src/hotspot/share/gc/cms/parCardTableModRefBS.cpp
branchhttp-client-branch
changeset 56378 41fe61be5930
parent 56377 eef94a3576a4
parent 49493 814bd31f8da0
child 56379 c59f684f1eda
equal deleted inserted replaced
56377:eef94a3576a4 56378:41fe61be5930
     1 /*
       
     2  * Copyright (c) 2007, 2018, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "gc/cms/cmsHeap.hpp"
       
    27 #include "gc/shared/cardTableModRefBS.hpp"
       
    28 #include "gc/shared/cardTableRS.hpp"
       
    29 #include "gc/shared/collectedHeap.hpp"
       
    30 #include "gc/shared/space.inline.hpp"
       
    31 #include "memory/allocation.inline.hpp"
       
    32 #include "memory/virtualspace.hpp"
       
    33 #include "oops/oop.inline.hpp"
       
    34 #include "runtime/java.hpp"
       
    35 #include "runtime/mutexLocker.hpp"
       
    36 #include "runtime/orderAccess.inline.hpp"
       
    37 #include "runtime/vmThread.hpp"
       
    38 
       
    39 void CardTableRS::
       
    40 non_clean_card_iterate_parallel_work(Space* sp, MemRegion mr,
       
    41                                      OopsInGenClosure* cl,
       
    42                                      CardTableRS* ct,
       
    43                                      uint n_threads) {
       
    44   assert(n_threads > 0, "expected n_threads > 0");
       
    45   assert(n_threads <= ParallelGCThreads,
       
    46          "n_threads: %u > ParallelGCThreads: %u", n_threads, ParallelGCThreads);
       
    47 
       
    48   // Make sure the LNC array is valid for the space.
       
    49   jbyte**   lowest_non_clean;
       
    50   uintptr_t lowest_non_clean_base_chunk_index;
       
    51   size_t    lowest_non_clean_chunk_size;
       
    52   get_LNC_array_for_space(sp, lowest_non_clean,
       
    53                           lowest_non_clean_base_chunk_index,
       
    54                           lowest_non_clean_chunk_size);
       
    55 
       
    56   uint n_strides = n_threads * ParGCStridesPerThread;
       
    57   SequentialSubTasksDone* pst = sp->par_seq_tasks();
       
    58   // Sets the condition for completion of the subtask (how many threads
       
    59   // need to finish in order to be done).
       
    60   pst->set_n_threads(n_threads);
       
    61   pst->set_n_tasks(n_strides);
       
    62 
       
    63   uint stride = 0;
       
    64   while (!pst->is_task_claimed(/* reference */ stride)) {
       
    65     process_stride(sp, mr, stride, n_strides,
       
    66                    cl, ct,
       
    67                    lowest_non_clean,
       
    68                    lowest_non_clean_base_chunk_index,
       
    69                    lowest_non_clean_chunk_size);
       
    70   }
       
    71   if (pst->all_tasks_completed()) {
       
    72     // Clear lowest_non_clean array for next time.
       
    73     intptr_t first_chunk_index = addr_to_chunk_index(mr.start());
       
    74     uintptr_t last_chunk_index  = addr_to_chunk_index(mr.last());
       
    75     for (uintptr_t ch = first_chunk_index; ch <= last_chunk_index; ch++) {
       
    76       intptr_t ind = ch - lowest_non_clean_base_chunk_index;
       
    77       assert(0 <= ind && ind < (intptr_t)lowest_non_clean_chunk_size,
       
    78              "Bounds error");
       
    79       lowest_non_clean[ind] = NULL;
       
    80     }
       
    81   }
       
    82 }
       
    83 
       
    84 void
       
    85 CardTableRS::
       
    86 process_stride(Space* sp,
       
    87                MemRegion used,
       
    88                jint stride, int n_strides,
       
    89                OopsInGenClosure* cl,
       
    90                CardTableRS* ct,
       
    91                jbyte** lowest_non_clean,
       
    92                uintptr_t lowest_non_clean_base_chunk_index,
       
    93                size_t    lowest_non_clean_chunk_size) {
       
    94   // We go from higher to lower addresses here; it wouldn't help that much
       
    95   // because of the strided parallelism pattern used here.
       
