hotspot/src/cpu/x86/vm/interp_masm_x86_32.cpp
changeset 1 489c9b5090e2
child 1066 717c3345024f
equal deleted inserted replaced
0:fd16c54261b3 1:489c9b5090e2
       
     1 /*
       
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    21  * have any questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "incls/_precompiled.incl"
       
    26 #include "incls/_interp_masm_x86_32.cpp.incl"
       
    27 
       
    28 
       
    29 // Implementation of InterpreterMacroAssembler
       
    30 #ifdef CC_INTERP
       
    31 void InterpreterMacroAssembler::get_method(Register reg) {
       
    32   movl(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize)));
       
    33   movl(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
       
    34 }
       
    35 #endif // CC_INTERP
       
    36 
       
    37 
       
    38 #ifndef CC_INTERP
       
    39 void InterpreterMacroAssembler::call_VM_leaf_base(
       
    40   address entry_point,
       
    41   int     number_of_arguments
       
    42 ) {
       
    43   // interpreter specific
       
    44   //
       
    45   // Note: No need to save/restore bcp & locals (rsi & rdi) pointer
       
    46   //       since these are callee saved registers and no blocking/
       
    47   //       GC can happen in leaf calls.
       
    48   // Further Note: DO NOT save/restore bcp/locals. If a caller has
       
    49   // already saved them so that it can use rsi/rdi as temporaries
       
    50   // then a save/restore here will DESTROY the copy the caller
       
    51   // saved! There used to be a save_bcp() that only happened in
       
    52   // the ASSERT path (no restore_bcp). Which caused bizarre failures
       
    53   // when jvm built with ASSERTs.
       
    54 #ifdef ASSERT
       
    55   { Label L;
       
    56     cmpl(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
       
    57     jcc(Assembler::equal, L);
       
    58     stop("InterpreterMacroAssembler::call_VM_leaf_base: last_sp != NULL");
       
    59     bind(L);
       
    60   }
       
    61 #endif
       
    62   // super call
       
    63   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
       
    64   // interpreter specific
       
    65 
       
    66   // Used to ASSERT that rsi/rdi were equal to frame's bcp/locals
       
    67   // but since they may not have been saved (and we don't want to
       
    68   // save them here (see note above) the assert is invalid.
       
    69 }
       
    70 
       
    71 
       
    72 void InterpreterMacroAssembler::call_VM_base(
       
    73   Register oop_result,
       
    74   Register java_thread,
       
    75   Register last_java_sp,
       
    76   address  entry_point,
       
    77   int      number_of_arguments,
       
    78   bool     check_exceptions
       
    79 ) {
       
    80 #ifdef ASSERT
       
    81   { Label L;
       
    82     cmpl(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
       
    83     jcc(Assembler::equal, L);
       
    84     stop("InterpreterMacroAssembler::call_VM_base: last_sp != NULL");
       
    85     bind(L);
       
    86   }
       
    87 #endif /* ASSERT */
       
    88   // interpreter specific
       
    89   //
       
    90   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
       
    91   //       really make a difference for these runtime calls, since they are
       
    92   //       slow anyway. Btw., bcp must be saved/restored since it may change
       
    93   //       due to GC.
       
    94   assert(java_thread == noreg , "not expecting a precomputed java thread");
       
    95   save_bcp();
       
    96   // super call
       
    97   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
       
    98   // interpreter specific
       
    99   restore_bcp();
       
   100   restore_locals();
       
   101 }
       
   102 
       
   103 
       
   104 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
       
   105   if (JvmtiExport::can_pop_frame()) {
       
   106     Label L;
       
   107     // Initiate popframe handling only if it is not already being processed.  If the flag
       
   108     // has the popframe_processing bit set, it means that this code is called *during* popframe
       
   109     // handling - we don't want to reenter.
       
   110     Register pop_cond = java_thread;  // Not clear if any other register is available...
       
   111     movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
       
   112     testl(pop_cond, JavaThread::popframe_pending_bit);
       
   113     jcc(Assembler::zero, L);
       
   114     testl(pop_cond, JavaThread::popframe_processing_bit);
       
   115     jcc(Assembler::notZero, L);
       
   116     // Call Interpreter::remove_activation_preserving_args_entry() to get the
       
   117     // address of the same-named entrypoint in the generated interpreter code.
       
   118     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
       
   119     jmp(rax);
       
   120     bind(L);
       
   121     get_thread(java_thread);
       
   122   }
       
   123 }
       
   124 
       
   125 
       
   126 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
       
   127   get_thread(rcx);
       
   128   movl(rcx, Address(rcx, JavaThread::jvmti_thread_state_offset()));
       
   129   const Address tos_addr (rcx, JvmtiThreadState::earlyret_tos_offset());
       
   130   const Address oop_addr (rcx, JvmtiThreadState::earlyret_oop_offset());
       
   131   const Address val_addr (rcx, JvmtiThreadState::earlyret_value_offset());
       
   132   const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
       
   133                              + in_ByteSize(wordSize));
       
   134   switch (state) {
       
   135     case atos: movl(rax, oop_addr);
       
   136                movl(oop_addr, NULL_WORD);
       
   137                verify_oop(rax, state);                break;
       
   138     case ltos: movl(rdx, val_addr1);               // fall through
       
   139     case btos:                                     // fall through
       
   140     case ctos:                                     // fall through
       
   141     case stos:                                     // fall through
       
   142     case itos: movl(rax, val_addr);                   break;
       
   143     case ftos: fld_s(val_addr);                       break;
       
   144     case dtos: fld_d(val_addr);                       break;
       
   145     case vtos: /* nothing to do */                    break;
       
   146     default  : ShouldNotReachHere();
       
   147   }
       
   148   // Clean up tos value in the thread object
       
   149   movl(tos_addr,  (int) ilgl);
       
   150   movl(val_addr,  NULL_WORD);
       
   151   movl(val_addr1, NULL_WORD);
       
   152 }
       
   153 
       
   154 
       
   155 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
       
   156   if (JvmtiExport::can_force_early_return()) {
       
   157     Label L;
       
   158     Register tmp = java_thread;
       
   159     movl(tmp, Address(tmp, JavaThread::jvmti_thread_state_offset()));
       
   160     testl(tmp, tmp);
       
   161     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
       
   162 
       
   163     // Initiate earlyret handling only if it is not already being processed.
       
   164     // If the flag has the earlyret_processing bit set, it means that this code
       
   165     // is called *during* earlyret handling - we don't want to reenter.
       
   166     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
       
   167     cmpl(tmp, JvmtiThreadState::earlyret_pending);
       
   168     jcc(Assembler::notEqual, L);
       
   169 
       
   170     // Call Interpreter::remove_activation_early_entry() to get the address of the
       
   171     // same-named entrypoint in the generated interpreter code.
       
   172     get_thread(java_thread);
       
   173     movl(tmp, Address(java_thread, JavaThread::jvmti_thread_state_offset()));
       
   174     pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
       
   175     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
       
   176     jmp(rax);
       
   177     bind(L);
       
   178     get_thread(java_thread);
       
   179   }
       
   180 }
       
   181 
       
   182 
       
   183 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
       
   184   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
       
   185   movl(reg, Address(rsi, bcp_offset));
       
   186   bswap(reg);
       
   187   shrl(reg, 16);
       
   188 }
       
   189 
       
   190 
       
   191 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index, int bcp_offset) {
       
   192   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
       
   193   assert(cache != index, "must use different registers");
       
   194   load_unsigned_word(index, Address(rsi, bcp_offset));
       
   195   movl(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
       
   196   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
       
   197   shll(index, 2); // convert from field index to ConstantPoolCacheEntry index
       
   198 }
       
   199 
       
   200 
       
   201 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset) {
       
   202   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
       
   203   assert(cache != tmp, "must use different register");
       
   204   load_unsigned_word(tmp, Address(rsi, bcp_offset));
       
   205   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
       
   206                                // convert from field index to ConstantPoolCacheEntry index
       
   207                                // and from word offset to byte offset
       
   208   shll(tmp, 2 + LogBytesPerWord);
       
   209   movl(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
       
   210                                // skip past the header
       
   211   addl(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
       
   212   addl(cache, tmp);            // construct pointer to cache entry
       
   213 }
       
   214 
       
   215 
       
   216   // Generate a subtype check: branch to ok_is_subtype if sub_klass is
       
   217   // a subtype of super_klass.  EAX holds the super_klass.  Blows ECX.
       
