jdk/src/jdk.crypto.ec/share/native/libsunec/impl/ec2_mont.c
changeset 25859 3317bb8137f4
parent 9774 50a2b28ca54c
child 45993 076a6b39a5a9
equal deleted inserted replaced
25858:836adbf7a2cd 25859:3317bb8137f4
       
     1 /*
       
     2  * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
       
     3  * Use is subject to license terms.
       
     4  *
       
     5  * This library is free software; you can redistribute it and/or
       
     6  * modify it under the terms of the GNU Lesser General Public
       
     7  * License as published by the Free Software Foundation; either
       
     8  * version 2.1 of the License, or (at your option) any later version.
       
     9  *
       
    10  * This library is distributed in the hope that it will be useful,
       
    11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
       
    12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
       
    13  * Lesser General Public License for more details.
       
    14  *
       
    15  * You should have received a copy of the GNU Lesser General Public License
       
    16  * along with this library; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  */
       
    23 
       
    24 /* *********************************************************************
       
    25  *
       
    26  * The Original Code is the elliptic curve math library for binary polynomial field curves.
       
    27  *
       
    28  * The Initial Developer of the Original Code is
       
    29  * Sun Microsystems, Inc.
       
    30  * Portions created by the Initial Developer are Copyright (C) 2003
       
    31  * the Initial Developer. All Rights Reserved.
       
    32  *
       
    33  * Contributor(s):
       
    34  *   Sheueling Chang-Shantz <sheueling.chang@sun.com>,
       
    35  *   Stephen Fung <fungstep@hotmail.com>, and
       
    36  *   Douglas Stebila <douglas@stebila.ca>, Sun Microsystems Laboratories.
       
    37  *
       
    38  *********************************************************************** */
       
    39 
       
    40 #include "ec2.h"
       
    41 #include "mplogic.h"
       
    42 #include "mp_gf2m.h"
       
    43 #ifndef _KERNEL
       
    44 #include <stdlib.h>
       
    45 #endif
       
    46 
       
    47 /* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery
       
    48  * projective coordinates. Uses algorithm Mdouble in appendix of Lopez, J.
       
    49  * and Dahab, R.  "Fast multiplication on elliptic curves over GF(2^m)
       
    50  * without precomputation". modified to not require precomputation of
       
    51  * c=b^{2^{m-1}}. */
       
    52 static mp_err
       
    53 gf2m_Mdouble(mp_int *x, mp_int *z, const ECGroup *group, int kmflag)
       
    54 {
       
    55         mp_err res = MP_OKAY;
       
    56         mp_int t1;
       
    57 
       
    58         MP_DIGITS(&t1) = 0;
       
    59         MP_CHECKOK(mp_init(&t1, kmflag));
       
    60 
       
    61         MP_CHECKOK(group->meth->field_sqr(x, x, group->meth));
       
    62         MP_CHECKOK(group->meth->field_sqr(z, &t1, group->meth));
       
    63         MP_CHECKOK(group->meth->field_mul(x, &t1, z, group->meth));
       
    64         MP_CHECKOK(group->meth->field_sqr(x, x, group->meth));
       
    65         MP_CHECKOK(group->meth->field_sqr(&t1, &t1, group->meth));
       
    66         MP_CHECKOK(group->meth->
       
    67                            field_mul(&group->curveb, &t1, &t1, group->meth));
       
    68         MP_CHECKOK(group->meth->field_add(x, &t1, x, group->meth));
       
    69 
       
    70   CLEANUP:
       
    71         mp_clear(&t1);
       
    72         return res;
       
    73 }
       
    74 
       
    75 /* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in
       
    76  * Montgomery projective coordinates. Uses algorithm Madd in appendix of
       
    77  * Lopex, J. and Dahab, R.  "Fast multiplication on elliptic curves over
       
    78  * GF(2^m) without precomputation". */
       
    79 static mp_err
       
    80 gf2m_Madd(const mp_int *x, mp_int *x1, mp_int *z1, mp_int *x2, mp_int *z2,
       
    81                   const ECGroup *group, int kmflag)
       
    82 {
       
    83         mp_err res = MP_OKAY;
       
    84         mp_int t1, t2;
       
    85 
       
    86         MP_DIGITS(&t1) = 0;
       
    87         MP_DIGITS(&t2) = 0;
       
    88         MP_CHECKOK(mp_init(&t1, kmflag));
       
    89         MP_CHECKOK(mp_init(&t2, kmflag));
       
    90 
       
    91         MP_CHECKOK(mp_copy(x, &t1));
       
    92         MP_CHECKOK(group->meth->field_mul(x1, z2, x1, group->meth));
       
    93         MP_CHECKOK(group->meth->field_mul(z1, x2, z1, group->meth));
       
    94         MP_CHECKOK(group->meth->field_mul(x1, z1, &t2, group->meth));
       
    95         MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth));
       
    96         MP_CHECKOK(group->meth->field_sqr(z1, z1, group->meth));
       
    97         MP_CHECKOK(group->meth->field_mul(z1, &t1, x1, group->meth));
       
    98         MP_CHECKOK(group->meth->field_add(x1, &t2, x1, group->meth));
       
    99 
       
   100   CLEANUP:
       
   101         mp_clear(&t1);
       
