hotspot/src/cpu/x86/vm/c1_CodeStubs_x86.cpp
changeset 1 489c9b5090e2
child 1066 717c3345024f
child 1374 4c24294029a9
equal deleted inserted replaced
0:fd16c54261b3 1:489c9b5090e2
       
     1 /*
       
     2  * Copyright 1999-2006 Sun Microsystems, Inc.  All Rights Reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    21  * have any questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "incls/_precompiled.incl"
       
    26 #include "incls/_c1_CodeStubs_x86.cpp.incl"
       
    27 
       
    28 
       
    29 #define __ ce->masm()->
       
    30 
       
    31 float ConversionStub::float_zero = 0.0;
       
    32 double ConversionStub::double_zero = 0.0;
       
    33 
       
    34 void ConversionStub::emit_code(LIR_Assembler* ce) {
       
    35   __ bind(_entry);
       
    36   assert(bytecode() == Bytecodes::_f2i || bytecode() == Bytecodes::_d2i, "other conversions do not require stub");
       
    37 
       
    38 
       
    39   if (input()->is_single_xmm()) {
       
    40     __ comiss(input()->as_xmm_float_reg(),
       
    41               ExternalAddress((address)&float_zero));
       
    42   } else if (input()->is_double_xmm()) {
       
    43     __ comisd(input()->as_xmm_double_reg(),
       
    44               ExternalAddress((address)&double_zero));
       
    45   } else {
       
    46     __ pushl(rax);
       
    47     __ ftst();
       
    48     __ fnstsw_ax();
       
    49     __ sahf();
       
    50     __ popl(rax);
       
    51   }
       
    52 
       
    53   Label NaN, do_return;
       
    54   __ jccb(Assembler::parity, NaN);
       
    55   __ jccb(Assembler::below, do_return);
       
    56 
       
    57   // input is > 0 -> return maxInt
       
    58   // result register already contains 0x80000000, so subtracting 1 gives 0x7fffffff
       
    59   __ decrement(result()->as_register());
       
    60   __ jmpb(do_return);
       
    61 
       
    62   // input is NaN -> return 0
       
    63   __ bind(NaN);
       
    64   __ xorl(result()->as_register(), result()->as_register());
       
    65 
       
    66   __ bind(do_return);
       
    67   __ jmp(_continuation);
       
    68 }
       
    69 
       
    70 #ifdef TIERED
       
    71 void CounterOverflowStub::emit_code(LIR_Assembler* ce) {
       
    72   __ bind(_entry);
       
    73   ce->store_parameter(_bci, 0);
       
    74   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::counter_overflow_id)));
       
    75   ce->add_call_info_here(_info);
       
    76   ce->verify_oop_map(_info);
       
    77 
       
    78   __ jmp(_continuation);
       
    79 }
       
    80 #endif // TIERED
       
    81 
       
    82 
       
    83 
       
    84 RangeCheckStub::RangeCheckStub(CodeEmitInfo* info, LIR_Opr index,
       
    85                                bool throw_index_out_of_bounds_exception)
       
    86   : _throw_index_out_of_bounds_exception(throw_index_out_of_bounds_exception)
       
    87   , _index(index)
       
    88 {
       
    89   _info = info == NULL ? NULL : new CodeEmitInfo(info);
       
    90 }
       
    91 
       
    92 
       
    93 void RangeCheckStub::emit_code(LIR_Assembler* ce) {
       
    94   __ bind(_entry);
       
    95   // pass the array index on stack because all registers must be preserved
       
    96   if (_index->is_cpu_register()) {
       
    97     ce->store_parameter(_index->as_register(), 0);
       
    98   } else {
       
    99     ce->store_parameter(_index->as_jint(), 0);
       
   100   }
       
   101   Runtime1::StubID stub_id;
       
   102   if (_throw_index_out_of_bounds_exception) {
       
   103     stub_id = Runtime1::throw_index_exception_id;
       
   104   } else {
       
   105     stub_id = Runtime1::throw_range_check_failed_id;
       
   106   }
       
   107   __ call(RuntimeAddress(Runtime1::entry_for(stub_id)));
       
   108   ce->add_call_info_here(_info);
       
   109   debug_only(__ should_not_reach_here());
       
