jdk/src/java.base/share/classes/java/util/concurrent/ForkJoinPool.java
changeset 25859 3317bb8137f4
parent 22070 9a4f43c9b15a
child 26448 5853628b0e63
equal deleted inserted replaced
25858:836adbf7a2cd 25859:3317bb8137f4
       
     1 /*
       
     2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     3  *
       
     4  * This code is free software; you can redistribute it and/or modify it
       
     5  * under the terms of the GNU General Public License version 2 only, as
       
     6  * published by the Free Software Foundation.  Oracle designates this
       
     7  * particular file as subject to the "Classpath" exception as provided
       
     8  * by Oracle in the LICENSE file that accompanied this code.
       
     9  *
       
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    13  * version 2 for more details (a copy is included in the LICENSE file that
       
    14  * accompanied this code).
       
    15  *
       
    16  * You should have received a copy of the GNU General Public License version
       
    17  * 2 along with this work; if not, write to the Free Software Foundation,
       
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    19  *
       
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    21  * or visit www.oracle.com if you need additional information or have any
       
    22  * questions.
       
    23  */
       
    24 
       
    25 /*
       
    26  * This file is available under and governed by the GNU General Public
       
    27  * License version 2 only, as published by the Free Software Foundation.
       
    28  * However, the following notice accompanied the original version of this
       
    29  * file:
       
    30  *
       
    31  * Written by Doug Lea with assistance from members of JCP JSR-166
       
    32  * Expert Group and released to the public domain, as explained at
       
    33  * http://creativecommons.org/publicdomain/zero/1.0/
       
    34  */
       
    35 
       
    36 package java.util.concurrent;
       
    37 
       
    38 import java.lang.Thread.UncaughtExceptionHandler;
       
    39 import java.util.ArrayList;
       
    40 import java.util.Arrays;
       
    41 import java.util.Collection;
       
    42 import java.util.Collections;
       
    43 import java.util.List;
       
    44 import java.util.concurrent.AbstractExecutorService;
       
    45 import java.util.concurrent.Callable;
       
    46 import java.util.concurrent.ExecutorService;
       
    47 import java.util.concurrent.Future;
       
    48 import java.util.concurrent.RejectedExecutionException;
       
    49 import java.util.concurrent.RunnableFuture;
       
    50 import java.util.concurrent.ThreadLocalRandom;
       
    51 import java.util.concurrent.TimeUnit;
       
    52 import java.security.AccessControlContext;
       
    53 import java.security.ProtectionDomain;
       
    54 import java.security.Permissions;
       
    55 
       
    56 /**
       
    57  * An {@link ExecutorService} for running {@link ForkJoinTask}s.
       
    58  * A {@code ForkJoinPool} provides the entry point for submissions
       
    59  * from non-{@code ForkJoinTask} clients, as well as management and
       
    60  * monitoring operations.
       
    61  *
       
    62  * <p>A {@code ForkJoinPool} differs from other kinds of {@link
       
    63  * ExecutorService} mainly by virtue of employing
       
    64  * <em>work-stealing</em>: all threads in the pool attempt to find and
       
    65  * execute tasks submitted to the pool and/or created by other active
       
    66  * tasks (eventually blocking waiting for work if none exist). This
       
    67  * enables efficient processing when most tasks spawn other subtasks
       
    68  * (as do most {@code ForkJoinTask}s), as well as when many small
       
    69  * tasks are submitted to the pool from external clients.  Especially
       
    70  * when setting <em>asyncMode</em> to true in constructors, {@code
       
    71  * ForkJoinPool}s may also be appropriate for use with event-style
       
    72  * tasks that are never joined.
       
    73  *
       
    74  * <p>A static {@link #commonPool()} is available and appropriate for
       
    75  * most applications. The common pool is used by any ForkJoinTask that
       
    76  * is not explicitly submitted to a specified pool. Using the common
       
    77  * pool normally reduces resource usage (its threads are slowly
       
    78  * reclaimed during periods of non-use, and reinstated upon subsequent
       
    79  * use).
       
    80  *
       
    81  * <p>For applications that require separate or custom pools, a {@code
       
    82  * ForkJoinPool} may be constructed with a given target parallelism
       
    83  * level; by default, equal to the number of available processors. The
       
    84  * pool attempts to maintain enough active (or available) threads by
       
    85  * dynamically adding, suspending, or resuming internal worker
       
    86  * threads, even if some tasks are stalled waiting to join others.
       
    87  * However, no such adjustments are guaranteed in the face of blocked
       
    88  * I/O or other unmanaged synchronization. The nested {@link
       
    89  * ManagedBlocker} interface enables extension of the kinds of
       
    90  * synchronization accommodated.
       