   102         mp_clear(&t2);
       
   103         return res;
       
   104 }
       
   105 
       
   106 /* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
       
   107  * using Montgomery point multiplication algorithm Mxy() in appendix of
       
   108  * Lopex, J. and Dahab, R.  "Fast multiplication on elliptic curves over
       
   109  * GF(2^m) without precomputation". Returns: 0 on error 1 if return value
       
   110  * should be the point at infinity 2 otherwise */
       
   111 static int
       
   112 gf2m_Mxy(const mp_int *x, const mp_int *y, mp_int *x1, mp_int *z1,
       
   113                  mp_int *x2, mp_int *z2, const ECGroup *group)
       
   114 {
       
   115         mp_err res = MP_OKAY;
       
   116         int ret = 0;
       
   117         mp_int t3, t4, t5;
       
   118 
       
   119         MP_DIGITS(&t3) = 0;
       
   120         MP_DIGITS(&t4) = 0;
       
   121         MP_DIGITS(&t5) = 0;
       
   122         MP_CHECKOK(mp_init(&t3, FLAG(x2)));
       
   123         MP_CHECKOK(mp_init(&t4, FLAG(x2)));
       
   124         MP_CHECKOK(mp_init(&t5, FLAG(x2)));
       
   125 
       
   126         if (mp_cmp_z(z1) == 0) {
       
   127                 mp_zero(x2);
       
   128                 mp_zero(z2);
       
   129                 ret = 1;
       
   130                 goto CLEANUP;
       
   131         }
       
   132 
       
   133         if (mp_cmp_z(z2) == 0) {
       
   134                 MP_CHECKOK(mp_copy(x, x2));
       
   135                 MP_CHECKOK(group->meth->field_add(x, y, z2, group->meth));
       
   136                 ret = 2;
       
   137                 goto CLEANUP;
       
   138         }
       
   139 
       
   140         MP_CHECKOK(mp_set_int(&t5, 1));
       
   141         if (group->meth->field_enc) {
       
   142                 MP_CHECKOK(group->meth->field_enc(&t5, &t5, group->meth));
       
   143         }
       
   144 
       
   145         MP_CHECKOK(group->meth->field_mul(z1, z2, &t3, group->meth));
       
   146 
       
   147         MP_CHECKOK(group->meth->field_mul(z1, x, z1, group->meth));
       
   148         MP_CHECKOK(group->meth->field_add(z1, x1, z1, group->meth));
       
   149         MP_CHECKOK(group->meth->field_mul(z2, x, z2, group->meth));
       
   150         MP_CHECKOK(group->meth->field_mul(z2, x1, x1, group->meth));
       
   151         MP_CHECKOK(group->meth->field_add(z2, x2, z2, group->meth));
       
   152 
       
   153         MP_CHECKOK(group->meth->field_mul(z2, z1, z2, group->meth));
       
   154         MP_CHECKOK(group->meth->field_sqr(x, &t4, group->meth));
       
   155         MP_CHECKOK(group->meth->field_add(&t4, y, &t4, group->meth));
       
   156         MP_CHECKOK(group->meth->field_mul(&t4, &t3, &t4, group->meth));
       
   157         MP_CHECKOK(group->meth->field_add(&t4, z2, &t4, group->meth));
       
   158 
       
   159         MP_CHECKOK(group->meth->field_mul(&t3, x, &t3, group->meth));
       
   160         MP_CHECKOK(group->meth->field_div(&t5, &t3, &t3, group->meth));
       
   161         MP_CHECKOK(group->meth->field_mul(&t3, &t4, &t4, group->meth));
       
   162         MP_CHECKOK(group->meth->field_mul(x1, &t3, x2, group->meth));
       
   163         MP_CHECKOK(group->meth->field_add(x2, x, z2, group->meth));
       
   164 
       
   165         MP_CHECKOK(group->meth->field_mul(z2, &t4, z2, group->meth));
       
   166         MP_CHECKOK(group->meth->field_add(z2, y, z2, group->meth));
       
   167 
       
   168         ret = 2;
       
   169 
       
   170   CLEANUP:
       
   171         mp_clear(&t3);
       
   172         mp_clear(&t4);
       
   173         mp_clear(&t5);
       
   174         if (res == MP_OKAY) {
       
   175                 return ret;
       
   176         } else {
       
   177                 return 0;
       