   218   // Resets EDI to locals.  Register sub_klass cannot be any of the above.
       
   219 void InterpreterMacroAssembler::gen_subtype_check( Register Rsub_klass, Label &ok_is_subtype ) {
       
   220   assert( Rsub_klass != rax, "rax, holds superklass" );
       
   221   assert( Rsub_klass != rcx, "rcx holds 2ndary super array length" );
       
   222   assert( Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr" );
       
   223   Label not_subtype, loop;
       
   224 
       
   225   // Profile the not-null value's klass.
       
   226   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, rdi
       
   227 
       
   228   // Load the super-klass's check offset into ECX
       
   229   movl( rcx, Address(rax, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes() ) );
       
   230   // Load from the sub-klass's super-class display list, or a 1-word cache of
       
   231   // the secondary superclass list, or a failing value with a sentinel offset
       
   232   // if the super-klass is an interface or exceptionally deep in the Java
       
   233   // hierarchy and we have to scan the secondary superclass list the hard way.
       
   234   // See if we get an immediate positive hit
       
   235   cmpl( rax, Address(Rsub_klass,rcx,Address::times_1) );
       
   236   jcc( Assembler::equal,ok_is_subtype );
       
   237 
       
   238   // Check for immediate negative hit
       
   239   cmpl( rcx, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() );
       
   240   jcc( Assembler::notEqual, not_subtype );
       
   241   // Check for self
       
   242   cmpl( Rsub_klass, rax );
       
   243   jcc( Assembler::equal, ok_is_subtype );
       
   244 
       
   245   // Now do a linear scan of the secondary super-klass chain.
       
   246   movl( rdi, Address(Rsub_klass, sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes()) );
       
   247   // EDI holds the objArrayOop of secondary supers.
       
   248   movl( rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));// Load the array length
       
   249   // Skip to start of data; also clear Z flag incase ECX is zero
       
   250   addl( rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT) );
       
   251   // Scan ECX words at [EDI] for occurance of EAX
       
   252   // Set NZ/Z based on last compare
       
   253   repne_scan();
       
   254   restore_locals();           // Restore EDI; Must not blow flags
       
   255   // Not equal?
       
   256   jcc( Assembler::notEqual, not_subtype );
       
   257   // Must be equal but missed in cache.  Update cache.
       
   258   movl( Address(Rsub_klass, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes()), rax );
       
   259   jmp( ok_is_subtype );
       
   260 
       
   261   bind(not_subtype);
       
   262   profile_typecheck_failed(rcx); // blows rcx
       
   263 }
       
   264 
       
   265 void InterpreterMacroAssembler::f2ieee() {
       
   266   if (IEEEPrecision) {
       
   267     fstp_s(Address(rsp, 0));
       
   268     fld_s(Address(rsp, 0));
       
   269   }
       
   270 }
       
   271 
       
   272 
       
   273 void InterpreterMacroAssembler::d2ieee() {
       
   274   if (IEEEPrecision) {
       
   275     fstp_d(Address(rsp, 0));
       
   276     fld_d(Address(rsp, 0));
       
   277   }
       
   278 }
       
   279 #endif // CC_INTERP
       
   280 
       
   281 // Java Expression Stack
       
   282 
       
   283 #ifdef ASSERT
       
   284 void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t) {
       
   285   if (TaggedStackInterpreter) {
       
   286     Label okay;
       
   287     cmpl(Address(rsp, wordSize), (int)t);
       
   288     jcc(Assembler::equal, okay);
       
   289     // Also compare if the stack value is zero, then the tag might
       
   290     // not have been set coming from deopt.
       
   291     cmpl(Address(rsp, 0), 0);
       
   292     jcc(Assembler::equal, okay);
       
   293     stop("Java Expression stack tag value is bad");
       
   294     bind(okay);
       
   295   }
       
   296 }
       
   297 #endif // ASSERT
       
   298 
       
   299 void InterpreterMacroAssembler::pop_ptr(Register r) {
       
   300   debug_only(verify_stack_tag(frame::TagReference));
       
   301   popl(r);
       
   302   if (TaggedStackInterpreter) addl(rsp, 1 * wordSize);
       
   303 }
       
   304 
       
   305 void InterpreterMacroAssembler::pop_ptr(Register r, Register tag) {
       
   306   popl(r);
       
   307   // Tag may not be reference for jsr, can be returnAddress
       
   308   if (TaggedStackInterpreter) popl(tag);
       
   309 }
       
   310 
       
   311 void InterpreterMacroAssembler::pop_i(Register r) {
       
   312   debug_only(verify_stack_tag(frame::TagValue));
       
   313   popl(r);
       
   314   if (TaggedStackInterpreter) addl(rsp, 1 * wordSize);
       
   315 }
       
   316 
       
   317 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
       
   318   debug_only(verify_stack_tag(frame::TagValue));
       
   319   popl(lo);
       
   320   if (TaggedStackInterpreter) addl(rsp, 1 * wordSize);
       
   321   debug_only(verify_stack_tag(frame::TagValue));
       
   322   popl(hi);
       
   323   if (TaggedStackInterpreter) addl(rsp, 1 * wordSize);
       
   324 }
       
   325 
       
   326 void InterpreterMacroAssembler::pop_f() {
       
   327   debug_only(verify_stack_tag(frame::TagValue));
       
   328   fld_s(Address(rsp, 0));
       
   329   addl(rsp, 1 * wordSize);
       
   330   if (TaggedStackInterpreter) addl(rsp, 1 * wordSize);
       
   331 }
       
   332 
       
   333 void InterpreterMacroAssembler::pop_d() {
       
   334   // Write double to stack contiguously and load into ST0
       
   335   pop_dtos_to_rsp();
       
   336   fld_d(Address(rsp, 0));
       
   337   addl(rsp, 2 * wordSize);
       
   338 }
       
   339 
       
   340 
       
   341 // Pop the top of the java expression stack to execution stack (which
       
   342 // happens to be the same place).
       