    91  *
       
    92  * <p>In addition to execution and lifecycle control methods, this
       
    93  * class provides status check methods (for example
       
    94  * {@link #getStealCount}) that are intended to aid in developing,
       
    95  * tuning, and monitoring fork/join applications. Also, method
       
    96  * {@link #toString} returns indications of pool state in a
       
    97  * convenient form for informal monitoring.
       
    98  *
       
    99  * <p>As is the case with other ExecutorServices, there are three
       
   100  * main task execution methods summarized in the following table.
       
   101  * These are designed to be used primarily by clients not already
       
   102  * engaged in fork/join computations in the current pool.  The main
       
   103  * forms of these methods accept instances of {@code ForkJoinTask},
       
   104  * but overloaded forms also allow mixed execution of plain {@code
       
   105  * Runnable}- or {@code Callable}- based activities as well.  However,
       
   106  * tasks that are already executing in a pool should normally instead
       
   107  * use the within-computation forms listed in the table unless using
       
   108  * async event-style tasks that are not usually joined, in which case
       
   109  * there is little difference among choice of methods.
       
   110  *
       
   111  * <table BORDER CELLPADDING=3 CELLSPACING=1>
       
   112  * <caption>Summary of task execution methods</caption>
       
   113  *  <tr>
       
   114  *    <td></td>
       
   115  *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
       
   116  *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
       
   117  *  </tr>
       
   118  *  <tr>
       
   119  *    <td> <b>Arrange async execution</b></td>
       
   120  *    <td> {@link #execute(ForkJoinTask)}</td>
       
   121  *    <td> {@link ForkJoinTask#fork}</td>
       
   122  *  </tr>
       
   123  *  <tr>
       
   124  *    <td> <b>Await and obtain result</b></td>
       
   125  *    <td> {@link #invoke(ForkJoinTask)}</td>
       
   126  *    <td> {@link ForkJoinTask#invoke}</td>
       
   127  *  </tr>
       
   128  *  <tr>
       
   129  *    <td> <b>Arrange exec and obtain Future</b></td>
       
   130  *    <td> {@link #submit(ForkJoinTask)}</td>
       
   131  *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
       
   132  *  </tr>
       
   133  * </table>
       
   134  *
       
   135  * <p>The common pool is by default constructed with default
       
   136  * parameters, but these may be controlled by setting three
       
   137  * {@linkplain System#getProperty system properties}:
       
   138  * <ul>
       
   139  * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
       
   140  * - the parallelism level, a non-negative integer
       
   141  * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
       
   142  * - the class name of a {@link ForkJoinWorkerThreadFactory}
       
   143  * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
       
   144  * - the class name of a {@link UncaughtExceptionHandler}
       
   145  * </ul>
       
   146  * If a {@link SecurityManager} is present and no factory is
       
   147  * specified, then the default pool uses a factory supplying
       
   148  * threads that have no {@link Permissions} enabled.
       
   149  * The system class loader is used to load these classes.
       
   150  * Upon any error in establishing these settings, default parameters
       
   151  * are used. It is possible to disable or limit the use of threads in
       
   152  * the common pool by setting the parallelism property to zero, and/or
       
   153  * using a factory that may return {@code null}. However doing so may
       
   154  * cause unjoined tasks to never be executed.
       
   155  *
       
   156  * <p><b>Implementation notes</b>: This implementation restricts the
       
   157  * maximum number of running threads to 32767. Attempts to create
       
   158  * pools with greater than the maximum number result in
       
   159  * {@code IllegalArgumentException}.
       
   160  *
       
   161  * <p>This implementation rejects submitted tasks (that is, by throwing
       
   162  * {@link RejectedExecutionException}) only when the pool is shut down
       
   163  * or internal resources have been exhausted.
       
   164  *
       
   165  * @since 1.7
       
   166  * @author Doug Lea
       
   167  */
       
   168 @sun.misc.Contended
       
   169 public class ForkJoinPool extends AbstractExecutorService {
       
   170 
       
   171     /*
       
   172      * Implementation Overview
       
   173      *
       
   174      * This class and its nested classes provide the main
       
   175      * functionality and control for a set of worker threads:
       
   176      * Submissions from non-FJ threads enter into submission queues.
       
   177      * Workers take these tasks and typically split them into subtasks
       
   178      * that may be stolen by other workers.  Preference rules give
       
   179      * first priority to processing tasks from their own queues (LIFO
       
   180      * or FIFO, depending on mode), then to randomized FIFO steals of
       
   181      * tasks in other queues.
       
