|
1 |
|
2 /* |
|
3 * Copyright 2006-2007 Sun Microsystems, Inc. All Rights Reserved. |
|
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
5 * |
|
6 * This code is free software; you can redistribute it and/or modify it |
|
7 * under the terms of the GNU General Public License version 2 only, as |
|
8 * published by the Free Software Foundation. |
|
9 * |
|
10 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13 * version 2 for more details (a copy is included in the LICENSE file that |
|
14 * accompanied this code). |
|
15 * |
|
16 * You should have received a copy of the GNU General Public License version |
|
17 * 2 along with this work; if not, write to the Free Software Foundation, |
|
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
19 * |
|
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, |
|
21 * CA 95054 USA or visit www.sun.com if you need additional information or |
|
22 * have any questions. |
|
23 * |
|
24 */ |
|
25 |
|
26 # include "incls/_precompiled.incl" |
|
27 # include "incls/_mutableNUMASpace.cpp.incl" |
|
28 |
|
29 |
|
30 MutableNUMASpace::MutableNUMASpace() { |
|
31 _lgrp_spaces = new (ResourceObj::C_HEAP) GrowableArray<LGRPSpace*>(0, true); |
|
32 _page_size = os::vm_page_size(); |
|
33 _adaptation_cycles = 0; |
|
34 _samples_count = 0; |
|
35 update_layout(true); |
|
36 } |
|
37 |
|
38 MutableNUMASpace::~MutableNUMASpace() { |
|
39 for (int i = 0; i < lgrp_spaces()->length(); i++) { |
|
40 delete lgrp_spaces()->at(i); |
|
41 } |
|
42 delete lgrp_spaces(); |
|
43 } |
|
44 |
|
45 void MutableNUMASpace::mangle_unused_area() { |
|
46 for (int i = 0; i < lgrp_spaces()->length(); i++) { |
|
47 LGRPSpace *ls = lgrp_spaces()->at(i); |
|
48 MutableSpace *s = ls->space(); |
|
49 HeapWord *top = MAX2((HeapWord*)round_down((intptr_t)s->top(), page_size()), s->bottom()); |
|
50 if (top < s->end()) { |
|
51 ls->add_invalid_region(MemRegion(top, s->end())); |
|
52 } |
|
53 s->mangle_unused_area(); |
|
54 } |
|
55 } |
|
56 |
|
57 // There may be unallocated holes in the middle chunks |
|
58 // that should be filled with dead objects to ensure parseability. |
|
59 void MutableNUMASpace::ensure_parsability() { |
|
60 for (int i = 0; i < lgrp_spaces()->length(); i++) { |
|
61 LGRPSpace *ls = lgrp_spaces()->at(i); |
|
62 MutableSpace *s = ls->space(); |
|
63 if (!s->contains(top())) { |
|
64 if (s->free_in_words() > 0) { |
|
65 SharedHeap::fill_region_with_object(MemRegion(s->top(), s->end())); |
|
66 size_t area_touched_words = pointer_delta(s->end(), s->top(), sizeof(HeapWordSize)); |
|
67 #ifndef ASSERT |
|
68 if (!ZapUnusedHeapArea) { |
|
69 area_touched_words = MIN2((size_t)align_object_size(typeArrayOopDesc::header_size(T_INT)), |
|
70 area_touched_words); |
|
71 } |
|
72 #endif |
|
73 MemRegion invalid; |
|
74 HeapWord *crossing_start = (HeapWord*)round_to((intptr_t)s->top(), os::vm_page_size()); |
|
75 HeapWord *crossing_end = (HeapWord*)round_to((intptr_t)(s->top() + area_touched_words), |
|
76 os::vm_page_size()); |
|
77 if (crossing_start != crossing_end) { |
|
78 // If object header crossed a small page boundary we mark the area |
|
79 // as invalid rounding it to a page_size(). |
|
80 HeapWord *start = MAX2((HeapWord*)round_down((intptr_t)s->top(), page_size()), s->bottom()); |
|
81 HeapWord *end = MIN2((HeapWord*)round_to((intptr_t)(s->top() + area_touched_words), page_size()), |
|
82 s->end()); |
|
83 invalid = MemRegion(start, end); |
|
84 } |
|
85 |
|
86 ls->add_invalid_region(invalid); |
|
87 s->set_top(s->end()); |
|
88 } |
|
89 } else { |
|
90 #ifdef ASSERT |
|
91 MemRegion invalid(s->top(), s->end()); |
|
92 ls->add_invalid_region(invalid); |
|
93 #else |
|
94 if (ZapUnusedHeapArea) { |
|
95 MemRegion invalid(s->top(), s->end()); |
|
96 ls->add_invalid_region(invalid); |
|
97 } else break; |
|
98 #endif |
|
99 } |
|
100 } |
|
101 } |
|
102 |
|
103 size_t MutableNUMASpace::used_in_words() const { |
|