   343 void InterpreterMacroAssembler::pop_dtos_to_rsp() {
       
   344   if (TaggedStackInterpreter) {
       
   345     // Pop double value into scratch registers
       
   346     debug_only(verify_stack_tag(frame::TagValue));
       
   347     popl(rax);
       
   348     addl(rsp, 1* wordSize);
       
   349     debug_only(verify_stack_tag(frame::TagValue));
       
   350     popl(rdx);
       
   351     addl(rsp, 1* wordSize);
       
   352     pushl(rdx);
       
   353     pushl(rax);
       
   354   }
       
   355 }
       
   356 
       
   357 void InterpreterMacroAssembler::pop_ftos_to_rsp() {
       
   358   if (TaggedStackInterpreter) {
       
   359     debug_only(verify_stack_tag(frame::TagValue));
       
   360     popl(rax);
       
   361     addl(rsp, 1 * wordSize);
       
   362     pushl(rax);  // ftos is at rsp
       
   363   }
       
   364 }
       
   365 
       
   366 void InterpreterMacroAssembler::pop(TosState state) {
       
   367   switch (state) {
       
   368     case atos: pop_ptr(rax);                                 break;
       
   369     case btos:                                               // fall through
       
   370     case ctos:                                               // fall through
       
   371     case stos:                                               // fall through
       
   372     case itos: pop_i(rax);                                   break;
       
   373     case ltos: pop_l(rax, rdx);                              break;
       
   374     case ftos: pop_f();                                      break;
       
   375     case dtos: pop_d();                                      break;
       
   376     case vtos: /* nothing to do */                           break;
       
   377     default  : ShouldNotReachHere();
       
   378   }
       
   379   verify_oop(rax, state);
       
   380 }
       
   381 
       
   382 void InterpreterMacroAssembler::push_ptr(Register r) {
       
   383   if (TaggedStackInterpreter) pushl(frame::TagReference);
       
   384   pushl(r);
       
   385 }
       
   386 
       
   387 void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
       
   388   if (TaggedStackInterpreter) pushl(tag);  // tag first
       
   389   pushl(r);
       
   390 }
       
   391 
       
   392 void InterpreterMacroAssembler::push_i(Register r) {
       
   393   if (TaggedStackInterpreter) pushl(frame::TagValue);
       
   394   pushl(r);
       
   395 }
       
   396 
       
   397 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
       
   398   if (TaggedStackInterpreter) pushl(frame::TagValue);
       
   399   pushl(hi);
       
   400   if (TaggedStackInterpreter) pushl(frame::TagValue);
       
   401   pushl(lo);
       
   402 }
       
   403 
       
   404 void InterpreterMacroAssembler::push_f() {
       
   405   if (TaggedStackInterpreter) pushl(frame::TagValue);
       
   406   // Do not schedule for no AGI! Never write beyond rsp!
       
   407   subl(rsp, 1 * wordSize);
       
   408   fstp_s(Address(rsp, 0));
       
   409 }
       
   410 
       
   411 void InterpreterMacroAssembler::push_d(Register r) {
       
   412   if (TaggedStackInterpreter) {
       
   413     // Double values are stored as:
       
   414     //   tag
       
   415     //   high
       
   416     //   tag
       
   417     //   low
       
   418     pushl(frame::TagValue);
       
   419     subl(rsp, 3 * wordSize);
       
   420     fstp_d(Address(rsp, 0));
       
   421     // move high word up to slot n-1
       
   422     movl(r, Address(rsp, 1*wordSize));
       
   423     movl(Address(rsp, 2*wordSize), r);
       
   424     // move tag
       
   425     movl(Address(rsp, 1*wordSize), frame::TagValue);
       
   426   } else {
       
   427     // Do not schedule for no AGI! Never write beyond rsp!
       
   428     subl(rsp, 2 * wordSize);
       
   429     fstp_d(Address(rsp, 0));
       
   430   }
       
   431 }
       
   432 
       
   433 
       
   434 void InterpreterMacroAssembler::push(TosState state) {
       
   435   verify_oop(rax, state);
       
   436   switch (state) {
       
   437     case atos: push_ptr(rax); break;
       
   438     case btos:                                               // fall through
       
   439     case ctos:                                               // fall through
       
   440     case stos:                                               // fall through
       
   441     case itos: push_i(rax);                                    break;
       
   442     case ltos: push_l(rax, rdx);                               break;
       
   443     case ftos: push_f();                                       break;
       
   444     case dtos: push_d(rax);                                    break;
       
   445     case vtos: /* nothing to do */                             break;
       
   446     default  : ShouldNotReachHere();
       
   447   }
       
   448 }
       
   449 
       
   450 #ifndef CC_INTERP
       
   451 
       
   452 // Tagged stack helpers for swap and dup
       
   453 void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
       
   454                                                  Register tag) {
       
   455   movl(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
       
   456   if (TaggedStackInterpreter) {
       
   457     movl(tag, Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)));
       
   458   }
       
   459 }
       
   460 
       
   461 void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
       
   462                                                   Register tag) {
       
   463   movl(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
       
   464   if (TaggedStackInterpreter) {
       
   465     movl(Address(rsp, Interpreter::expr_tag_offset_in_bytes(n)), tag);
       
   466   }
       
   467 }
       
   468 
       
   469 
       
   470 // Tagged local support
       
   471 void InterpreterMacroAssembler::tag_local(frame::Tag tag, int n) {
       
   472   if (TaggedStackInterpreter) {
       
   473     if (tag == frame::TagCategory2) {
       
   474       movl(Address(rdi, Interpreter::local_tag_offset_in_bytes(n+1)), (int)frame::TagValue);
       
   475       movl(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), (int)frame::TagValue);
       
   476     } else {
       
   477       movl(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), (int)tag);
       
   478     }
       
   479   }
       
   480 }
       
   481 
       
   482 void InterpreterMacroAssembler::tag_local(frame::Tag tag, Register idx) {
       
   483   if (TaggedStackInterpreter) {
       
   484     if (tag == frame::TagCategory2) {
       
   485       movl(Address(rdi, idx, Interpreter::stackElementScale(),
       
   486                   Interpreter::local_tag_offset_in_bytes(1)), (int)frame::TagValue);
       
   487       movl(Address(rdi, idx, Interpreter::stackElementScale(),
       
   488                   Interpreter::local_tag_offset_in_bytes(0)), (int)frame::TagValue);
       
   489     } else {
       
   490       movl(Address(rdi, idx, Interpreter::stackElementScale(),
       
   491                              Interpreter::local_tag_offset_in_bytes(0)), (int)tag);
       
   492     }
       
   493   }
       
   494 }
       
   495 
       
   496 void InterpreterMacroAssembler::tag_local(Register tag, Register idx) {
       
   497   if (TaggedStackInterpreter) {
       
   498     // can only be TagValue or TagReference
       
   499     movl(Address(rdi, idx, Interpreter::stackElementScale(),
       
   500                            Interpreter::local_tag_offset_in_bytes(0)), tag);
       
   501   }
       
   502 }
       
   503 
       
   504 
       
   505 void InterpreterMacroAssembler::tag_local(Register tag, int n) {
       
   506   if (TaggedStackInterpreter) {
       
   507     // can only be TagValue or TagReference
       
   508     movl(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), tag);
       
   509   }
       
   510 }
       
   511 
       
   512 #ifdef ASSERT
       
   513 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, int n) {
       
   514   if (TaggedStackInterpreter) {
       
   515      frame::Tag t = tag;
       
   516     if (tag == frame::TagCategory2) {
       
   517       Label nbl;
       
   518       t = frame::TagValue;  // change to what is stored in locals
       
   519       cmpl(Address(rdi, Interpreter::local_tag_offset_in_bytes(n+1)), (int)t);
       
   520       jcc(Assembler::equal, nbl);
       
   521       stop("Local tag is bad for long/double");
       
   522       bind(nbl);
       
   523     }
       
   524     Label notBad;
       
   525     cmpl(Address(rdi, Interpreter::local_tag_offset_in_bytes(n)), (int)t);
       
   526     jcc(Assembler::equal, notBad);
       
   527     // Also compare if the local value is zero, then the tag might
       
   528     // not have been set coming from deopt.
       