   182      *
       
   183      * WorkQueues
       
   184      * ==========
       
   185      *
       
   186      * Most operations occur within work-stealing queues (in nested
       
   187      * class WorkQueue).  These are special forms of Deques that
       
   188      * support only three of the four possible end-operations -- push,
       
   189      * pop, and poll (aka steal), under the further constraints that
       
   190      * push and pop are called only from the owning thread (or, as
       
   191      * extended here, under a lock), while poll may be called from
       
   192      * other threads.  (If you are unfamiliar with them, you probably
       
   193      * want to read Herlihy and Shavit's book "The Art of
       
   194      * Multiprocessor programming", chapter 16 describing these in
       
   195      * more detail before proceeding.)  The main work-stealing queue
       
   196      * design is roughly similar to those in the papers "Dynamic
       
   197      * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
       
   198      * (http://research.sun.com/scalable/pubs/index.html) and
       
   199      * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
       
   200      * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
       
   201      * See also "Correct and Efficient Work-Stealing for Weak Memory
       
   202      * Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
       
   203      * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
       
   204      * analysis of memory ordering (atomic, volatile etc) issues.  The
       
   205      * main differences ultimately stem from GC requirements that we
       
   206      * null out taken slots as soon as we can, to maintain as small a
       
   207      * footprint as possible even in programs generating huge numbers
       
   208      * of tasks. To accomplish this, we shift the CAS arbitrating pop
       
   209      * vs poll (steal) from being on the indices ("base" and "top") to
       
   210      * the slots themselves.  So, both a successful pop and poll
       
   211      * mainly entail a CAS of a slot from non-null to null.  Because
       
   212      * we rely on CASes of references, we do not need tag bits on base
       
   213      * or top.  They are simple ints as used in any circular
       
   214      * array-based queue (see for example ArrayDeque).  Updates to the
       
   215      * indices must still be ordered in a way that guarantees that top
       
   216      * == base means the queue is empty, but otherwise may err on the
       
   217      * side of possibly making the queue appear nonempty when a push,
       
   218      * pop, or poll have not fully committed. Note that this means
       
   219      * that the poll operation, considered individually, is not
       
   220      * wait-free. One thief cannot successfully continue until another
       
   221      * in-progress one (or, if previously empty, a push) completes.
       
   222      * However, in the aggregate, we ensure at least probabilistic
       
   223      * non-blockingness.  If an attempted steal fails, a thief always
       
   224      * chooses a different random victim target to try next. So, in
       
   225      * order for one thief to progress, it suffices for any
       
   226      * in-progress poll or new push on any empty queue to
       
   227      * complete. (This is why we normally use method pollAt and its
       
   228      * variants that try once at the apparent base index, else
       
   229      * consider alternative actions, rather than method poll.)
       
   230      *
       
   231      * This approach also enables support of a user mode in which local
       
   232      * task processing is in FIFO, not LIFO order, simply by using
       
   233      * poll rather than pop.  This can be useful in message-passing
       
   234      * frameworks in which tasks are never joined.  However neither
       
   235      * mode considers affinities, loads, cache localities, etc, so
       
   236      * rarely provide the best possible performance on a given
       
   237      * machine, but portably provide good throughput by averaging over
       
   238      * these factors.  (Further, even if we did try to use such
       
   239      * information, we do not usually have a basis for exploiting it.
       
   240      * For example, some sets of tasks profit from cache affinities,
       
   241      * but others are harmed by cache pollution effects.)
       
   242      *
       
   243      * WorkQueues are also used in a similar way for tasks submitted
       
   244      * to the pool. We cannot mix these tasks in the same queues used
       
   245      * for work-stealing (this would contaminate lifo/fifo
       
   246      * processing). Instead, we randomly associate submission queues
       
   247      * with submitting threads, using a form of hashing.  The
       
   248      * ThreadLocalRandom probe value serves as a hash code for
       
   249      * choosing existing queues, and may be randomly repositioned upon
       
   250      * contention with other submitters.  In essence, submitters act
       
   251      * like workers except that they are restricted to executing local
       
   252      * tasks that they submitted (or in the case of CountedCompleters,
       
   253      * others with the same root task).  However, because most
       
   254      * shared/external queue operations are more expensive than
       
   255      * internal, and because, at steady state, external submitters
       
   256      * will compete for CPU with workers, ForkJoinTask.join and
       
   257      * related methods disable them from repeatedly helping to process
       
   258      * tasks if all workers are active.  Insertion of tasks in shared
       
   259      * mode requires a lock (mainly to protect in the case of
       
   260      * resizing) but we use only a simple spinlock (using bits in
       
   261      * field qlock), because submitters encountering a busy queue move
       
   262      * on to try or create other queues -- they block only when
       
   263      * creating and registering new queues.
       