    96 
       
    97   // Find the first card address of the first chunk in the stride that is
       
    98   // at least "bottom" of the used region.
       
    99   jbyte*    start_card  = byte_for(used.start());
       
   100   jbyte*    end_card    = byte_after(used.last());
       
   101   uintptr_t start_chunk = addr_to_chunk_index(used.start());
       
   102   uintptr_t start_chunk_stride_num = start_chunk % n_strides;
       
   103   jbyte* chunk_card_start;
       
   104 
       
   105   if ((uintptr_t)stride >= start_chunk_stride_num) {
       
   106     chunk_card_start = (jbyte*)(start_card +
       
   107                                 (stride - start_chunk_stride_num) *
       
   108                                 ParGCCardsPerStrideChunk);
       
   109   } else {
       
   110     // Go ahead to the next chunk group boundary, then to the requested stride.
       
   111     chunk_card_start = (jbyte*)(start_card +
       
   112                                 (n_strides - start_chunk_stride_num + stride) *
       
   113                                 ParGCCardsPerStrideChunk);
       
   114   }
       
   115 
       
   116   while (chunk_card_start < end_card) {
       
   117     // Even though we go from lower to higher addresses below, the
       
   118     // strided parallelism can interleave the actual processing of the
       
   119     // dirty pages in various ways. For a specific chunk within this
       
   120     // stride, we take care to avoid double scanning or missing a card
       
   121     // by suitably initializing the "min_done" field in process_chunk_boundaries()
       
   122     // below, together with the dirty region extension accomplished in
       
   123     // DirtyCardToOopClosure::do_MemRegion().
       
   124     jbyte*    chunk_card_end = chunk_card_start + ParGCCardsPerStrideChunk;
       
   125     // Invariant: chunk_mr should be fully contained within the "used" region.
       
   126     MemRegion chunk_mr       = MemRegion(addr_for(chunk_card_start),
       
   127                                          chunk_card_end >= end_card ?
       
   128                                            used.end() : addr_for(chunk_card_end));
       
   129     assert(chunk_mr.word_size() > 0, "[chunk_card_start > used_end)");
       
   130     assert(used.contains(chunk_mr), "chunk_mr should be subset of used");
       
   131 
       
   132     // This function is used by the parallel card table iteration.
       
   133     const bool parallel = true;
       
   134 
       
   135     DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(),
       
   136                                                      cl->gen_boundary(),
       
   137                                                      parallel);
       
   138     ClearNoncleanCardWrapper clear_cl(dcto_cl, ct, parallel);
       
   139 
       
   140 
       
   141     // Process the chunk.
       
   142     process_chunk_boundaries(sp,
       
   143                              dcto_cl,
       
   144                              chunk_mr,
       
   145                              used,
       
   146                              lowest_non_clean,
       
   147                              lowest_non_clean_base_chunk_index,
       
   148                              lowest_non_clean_chunk_size);
       
   149 
       
   150     // We want the LNC array updates above in process_chunk_boundaries
       
   151     // to be visible before any of the card table value changes as a
       
   152     // result of the dirty card iteration below.
       
   153     OrderAccess::storestore();
       
   154 
       
   155     // We want to clear the cards: clear_cl here does the work of finding
       
   156     // contiguous dirty ranges of cards to process and clear.
       
   157     clear_cl.do_MemRegion(chunk_mr);
       
   158 
       
   159     // Find the next chunk of the stride.
       