   529     cmpl(Address(rdi, Interpreter::local_offset_in_bytes(n)), 0);
       
   530     jcc(Assembler::equal, notBad);
       
   531     stop("Local tag is bad");
       
   532     bind(notBad);
       
   533   }
       
   534 }
       
   535 
       
   536 void InterpreterMacroAssembler::verify_local_tag(frame::Tag tag, Register idx) {
       
   537   if (TaggedStackInterpreter) {
       
   538     frame::Tag t = tag;
       
   539     if (tag == frame::TagCategory2) {
       
   540       Label nbl;
       
   541       t = frame::TagValue;  // change to what is stored in locals
       
   542       cmpl(Address(rdi, idx, Interpreter::stackElementScale(),
       
   543                   Interpreter::local_tag_offset_in_bytes(1)), (int)t);
       
   544       jcc(Assembler::equal, nbl);
       
   545       stop("Local tag is bad for long/double");
       
   546       bind(nbl);
       
   547     }
       
   548     Label notBad;
       
   549     cmpl(Address(rdi, idx, Interpreter::stackElementScale(),
       
   550                   Interpreter::local_tag_offset_in_bytes(0)), (int)t);
       
   551     jcc(Assembler::equal, notBad);
       
   552     // Also compare if the local value is zero, then the tag might
       
   553     // not have been set coming from deopt.
       
   554     cmpl(Address(rdi, idx, Interpreter::stackElementScale(),
       
   555                   Interpreter::local_offset_in_bytes(0)), 0);
       
   556     jcc(Assembler::equal, notBad);
       
   557     stop("Local tag is bad");
       
   558     bind(notBad);
       
   559 
       
   560   }
       
   561 }
       
   562 #endif // ASSERT
       
   563 
       
   564 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point) {
       
   565   MacroAssembler::call_VM_leaf_base(entry_point, 0);
       
   566 }
       
   567 
       
   568 
       
   569 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1) {
       
   570   pushl(arg_1);
       
   571   MacroAssembler::call_VM_leaf_base(entry_point, 1);
       
   572 }
       
   573 
       
   574 
       
   575 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
       
   576   pushl(arg_2);
       
   577   pushl(arg_1);
       
   578   MacroAssembler::call_VM_leaf_base(entry_point, 2);
       
   579 }
       
   580 
       
   581 
       
   582 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
       
   583   pushl(arg_3);
       
   584   pushl(arg_2);
       
   585   pushl(arg_1);
       
   586   MacroAssembler::call_VM_leaf_base(entry_point, 3);
       
   587 }
       
   588 
       
   589 
       
   590 // Jump to from_interpreted entry of a call unless single stepping is possible
       
   591 // in this thread in which case we must call the i2i entry
       
   592 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
       
   593   // set sender sp
       
   594   leal(rsi, Address(rsp, wordSize));
       
   595   // record last_sp
       
   596   movl(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rsi);
       
   597 
       
   598   if (JvmtiExport::can_post_interpreter_events()) {
       
   599     Label run_compiled_code;
       
   600     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
       
   601     // compiled code in threads for which the event is enabled.  Check here for
       
   602     // interp_only_mode if these events CAN be enabled.
       
   603     get_thread(temp);
       
   604     // interp_only is an int, on little endian it is sufficient to test the byte only
       
   605     // Is a cmpl faster (ce
       
   606     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
       
   607     jcc(Assembler::zero, run_compiled_code);
       
   608     jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
       
   609     bind(run_compiled_code);
       
   610   }
       
   611 
       
   612   jmp(Address(method, methodOopDesc::from_interpreted_offset()));
       
   613 
       
   614 }
       
   615 
       
   616 
       
   617 // The following two routines provide a hook so that an implementation
       
   618 // can schedule the dispatch in two parts.  Intel does not do this.
       
   619 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
       
   620   // Nothing Intel-specific to be done here.
       
   621 }
       
   622 
       
   623 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
       
   624   dispatch_next(state, step);
       
   625 }
       
   626 
       
   627 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table,
       
   628                                               bool verifyoop) {
       
   629   verify_FPU(1, state);
       
   630   if (VerifyActivationFrameSize) {
       
   631     Label L;
       
   632     movl(rcx, rbp);
       
   633     subl(rcx, rsp);
       
   634     int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
       
   635     cmpl(rcx, min_frame_size);
       
   636     jcc(Assembler::greaterEqual, L);
       
   637     stop("broken stack frame");
       
   638     bind(L);
       
   639   }
       
   640   if (verifyoop) verify_oop(rax, state);
       
   641   Address index(noreg, rbx, Address::times_4);
       
   642   ExternalAddress tbl((address)table);
       
   643   ArrayAddress dispatch(tbl, index);
       
   644   jump(dispatch);
       
   645 }
       
   646 
       
   647 
       
   648 void InterpreterMacroAssembler::dispatch_only(TosState state) {
       
   649   dispatch_base(state, Interpreter::dispatch_table(state));
       
   650 }
       
   651 
       
   652 
       
   653 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
       
   654   dispatch_base(state, Interpreter::normal_table(state));
       
   655 }
       
   656 
       
   657 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
       
   658   dispatch_base(state, Interpreter::normal_table(state), false);
       
   659 }
       
   660 
       
   661 
       
   662 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
       
   663   // load next bytecode (load before advancing rsi to prevent AGI)
       
   664   load_unsigned_byte(rbx, Address(rsi, step));
       
   665   // advance rsi
       
   666   increment(rsi, step);
       
   667   dispatch_base(state, Interpreter::dispatch_table(state));
       
   668 }
       
   669 
       
   670 
       
   671 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
       
   672   // load current bytecode
       
   673   load_unsigned_byte(rbx, Address(rsi, 0));
       
   674   dispatch_base(state, table);
       
   675 }
       
   676 
       
   677 // remove activation
       
   678 //
       
   679 // Unlock the receiver if this is a synchronized method.
       
   680 // Unlock any Java monitors from syncronized blocks.
       
   681 // Remove the activation from the stack.
       
   682 //
       
   683 // If there are locked Java monitors
       
   684 //    If throw_monitor_exception
       
   685 //       throws IllegalMonitorStateException
       
   686 //    Else if install_monitor_exception
       
   687 //       installs IllegalMonitorStateException
       
   688 //    Else
       
   689 //       no error processing
       
   690 void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr,
       
   691                                                   bool throw_monitor_exception,
       
   692                                                   bool install_monitor_exception,
       
   693                                                   bool notify_jvmdi) {
       
   694   // Note: Registers rax, rdx and FPU ST(0) may be in use for the result
       
   695   // check if synchronized method
       
   696   Label unlocked, unlock, no_unlock;
       
   697 
       
   698   get_thread(rcx);
       
   699   const Address do_not_unlock_if_synchronized(rcx,
       
   700     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
       
   701 
       
   702   movbool(rbx, do_not_unlock_if_synchronized);
       
   703   movl(rdi,rbx);
       
   704   movbool(do_not_unlock_if_synchronized, false); // reset the flag
       
   705 
       
   706   movl(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); // get method access flags
       
   707   movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
       
   708 
       
   709   testl(rcx, JVM_ACC_SYNCHRONIZED);
       
   710   jcc(Assembler::zero, unlocked);
       
   711 
       
   712   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
       
   713   // is set.
       
   714   movl(rcx,rdi);
       
   715   testbool(rcx);
       
   716   jcc(Assembler::notZero, no_unlock);
       
   717 
       
   718   // unlock monitor
       
   719   push(state);                                   // save result
       
   720 
       
   721   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
       
   722   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
       
   723   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
       
   724   leal  (rdx, monitor);                          // address of first monitor
       
   725 
       
   726   movl  (rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
       
   727   testl (rax, rax);
       
   728   jcc   (Assembler::notZero, unlock);
       
   729 
       
   730   pop(state);
       
   731   if (throw_monitor_exception) {
       
   732     empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
       
   733 
       
   734     // Entry already unlocked, need to throw exception
       
   735     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
       
   736     should_not_reach_here();
       
   737   } else {
       
   738     // Monitor already unlocked during a stack unroll.
       