   264      *
       
   265      * Management
       
   266      * ==========
       
   267      *
       
   268      * The main throughput advantages of work-stealing stem from
       
   269      * decentralized control -- workers mostly take tasks from
       
   270      * themselves or each other. We cannot negate this in the
       
   271      * implementation of other management responsibilities. The main
       
   272      * tactic for avoiding bottlenecks is packing nearly all
       
   273      * essentially atomic control state into two volatile variables
       
   274      * that are by far most often read (not written) as status and
       
   275      * consistency checks.
       
   276      *
       
   277      * Field "ctl" contains 64 bits holding all the information needed
       
   278      * to atomically decide to add, inactivate, enqueue (on an event
       
   279      * queue), dequeue, and/or re-activate workers.  To enable this
       
   280      * packing, we restrict maximum parallelism to (1<<15)-1 (which is
       
   281      * far in excess of normal operating range) to allow ids, counts,
       
   282      * and their negations (used for thresholding) to fit into 16bit
       
   283      * fields.
       
   284      *
       
   285      * Field "plock" is a form of sequence lock with a saturating
       
   286      * shutdown bit (similarly for per-queue "qlocks"), mainly
       
   287      * protecting updates to the workQueues array, as well as to
       
   288      * enable shutdown.  When used as a lock, it is normally only very
       
   289      * briefly held, so is nearly always available after at most a
       
   290      * brief spin, but we use a monitor-based backup strategy to
       
   291      * block when needed.
       
   292      *
       
   293      * Recording WorkQueues.  WorkQueues are recorded in the
       
   294      * "workQueues" array that is created upon first use and expanded
       
   295      * if necessary.  Updates to the array while recording new workers
       
   296      * and unrecording terminated ones are protected from each other
       
   297      * by a lock but the array is otherwise concurrently readable, and
       
   298      * accessed directly.  To simplify index-based operations, the
       
   299      * array size is always a power of two, and all readers must
       
   300      * tolerate null slots. Worker queues are at odd indices. Shared
       
   301      * (submission) queues are at even indices, up to a maximum of 64
       
   302      * slots, to limit growth even if array needs to expand to add
       
   303      * more workers. Grouping them together in this way simplifies and
       
   304      * speeds up task scanning.
       
   305      *
       
   306      * All worker thread creation is on-demand, triggered by task
       
   307      * submissions, replacement of terminated workers, and/or
       
   308      * compensation for blocked workers. However, all other support
       
   309      * code is set up to work with other policies.  To ensure that we
       
   310      * do not hold on to worker references that would prevent GC, ALL
       
   311      * accesses to workQueues are via indices into the workQueues
       
   312      * array (which is one source of some of the messy code
       
   313      * constructions here). In essence, the workQueues array serves as
       
   314      * a weak reference mechanism. Thus for example the wait queue
       
   315      * field of ctl stores indices, not references.  Access to the
       
   316      * workQueues in associated methods (for example signalWork) must
       
   317      * both index-check and null-check the IDs. All such accesses
       
   318      * ignore bad IDs by returning out early from what they are doing,
       
   319      * since this can only be associated with termination, in which
       
   320      * case it is OK to give up.  All uses of the workQueues array
       
   321      * also check that it is non-null (even if previously
       
   322      * non-null). This allows nulling during termination, which is
       
   323      * currently not necessary, but remains an option for
       
   324      * resource-revocation-based shutdown schemes. It also helps
       
   325      * reduce JIT issuance of uncommon-trap code, which tends to
       
   326      * unnecessarily complicate control flow in some methods.
       
   327      *
       
   328      * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
       
   329      * let workers spin indefinitely scanning for tasks when none can
       
   330      * be found immediately, and we cannot start/resume workers unless
       
   331      * there appear to be tasks available.  On the other hand, we must
       
   332      * quickly prod them into action when new tasks are submitted or
       
   333      * generated. In many usages, ramp-up time to activate workers is
       
   334      * the main limiting factor in overall performance (this is
       
   335      * compounded at program start-up by JIT compilation and
       
   336      * allocation). So we try to streamline this as much as possible.
       
   337      * We park/unpark workers after placing in an event wait queue
       
   338      * when they cannot find work. This "queue" is actually a simple
       
   339      * Treiber stack, headed by the "id" field of ctl, plus a 15bit
       
   340      * counter value (that reflects the number of times a worker has
       
   341      * been inactivated) to avoid ABA effects (we need only as many
       
   342      * version numbers as worker threads). Successors are held in
       
   343      * field WorkQueue.nextWait.  Queuing deals with several intrinsic
       
   344      * races, mainly that a task-producing thread can miss seeing (and
       
   345      * signalling) another thread that gave up looking for work but
       
   346      * has not yet entered the wait queue. We solve this by requiring
       
   347      * a full sweep of all workers (via repeated calls to method
       
   348      * scan()) both before and after a newly waiting worker is added
       
   349      * to the wait queue.  Because enqueued workers may actually be
       
   350      * rescanning rather than waiting, we set and clear the "parker"
       
   351      * field of WorkQueues to reduce unnecessary calls to unpark.
       