   110 }
       
   111 
       
   112 
       
   113 void DivByZeroStub::emit_code(LIR_Assembler* ce) {
       
   114   if (_offset != -1) {
       
   115     ce->compilation()->implicit_exception_table()->append(_offset, __ offset());
       
   116   }
       
   117   __ bind(_entry);
       
   118   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::throw_div0_exception_id)));
       
   119   ce->add_call_info_here(_info);
       
   120   debug_only(__ should_not_reach_here());
       
   121 }
       
   122 
       
   123 
       
   124 // Implementation of NewInstanceStub
       
   125 
       
   126 NewInstanceStub::NewInstanceStub(LIR_Opr klass_reg, LIR_Opr result, ciInstanceKlass* klass, CodeEmitInfo* info, Runtime1::StubID stub_id) {
       
   127   _result = result;
       
   128   _klass = klass;
       
   129   _klass_reg = klass_reg;
       
   130   _info = new CodeEmitInfo(info);
       
   131   assert(stub_id == Runtime1::new_instance_id                 ||
       
   132          stub_id == Runtime1::fast_new_instance_id            ||
       
   133          stub_id == Runtime1::fast_new_instance_init_check_id,
       
   134          "need new_instance id");
       
   135   _stub_id   = stub_id;
       
   136 }
       
   137 
       
   138 
       
   139 void NewInstanceStub::emit_code(LIR_Assembler* ce) {
       
   140   assert(__ rsp_offset() == 0, "frame size should be fixed");
       
   141   __ bind(_entry);
       
   142   __ movl(rdx, _klass_reg->as_register());
       
   143   __ call(RuntimeAddress(Runtime1::entry_for(_stub_id)));
       
   144   ce->add_call_info_here(_info);
       
   145   ce->verify_oop_map(_info);
       
   146   assert(_result->as_register() == rax, "result must in rax,");
       
   147   __ jmp(_continuation);
       
   148 }
       
   149 
       
   150 
       
   151 // Implementation of NewTypeArrayStub
       
   152 
       
   153 NewTypeArrayStub::NewTypeArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) {
       
   154   _klass_reg = klass_reg;
       
   155   _length = length;
       
   156   _result = result;
       
   157   _info = new CodeEmitInfo(info);
       
   158 }
       
   159 
       
   160 
       
   161 void NewTypeArrayStub::emit_code(LIR_Assembler* ce) {
       
   162   assert(__ rsp_offset() == 0, "frame size should be fixed");
       
   163   __ bind(_entry);
       
   164   assert(_length->as_register() == rbx, "length must in rbx,");
       
   165   assert(_klass_reg->as_register() == rdx, "klass_reg must in rdx");
       
   166   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::new_type_array_id)));
       
   167   ce->add_call_info_here(_info);
       
   168   ce->verify_oop_map(_info);
       
   169   assert(_result->as_register() == rax, "result must in rax,");
       
   170   __ jmp(_continuation);
       
   171 }
       
   172 
       
   173 
       
   174 // Implementation of NewObjectArrayStub
       
   175 
       
   176 NewObjectArrayStub::NewObjectArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) {
       
   177   _klass_reg = klass_reg;
       
   178   _result = result;
       
   179   _length = length;
       
   180   _info = new CodeEmitInfo(info);
       
   181 }
       
   182 
       
   183 
       
   184 void NewObjectArrayStub::emit_code(LIR_Assembler* ce) {
       
   185   assert(__ rsp_offset() == 0, "frame size should be fixed");
       
   186   __ bind(_entry);
       
   187   assert(_length->as_register() == rbx, "length must in rbx,");
       
   188   assert(_klass_reg->as_register() == rdx, "klass_reg must in rdx");
       
   189   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::new_object_array_id)));
       
   190   ce->add_call_info_here(_info);
       
   191   ce->verify_oop_map(_info);
       
   192   assert(_result->as_register() == rax, "result must in rax,");
       
   193   __ jmp(_continuation);
       
   194 }
       
   195 
       
   196 
       
   197 // Implementation of MonitorAccessStubs
       
   198 
       
   199 MonitorEnterStub::MonitorEnterStub(LIR_Opr obj_reg, LIR_Opr lock_reg, CodeEmitInfo* info)
       
   200 : MonitorAccessStub(obj_reg, lock_reg)
       