   739     // If requested, install an illegal_monitor_state_exception.
       
   740     // Continue with stack unrolling.
       
   741     if (install_monitor_exception) {
       
   742       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
       
   743       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
       
   744     }
       
   745     jmp(unlocked);
       
   746   }
       
   747 
       
   748   bind(unlock);
       
   749   unlock_object(rdx);
       
   750   pop(state);
       
   751 
       
   752   // Check that for block-structured locking (i.e., that all locked objects has been unlocked)
       
   753   bind(unlocked);
       
   754 
       
   755   // rax, rdx: Might contain return value
       
   756 
       
   757   // Check that all monitors are unlocked
       
   758   {
       
   759     Label loop, exception, entry, restart;
       
   760     const int entry_size               = frame::interpreter_frame_monitor_size()           * wordSize;
       
   761     const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
       
   762     const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
       
   763 
       
   764     bind(restart);
       
   765     movl(rcx, monitor_block_top);             // points to current entry, starting with top-most entry
       
   766     leal(rbx, monitor_block_bot);             // points to word before bottom of monitor block
       
   767     jmp(entry);
       
   768 
       
   769     // Entry already locked, need to throw exception
       
   770     bind(exception);
       
   771 
       
   772     if (throw_monitor_exception) {
       
   773       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
       
   774 
       
   775       // Throw exception
       
   776       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
       
   777       should_not_reach_here();
       
   778     } else {
       
   779       // Stack unrolling. Unlock object and install illegal_monitor_exception
       
   780       // Unlock does not block, so don't have to worry about the frame
       
   781 
       
   782       push(state);
       
   783       movl(rdx, rcx);
       
   784       unlock_object(rdx);
       
   785       pop(state);
       
   786 
       
   787       if (install_monitor_exception) {
       
   788         empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
       
   789         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
       
   790       }
       
   791 
       
   792       jmp(restart);
       
   793     }
       
   794 
       
   795     bind(loop);
       
   796     cmpl(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);  // check if current entry is used
       
   797     jcc(Assembler::notEqual, exception);
       
   798 
       
   799     addl(rcx, entry_size);                       // otherwise advance to next entry
       
   800     bind(entry);
       
   801     cmpl(rcx, rbx);                              // check if bottom reached
       
   802     jcc(Assembler::notEqual, loop);              // if not at bottom then check this entry
       
   803   }
       
   804 
       
   805   bind(no_unlock);
       
   806 
       
   807   // jvmti support
       
   808   if (notify_jvmdi) {
       
   809     notify_method_exit(state, NotifyJVMTI);     // preserve TOSCA
       
   810   } else {
       
   811     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
       
   812   }
       
   813 
       
   814   // remove activation
       
   815   movl(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
       
   816   leave();                                     // remove frame anchor
       
   817   popl(ret_addr);                              // get return address
       
   818   movl(rsp, rbx);                              // set sp to sender sp
       
   819   if (UseSSE) {
       
   820     // float and double are returned in xmm register in SSE-mode
       
   821     if (state == ftos && UseSSE >= 1) {
       
   822       subl(rsp, wordSize);
       
   823       fstp_s(Address(rsp, 0));
       
   824       movflt(xmm0, Address(rsp, 0));
       
   825       addl(rsp, wordSize);
       
   826     } else if (state == dtos && UseSSE >= 2) {
       
   827       subl(rsp, 2*wordSize);
       
   828       fstp_d(Address(rsp, 0));
       
   829       movdbl(xmm0, Address(rsp, 0));
       
   830       addl(rsp, 2*wordSize);
       
   831     }
       
   832   }
       
   833 }
       
   834 
       
   835 #endif /* !CC_INTERP */
       
   836 
       
   837 
       
   838 // Lock object
       
   839 //
       
   840 // Argument: rdx : Points to BasicObjectLock to be used for locking. Must
       
   841 // be initialized with object to lock
       
   842 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
       
   843   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
       
   844 
       
   845   if (UseHeavyMonitors) {
       
   846     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
       
   847   } else {
       
   848 
       
   849     Label done;
       
   850 
       
   851     const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
       
   852     const Register obj_reg  = rcx;  // Will contain the oop
       
   853 
       
   854     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
       
   855     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
       
   856     const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
       
   857 
       
   858     Label slow_case;
       
   859 
       
   860     // Load object pointer into obj_reg %rcx
       
   861     movl(obj_reg, Address(lock_reg, obj_offset));
       
   862 
       
   863     if (UseBiasedLocking) {
       
   864       // Note: we use noreg for the temporary register since it's hard
       
   865       // to come up with a free register on all incoming code paths
       
   866       biased_locking_enter(lock_reg, obj_reg, swap_reg, noreg, false, done, &slow_case);
       
   867     }
       
   868 
       
   869     // Load immediate 1 into swap_reg %rax,
       
   870     movl(swap_reg, 1);
       
   871 
       
   872     // Load (object->mark() | 1) into swap_reg %rax,
       
   873     orl(swap_reg, Address(obj_reg, 0));
       
   874 
       
   875     // Save (object->mark() | 1) into BasicLock's displaced header
       
   876     movl(Address(lock_reg, mark_offset), swap_reg);
       
   877 
       
   878     assert(lock_offset == 0, "displached header must be first word in BasicObjectLock");
       
   879     if (os::is_MP()) {
       
   880       lock();
       
   881     }
       
   882     cmpxchg(lock_reg, Address(obj_reg, 0));
       
   883     if (PrintBiasedLockingStatistics) {
       
   884       cond_inc32(Assembler::zero,
       
   885                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
       
   886     }
       
   887     jcc(Assembler::zero, done);
       
   888 
       
   889     // Test if the oopMark is an obvious stack pointer, i.e.,
       
   890     //  1) (mark & 3) == 0, and
       
   891     //  2) rsp <= mark < mark + os::pagesize()
       
   892     //
       
   893     // These 3 tests can be done by evaluating the following
       
   894     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
       
   895     // assuming both stack pointer and pagesize have their
       
   896     // least significant 2 bits clear.
       
   897     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
       
   898     subl(swap_reg, rsp);
       
   899     andl(swap_reg, 3 - os::vm_page_size());
       
   900 
       
   901     // Save the test result, for recursive case, the result is zero
       
   902     movl(Address(lock_reg, mark_offset), swap_reg);
       
   903 
       
   904     if (PrintBiasedLockingStatistics) {
       
   905       cond_inc32(Assembler::zero,
       
   906                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
       
   907     }
       
   908     jcc(Assembler::zero, done);
       
   909 
       
   910     bind(slow_case);
       
   911 
       
   912     // Call the runtime routine for slow case
       
   913     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
       
   914 
       
   915     bind(done);
       
   916   }
       
   917 }
       
   918 
       
   919 
       
   920 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
       
   921 //
       
   922 // Argument: rdx : Points to BasicObjectLock structure for lock
       
   923 // Throw an IllegalMonitorException if object is not locked by current thread
       
   924 //
       
   925 // Uses: rax, rbx, rcx, rdx
       
   926 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
       
   927   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
       
   928 
       
   929   if (UseHeavyMonitors) {
       
   930     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
       
   931   } else {
       
   932     Label done;
       
   933 
       
   934     const Register swap_reg   = rax;  // Must use rax, for cmpxchg instruction
       
   935     const Register header_reg = rbx;  // Will contain the old oopMark
       
   936     const Register obj_reg    = rcx;  // Will contain the oop
       
   937 
       
   938     save_bcp(); // Save in case of exception
       
   939 
       
   940     // Convert from BasicObjectLock structure to object and BasicLock structure
       
   941     // Store the BasicLock address into %rax,
       
   942     leal(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
       
   943 
       
   944     // Load oop into obj_reg(%rcx)
       
   945     movl(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes ()));
       
   946 
       
   947     // Free entry
       
   948     movl(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);
       
   949 
       
   950     if (UseBiasedLocking) {
       
   951       biased_locking_exit(obj_reg, header_reg, done);
       
   952     }
       
   953 
       
   954     // Load the old header from BasicLock structure
       
   955     movl(header_reg, Address(swap_reg, BasicLock::displaced_header_offset_in_bytes()));
       
   956 
       
   957     // Test for recursion
       
   958     testl(header_reg, header_reg);
       
   959 
       
   960     // zero for recursive case
       
   961     jcc(Assembler::zero, done);
       
   962 
       
   963     // Atomic swap back the old header
       
   964     if (os::is_MP()) lock();
       
   965     cmpxchg(header_reg, Address(obj_reg, 0));
       
   966 
       
   967     // zero for recursive case
       
   968     jcc(Assembler::zero, done);
       
   969 
       
   970     // Call the runtime routine for slow case.
       