104 size_t s = 0; |
|
105 for (int i = 0; i < lgrp_spaces()->length(); i++) { |
|
106 s += lgrp_spaces()->at(i)->space()->used_in_words(); |
|
107 } |
|
108 return s; |
|
109 } |
|
110 |
|
111 size_t MutableNUMASpace::free_in_words() const { |
|
112 size_t s = 0; |
|
113 for (int i = 0; i < lgrp_spaces()->length(); i++) { |
|
114 s += lgrp_spaces()->at(i)->space()->free_in_words(); |
|
115 } |
|
116 return s; |
|
117 } |
|
118 |
|
119 |
|
120 size_t MutableNUMASpace::tlab_capacity(Thread *thr) const { |
|
121 guarantee(thr != NULL, "No thread"); |
|
122 int lgrp_id = thr->lgrp_id(); |
|
123 assert(lgrp_id != -1, "No lgrp_id set"); |
|
124 int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals); |
|
125 if (i == -1) { |
|
126 return 0; |
|
127 } |
|
128 return lgrp_spaces()->at(i)->space()->capacity_in_bytes(); |
|
129 } |
|
130 |
|
131 size_t MutableNUMASpace::unsafe_max_tlab_alloc(Thread *thr) const { |
|
132 guarantee(thr != NULL, "No thread"); |
|
133 int lgrp_id = thr->lgrp_id(); |
|
134 assert(lgrp_id != -1, "No lgrp_id set"); |
|
135 int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals); |
|
136 if (i == -1) { |
|
137 return 0; |
|
138 } |
|
139 return lgrp_spaces()->at(i)->space()->free_in_bytes(); |
|
140 } |
|
141 |
|
142 // Check if the NUMA topology has changed. Add and remove spaces if needed. |
|
143 // The update can be forced by setting the force parameter equal to true. |
|
144 bool MutableNUMASpace::update_layout(bool force) { |
|
145 // Check if the topology had changed. |
|
146 bool changed = os::numa_topology_changed(); |
|
147 if (force || changed) { |
|
148 // Compute lgrp intersection. Add/remove spaces. |
|
149 int lgrp_limit = (int)os::numa_get_groups_num(); |
|
150 int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit); |
|
151 int lgrp_num = (int)os::numa_get_leaf_groups(lgrp_ids, lgrp_limit); |
|
152 assert(lgrp_num > 0, "There should be at least one locality group"); |
|
153 // Add new spaces for the new nodes |
|
154 for (int i = 0; i < lgrp_num; i++) { |
|
155 bool found = false; |
|
156 for (int j = 0; j < lgrp_spaces()->length(); j++) { |
|
157 if (lgrp_spaces()->at(j)->lgrp_id() == lgrp_ids[i]) { |
|
158 found = true; |
|
159 break; |
|
160 } |
|
161 } |
|
162 if (!found) { |
|
163 lgrp_spaces()->append(new LGRPSpace(lgrp_ids[i])); |
|
164 } |
|
165 } |
|
166 |
|
167 // Remove spaces for the removed nodes. |
|
168 for (int i = 0; i < lgrp_spaces()->length();) { |
|
169 bool found = false; |
|
170 for (int j = 0; j < lgrp_num; j++) { |
|
171 if (lgrp_spaces()->at(i)->lgrp_id() == lgrp_ids[j]) { |
|
172 found = true; |
|
173 break; |
|
174 } |
|
175 } |
|
176 if (!found) { |
|
177 delete lgrp_spaces()->at(i); |
|
178 lgrp_spaces()->remove_at(i); |
|
179 } else { |
|
180 i++; |
|
181 } |
|
182 } |
|
183 |
|
184 FREE_C_HEAP_ARRAY(int, lgrp_ids); |
|
185 |
|
186 if (changed) { |
|
187 for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) { |
|
188 thread->set_lgrp_id(-1); |
|
189 } |
|
190 } |
|
191 return true; |
|
192 } |
|
193 return false; |
|
194 } |
|
195 |
|
196 // Bias region towards the first-touching lgrp. Set the right page sizes. |
|
197 void MutableNUMASpace::bias_region(MemRegion mr) { |
|
198 HeapWord *start = (HeapWord*)round_to((intptr_t)mr.start(), page_size()); |
|
199 HeapWord *end = (HeapWord*)round_down((intptr_t)mr.end(), page_size()); |
|
200 if (end > start) { |
|
201 MemRegion aligned_region(start, end); |
|
202 assert((intptr_t)aligned_region.start() % page_size() == 0 && |
|
203 (intptr_t)aligned_region.byte_size() % page_size() == 0, "Bad alignment"); |
|
204 assert(region().contains(aligned_region), "Sanity"); |
|
205 os::free_memory((char*)aligned_region.start(), aligned_region.byte_size()); |
|
206 os::realign_memory((char*)aligned_region.start(), aligned_region.byte_size(), page_size()); |
|
207 os::numa_make_local((char*)aligned_region.start(), aligned_region.byte_size()); |