   352      * (This requires a secondary recheck to avoid missed signals.)
       
   353      * Note the unusual conventions about Thread.interrupts
       
   354      * surrounding parking and other blocking: Because interrupts are
       
   355      * used solely to alert threads to check termination, which is
       
   356      * checked anyway upon blocking, we clear status (using
       
   357      * Thread.interrupted) before any call to park, so that park does
       
   358      * not immediately return due to status being set via some other
       
   359      * unrelated call to interrupt in user code.
       
   360      *
       
   361      * Signalling.  We create or wake up workers only when there
       
   362      * appears to be at least one task they might be able to find and
       
   363      * execute.  When a submission is added or another worker adds a
       
   364      * task to a queue that has fewer than two tasks, they signal
       
   365      * waiting workers (or trigger creation of new ones if fewer than
       
   366      * the given parallelism level -- signalWork).  These primary
       
   367      * signals are buttressed by others whenever other threads remove
       
   368      * a task from a queue and notice that there are other tasks there
       
   369      * as well.  So in general, pools will be over-signalled. On most
       
   370      * platforms, signalling (unpark) overhead time is noticeably
       
   371      * long, and the time between signalling a thread and it actually
       
   372      * making progress can be very noticeably long, so it is worth
       
   373      * offloading these delays from critical paths as much as
       
   374      * possible. Additionally, workers spin-down gradually, by staying
       
   375      * alive so long as they see the ctl state changing.  Similar
       
   376      * stability-sensing techniques are also used before blocking in
       
   377      * awaitJoin and helpComplete.
       
   378      *
       
   379      * Trimming workers. To release resources after periods of lack of
       
   380      * use, a worker starting to wait when the pool is quiescent will
       
   381      * time out and terminate if the pool has remained quiescent for a
       
   382      * given period -- a short period if there are more threads than
       
   383      * parallelism, longer as the number of threads decreases. This
       
   384      * will slowly propagate, eventually terminating all workers after
       
   385      * periods of non-use.
       
   386      *
       
   387      * Shutdown and Termination. A call to shutdownNow atomically sets
       
   388      * a plock bit and then (non-atomically) sets each worker's
       
   389      * qlock status, cancels all unprocessed tasks, and wakes up
       
   390      * all waiting workers.  Detecting whether termination should
       
   391      * commence after a non-abrupt shutdown() call requires more work
       
   392      * and bookkeeping. We need consensus about quiescence (i.e., that
       
   393      * there is no more work). The active count provides a primary
       
   394      * indication but non-abrupt shutdown still requires a rechecking
       
   395      * scan for any workers that are inactive but not queued.
       
   396      *
       
   397      * Joining Tasks
       
   398      * =============
       
   399      *
       
   400      * Any of several actions may be taken when one worker is waiting
       
   401      * to join a task stolen (or always held) by another.  Because we
       
   402      * are multiplexing many tasks on to a pool of workers, we can't
       
   403      * just let them block (as in Thread.join).  We also cannot just
       
   404      * reassign the joiner's run-time stack with another and replace
       
   405      * it later, which would be a form of "continuation", that even if
       
   406      * possible is not necessarily a good idea since we sometimes need
       
   407      * both an unblocked task and its continuation to progress.
       
   408      * Instead we combine two tactics:
       
   409      *
       
   410      *   Helping: Arranging for the joiner to execute some task that it
       
   411      *      would be running if the steal had not occurred.
       
   412      *
       
   413      *   Compensating: Unless there are already enough live threads,
       
   414      *      method tryCompensate() may create or re-activate a spare
       
   415      *      thread to compensate for blocked joiners until they unblock.
       
   416      *
       
   417      * A third form (implemented in tryRemoveAndExec) amounts to
       
   418      * helping a hypothetical compensator: If we can readily tell that
       
   419      * a possible action of a compensator is to steal and execute the
       
   420      * task being joined, the joining thread can do so directly,
       
   421      * without the need for a compensation thread (although at the
       
   422      * expense of larger run-time stacks, but the tradeoff is
       
   423      * typically worthwhile).
       
   424      *
       
   425      * The ManagedBlocker extension API can't use helping so relies
       
   426      * only on compensation in method awaitBlocker.
       
   427      *
       
   428      * The algorithm in tryHelpStealer entails a form of "linear"
       
   429      * helping: Each worker records (in field currentSteal) the most
       
   430      * recent task it stole from some other worker. Plus, it records
       
   431      * (in field currentJoin) the task it is currently actively
       
   432      * joining. Method tryHelpStealer uses these markers to try to
       
   433      * find a worker to help (i.e., steal back a task from and execute
       
   434      * it) that could hasten completion of the actively joined task.
       