   971     movl(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj
       
   972     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
       
   973 
       
   974     bind(done);
       
   975 
       
   976     restore_bcp();
       
   977   }
       
   978 }
       
   979 
       
   980 
       
   981 #ifndef CC_INTERP
       
   982 
       
   983 // Test ImethodDataPtr.  If it is null, continue at the specified label
       
   984 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
       
   985   assert(ProfileInterpreter, "must be profiling interpreter");
       
   986   movl(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
       
   987   testl(mdp, mdp);
       
   988   jcc(Assembler::zero, zero_continue);
       
   989 }
       
   990 
       
   991 
       
   992 // Set the method data pointer for the current bcp.
       
   993 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
       
   994   assert(ProfileInterpreter, "must be profiling interpreter");
       
   995   Label zero_continue;
       
   996   pushl(rax);
       
   997   pushl(rbx);
       
   998 
       
   999   get_method(rbx);
       
  1000   // Test MDO to avoid the call if it is NULL.
       
  1001   movl(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
       
  1002   testl(rax, rax);
       
  1003   jcc(Assembler::zero, zero_continue);
       
  1004 
       
  1005   // rbx,: method
       
  1006   // rsi: bcp
       
  1007   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, rsi);
       
  1008   // rax,: mdi
       
  1009 
       
  1010   movl(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
       
  1011   testl(rbx, rbx);
       
  1012   jcc(Assembler::zero, zero_continue);
       
  1013   addl(rbx, in_bytes(methodDataOopDesc::data_offset()));
       
  1014   addl(rbx, rax);
       
  1015   movl(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rbx);
       
  1016 
       
  1017   bind(zero_continue);
       
  1018   popl(rbx);
       
  1019   popl(rax);
       
  1020 }
       
  1021 
       
  1022 void InterpreterMacroAssembler::verify_method_data_pointer() {
       
  1023   assert(ProfileInterpreter, "must be profiling interpreter");
       
  1024 #ifdef ASSERT
       
  1025   Label verify_continue;
       
  1026   pushl(rax);
       
  1027   pushl(rbx);
       
  1028   pushl(rcx);
       
  1029   pushl(rdx);
       
  1030   test_method_data_pointer(rcx, verify_continue); // If mdp is zero, continue
       
  1031   get_method(rbx);
       
  1032 
       
  1033   // If the mdp is valid, it will point to a DataLayout header which is
       
  1034   // consistent with the bcp.  The converse is highly probable also.
       
  1035   load_unsigned_word(rdx, Address(rcx, in_bytes(DataLayout::bci_offset())));
       
  1036   addl(rdx, Address(rbx, methodOopDesc::const_offset()));
       
  1037   leal(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
       
  1038   cmpl(rdx, rsi);
       
  1039   jcc(Assembler::equal, verify_continue);
       
  1040   // rbx,: method
       
  1041   // rsi: bcp
       
  1042   // rcx: mdp
       
  1043   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), rbx, rsi, rcx);
       
  1044   bind(verify_continue);
       
  1045   popl(rdx);
       
  1046   popl(rcx);
       
  1047   popl(rbx);
       
  1048   popl(rax);
       
  1049 #endif // ASSERT
       
  1050 }
       
  1051 
       
  1052 
       
  1053 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
       
  1054   assert(ProfileInterpreter, "must be profiling interpreter");
       
  1055   Address data(mdp_in, constant);
       
  1056   movl(data, value);
       
  1057 }
       
  1058 
       
  1059 
       
  1060 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
       
  1061                                                       int constant,
       
  1062                                                       bool decrement) {
       
  1063   // Counter address
       
  1064   Address data(mdp_in, constant);
       
  1065 
       
  1066   increment_mdp_data_at(data, decrement);
       
  1067 }
       
  1068 
       
  1069 
       
  1070 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
       
  1071                                                       bool decrement) {
       
  1072 
       
  1073   assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
       
  1074   assert(ProfileInterpreter, "must be profiling interpreter");
       
  1075 
       
  1076   if (decrement) {
       
  1077     // Decrement the register.  Set condition codes.
       
  1078     addl(data, -DataLayout::counter_increment);
       
  1079     // If the decrement causes the counter to overflow, stay negative
       
  1080     Label L;
       
  1081     jcc(Assembler::negative, L);
       
  1082     addl(data, DataLayout::counter_increment);
       
  1083     bind(L);
       
  1084   } else {
       
  1085     assert(DataLayout::counter_increment == 1,
       
  1086            "flow-free idiom only works with 1");
       
  1087     // Increment the register.  Set carry flag.
       
  1088     addl(data, DataLayout::counter_increment);
       
  1089     // If the increment causes the counter to overflow, pull back by 1.
       
  1090     sbbl(data, 0);
       
  1091   }
       
  1092 }
       
  1093 
       
  1094 
       
  1095 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
       
  1096                                                       Register reg,
       
  1097                                                       int constant,
       
  1098                                                       bool decrement) {
       
  1099   Address data(mdp_in, reg, Address::times_1, constant);
       
  1100 
       
  1101   increment_mdp_data_at(data, decrement);
       
  1102 }
       
  1103 
       
  1104 
       
  1105 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) {
       
  1106   assert(ProfileInterpreter, "must be profiling interpreter");
       
  1107   int header_offset = in_bytes(DataLayout::header_offset());
       
  1108   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
       
  1109   // Set the flag
       
  1110   orl(Address(mdp_in, header_offset), header_bits);
       
  1111 }
       
  1112 
       
  1113 
       
  1114 
       
  1115 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
       
  1116                                                  int offset,
       
  1117                                                  Register value,
       
  1118                                                  Register test_value_out,
       
  1119                                                  Label& not_equal_continue) {
       
  1120   assert(ProfileInterpreter, "must be profiling interpreter");
       
  1121   if (test_value_out == noreg) {
       
  1122     cmpl(value, Address(mdp_in, offset));
       
  1123   } else {
       
  1124     // Put the test value into a register, so caller can use it:
       
  1125     movl(test_value_out, Address(mdp_in, offset));
       
  1126     cmpl(test_value_out, value);
       
  1127   }
       
  1128   jcc(Assembler::notEqual, not_equal_continue);
       
  1129 }
       
  1130 
       
  1131 
       
  1132 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
       
  1133   assert(ProfileInterpreter, "must be profiling interpreter");
       
  1134   Address disp_address(mdp_in, offset_of_disp);
       
  1135   addl(mdp_in,disp_address);
       
  1136   movl(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
       
  1137 }
       
  1138 
       
  1139 
       
  1140 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg, int offset_of_disp) {
       
  1141   assert(ProfileInterpreter, "must be profiling interpreter");
       
  1142   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
       
  1143   addl(mdp_in, disp_address);
       
  1144   movl(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
       
  1145 }
       
  1146 
       
  1147 
       
  1148 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
       
  1149   assert(ProfileInterpreter, "must be profiling interpreter");
       
  1150   addl(mdp_in, constant);
       
  1151   movl(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
       
  1152 }
       
  1153 
       
  1154 
       
  1155 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
       
  1156   assert(ProfileInterpreter, "must be profiling interpreter");
       
  1157   pushl(return_bci);             // save/restore across call_VM
       
  1158   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
       
  1159   popl(return_bci);
       
  1160 }
       
  1161 
       
  1162 
       
  1163 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
       
  1164   if (ProfileInterpreter) {
       
  1165     Label profile_continue;
       
  1166 
       
  1167     // If no method data exists, go to profile_continue.
       
