |
|
678 // +-------+-------+-------+-------+-------+ |
|
679 // | i-1 | i | i+1 | i+2 | i+3 | |
|
680 // +-------+-------+-------+-------+-------+ |
|
681 // ( ^ ] |
|
682 // block-start |
|
683 // |
|
684 |
|
685 void BlockOffsetArrayContigSpace::alloc_block_work(HeapWord* blk_start, |
|
686 HeapWord* blk_end) { |
|
687 assert(blk_start != NULL && blk_end > blk_start, |
|
688 "phantom block"); |
|
689 assert(blk_end > _next_offset_threshold, |
|
690 "should be past threshold"); |
|
691 assert(blk_start <= _next_offset_threshold, |
|
692 "blk_start should be at or before threshold") |
|
693 assert(pointer_delta(_next_offset_threshold, blk_start) <= N_words, |
|
694 "offset should be <= BlockOffsetSharedArray::N"); |
|
695 assert(Universe::heap()->is_in_reserved(blk_start), |
|
696 "reference must be into the heap"); |
|
697 assert(Universe::heap()->is_in_reserved(blk_end-1), |
|
698 "limit must be within the heap"); |
|
699 assert(_next_offset_threshold == |
|
700 _array->_reserved.start() + _next_offset_index*N_words, |
|
701 "index must agree with threshold"); |
|
702 |
|
703 debug_only(size_t orig_next_offset_index = _next_offset_index;) |
|
704 |
|
705 // Mark the card that holds the offset into the block. Note |
|
706 // that _next_offset_index and _next_offset_threshold are not |
|
707 // updated until the end of this method. |
|
708 _array->set_offset_array(_next_offset_index, |
|
709 _next_offset_threshold, |
|
710 blk_start); |
|
711 |
|
712 // We need to now mark the subsequent cards that this blk spans. |
|
713 |
|
714 // Index of card on which blk ends. |
|
715 size_t end_index = _array->index_for(blk_end - 1); |
|
716 |
|
717 // Are there more cards left to be updated? |
|
718 if (_next_offset_index + 1 <= end_index) { |
|
719 HeapWord* rem_st = _array->address_for_index(_next_offset_index + 1); |
|
720 // Calculate rem_end this way because end_index |
|
721 // may be the last valid index in the covered region. |
|
722 HeapWord* rem_end = _array->address_for_index(end_index) + N_words; |
|
723 set_remainder_to_point_to_start(rem_st, rem_end); |
|
724 } |
|
725 |
|
726 // _next_offset_index and _next_offset_threshold updated here. |
|
727 _next_offset_index = end_index + 1; |
|
728 // Calculate _next_offset_threshold this way because end_index |
|
729 // may be the last valid index in the covered region. |
|
730 _next_offset_threshold = _array->address_for_index(end_index) + |
|
731 N_words; |
|
732 assert(_next_offset_threshold >= blk_end, "Incorrent offset threshold"); |
|
733 |
|
734 #ifdef ASSERT |
|
735 // The offset can be 0 if the block starts on a boundary. That |
|
736 // is checked by an assertion above. |
|
737 size_t start_index = _array->index_for(blk_start); |
|
738 HeapWord* boundary = _array->address_for_index(start_index); |
|
739 assert((_array->offset_array(orig_next_offset_index) == 0 && |
|
740 blk_start == boundary) || |
|
741 (_array->offset_array(orig_next_offset_index) > 0 && |
|
742 _array->offset_array(orig_next_offset_index) <= N_words), |
|
743 "offset array should have been set"); |
|
744 for (size_t j = orig_next_offset_index + 1; j <= end_index; j++) { |
|
745 assert(_array->offset_array(j) > 0 && |
|
746 _array->offset_array(j) <= (u_char) (N_words+N_powers-1), |
|
747 "offset array should have been set"); |
|
748 } |
|
749 #endif |
|
750 } |
|
751 |
|
752 HeapWord* BlockOffsetArrayContigSpace::initialize_threshold() { |
|
753 assert(!Universe::heap()->is_in_reserved(_array->_offset_array), |
|
754 "just checking"); |
|
755 _next_offset_index = _array->index_for(_bottom); |
|
756 _next_offset_index++; |
|
757 _next_offset_threshold = |
|
758 _array->address_for_index(_next_offset_index); |
|
759 return _next_offset_threshold; |
|
760 } |
|
761 |
|
762 void BlockOffsetArrayContigSpace::zero_bottom_entry() { |
|
763 assert(!Universe::heap()->is_in_reserved(_array->_offset_array), |
|
764 "just checking"); |
|
765 size_t bottom_index = _array->index_for(_bottom); |
|
766 _array->set_offset_array(bottom_index, 0); |
|
767 } |
|
768 |
|
769 |
|
770 void BlockOffsetArrayContigSpace::serialize(SerializeOopClosure* soc) { |
|
771 if (soc->reading()) { |
|
772 // Null these values so that the serializer won't object to updating them. |
|
773 _next_offset_threshold = NULL; |
|
774 _next_offset_index = 0; |
|
775 } |
|
776 soc->do_ptr(&_next_offset_threshold); |
|
777 soc->do_size_t(&_next_offset_index); |
|
778 } |
|
779 |
|
780 size_t BlockOffsetArrayContigSpace::last_active_index() const { |
|
781 size_t result = _next_offset_index - 1; |
|
782 return result >= 0 ? result : 0; |
|
783 } |