   435      * In essence, the joiner executes a task that would be on its own
       
   436      * local deque had the to-be-joined task not been stolen. This may
       
   437      * be seen as a conservative variant of the approach in Wagner &
       
   438      * Calder "Leapfrogging: a portable technique for implementing
       
   439      * efficient futures" SIGPLAN Notices, 1993
       
   440      * (http://portal.acm.org/citation.cfm?id=155354). It differs in
       
   441      * that: (1) We only maintain dependency links across workers upon
       
   442      * steals, rather than use per-task bookkeeping.  This sometimes
       
   443      * requires a linear scan of workQueues array to locate stealers,
       
   444      * but often doesn't because stealers leave hints (that may become
       
   445      * stale/wrong) of where to locate them.  It is only a hint
       
   446      * because a worker might have had multiple steals and the hint
       
   447      * records only one of them (usually the most current).  Hinting
       
   448      * isolates cost to when it is needed, rather than adding to
       
   449      * per-task overhead.  (2) It is "shallow", ignoring nesting and
       
   450      * potentially cyclic mutual steals.  (3) It is intentionally
       
   451      * racy: field currentJoin is updated only while actively joining,
       
   452      * which means that we miss links in the chain during long-lived
       
   453      * tasks, GC stalls etc (which is OK since blocking in such cases
       
   454      * is usually a good idea).  (4) We bound the number of attempts
       
   455      * to find work (see MAX_HELP) and fall back to suspending the
       
   456      * worker and if necessary replacing it with another.
       
   457      *
       
   458      * Helping actions for CountedCompleters are much simpler: Method
       
   459      * helpComplete can take and execute any task with the same root
       
   460      * as the task being waited on. However, this still entails some
       
   461      * traversal of completer chains, so is less efficient than using
       
   462      * CountedCompleters without explicit joins.
       
   463      *
       
   464      * It is impossible to keep exactly the target parallelism number
       
   465      * of threads running at any given time.  Determining the
       
   466      * existence of conservatively safe helping targets, the
       
   467      * availability of already-created spares, and the apparent need
       
   468      * to create new spares are all racy, so we rely on multiple
       
   469      * retries of each.  Compensation in the apparent absence of
       
   470      * helping opportunities is challenging to control on JVMs, where
       
   471      * GC and other activities can stall progress of tasks that in
       
   472      * turn stall out many other dependent tasks, without us being
       
   473      * able to determine whether they will ever require compensation.
       
   474      * Even though work-stealing otherwise encounters little
       
   475      * degradation in the presence of more threads than cores,
       
   476      * aggressively adding new threads in such cases entails risk of
       
   477      * unwanted positive feedback control loops in which more threads
       
   478      * cause more dependent stalls (as well as delayed progress of
       
   479      * unblocked threads to the point that we know they are available)
       
   480      * leading to more situations requiring more threads, and so
       
   481      * on. This aspect of control can be seen as an (analytically
       
   482      * intractable) game with an opponent that may choose the worst
       
   483      * (for us) active thread to stall at any time.  We take several
       
   484      * precautions to bound losses (and thus bound gains), mainly in
       
   485      * methods tryCompensate and awaitJoin.
       
   486      *
       
   487      * Common Pool
       
   488      * ===========
       
   489      *
       
   490      * The static common pool always exists after static
       
   491      * initialization.  Since it (or any other created pool) need
       
   492      * never be used, we minimize initial construction overhead and
       
   493      * footprint to the setup of about a dozen fields, with no nested
       
   494      * allocation. Most bootstrapping occurs within method
       
   495      * fullExternalPush during the first submission to the pool.
       
   496      *
       
   497      * When external threads submit to the common pool, they can
       
   498      * perform subtask processing (see externalHelpJoin and related
       
   499      * methods).  This caller-helps policy makes it sensible to set
       
   500      * common pool parallelism level to one (or more) less than the
       
   501      * total number of available cores, or even zero for pure
       
   502      * caller-runs.  We do not need to record whether external
       
   503      * submissions are to the common pool -- if not, externalHelpJoin
       
   504      * returns quickly (at the most helping to signal some common pool
       
   505      * workers). These submitters would otherwise be blocked waiting
       
   506      * for completion, so the extra effort (with liberally sprinkled
       
   507      * task status checks) in inapplicable cases amounts to an odd
       
   508      * form of limited spin-wait before blocking in ForkJoinTask.join.
       