   160     chunk_card_start += ParGCCardsPerStrideChunk * n_strides;
       
   161   }
       
   162 }
       
   163 
       
   164 void
       
   165 CardTableRS::
       
   166 process_chunk_boundaries(Space* sp,
       
   167                          DirtyCardToOopClosure* dcto_cl,
       
   168                          MemRegion chunk_mr,
       
   169                          MemRegion used,
       
   170                          jbyte** lowest_non_clean,
       
   171                          uintptr_t lowest_non_clean_base_chunk_index,
       
   172                          size_t    lowest_non_clean_chunk_size)
       
   173 {
       
   174   // We must worry about non-array objects that cross chunk boundaries,
       
   175   // because such objects are both precisely and imprecisely marked:
       
   176   // .. if the head of such an object is dirty, the entire object
       
   177   //    needs to be scanned, under the interpretation that this
       
   178   //    was an imprecise mark
       
   179   // .. if the head of such an object is not dirty, we can assume
       
   180   //    precise marking and it's efficient to scan just the dirty
       
   181   //    cards.
       
   182   // In either case, each scanned reference must be scanned precisely
       
   183   // once so as to avoid cloning of a young referent. For efficiency,
       
   184   // our closures depend on this property and do not protect against
       
   185   // double scans.
       
   186 
       
   187   uintptr_t start_chunk_index = addr_to_chunk_index(chunk_mr.start());
       
   188   assert(start_chunk_index >= lowest_non_clean_base_chunk_index, "Bounds error.");
       
   189   uintptr_t cur_chunk_index   = start_chunk_index - lowest_non_clean_base_chunk_index;
       
   190 
       
   191   // First, set "our" lowest_non_clean entry, which would be
       
   192   // used by the thread scanning an adjoining left chunk with
       
   193   // a non-array object straddling the mutual boundary.
       
   194   // Find the object that spans our boundary, if one exists.
       
   195   // first_block is the block possibly straddling our left boundary.
       
   196   HeapWord* first_block = sp->block_start(chunk_mr.start());
       
   197   assert((chunk_mr.start() != used.start()) || (first_block == chunk_mr.start()),
       
   198          "First chunk should always have a co-initial block");
       
   199   // Does the block straddle the chunk's left boundary, and is it
       
   200   // a non-array object?
       
   201   if (first_block < chunk_mr.start()        // first block straddles left bdry
       
   202       && sp->block_is_obj(first_block)      // first block is an object
       
   203       && !(oop(first_block)->is_objArray()  // first block is not an array (arrays are precisely dirtied)
       
   204            || oop(first_block)->is_typeArray())) {
       
   205     // Find our least non-clean card, so that a left neighbor
       
   206     // does not scan an object straddling the mutual boundary
       
   207     // too far to the right, and attempt to scan a portion of
       
   208     // that object twice.
       
   209     jbyte* first_dirty_card = NULL;
       
   210     jbyte* last_card_of_first_obj =
       
   211         byte_for(first_block + sp->block_size(first_block) - 1);
       
   212     jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start());
       
   213     jbyte* last_card_of_cur_chunk = byte_for(chunk_mr.last());
       
   214     jbyte* last_card_to_check =
       
   215       (jbyte*) MIN2((intptr_t) last_card_of_cur_chunk,
       
   216                     (intptr_t) last_card_of_first_obj);
       
   217     // Note that this does not need to go beyond our last card
       
   218     // if our first object completely straddles this chunk.
       
   219     for (jbyte* cur = first_card_of_cur_chunk;
       
   220          cur <= last_card_to_check; cur++) {
       
   221       jbyte val = *cur;
       
   222       if (card_will_be_scanned(val)) {
       
   223         first_dirty_card = cur; break;
       
   224       } else {
       
   225         assert(!card_may_have_been_dirty(val), "Error");
       
   226       }
       
   227     }
       
   228     if (first_dirty_card != NULL) {
       
   229       assert(cur_chunk_index < lowest_non_clean_chunk_size, "Bounds error.");
       
   230       assert(lowest_non_clean[cur_chunk_index] == NULL,
       
   231              "Write exactly once : value should be stable hereafter for this round");
       
   232       lowest_non_clean[cur_chunk_index] = first_dirty_card;
       
   233     }
       
   234   } else {
       
   235     // In this case we can help our neighbor by just asking them
       
   236     // to stop at our first card (even though it may not be dirty).
       