|
208 } |
|
209 } |
|
210 |
|
211 // Free all pages in the region. |
|
212 void MutableNUMASpace::free_region(MemRegion mr) { |
|
213 HeapWord *start = (HeapWord*)round_to((intptr_t)mr.start(), page_size()); |
|
214 HeapWord *end = (HeapWord*)round_down((intptr_t)mr.end(), page_size()); |
|
215 if (end > start) { |
|
216 MemRegion aligned_region(start, end); |
|
217 assert((intptr_t)aligned_region.start() % page_size() == 0 && |
|
218 (intptr_t)aligned_region.byte_size() % page_size() == 0, "Bad alignment"); |
|
219 assert(region().contains(aligned_region), "Sanity"); |
|
220 os::free_memory((char*)aligned_region.start(), aligned_region.byte_size()); |
|
221 } |
|
222 } |
|
223 |
|
224 // Update space layout. Perform adaptation. |
|
225 void MutableNUMASpace::update() { |
|
226 if (update_layout(false)) { |
|
227 // If the topology has changed, make all chunks zero-sized. |
|
228 for (int i = 0; i < lgrp_spaces()->length(); i++) { |
|
229 MutableSpace *s = lgrp_spaces()->at(i)->space(); |
|
230 s->set_end(s->bottom()); |
|
231 s->set_top(s->bottom()); |
|
232 } |
|
233 initialize(region(), true); |
|
234 } else { |
|
235 bool should_initialize = false; |
|
236 for (int i = 0; i < lgrp_spaces()->length(); i++) { |
|
237 if (!lgrp_spaces()->at(i)->invalid_region().is_empty()) { |
|
238 should_initialize = true; |
|
239 break; |
|
240 } |
|
241 } |
|
242 |
|
243 if (should_initialize || |
|
244 (UseAdaptiveNUMAChunkSizing && adaptation_cycles() < samples_count())) { |
|
245 initialize(region(), true); |
|
246 } |
|
247 } |
|
248 |
|
249 if (NUMAStats) { |
|
250 for (int i = 0; i < lgrp_spaces()->length(); i++) { |
|
251 lgrp_spaces()->at(i)->accumulate_statistics(page_size()); |
|
252 } |
|
253 } |
|
254 |
|
255 scan_pages(NUMAPageScanRate); |
|
256 } |
|
257 |
|
258 // Scan pages. Free pages that have smaller size or wrong placement. |
|
259 void MutableNUMASpace::scan_pages(size_t page_count) |
|
260 { |
|
261 size_t pages_per_chunk = page_count / lgrp_spaces()->length(); |
|
262 if (pages_per_chunk > 0) { |
|
263 for (int i = 0; i < lgrp_spaces()->length(); i++) { |
|
264 LGRPSpace *ls = lgrp_spaces()->at(i); |
|
265 ls->scan_pages(page_size(), pages_per_chunk); |
|
266 } |
|
267 } |
|
268 } |
|
269 |
|
270 // Accumulate statistics about the allocation rate of each lgrp. |
|
271 void MutableNUMASpace::accumulate_statistics() { |
|
272 if (UseAdaptiveNUMAChunkSizing) { |
|
273 for (int i = 0; i < lgrp_spaces()->length(); i++) { |
|
274 lgrp_spaces()->at(i)->sample(); |
|
275 } |
|
276 increment_samples_count(); |
|
277 } |
|
278 |
|
279 if (NUMAStats) { |
|
280 for (int i = 0; i < lgrp_spaces()->length(); i++) { |
|
281 lgrp_spaces()->at(i)->accumulate_statistics(page_size()); |
|
282 } |
|
283 } |
|
284 } |
|
285 |
|
286 // Get the current size of a chunk. |
|
287 // This function computes the size of the chunk based on the |
|
288 // difference between chunk ends. This allows it to work correctly in |
|
289 // case the whole space is resized and during the process of adaptive |
|
290 // chunk resizing. |
|
291 size_t MutableNUMASpace::current_chunk_size(int i) { |
|
292 HeapWord *cur_end, *prev_end; |
|
293 if (i == 0) { |
|
294 prev_end = bottom(); |
|
295 } else { |
|
296 prev_end = lgrp_spaces()->at(i - 1)->space()->end(); |
|
297 } |
|
298 if (i == lgrp_spaces()->length() - 1) { |
|
299 cur_end = end(); |
|
300 } else { |
|
301 cur_end = lgrp_spaces()->at(i)->space()->end(); |
|
302 } |
|
303 if (cur_end > prev_end) { |
|
304 return pointer_delta(cur_end, prev_end, sizeof(char)); |
|
305 } |
|
306 return 0; |
|
307 } |
|
308 |
|
309 // Return the default chunk size by equally diving the space. |
|
310 // page_size() aligned. |
|
311 size_t MutableNUMASpace::default_chunk_size() { |
|
312 return base_space_size() / lgrp_spaces()->length() * page_size(); |
|
313 } |
|
314 |
|
315 // Produce a new chunk size. page_size() aligned. |
|