   201 {
       
   202   _info = new CodeEmitInfo(info);
       
   203 }
       
   204 
       
   205 
       
   206 void MonitorEnterStub::emit_code(LIR_Assembler* ce) {
       
   207   assert(__ rsp_offset() == 0, "frame size should be fixed");
       
   208   __ bind(_entry);
       
   209   ce->store_parameter(_obj_reg->as_register(),  1);
       
   210   ce->store_parameter(_lock_reg->as_register(), 0);
       
   211   Runtime1::StubID enter_id;
       
   212   if (ce->compilation()->has_fpu_code()) {
       
   213     enter_id = Runtime1::monitorenter_id;
       
   214   } else {
       
   215     enter_id = Runtime1::monitorenter_nofpu_id;
       
   216   }
       
   217   __ call(RuntimeAddress(Runtime1::entry_for(enter_id)));
       
   218   ce->add_call_info_here(_info);
       
   219   ce->verify_oop_map(_info);
       
   220   __ jmp(_continuation);
       
   221 }
       
   222 
       
   223 
       
   224 void MonitorExitStub::emit_code(LIR_Assembler* ce) {
       
   225   __ bind(_entry);
       
   226   if (_compute_lock) {
       
   227     // lock_reg was destroyed by fast unlocking attempt => recompute it
       
   228     ce->monitor_address(_monitor_ix, _lock_reg);
       
   229   }
       
   230   ce->store_parameter(_lock_reg->as_register(), 0);
       
   231   // note: non-blocking leaf routine => no call info needed
       
   232   Runtime1::StubID exit_id;
       
   233   if (ce->compilation()->has_fpu_code()) {
       
   234     exit_id = Runtime1::monitorexit_id;
       
   235   } else {
       
   236     exit_id = Runtime1::monitorexit_nofpu_id;
       
   237   }
       
   238   __ call(RuntimeAddress(Runtime1::entry_for(exit_id)));
       
   239   __ jmp(_continuation);
       
   240 }
       
   241 
       
   242 
       
   243 // Implementation of patching:
       
   244 // - Copy the code at given offset to an inlined buffer (first the bytes, then the number of bytes)
       
   245 // - Replace original code with a call to the stub
       
   246 // At Runtime:
       
   247 // - call to stub, jump to runtime
       
   248 // - in runtime: preserve all registers (rspecially objects, i.e., source and destination object)
       
   249 // - in runtime: after initializing class, restore original code, reexecute instruction
       
   250 
       
   251 int PatchingStub::_patch_info_offset = -NativeGeneralJump::instruction_size;
       
   252 
       
   253 void PatchingStub::align_patch_site(MacroAssembler* masm) {
       
   254   // We're patching a 5-7 byte instruction on intel and we need to
       
   255   // make sure that we don't see a piece of the instruction.  It
       
   256   // appears mostly impossible on Intel to simply invalidate other
       
   257   // processors caches and since they may do aggressive prefetch it's
       
   258   // very hard to make a guess about what code might be in the icache.
       
   259   // Force the instruction to be double word aligned so that it
       
   260   // doesn't span a cache line.
       
   261   masm->align(round_to(NativeGeneralJump::instruction_size, wordSize));
       
   262 }
       
   263 
       
   264 void PatchingStub::emit_code(LIR_Assembler* ce) {
       
   265   assert(NativeCall::instruction_size <= _bytes_to_copy && _bytes_to_copy <= 0xFF, "not enough room for call");
       
   266 
       
   267   Label call_patch;
       
   268 
       
   269   // static field accesses have special semantics while the class
       
   270   // initializer is being run so we emit a test which can be used to
       
   271   // check that this code is being executed by the initializing
       
   272   // thread.
       
   273   address being_initialized_entry = __ pc();
       
   274   if (CommentedAssembly) {
       
   275     __ block_comment(" patch template");
       
   276   }
       
   277   if (_id == load_klass_id) {
       
   278     // produce a copy of the load klass instruction for use by the being initialized case
       
   279     address start = __ pc();
       
   280     jobject o = NULL;
       
   281     __ movoop(_obj, o);
       
   282 #ifdef ASSERT
       
   283     for (int i = 0; i < _bytes_to_copy; i++) {
       
   284       address ptr = (address)(_pc_start + i);
       
   285       int a_byte = (*ptr) & 0xFF;
       
   286       assert(a_byte == *start++, "should be the same code");
       
   287     }
       
   288 #endif
       
   289   } else {
       
   290     // make a copy the code which is going to be patched.
       