   237     assert(lowest_non_clean[cur_chunk_index] == NULL, "Write once : value should be stable hereafter");
       
   238     jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start());
       
   239     lowest_non_clean[cur_chunk_index] = first_card_of_cur_chunk;
       
   240   }
       
   241 
       
   242   // Next, set our own max_to_do, which will strictly/exclusively bound
       
   243   // the highest address that we will scan past the right end of our chunk.
       
   244   HeapWord* max_to_do = NULL;
       
   245   if (chunk_mr.end() < used.end()) {
       
   246     // This is not the last chunk in the used region.
       
   247     // What is our last block? We check the first block of
       
   248     // the next (right) chunk rather than strictly check our last block
       
   249     // because it's potentially more efficient to do so.
       
   250     HeapWord* const last_block = sp->block_start(chunk_mr.end());
       
   251     assert(last_block <= chunk_mr.end(), "In case this property changes.");
       
   252     if ((last_block == chunk_mr.end())     // our last block does not straddle boundary
       
   253         || !sp->block_is_obj(last_block)   // last_block isn't an object
       
   254         || oop(last_block)->is_objArray()  // last_block is an array (precisely marked)
       
   255         || oop(last_block)->is_typeArray()) {
       
   256       max_to_do = chunk_mr.end();
       
   257     } else {
       
   258       assert(last_block < chunk_mr.end(), "Tautology");
       
   259       // It is a non-array object that straddles the right boundary of this chunk.
       
   260       // last_obj_card is the card corresponding to the start of the last object
       
   261       // in the chunk.  Note that the last object may not start in
       
   262       // the chunk.
       
   263       jbyte* const last_obj_card = byte_for(last_block);
       
   264       const jbyte val = *last_obj_card;
       
   265       if (!card_will_be_scanned(val)) {
       
   266         assert(!card_may_have_been_dirty(val), "Error");
       
   267         // The card containing the head is not dirty.  Any marks on
       
   268         // subsequent cards still in this chunk must have been made
       
   269         // precisely; we can cap processing at the end of our chunk.
       
   270         max_to_do = chunk_mr.end();
       
   271       } else {
       
   272         // The last object must be considered dirty, and extends onto the
       
   273         // following chunk.  Look for a dirty card in that chunk that will
       
   274         // bound our processing.
       
   275         jbyte* limit_card = NULL;
       
   276         const size_t last_block_size = sp->block_size(last_block);
       
   277         jbyte* const last_card_of_last_obj =
       
   278           byte_for(last_block + last_block_size - 1);
       
   279         jbyte* const first_card_of_next_chunk = byte_for(chunk_mr.end());
       
   280         // This search potentially goes a long distance looking
       
   281         // for the next card that will be scanned, terminating
       
   282         // at the end of the last_block, if no earlier dirty card
       
   283         // is found.
       
   284         assert(byte_for(chunk_mr.end()) - byte_for(chunk_mr.start()) == ParGCCardsPerStrideChunk,
       
   285                "last card of next chunk may be wrong");
       
   286         for (jbyte* cur = first_card_of_next_chunk;
       
   287              cur <= last_card_of_last_obj; cur++) {
       
   288           const jbyte val = *cur;
       
   289           if (card_will_be_scanned(val)) {
       
   290             limit_card = cur; break;
       
   291           } else {
       
   292             assert(!card_may_have_been_dirty(val), "Error: card can't be skipped");
       
   293           }
       
   294         }
       
   295         if (limit_card != NULL) {
       
   296           max_to_do = addr_for(limit_card);
       
   297           assert(limit_card != NULL && max_to_do != NULL, "Error");
       
   298         } else {
       
   299           // The following is a pessimistic value, because it's possible
       
   300           // that a dirty card on a subsequent chunk has been cleared by
       
   301           // the time we get to look at it; we'll correct for that further below,
       
   302           // using the LNC array which records the least non-clean card
       
   303           // before cards were cleared in a particular chunk.
       