316 size_t MutableNUMASpace::adaptive_chunk_size(int i, size_t limit) { |
|
317 size_t pages_available = base_space_size(); |
|
318 for (int j = 0; j < i; j++) { |
|
319 pages_available -= round_down(current_chunk_size(j), page_size()) / page_size(); |
|
320 } |
|
321 pages_available -= lgrp_spaces()->length() - i - 1; |
|
322 assert(pages_available > 0, "No pages left"); |
|
323 float alloc_rate = 0; |
|
324 for (int j = i; j < lgrp_spaces()->length(); j++) { |
|
325 alloc_rate += lgrp_spaces()->at(j)->alloc_rate()->average(); |
|
326 } |
|
327 size_t chunk_size = 0; |
|
328 if (alloc_rate > 0) { |
|
329 LGRPSpace *ls = lgrp_spaces()->at(i); |
|
330 chunk_size = (size_t)(ls->alloc_rate()->average() * pages_available / alloc_rate) * page_size(); |
|
331 } |
|
332 chunk_size = MAX2(chunk_size, page_size()); |
|
333 |
|
334 if (limit > 0) { |
|
335 limit = round_down(limit, page_size()); |
|
336 if (chunk_size > current_chunk_size(i)) { |
|
337 chunk_size = MIN2((off_t)chunk_size, (off_t)current_chunk_size(i) + (off_t)limit); |
|
338 } else { |
|
339 chunk_size = MAX2((off_t)chunk_size, (off_t)current_chunk_size(i) - (off_t)limit); |
|
340 } |
|
341 } |
|
342 assert(chunk_size <= pages_available * page_size(), "Chunk size out of range"); |
|
343 return chunk_size; |
|
344 } |
|
345 |
|
346 |
|
347 // Return the bottom_region and the top_region. Align them to page_size() boundary. |
|
348 // |------------------new_region---------------------------------| |
|
349 // |----bottom_region--|---intersection---|------top_region------| |
|
350 void MutableNUMASpace::select_tails(MemRegion new_region, MemRegion intersection, |
|
351 MemRegion* bottom_region, MemRegion *top_region) { |
|
352 // Is there bottom? |
|
353 if (new_region.start() < intersection.start()) { // Yes |
|
354 // Try to coalesce small pages into a large one. |
|
355 if (UseLargePages && page_size() >= os::large_page_size()) { |
|
356 HeapWord* p = (HeapWord*)round_to((intptr_t) intersection.start(), os::large_page_size()); |
|
357 if (new_region.contains(p) |
|
358 && pointer_delta(p, new_region.start(), sizeof(char)) >= os::large_page_size()) { |
|
359 if (intersection.contains(p)) { |
|
360 intersection = MemRegion(p, intersection.end()); |
|
361 } else { |
|
362 intersection = MemRegion(p, p); |
|
363 } |
|
364 } |
|
365 } |
|
366 *bottom_region = MemRegion(new_region.start(), intersection.start()); |
|
367 } else { |
|
368 *bottom_region = MemRegion(); |
|
369 } |
|
370 |
|
371 // Is there top? |
|
372 if (intersection.end() < new_region.end()) { // Yes |
|
373 // Try to coalesce small pages into a large one. |
|
374 if (UseLargePages && page_size() >= os::large_page_size()) { |
|
375 HeapWord* p = (HeapWord*)round_down((intptr_t) intersection.end(), os::large_page_size()); |
|
376 if (new_region.contains(p) |
|
377 && pointer_delta(new_region.end(), p, sizeof(char)) >= os::large_page_size()) { |
|
378 if (intersection.contains(p)) { |
|
379 intersection = MemRegion(intersection.start(), p); |
|
380 } else { |
|
381 intersection = MemRegion(p, p); |
|
382 } |
|
383 } |
|
384 } |
|
385 *top_region = MemRegion(intersection.end(), new_region.end()); |
|
386 } else { |
|
387 *top_region = MemRegion(); |
|
388 } |
|
389 } |
|
390 |
|
391 // Try to merge the invalid region with the bottom or top region by decreasing |
|
392 // the intersection area. Return the invalid_region aligned to the page_size() |
|
393 // boundary if it's inside the intersection. Return non-empty invalid_region |
|
394 // if it lies inside the intersection (also page-aligned). |
|
395 // |------------------new_region---------------------------------| |
|
396 // |----------------|-------invalid---|--------------------------| |
|
397 // |----bottom_region--|---intersection---|------top_region------| |
|
398 void MutableNUMASpace::merge_regions(MemRegion new_region, MemRegion* intersection, |
|
399 MemRegion *invalid_region) { |