   291     for ( int i = 0; i < _bytes_to_copy; i++) {
       
   292       address ptr = (address)(_pc_start + i);
       
   293       int a_byte = (*ptr) & 0xFF;
       
   294       __ a_byte (a_byte);
       
   295       *ptr = 0x90; // make the site look like a nop
       
   296     }
       
   297   }
       
   298 
       
   299   address end_of_patch = __ pc();
       
   300   int bytes_to_skip = 0;
       
   301   if (_id == load_klass_id) {
       
   302     int offset = __ offset();
       
   303     if (CommentedAssembly) {
       
   304       __ block_comment(" being_initialized check");
       
   305     }
       
   306     assert(_obj != noreg, "must be a valid register");
       
   307     Register tmp = rax;
       
   308     if (_obj == tmp) tmp = rbx;
       
   309     __ pushl(tmp);
       
   310     __ get_thread(tmp);
       
   311     __ cmpl(tmp, Address(_obj, instanceKlass::init_thread_offset_in_bytes() + sizeof(klassOopDesc)));
       
   312     __ popl(tmp);
       
   313     __ jcc(Assembler::notEqual, call_patch);
       
   314 
       
   315     // access_field patches may execute the patched code before it's
       
   316     // copied back into place so we need to jump back into the main
       
   317     // code of the nmethod to continue execution.
       
   318     __ jmp(_patch_site_continuation);
       
   319 
       
   320     // make sure this extra code gets skipped
       
   321     bytes_to_skip += __ offset() - offset;
       
   322   }
       
   323   if (CommentedAssembly) {
       
   324     __ block_comment("patch data encoded as movl");
       
   325   }
       
   326   // Now emit the patch record telling the runtime how to find the
       
   327   // pieces of the patch.  We only need 3 bytes but for readability of
       
   328   // the disassembly we make the data look like a movl reg, imm32,
       
   329   // which requires 5 bytes
       
   330   int sizeof_patch_record = 5;
       
   331   bytes_to_skip += sizeof_patch_record;
       
   332 
       
   333   // emit the offsets needed to find the code to patch
       
   334   int being_initialized_entry_offset = __ pc() - being_initialized_entry + sizeof_patch_record;
       
   335 
       
   336   __ a_byte(0xB8);
       
   337   __ a_byte(0);
       
   338   __ a_byte(being_initialized_entry_offset);
       
   339   __ a_byte(bytes_to_skip);
       
   340   __ a_byte(_bytes_to_copy);
       
   341   address patch_info_pc = __ pc();
       
   342   assert(patch_info_pc - end_of_patch == bytes_to_skip, "incorrect patch info");
       
   343 
       
   344   address entry = __ pc();
       
   345   NativeGeneralJump::insert_unconditional((address)_pc_start, entry);
       
   346   address target = NULL;
       
   347   switch (_id) {
       
   348     case access_field_id:  target = Runtime1::entry_for(Runtime1::access_field_patching_id); break;
       
   349     case load_klass_id:    target = Runtime1::entry_for(Runtime1::load_klass_patching_id); break;
       
   350     default: ShouldNotReachHere();
       
   351   }
       
   352   __ bind(call_patch);
       
   353 
       
   354   if (CommentedAssembly) {
       
   355     __ block_comment("patch entry point");
       
   356   }
       
   357   __ call(RuntimeAddress(target));
       
   358   assert(_patch_info_offset == (patch_info_pc - __ pc()), "must not change");
       
   359   ce->add_call_info_here(_info);
       
   360   int jmp_off = __ offset();
       
   361   __ jmp(_patch_site_entry);
       
   362   // Add enough nops so deoptimization can overwrite the jmp above with a call
       
   363   // and not destroy the world.
       