   304           limit_card = last_card_of_last_obj;
       
   305           max_to_do = last_block + last_block_size;
       
   306           assert(limit_card != NULL && max_to_do != NULL, "Error");
       
   307         }
       
   308         assert(0 < cur_chunk_index+1 && cur_chunk_index+1 < lowest_non_clean_chunk_size,
       
   309                "Bounds error.");
       
   310         // It is possible that a dirty card for the last object may have been
       
   311         // cleared before we had a chance to examine it. In that case, the value
       
   312         // will have been logged in the LNC for that chunk.
       
   313         // We need to examine as many chunks to the right as this object
       
   314         // covers. However, we need to bound this checking to the largest
       
   315         // entry in the LNC array: this is because the heap may expand
       
   316         // after the LNC array has been created but before we reach this point,
       
   317         // and the last block in our chunk may have been expanded to include
       
   318         // the expansion delta (and possibly subsequently allocated from, so
       
   319         // it wouldn't be sufficient to check whether that last block was
       
   320         // or was not an object at this point).
       
   321         uintptr_t last_chunk_index_to_check = addr_to_chunk_index(last_block + last_block_size - 1)
       
   322                                               - lowest_non_clean_base_chunk_index;
       
   323         const uintptr_t last_chunk_index    = addr_to_chunk_index(used.last())
       
   324                                               - lowest_non_clean_base_chunk_index;
       
   325         if (last_chunk_index_to_check > last_chunk_index) {
       
   326           assert(last_block + last_block_size > used.end(),
       
   327                  "Inconsistency detected: last_block [" PTR_FORMAT "," PTR_FORMAT "]"
       
   328                  " does not exceed used.end() = " PTR_FORMAT ","
       
   329                  " yet last_chunk_index_to_check " INTPTR_FORMAT
       
   330                  " exceeds last_chunk_index " INTPTR_FORMAT,
       
   331                  p2i(last_block), p2i(last_block + last_block_size),
       
   332                  p2i(used.end()),
       
   333                  last_chunk_index_to_check, last_chunk_index);
       
   334           assert(sp->used_region().end() > used.end(),
       
   335                  "Expansion did not happen: "
       
   336                  "[" PTR_FORMAT "," PTR_FORMAT ") -> [" PTR_FORMAT "," PTR_FORMAT ")",
       
   337                  p2i(sp->used_region().start()), p2i(sp->used_region().end()),
       
   338                  p2i(used.start()), p2i(used.end()));
       
   339           last_chunk_index_to_check = last_chunk_index;
       
   340         }
       
   341         for (uintptr_t lnc_index = cur_chunk_index + 1;
       
   342              lnc_index <= last_chunk_index_to_check;
       
   343              lnc_index++) {
       
   344           jbyte* lnc_card = lowest_non_clean[lnc_index];
       
   345           if (lnc_card != NULL) {
       
   346             // we can stop at the first non-NULL entry we find
       
   347             if (lnc_card <= limit_card) {
       
   348               limit_card = lnc_card;
       
   349               max_to_do = addr_for(limit_card);
       
   350               assert(limit_card != NULL && max_to_do != NULL, "Error");
       
   351             }
       
   352             // In any case, we break now
       
   353             break;
       
   354           }  // else continue to look for a non-NULL entry if any
       
   355         }
       
   356         assert(limit_card != NULL && max_to_do != NULL, "Error");
       
   357       }
       
   358       assert(max_to_do != NULL, "OOPS 1 !");
       
   359     }
       
   360     assert(max_to_do != NULL, "OOPS 2!");
       
   361   } else {
       
   362     max_to_do = used.end();
       
   363   }
       
   364   assert(max_to_do != NULL, "OOPS 3!");
       
   365   // Now we can set the closure we're using so it doesn't to beyond
       
   366   // max_to_do.
       