|
400 if (intersection->start() >= invalid_region->start() && intersection->contains(invalid_region->end())) { |
|
401 *intersection = MemRegion(invalid_region->end(), intersection->end()); |
|
402 *invalid_region = MemRegion(); |
|
403 } else |
|
404 if (intersection->end() <= invalid_region->end() && intersection->contains(invalid_region->start())) { |
|
405 *intersection = MemRegion(intersection->start(), invalid_region->start()); |
|
406 *invalid_region = MemRegion(); |
|
407 } else |
|
408 if (intersection->equals(*invalid_region) || invalid_region->contains(*intersection)) { |
|
409 *intersection = MemRegion(new_region.start(), new_region.start()); |
|
410 *invalid_region = MemRegion(); |
|
411 } else |
|
412 if (intersection->contains(invalid_region)) { |
|
413 // That's the only case we have to make an additional bias_region() call. |
|
414 HeapWord* start = invalid_region->start(); |
|
415 HeapWord* end = invalid_region->end(); |
|
416 if (UseLargePages && page_size() >= os::large_page_size()) { |
|
417 HeapWord *p = (HeapWord*)round_down((intptr_t) start, os::large_page_size()); |
|
418 if (new_region.contains(p)) { |
|
419 start = p; |
|
420 } |
|
421 p = (HeapWord*)round_to((intptr_t) end, os::large_page_size()); |
|
422 if (new_region.contains(end)) { |
|
423 end = p; |
|
424 } |
|
425 } |
|
426 if (intersection->start() > start) { |
|
427 *intersection = MemRegion(start, intersection->end()); |
|
428 } |
|
429 if (intersection->end() < end) { |
|
430 *intersection = MemRegion(intersection->start(), end); |
|
431 } |
|
432 *invalid_region = MemRegion(start, end); |
|
433 } |
|
434 } |
|
435 |
|
436 void MutableNUMASpace::initialize(MemRegion mr, bool clear_space) { |
|
437 assert(clear_space, "Reallocation will destory data!"); |
|
438 assert(lgrp_spaces()->length() > 0, "There should be at least one space"); |
|
439 |
|
440 MemRegion old_region = region(), new_region; |
|
441 set_bottom(mr.start()); |
|
442 set_end(mr.end()); |
|
443 MutableSpace::set_top(bottom()); |
|
444 |
|
445 // Compute chunk sizes |
|
446 size_t prev_page_size = page_size(); |
|
447 set_page_size(UseLargePages ? os::large_page_size() : os::vm_page_size()); |
|
448 HeapWord* rounded_bottom = (HeapWord*)round_to((intptr_t) bottom(), page_size()); |
|
449 HeapWord* rounded_end = (HeapWord*)round_down((intptr_t) end(), page_size()); |
|
450 size_t base_space_size_pages = pointer_delta(rounded_end, rounded_bottom, sizeof(char)) / page_size(); |
|
451 |
|
452 // Try small pages if the chunk size is too small |
|
453 if (base_space_size_pages / lgrp_spaces()->length() == 0 |
|
454 && page_size() > (size_t)os::vm_page_size()) { |
|
455 set_page_size(os::vm_page_size()); |
|
456 rounded_bottom = (HeapWord*)round_to((intptr_t) bottom(), page_size()); |
|
457 rounded_end = (HeapWord*)round_down((intptr_t) end(), page_size()); |
|
458 base_space_size_pages = pointer_delta(rounded_end, rounded_bottom, sizeof(char)) / page_size(); |
|
459 } |
|
460 guarantee(base_space_size_pages / lgrp_spaces()->length() > 0, "Space too small"); |
|
461 set_base_space_size(base_space_size_pages); |
|
462 |
|
463 // Handle space resize |
|
464 MemRegion top_region, bottom_region; |
|
465 if (!old_region.equals(region())) { |
|
466 new_region = MemRegion(rounded_bottom, rounded_end); |
|
467 MemRegion intersection = new_region.intersection(old_region); |
|
468 if (intersection.start() == NULL || |
|
469 intersection.end() == NULL || |
|
470 prev_page_size > page_size()) { // If the page size got smaller we have to change |
|
471 // the page size preference for the whole space. |
|
472 intersection = MemRegion(new_region.start(), new_region.start()); |
|
473 } |
|
474 select_tails(new_region, intersection, &bottom_region, &top_region); |
|
475 bias_region(bottom_region); |
|
476 bias_region(top_region); |
|
477 } |
|
478 |
|
479 // Check if the space layout has changed significantly? |