   509      *
       
   510      * As a more appropriate default in managed environments, unless
       
   511      * overridden by system properties, we use workers of subclass
       
   512      * InnocuousForkJoinWorkerThread when there is a SecurityManager
       
   513      * present. These workers have no permissions set, do not belong
       
   514      * to any user-defined ThreadGroup, and erase all ThreadLocals
       
   515      * after executing any top-level task (see WorkQueue.runTask). The
       
   516      * associated mechanics (mainly in ForkJoinWorkerThread) may be
       
   517      * JVM-dependent and must access particular Thread class fields to
       
   518      * achieve this effect.
       
   519      *
       
   520      * Style notes
       
   521      * ===========
       
   522      *
       
   523      * There is a lot of representation-level coupling among classes
       
   524      * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
       
   525      * fields of WorkQueue maintain data structures managed by
       
   526      * ForkJoinPool, so are directly accessed.  There is little point
       
   527      * trying to reduce this, since any associated future changes in
       
   528      * representations will need to be accompanied by algorithmic
       
   529      * changes anyway. Several methods intrinsically sprawl because
       
   530      * they must accumulate sets of consistent reads of volatiles held
       
   531      * in local variables.  Methods signalWork() and scan() are the
       
   532      * main bottlenecks, so are especially heavily
       
   533      * micro-optimized/mangled.  There are lots of inline assignments
       
   534      * (of form "while ((local = field) != 0)") which are usually the
       
   535      * simplest way to ensure the required read orderings (which are
       
   536      * sometimes critical). This leads to a "C"-like style of listing
       
   537      * declarations of these locals at the heads of methods or blocks.
       
   538      * There are several occurrences of the unusual "do {} while
       
   539      * (!cas...)"  which is the simplest way to force an update of a
       
   540      * CAS'ed variable. There are also other coding oddities (including
       
   541      * several unnecessary-looking hoisted null checks) that help
       
   542      * some methods perform reasonably even when interpreted (not
       
   543      * compiled).
       
   544      *
       
   545      * The order of declarations in this file is:
       
   546      * (1) Static utility functions
       
   547      * (2) Nested (static) classes
       
   548      * (3) Static fields
       
   549      * (4) Fields, along with constants used when unpacking some of them
       
   550      * (5) Internal control methods
       
   551      * (6) Callbacks and other support for ForkJoinTask methods
       
   552      * (7) Exported methods
       
   553      * (8) Static block initializing statics in minimally dependent order
       
   554      */
       
   555 
       
   556     // Static utilities
       
   557 
       
   558     /**
       
   559      * If there is a security manager, makes sure caller has
       
   560      * permission to modify threads.
       
   561      */
       
   562     private static void checkPermission() {
       
   563         SecurityManager security = System.getSecurityManager();
       
   564         if (security != null)
       
   565             security.checkPermission(modifyThreadPermission);
       
   566     }
       
   567 
       
   568     // Nested classes
       
   569 
       
   570     /**
       
   571      * Factory for creating new {@link ForkJoinWorkerThread}s.
       
   572      * A {@code ForkJoinWorkerThreadFactory} must be defined and used
       
   573      * for {@code ForkJoinWorkerThread} subclasses that extend base
       
   574      * functionality or initialize threads with different contexts.
       
   575      */
       
   576     public static interface ForkJoinWorkerThreadFactory {
       
   577         /**
       
   578          * Returns a new worker thread operating in the given pool.
       
   579          *
       
   580          * @param pool the pool this thread works in
       
   581          * @return the new worker thread
       
   582          * @throws NullPointerException if the pool is null
       
   583          */
       
   584         public ForkJoinWorkerThread newThread(ForkJoinPool pool);
       
   585     }
       
   586 
       
   587     /**
       
   588      * Default ForkJoinWorkerThreadFactory implementation; creates a
       
   589      * new ForkJoinWorkerThread.
       
   590      */
       
   591     static final class DefaultForkJoinWorkerThreadFactory
       
   592         implements ForkJoinWorkerThreadFactory {
       
   593         public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
       
   594             return new ForkJoinWorkerThread(pool);
       
   595         }
       
   596     }
       
   597 
       
   598     /**
       
   599      * Class for artificial tasks that are used to replace the target
       
   600      * of local joins if they are removed from an interior queue slot
       
   601      * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
       
   602      * actually do anything beyond having a unique identity.
       
   603      */
       
   604     static final class EmptyTask extends ForkJoinTask<Void> {
       
   605         private static final long serialVersionUID = -7721805057305804111L;
       
   606         EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
       
   607         public final Void getRawResult() { return null; }
       
   608         public final void setRawResult(Void x) {}
       
   609         public final boolean exec() { return true; }
       
   610     }
       
   611 
       
   612     /**
       
   613      * Queues supporting work-stealing as well as external task
       
   614      * submission. See above for main rationale and algorithms.
       