   364   for (int j = __ offset() ; j < jmp_off + 5 ; j++ ) {
       
   365     __ nop();
       
   366   }
       
   367   if (_id == load_klass_id) {
       
   368     CodeSection* cs = __ code_section();
       
   369     RelocIterator iter(cs, (address)_pc_start, (address)(_pc_start + 1));
       
   370     relocInfo::change_reloc_info_for_address(&iter, (address) _pc_start, relocInfo::oop_type, relocInfo::none);
       
   371   }
       
   372 }
       
   373 
       
   374 
       
   375 void ImplicitNullCheckStub::emit_code(LIR_Assembler* ce) {
       
   376   ce->compilation()->implicit_exception_table()->append(_offset, __ offset());
       
   377   __ bind(_entry);
       
   378   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::throw_null_pointer_exception_id)));
       
   379   ce->add_call_info_here(_info);
       
   380   debug_only(__ should_not_reach_here());
       
   381 }
       
   382 
       
   383 
       
   384 void SimpleExceptionStub::emit_code(LIR_Assembler* ce) {
       
   385   assert(__ rsp_offset() == 0, "frame size should be fixed");
       
   386 
       
   387   __ bind(_entry);
       
   388   // pass the object on stack because all registers must be preserved
       
   389   if (_obj->is_cpu_register()) {
       
   390     ce->store_parameter(_obj->as_register(), 0);
       
   391   }
       
   392   __ call(RuntimeAddress(Runtime1::entry_for(_stub)));
       
   393   ce->add_call_info_here(_info);
       
   394   debug_only(__ should_not_reach_here());
       
   395 }
       
   396 
       
   397 
       
   398 ArrayStoreExceptionStub::ArrayStoreExceptionStub(CodeEmitInfo* info):
       
   399   _info(info) {
       
   400 }
       
   401 
       
   402 
       
   403 void ArrayStoreExceptionStub::emit_code(LIR_Assembler* ce) {
       
   404   assert(__ rsp_offset() == 0, "frame size should be fixed");
       
   405   __ bind(_entry);
       
   406   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::throw_array_store_exception_id)));
       
   407   ce->add_call_info_here(_info);
       
   408   debug_only(__ should_not_reach_here());
       
   409 }
       
   410 
       
   411 
       
   412 void ArrayCopyStub::emit_code(LIR_Assembler* ce) {
       
   413   //---------------slow case: call to native-----------------
       
   414   __ bind(_entry);
       
   415   // Figure out where the args should go
       
   416   // This should really convert the IntrinsicID to the methodOop and signature
       
   417   // but I don't know how to do that.
       
   418   //
       
   419   VMRegPair args[5];
       
   420   BasicType signature[5] = { T_OBJECT, T_INT, T_OBJECT, T_INT, T_INT};
       
   421   SharedRuntime::java_calling_convention(signature, args, 5, true);
       
   422 
       
   423   // push parameters
       
   424   // (src, src_pos, dest, destPos, length)
       
   425   Register r[5];
       
   426   r[0] = src()->as_register();
       
   427   r[1] = src_pos()->as_register();
       
   428   r[2] = dst()->as_register();
       
   429   r[3] = dst_pos()->as_register();
       
   430   r[4] = length()->as_register();
       
   431 
       
   432   // next registers will get stored on the stack
       
   433   for (int i = 0; i < 5 ; i++ ) {
       
   434     VMReg r_1 = args[i].first();
       
   435     if (r_1->is_stack()) {
       
   436       int st_off = r_1->reg2stack() * wordSize;
       
   437       __ movl (Address(rsp, st_off), r[i]);
       
   438     } else {
       
   439       assert(r[i] == args[i].first()->as_Register(), "Wrong register for arg ");
       
   440     }
       
   441   }
       
   442 
       
   443   ce->align_call(lir_static_call);
       
   444 
       
   445   ce->emit_static_call_stub();
       
   446   AddressLiteral resolve(SharedRuntime::get_resolve_static_call_stub(),
       
   447                          relocInfo::static_call_type);
       
   448   __ call(resolve);
       
   449   ce->add_call_info_here(info());
       
   450 
       
   451 #ifndef PRODUCT
       
   452   __ increment(ExternalAddress((address)&Runtime1::_arraycopy_slowcase_cnt));
       
   453 #endif
       
   454 
       
   455   __ jmp(_continuation);
       
   456 }
       
   457 
       
   458 
       
   459 #undef __