|
480 // This happens when the space has been resized so that either head or tail |
|
481 // chunk became less than a page. |
|
482 bool layout_valid = UseAdaptiveNUMAChunkSizing && |
|
483 current_chunk_size(0) > page_size() && |
|
484 current_chunk_size(lgrp_spaces()->length() - 1) > page_size(); |
|
485 |
|
486 |
|
487 for (int i = 0; i < lgrp_spaces()->length(); i++) { |
|
488 LGRPSpace *ls = lgrp_spaces()->at(i); |
|
489 MutableSpace *s = ls->space(); |
|
490 old_region = s->region(); |
|
491 |
|
492 size_t chunk_byte_size = 0, old_chunk_byte_size = 0; |
|
493 if (i < lgrp_spaces()->length() - 1) { |
|
494 if (!UseAdaptiveNUMAChunkSizing || |
|
495 (UseAdaptiveNUMAChunkSizing && NUMAChunkResizeWeight == 0) || |
|
496 samples_count() < AdaptiveSizePolicyReadyThreshold) { |
|
497 // No adaptation. Divide the space equally. |
|
498 chunk_byte_size = default_chunk_size(); |
|
499 } else |
|
500 if (!layout_valid || NUMASpaceResizeRate == 0) { |
|
501 // Fast adaptation. If no space resize rate is set, resize |
|
502 // the chunks instantly. |
|
503 chunk_byte_size = adaptive_chunk_size(i, 0); |
|
504 } else { |
|
505 // Slow adaptation. Resize the chunks moving no more than |
|
506 // NUMASpaceResizeRate bytes per collection. |
|
507 size_t limit = NUMASpaceResizeRate / |
|
508 (lgrp_spaces()->length() * (lgrp_spaces()->length() + 1) / 2); |
|
509 chunk_byte_size = adaptive_chunk_size(i, MAX2(limit * (i + 1), page_size())); |
|
510 } |
|
511 |
|
512 assert(chunk_byte_size >= page_size(), "Chunk size too small"); |
|
513 assert(chunk_byte_size <= capacity_in_bytes(), "Sanity check"); |
|
514 } |
|
515 |
|
516 if (i == 0) { // Bottom chunk |
|
517 if (i != lgrp_spaces()->length() - 1) { |
|
518 new_region = MemRegion(bottom(), rounded_bottom + (chunk_byte_size >> LogHeapWordSize)); |
|
519 } else { |
|
520 new_region = MemRegion(bottom(), end()); |
|
521 } |
|
522 } else |
|
523 if (i < lgrp_spaces()->length() - 1) { // Middle chunks |
|
524 MutableSpace *ps = lgrp_spaces()->at(i - 1)->space(); |
|
525 new_region = MemRegion(ps->end(), |
|
526 ps->end() + (chunk_byte_size >> LogHeapWordSize)); |
|
527 } else { // Top chunk |
|
528 MutableSpace *ps = lgrp_spaces()->at(i - 1)->space(); |
|
529 new_region = MemRegion(ps->end(), end()); |
|
530 } |
|
531 guarantee(region().contains(new_region), "Region invariant"); |
|
532 |
|
533 |
|
534 // The general case: |
|
535 // |---------------------|--invalid---|--------------------------| |
|
536 // |------------------new_region---------------------------------| |
|
537 // |----bottom_region--|---intersection---|------top_region------| |
|
538 // |----old_region----| |
|
539 // The intersection part has all pages in place we don't need to migrate them. |
|
540 // Pages for the top and bottom part should be freed and then reallocated. |
|
541 |
|
542 MemRegion intersection = old_region.intersection(new_region); |
|
543 |
|
544 if (intersection.start() == NULL || intersection.end() == NULL) { |
|
545 intersection = MemRegion(new_region.start(), new_region.start()); |
|
546 } |
|
547 |
|
548 MemRegion invalid_region = ls->invalid_region().intersection(new_region); |
|
549 if (!invalid_region.is_empty()) { |
|
550 merge_regions(new_region, &intersection, &invalid_region); |
|
551 free_region(invalid_region); |
|
552 } |
|
553 select_tails(new_region, intersection, &bottom_region, &top_region); |
|
554 free_region(bottom_region); |
|
555 free_region(top_region); |
|
556 |
|
557 // If we clear the region, we would mangle it in debug. That would cause page |
|
558 // allocation in a different place. Hence setting the top directly. |
|
559 s->initialize(new_region, false); |
|
560 s->set_top(s->bottom()); |
|
561 |
|
562 ls->set_invalid_region(MemRegion()); |
|
563 |
|
564 set_adaptation_cycles(samples_count()); |
|
565 } |
|
566 } |
|
567 |
|
568 // Set the top of the whole space. |
|