  1168     // Otherwise, assign to mdp
       
  1169     test_method_data_pointer(mdp, profile_continue);
       
  1170 
       
  1171     // We are taking a branch.  Increment the taken count.
       
  1172     // We inline increment_mdp_data_at to return bumped_count in a register
       
  1173     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
       
  1174     Address data(mdp, in_bytes(JumpData::taken_offset()));
       
  1175     movl(bumped_count,data);
       
  1176     assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
       
  1177     addl(bumped_count, DataLayout::counter_increment);
       
  1178     sbbl(bumped_count, 0);
       
  1179     movl(data,bumped_count);    // Store back out
       
  1180 
       
  1181     // The method data pointer needs to be updated to reflect the new target.
       
  1182     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
       
  1183     bind (profile_continue);
       
  1184   }
       
  1185 }
       
  1186 
       
  1187 
       
  1188 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
       
  1189   if (ProfileInterpreter) {
       
  1190     Label profile_continue;
       
  1191 
       
  1192     // If no method data exists, go to profile_continue.
       
  1193     test_method_data_pointer(mdp, profile_continue);
       
  1194 
       
  1195     // We are taking a branch.  Increment the not taken count.
       
  1196     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
       
  1197 
       
  1198     // The method data pointer needs to be updated to correspond to the next bytecode
       
  1199     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
       
  1200     bind (profile_continue);
       
  1201   }
       
  1202 }
       
  1203 
       
  1204 
       
  1205 void InterpreterMacroAssembler::profile_call(Register mdp) {
       
  1206   if (ProfileInterpreter) {
       
  1207     Label profile_continue;
       
  1208 
       
  1209     // If no method data exists, go to profile_continue.
       
  1210     test_method_data_pointer(mdp, profile_continue);
       
  1211 
       
  1212     // We are making a call.  Increment the count.
       
  1213     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
       
  1214 
       
  1215     // The method data pointer needs to be updated to reflect the new target.
       
  1216     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
       
  1217     bind (profile_continue);
       
  1218   }
       
  1219 }
       
  1220 
       
  1221 
       
  1222 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
       
  1223   if (ProfileInterpreter) {
       
  1224     Label profile_continue;
       
  1225 
       
  1226     // If no method data exists, go to profile_continue.
       
  1227     test_method_data_pointer(mdp, profile_continue);
       
  1228 
       
  1229     // We are making a call.  Increment the count.
       
  1230     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
       
  1231 
       
  1232     // The method data pointer needs to be updated to reflect the new target.
       
  1233     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
       
  1234     bind (profile_continue);
       
  1235   }
       
  1236 }
       
  1237 
       
  1238 
       
  1239 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register mdp, Register reg2) {
       
  1240   if (ProfileInterpreter) {
       
  1241     Label profile_continue;
       
  1242 
       
  1243     // If no method data exists, go to profile_continue.
       
  1244     test_method_data_pointer(mdp, profile_continue);
       
  1245 
       
  1246     // We are making a call.  Increment the count.
       
  1247     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
       
  1248 
       
  1249     // Record the receiver type.
       
  1250     record_klass_in_profile(receiver, mdp, reg2);
       
  1251 
       
  1252     // The method data pointer needs to be updated to reflect the new target.
       
  1253     update_mdp_by_constant(mdp,
       
  1254                            in_bytes(VirtualCallData::
       
  1255                                     virtual_call_data_size()));
       
  1256     bind(profile_continue);
       
  1257   }
       
  1258 }
       
  1259 
       
  1260 
       
  1261 void InterpreterMacroAssembler::record_klass_in_profile_helper(
       
  1262                                         Register receiver, Register mdp,
       
  1263                                         Register reg2,
       
  1264                                         int start_row, Label& done) {
       
  1265   int last_row = VirtualCallData::row_limit() - 1;
       
  1266   assert(start_row <= last_row, "must be work left to do");
       
  1267   // Test this row for both the receiver and for null.
       
  1268   // Take any of three different outcomes:
       
  1269   //   1. found receiver => increment count and goto done
       
  1270   //   2. found null => keep looking for case 1, maybe allocate this cell
       
  1271   //   3. found something else => keep looking for cases 1 and 2
       
  1272   // Case 3 is handled by a recursive call.
       
  1273   for (int row = start_row; row <= last_row; row++) {
       
  1274     Label next_test;
       
  1275     bool test_for_null_also = (row == start_row);
       
  1276 
       
  1277     // See if the receiver is receiver[n].
       
  1278     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
       
  1279     test_mdp_data_at(mdp, recvr_offset, receiver,
       
  1280                      (test_for_null_also ? reg2 : noreg),
       
  1281                      next_test);
       
  1282     // (Reg2 now contains the receiver from the CallData.)
       
  1283 
       
  1284     // The receiver is receiver[n].  Increment count[n].
       
  1285     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
       
  1286     increment_mdp_data_at(mdp, count_offset);
       
  1287     jmp(done);
       
  1288     bind(next_test);
       
  1289 
       
  1290     if (row == start_row) {
       
  1291       // Failed the equality check on receiver[n]...  Test for null.
       
  1292       testl(reg2, reg2);
       
  1293       if (start_row == last_row) {
       
  1294         // The only thing left to do is handle the null case.
       
  1295         jcc(Assembler::notZero, done);
       
  1296         break;
       
  1297       }
       
  1298       // Since null is rare, make it be the branch-taken case.
       
  1299       Label found_null;
       
  1300       jcc(Assembler::zero, found_null);
       
  1301 
       
  1302       // Put all the "Case 3" tests here.
       
  1303       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done);
       
  1304 
       
  1305       // Found a null.  Keep searching for a matching receiver,
       
  1306       // but remember that this is an empty (unused) slot.
       
  1307       bind(found_null);
       
  1308     }
       
  1309   }
       
  1310 
       
  1311   // In the fall-through case, we found no matching receiver, but we
       
  1312   // observed the receiver[start_row] is NULL.
       
  1313 
       
  1314   // Fill in the receiver field and increment the count.
       
  1315   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
       
  1316   set_mdp_data_at(mdp, recvr_offset, receiver);
       
  1317   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
       
  1318   movl(reg2, DataLayout::counter_increment);
       
  1319   set_mdp_data_at(mdp, count_offset, reg2);
       
  1320   jmp(done);
       
  1321 }
       
  1322 
       
  1323 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
       
  1324                                                         Register mdp,
       
  1325                                                         Register reg2) {
       
  1326   assert(ProfileInterpreter, "must be profiling");
       
  1327   Label done;
       
  1328 
       
  1329   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
       
  1330 
       
  1331   bind (done);
       
  1332 }
       
  1333 
       
  1334 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
       
  1335   if (ProfileInterpreter) {
       
  1336     Label profile_continue;
       
  1337     uint row;
       
  1338 
       
  1339     // If no method data exists, go to profile_continue.
       