   178         }
       
   179 }
       
   180 
       
   181 /* Computes R = nP based on algorithm 2P of Lopex, J. and Dahab, R.  "Fast
       
   182  * multiplication on elliptic curves over GF(2^m) without
       
   183  * precomputation". Elliptic curve points P and R can be identical. Uses
       
   184  * Montgomery projective coordinates. */
       
   185 mp_err
       
   186 ec_GF2m_pt_mul_mont(const mp_int *n, const mp_int *px, const mp_int *py,
       
   187                                         mp_int *rx, mp_int *ry, const ECGroup *group)
       
   188 {
       
   189         mp_err res = MP_OKAY;
       
   190         mp_int x1, x2, z1, z2;
       
   191         int i, j;
       
   192         mp_digit top_bit, mask;
       
   193 
       
   194         MP_DIGITS(&x1) = 0;
       
   195         MP_DIGITS(&x2) = 0;
       
   196         MP_DIGITS(&z1) = 0;
       
   197         MP_DIGITS(&z2) = 0;
       
   198         MP_CHECKOK(mp_init(&x1, FLAG(n)));
       
   199         MP_CHECKOK(mp_init(&x2, FLAG(n)));
       
   200         MP_CHECKOK(mp_init(&z1, FLAG(n)));
       
   201         MP_CHECKOK(mp_init(&z2, FLAG(n)));
       
   202 
       
   203         /* if result should be point at infinity */
       
   204         if ((mp_cmp_z(n) == 0) || (ec_GF2m_pt_is_inf_aff(px, py) == MP_YES)) {
       
   205                 MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry));
       
   206                 goto CLEANUP;
       
   207         }
       
   208 
       
   209         MP_CHECKOK(mp_copy(px, &x1));   /* x1 = px */
       
   210         MP_CHECKOK(mp_set_int(&z1, 1)); /* z1 = 1 */
       
   211         MP_CHECKOK(group->meth->field_sqr(&x1, &z2, group->meth));      /* z2 =
       
   212                                                                                                                                  * x1^2 =
       
   213                                                                                                                                  * px^2 */
       
   214         MP_CHECKOK(group->meth->field_sqr(&z2, &x2, group->meth));
       
   215         MP_CHECKOK(group->meth->field_add(&x2, &group->curveb, &x2, group->meth));      /* x2
       
   216                                                                                                                                                                  * =
       
   217                                                                                                                                                                  * px^4
       
   218                                                                                                                                                                  * +
       
   219                                                                                                                                                                  * b
       
   220                                                                                                                                                                  */
       
   221 
       
   222         /* find top-most bit and go one past it */
       
   223         i = MP_USED(n) - 1;
       
   224         j = MP_DIGIT_BIT - 1;
       
   225         top_bit = 1;
       
   226         top_bit <<= MP_DIGIT_BIT - 1;
       
   227         mask = top_bit;
       
   228         while (!(MP_DIGITS(n)[i] & mask)) {
       
   229                 mask >>= 1;
       
   230                 j--;
       
   231         }
       
   232         mask >>= 1;
       
   233         j--;
       
   234 
       
   235         /* if top most bit was at word break, go to next word */
       
   236         if (!mask) {
       
   237                 i--;
       
   238                 j = MP_DIGIT_BIT - 1;
       
   239                 mask = top_bit;
       
   240         }
       
   241 
       
   242         for (; i >= 0; i--) {
       
   243                 for (; j >= 0; j--) {
       
   244                         if (MP_DIGITS(n)[i] & mask) {
       
   245                                 MP_CHECKOK(gf2m_Madd(px, &x1, &z1, &x2, &z2, group, FLAG(n)));
       
   246                                 MP_CHECKOK(gf2m_Mdouble(&x2, &z2, group, FLAG(n)));
       
   247                         } else {
       
   248                                 MP_CHECKOK(gf2m_Madd(px, &x2, &z2, &x1, &z1, group, FLAG(n)));
       
   249                                 MP_CHECKOK(gf2m_Mdouble(&x1, &z1, group, FLAG(n)));
       
   250                         }
       
   251                         mask >>= 1;
       
   252                 }
       
   253                 j = MP_DIGIT_BIT - 1;
       
   254                 mask = top_bit;
       
   255         }
       
   256 
       
   257         /* convert out of "projective" coordinates */
       
   258         i = gf2m_Mxy(px, py, &x1, &z1, &x2, &z2, group);
       
   259         if (i == 0) {
       
   260                 res = MP_BADARG;
       
   261                 goto CLEANUP;
       
   262         } else if (i == 1) {
       
   263                 MP_CHECKOK(ec_GF2m_pt_set_inf_aff(rx, ry));
       
   264         } else {
       
   265                 MP_CHECKOK(mp_copy(&x2, rx));
       
   266                 MP_CHECKOK(mp_copy(&z2, ry));
       
   267         }
       
   268 
       
   269   CLEANUP:
       
   270         mp_clear(&x1);
       
   271         mp_clear(&x2);
       
   272         mp_clear(&z1);
       
   273         mp_clear(&z2);
       
   274         return res;
       
   275 }