569 // Mark the the holes in chunks below the top() as invalid. |
|
570 void MutableNUMASpace::set_top(HeapWord* value) { |
|
571 bool found_top = false; |
|
572 for (int i = 0; i < lgrp_spaces()->length(); i++) { |
|
573 LGRPSpace *ls = lgrp_spaces()->at(i); |
|
574 MutableSpace *s = ls->space(); |
|
575 HeapWord *top = MAX2((HeapWord*)round_down((intptr_t)s->top(), page_size()), s->bottom()); |
|
576 |
|
577 if (s->contains(value)) { |
|
578 if (top < value && top < s->end()) { |
|
579 ls->add_invalid_region(MemRegion(top, value)); |
|
580 } |
|
581 s->set_top(value); |
|
582 found_top = true; |
|
583 } else { |
|
584 if (found_top) { |
|
585 s->set_top(s->bottom()); |
|
586 } else { |
|
587 if (top < s->end()) { |
|
588 ls->add_invalid_region(MemRegion(top, s->end())); |
|
589 } |
|
590 s->set_top(s->end()); |
|
591 } |
|
592 } |
|
593 } |
|
594 MutableSpace::set_top(value); |
|
595 } |
|
596 |
|
597 void MutableNUMASpace::clear() { |
|
598 MutableSpace::set_top(bottom()); |
|
599 for (int i = 0; i < lgrp_spaces()->length(); i++) { |
|
600 lgrp_spaces()->at(i)->space()->clear(); |
|
601 } |
|
602 } |
|
603 |
|
604 HeapWord* MutableNUMASpace::allocate(size_t size) { |
|
605 int lgrp_id = Thread::current()->lgrp_id(); |
|
606 if (lgrp_id == -1) { |
|
607 lgrp_id = os::numa_get_group_id(); |
|
608 Thread::current()->set_lgrp_id(lgrp_id); |
|
609 } |
|
610 |
|
611 int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals); |
|
612 |
|
613 // It is possible that a new CPU has been hotplugged and |
|
614 // we haven't reshaped the space accordingly. |
|
615 if (i == -1) { |
|
616 i = os::random() % lgrp_spaces()->length(); |
|
617 } |
|
618 |
|
619 MutableSpace *s = lgrp_spaces()->at(i)->space(); |
|
620 HeapWord *p = s->allocate(size); |
|
621 |
|
622 if (p != NULL && s->free_in_words() < (size_t)oopDesc::header_size()) { |
|
623 s->set_top(s->top() - size); |
|
624 p = NULL; |
|
625 } |
|
626 if (p != NULL) { |
|
627 if (top() < s->top()) { // Keep _top updated. |
|
628 MutableSpace::set_top(s->top()); |
|
629 } |
|
630 } |
|
631 // Make the page allocation happen here. |
|
632 if (p != NULL) { |
|
633 for (HeapWord *i = p; i < p + size; i += os::vm_page_size() >> LogHeapWordSize) { |
|
634 *(int*)i = 0; |
|
635 } |
|
636 } |
|
637 |
|
638 return p; |
|
639 } |
|
640 |
|
641 // This version is lock-free. |
|
642 HeapWord* MutableNUMASpace::cas_allocate(size_t size) { |
|
643 int lgrp_id = Thread::current()->lgrp_id(); |
|
644 if (lgrp_id == -1) { |
|
645 lgrp_id = os::numa_get_group_id(); |
|
646 Thread::current()->set_lgrp_id(lgrp_id); |
|
647 } |
|
648 |
|
649 int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals); |
|
650 // It is possible that a new CPU has been hotplugged and |
|
651 // we haven't reshaped the space accordingly. |
|
652 if (i == -1) { |
|
653 i = os::random() % lgrp_spaces()->length(); |
|
654 } |
|
655 MutableSpace *s = lgrp_spaces()->at(i)->space(); |
|
656 HeapWord *p = s->cas_allocate(size); |
|
657 if (p != NULL && s->free_in_words() < (size_t)oopDesc::header_size()) { |
|
658 if (s->cas_deallocate(p, size)) { |
|
659 // We were the last to allocate and created a fragment less than |
|
660 // a minimal object. |
|
661 p = NULL; |
|
662 } |
|
663 } |
|
664 if (p != NULL) { |
|
665 HeapWord* cur_top, *cur_chunk_top = p + size; |
|
666 while ((cur_top = top()) < cur_chunk_top) { // Keep _top updated. |
|
667 if (Atomic::cmpxchg_ptr(cur_chunk_top, top_addr(), cur_top) == cur_top) { |
|
668 break; |
|
669 } |
|
670 } |
|
671 } |
|
672 |
|
673 // Make the page allocation happen here. |
|
674 if (p != NULL) { |
|
675 for (HeapWord *i = p; i < p + size; i += os::vm_page_size() >> LogHeapWordSize) { |
|
676 *(int*)i = 0; |
|
677 } |
|
678 } |
|
679 return p; |
|
680 } |
|
681 |
|
682 void MutableNUMASpace::print_short_on(outputStream* st) const { |
|
683 MutableSpace::print_short_on(st); |
|
684 st->print(" ("); |
|
685 for (int i = 0; i < lgrp_spaces()->length(); i++) { |