  1340     test_method_data_pointer(mdp, profile_continue);
       
  1341 
       
  1342     // Update the total ret count.
       
  1343     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
       
  1344 
       
  1345     for (row = 0; row < RetData::row_limit(); row++) {
       
  1346       Label next_test;
       
  1347 
       
  1348       // See if return_bci is equal to bci[n]:
       
  1349       test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci,
       
  1350                        noreg, next_test);
       
  1351 
       
  1352       // return_bci is equal to bci[n].  Increment the count.
       
  1353       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
       
  1354 
       
  1355       // The method data pointer needs to be updated to reflect the new target.
       
  1356       update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
       
  1357       jmp(profile_continue);
       
  1358       bind(next_test);
       
  1359     }
       
  1360 
       
  1361     update_mdp_for_ret(return_bci);
       
  1362 
       
  1363     bind (profile_continue);
       
  1364   }
       
  1365 }
       
  1366 
       
  1367 
       
  1368 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
       
  1369   if (ProfileInterpreter) {
       
  1370     Label profile_continue;
       
  1371 
       
  1372     // If no method data exists, go to profile_continue.
       
  1373     test_method_data_pointer(mdp, profile_continue);
       
  1374 
       
  1375     // The method data pointer needs to be updated.
       
  1376     int mdp_delta = in_bytes(BitData::bit_data_size());
       
  1377     if (TypeProfileCasts) {
       
  1378       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
       
  1379     }
       
  1380     update_mdp_by_constant(mdp, mdp_delta);
       
  1381 
       
  1382     bind (profile_continue);
       
  1383   }
       
  1384 }
       
  1385 
       
  1386 
       
  1387 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
       
  1388   if (ProfileInterpreter && TypeProfileCasts) {
       
  1389     Label profile_continue;
       
  1390 
       
  1391     // If no method data exists, go to profile_continue.
       
  1392     test_method_data_pointer(mdp, profile_continue);
       
  1393 
       
  1394     int count_offset = in_bytes(CounterData::count_offset());
       
  1395     // Back up the address, since we have already bumped the mdp.
       
  1396     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
       
  1397 
       
  1398     // *Decrement* the counter.  We expect to see zero or small negatives.
       
  1399     increment_mdp_data_at(mdp, count_offset, true);
       
  1400 
       
  1401     bind (profile_continue);
       
  1402   }
       
  1403 }
       
  1404 
       
  1405 
       
  1406 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2)
       
  1407 {
       
  1408   if (ProfileInterpreter) {
       
  1409     Label profile_continue;
       
  1410 
       
  1411     // If no method data exists, go to profile_continue.
       
  1412     test_method_data_pointer(mdp, profile_continue);
       
  1413 
       
  1414     // The method data pointer needs to be updated.
       
  1415     int mdp_delta = in_bytes(BitData::bit_data_size());
       
  1416     if (TypeProfileCasts) {
       
  1417       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
       
  1418 
       
  1419       // Record the object type.
       
  1420       record_klass_in_profile(klass, mdp, reg2);
       
  1421       assert(reg2 == rdi, "we know how to fix this blown reg");
       
  1422       restore_locals();         // Restore EDI
       
  1423     }
       
  1424     update_mdp_by_constant(mdp, mdp_delta);
       
  1425 
       
  1426     bind(profile_continue);
       
  1427   }
       
  1428 }
       
  1429 
       
  1430 
       
  1431 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
       
  1432   if (ProfileInterpreter) {
       
  1433     Label profile_continue;
       
  1434 
       
  1435     // If no method data exists, go to profile_continue.
       
  1436     test_method_data_pointer(mdp, profile_continue);
       
  1437 
       
  1438     // Update the default case count
       
  1439     increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
       
  1440 
       
  1441     // The method data pointer needs to be updated.
       
  1442     update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
       
  1443 
       
  1444     bind (profile_continue);
       
  1445   }
       
  1446 }
       
  1447 
       
  1448 
       
  1449 void InterpreterMacroAssembler::profile_switch_case(Register index, Register mdp, Register reg2) {
       
  1450   if (ProfileInterpreter) {
       
  1451     Label profile_continue;
       
  1452 
       
  1453     // If no method data exists, go to profile_continue.
       
  1454     test_method_data_pointer(mdp, profile_continue);
       
  1455 
       
  1456     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
       
  1457     movl(reg2, in_bytes(MultiBranchData::per_case_size()));
       
  1458     imull(index, reg2);
       
  1459     addl(index, in_bytes(MultiBranchData::case_array_offset()));
       
  1460 
       
  1461     // Update the case count
       
  1462     increment_mdp_data_at(mdp, index, in_bytes(MultiBranchData::relative_count_offset()));
       
  1463 
       
  1464     // The method data pointer needs to be updated.
       
  1465     update_mdp_by_offset(mdp, index, in_bytes(MultiBranchData::relative_displacement_offset()));
       
  1466 
       
  1467     bind (profile_continue);
       
  1468   }
       
  1469 }
       
  1470 
       
  1471 #endif // !CC_INTERP
       
  1472 
       
  1473 
       
  1474 
       
  1475 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
       
  1476   if (state == atos) MacroAssembler::verify_oop(reg);
       
  1477 }
       
  1478 
       
  1479 
       
  1480 #ifndef CC_INTERP
       
  1481 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
       
  1482   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
       
  1483 }
       
  1484 
       
  1485 #endif /* CC_INTERP */
       
  1486 
       
  1487 
       
  1488 void InterpreterMacroAssembler::notify_method_entry() {
       
  1489   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
       
  1490   // track stack depth.  If it is possible to enter interp_only_mode we add
       
  1491   // the code to check if the event should be sent.
       
  1492   if (JvmtiExport::can_post_interpreter_events()) {
       
  1493     Label L;
       
  1494     get_thread(rcx);
       
  1495     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
       
  1496     testl(rcx,rcx);
       
  1497     jcc(Assembler::zero, L);
       
  1498     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
       
  1499     bind(L);
       
  1500   }
       
  1501 
       
  1502   {
       
  1503     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
       
  1504     get_thread(rcx);
       
  1505     get_method(rbx);
       
  1506     call_VM_leaf(
       
  1507       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), rcx, rbx);
       
  1508   }
       
  1509 }
       
  1510 
       
  1511 
       
  1512 void InterpreterMacroAssembler::notify_method_exit(
       
  1513     TosState state, NotifyMethodExitMode mode) {
       
  1514   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
       
  1515   // track stack depth.  If it is possible to enter interp_only_mode we add
       
  1516   // the code to check if the event should be sent.
       
  1517   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
       
  1518     Label L;
       
  1519     // Note: frame::interpreter_frame_result has a dependency on how the
       
  1520     // method result is saved across the call to post_method_exit. If this
       
  1521     // is changed then the interpreter_frame_result implementation will
       
  1522     // need to be updated too.
       
  1523 
       
  1524     // For c++ interpreter the result is always stored at a known location in the frame
       
  1525     // template interpreter will leave it on the top of the stack.
       
  1526     NOT_CC_INTERP(push(state);)
       
  1527     get_thread(rcx);
       
  1528     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
       
  1529     testl(rcx,rcx);
       
  1530     jcc(Assembler::zero, L);
       
  1531     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
       
  1532     bind(L);
       
  1533     NOT_CC_INTERP(pop(state);)
       
  1534   }
       
  1535 
       
  1536   {
       
  1537     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
       
  1538     push(state);
       
  1539     get_thread(rbx);
       
  1540     get_method(rcx);
       
  1541     call_VM_leaf(
       
  1542       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
       
  1543       rbx, rcx);
       
  1544     pop(state);
       
  1545   }
       
  1546 }