   367   dcto_cl->set_min_done(max_to_do);
       
   368 #ifndef PRODUCT
       
   369   dcto_cl->set_last_bottom(max_to_do);
       
   370 #endif
       
   371 }
       
   372 
       
   373 void
       
   374 CardTableRS::
       
   375 get_LNC_array_for_space(Space* sp,
       
   376                         jbyte**& lowest_non_clean,
       
   377                         uintptr_t& lowest_non_clean_base_chunk_index,
       
   378                         size_t& lowest_non_clean_chunk_size) {
       
   379 
       
   380   int       i        = find_covering_region_containing(sp->bottom());
       
   381   MemRegion covered  = _covered[i];
       
   382   size_t    n_chunks = chunks_to_cover(covered);
       
   383 
       
   384   // Only the first thread to obtain the lock will resize the
       
   385   // LNC array for the covered region.  Any later expansion can't affect
       
   386   // the used_at_save_marks region.
       
   387   // (I observed a bug in which the first thread to execute this would
       
   388   // resize, and then it would cause "expand_and_allocate" that would
       
   389   // increase the number of chunks in the covered region.  Then a second
       
   390   // thread would come and execute this, see that the size didn't match,
       
   391   // and free and allocate again.  So the first thread would be using a
       
   392   // freed "_lowest_non_clean" array.)
       
   393 
       
   394   // Do a dirty read here. If we pass the conditional then take the rare
       
   395   // event lock and do the read again in case some other thread had already
       
   396   // succeeded and done the resize.
       
   397   int cur_collection = CMSHeap::heap()->total_collections();
       
   398   // Updated _last_LNC_resizing_collection[i] must not be visible before
       
   399   // _lowest_non_clean and friends are visible. Therefore use acquire/release
       
   400   // to guarantee this on non TSO architecures.
       
   401   if (OrderAccess::load_acquire(&_last_LNC_resizing_collection[i]) != cur_collection) {
       
   402     MutexLocker x(ParGCRareEvent_lock);
       
   403     // This load_acquire is here for clarity only. The MutexLocker already fences.
       
   404     if (OrderAccess::load_acquire(&_last_LNC_resizing_collection[i]) != cur_collection) {
       
   405       if (_lowest_non_clean[i] == NULL ||
       
   406           n_chunks != _lowest_non_clean_chunk_size[i]) {
       
   407 
       
   408         // Should we delete the old?
       
   409         if (_lowest_non_clean[i] != NULL) {
       
   410           assert(n_chunks != _lowest_non_clean_chunk_size[i],
       
   411                  "logical consequence");
       
   412           FREE_C_HEAP_ARRAY(CardPtr, _lowest_non_clean[i]);
       
   413           _lowest_non_clean[i] = NULL;
       
   414         }
       
   415         // Now allocate a new one if necessary.
       
   416         if (_lowest_non_clean[i] == NULL) {
       
   417           _lowest_non_clean[i]                  = NEW_C_HEAP_ARRAY(CardPtr, n_chunks, mtGC);
       
   418           _lowest_non_clean_chunk_size[i]       = n_chunks;
       
   419           _lowest_non_clean_base_chunk_index[i] = addr_to_chunk_index(covered.start());
       
   420           for (int j = 0; j < (int)n_chunks; j++)
       
   421             _lowest_non_clean[i][j] = NULL;
       
   422         }
       
   423       }
       
   424       // Make sure this gets visible only after _lowest_non_clean* was initialized
       
   425       OrderAccess::release_store(&_last_LNC_resizing_collection[i], cur_collection);
       
   426     }
       
   427   }
       
   428   // In any case, now do the initialization.
       
   429   lowest_non_clean                  = _lowest_non_clean[i];
       
   430   lowest_non_clean_base_chunk_index = _lowest_non_clean_base_chunk_index[i];
       
   431   lowest_non_clean_chunk_size       = _lowest_non_clean_chunk_size[i];
       
   432 }