|
686 st->print("lgrp %d: ", lgrp_spaces()->at(i)->lgrp_id()); |
|
687 lgrp_spaces()->at(i)->space()->print_short_on(st); |
|
688 if (i < lgrp_spaces()->length() - 1) { |
|
689 st->print(", "); |
|
690 } |
|
691 } |
|
692 st->print(")"); |
|
693 } |
|
694 |
|
695 void MutableNUMASpace::print_on(outputStream* st) const { |
|
696 MutableSpace::print_on(st); |
|
697 for (int i = 0; i < lgrp_spaces()->length(); i++) { |
|
698 LGRPSpace *ls = lgrp_spaces()->at(i); |
|
699 st->print(" lgrp %d", ls->lgrp_id()); |
|
700 ls->space()->print_on(st); |
|
701 if (NUMAStats) { |
|
702 st->print(" local/remote/unbiased/uncommitted: %dK/%dK/%dK/%dK, large/small pages: %d/%d\n", |
|
703 ls->space_stats()->_local_space / K, |
|
704 ls->space_stats()->_remote_space / K, |
|
705 ls->space_stats()->_unbiased_space / K, |
|
706 ls->space_stats()->_uncommited_space / K, |
|
707 ls->space_stats()->_large_pages, |
|
708 ls->space_stats()->_small_pages); |
|
709 } |
|
710 } |
|
711 } |
|
712 |
|
713 void MutableNUMASpace::verify(bool allow_dirty) const { |
|
714 for (int i = 0; i < lgrp_spaces()->length(); i++) { |
|
715 lgrp_spaces()->at(i)->space()->verify(allow_dirty); |
|
716 } |
|
717 } |
|
718 |
|
719 // Scan pages and gather stats about page placement and size. |
|
720 void MutableNUMASpace::LGRPSpace::accumulate_statistics(size_t page_size) { |
|
721 clear_space_stats(); |
|
722 char *start = (char*)round_to((intptr_t) space()->bottom(), page_size); |
|
723 char* end = (char*)round_down((intptr_t) space()->end(), page_size); |
|
724 if (start < end) { |
|
725 for (char *p = start; p < end;) { |
|
726 os::page_info info; |
|
727 if (os::get_page_info(p, &info)) { |
|
728 if (info.size > 0) { |
|
729 if (info.size > (size_t)os::vm_page_size()) { |
|
730 space_stats()->_large_pages++; |
|
731 } else { |
|
732 space_stats()->_small_pages++; |
|
733 } |
|
734 if (info.lgrp_id == lgrp_id()) { |
|
735 space_stats()->_local_space += info.size; |
|
736 } else { |
|
737 space_stats()->_remote_space += info.size; |
|
738 } |
|
739 p += info.size; |
|
740 } else { |
|
741 p += os::vm_page_size(); |
|
742 space_stats()->_uncommited_space += os::vm_page_size(); |
|
743 } |
|
744 } else { |
|
745 return; |
|
746 } |
|
747 } |
|
748 } |
|
749 space_stats()->_unbiased_space = pointer_delta(start, space()->bottom(), sizeof(char)) + |
|
750 pointer_delta(space()->end(), end, sizeof(char)); |
|
751 |
|
752 } |
|
753 |
|
754 // Scan page_count pages and verify if they have the right size and right placement. |
|
755 // If invalid pages are found they are freed in hope that subsequent reallocation |
|
756 // will be more successful. |
|
757 void MutableNUMASpace::LGRPSpace::scan_pages(size_t page_size, size_t page_count) |
|
758 { |
|
759 char* range_start = (char*)round_to((intptr_t) space()->bottom(), page_size); |
|
760 char* range_end = (char*)round_down((intptr_t) space()->end(), page_size); |
|
761 |
|
762 if (range_start > last_page_scanned() || last_page_scanned() >= range_end) { |
|
763 set_last_page_scanned(range_start); |
|
764 } |
|
765 |
|
766 char *scan_start = last_page_scanned(); |
|
767 char* scan_end = MIN2(scan_start + page_size * page_count, range_end); |
|
768 |
|
769 os::page_info page_expected, page_found; |
|
770 page_expected.size = page_size; |
|
771 page_expected.lgrp_id = lgrp_id(); |
|
772 |
|
773 char *s = scan_start; |
|
774 while (s < scan_end) { |
|
775 char *e = os::scan_pages(s, (char*)scan_end, &page_expected, &page_found); |
|
776 if (e == NULL) { |
|
777 break; |
|
778 } |
|
779 if (e != scan_end) { |
|
780 if ((page_expected.size != page_size || page_expected.lgrp_id != lgrp_id()) |
|
781 && page_expected.size != 0) { |
|
782 os::free_memory(s, pointer_delta(e, s, sizeof(char))); |
|
783 } |
|
784 page_expected = page_found; |
|
785 } |
|
786 s = e; |
|
787 } |
|
788 |
|
789 set_last_page_scanned(scan_end); |
|
790 } |