   615      * Implementation relies heavily on "Unsafe" intrinsics
       
   616      * and selective use of "volatile":
       
   617      *
       
   618      * Field "base" is the index (mod array.length) of the least valid
       
   619      * queue slot, which is always the next position to steal (poll)
       
   620      * from if nonempty. Reads and writes require volatile orderings
       
   621      * but not CAS, because updates are only performed after slot
       
   622      * CASes.
       
   623      *
       
   624      * Field "top" is the index (mod array.length) of the next queue
       
   625      * slot to push to or pop from. It is written only by owner thread
       
   626      * for push, or under lock for external/shared push, and accessed
       
   627      * by other threads only after reading (volatile) base.  Both top
       
   628      * and base are allowed to wrap around on overflow, but (top -
       
   629      * base) (or more commonly -(base - top) to force volatile read of
       
   630      * base before top) still estimates size. The lock ("qlock") is
       
   631      * forced to -1 on termination, causing all further lock attempts
       
   632      * to fail. (Note: we don't need CAS for termination state because
       
   633      * upon pool shutdown, all shared-queues will stop being used
       
   634      * anyway.)  Nearly all lock bodies are set up so that exceptions
       
   635      * within lock bodies are "impossible" (modulo JVM errors that
       
   636      * would cause failure anyway.)
       
   637      *
       
   638      * The array slots are read and written using the emulation of
       
   639      * volatiles/atomics provided by Unsafe. Insertions must in
       
   640      * general use putOrderedObject as a form of releasing store to
       
   641      * ensure that all writes to the task object are ordered before
       
   642      * its publication in the queue.  All removals entail a CAS to
       
   643      * null.  The array is always a power of two. To ensure safety of
       
   644      * Unsafe array operations, all accesses perform explicit null
       
   645      * checks and implicit bounds checks via power-of-two masking.
       
   646      *
       
   647      * In addition to basic queuing support, this class contains
       
   648      * fields described elsewhere to control execution. It turns out
       
   649      * to work better memory-layout-wise to include them in this class
       
   650      * rather than a separate class.
       
   651      *
       
   652      * Performance on most platforms is very sensitive to placement of
       
   653      * instances of both WorkQueues and their arrays -- we absolutely
       
   654      * do not want multiple WorkQueue instances or multiple queue
       
   655      * arrays sharing cache lines. (It would be best for queue objects
       
   656      * and their arrays to share, but there is nothing available to
       
   657      * help arrange that). The @Contended annotation alerts JVMs to
       
   658      * try to keep instances apart.
       
   659      */
       
   660     @sun.misc.Contended
       
   661     static final class WorkQueue {
       
   662         /**
       
   663          * Capacity of work-stealing queue array upon initialization.
       
   664          * Must be a power of two; at least 4, but should be larger to
       
   665          * reduce or eliminate cacheline sharing among queues.
       
   666          * Currently, it is much larger, as a partial workaround for
       
   667          * the fact that JVMs often place arrays in locations that
       
   668          * share GC bookkeeping (especially cardmarks) such that
       
   669          * per-write accesses encounter serious memory contention.
       
   670          */
       
   671         static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
       
   672 
       
   673         /**
       
   674          * Maximum size for queue arrays. Must be a power of two less
       
   675          * than or equal to 1 << (31 - width of array entry) to ensure
       
   676          * lack of wraparound of index calculations, but defined to a
       
   677          * value a bit less than this to help users trap runaway
       
   678          * programs before saturating systems.
       
   679          */
       
   680         static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
       
   681 
       
   682         volatile int eventCount;   // encoded inactivation count; < 0 if inactive
       
   683         int nextWait;              // encoded record of next event waiter
       
   684         int nsteals;               // number of steals
       
   685         int hint;                  // steal index hint
       
   686         short poolIndex;           // index of this queue in pool
       
   687         final short mode;          // 0: lifo, > 0: fifo, < 0: shared
       
   688         volatile int qlock;        // 1: locked, -1: terminate; else 0
       
   689         volatile int base;         // index of next slot for poll
       
   690         int top;                   // index of next slot for push
       
   691         ForkJoinTask<?>[] array;   // the elements (initially unallocated)
       
   692         final ForkJoinPool pool;   // the containing pool (may be null)
       
   693         final ForkJoinWorkerThread owner; // owning thread or null if shared
       
   694         volatile Thread parker;    // == owner during call to park; else null
       
   695         volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
       
   696         ForkJoinTask<?> currentSteal; // current non-local task being executed
       
   697 
       
   698         WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
       
   699                   int seed) {
       
   700             this.pool = pool;
       
   701             this.owner = owner;
       
   702             this.mode = (short)mode;
       
   703             this.hint = seed; // store initial seed for runWorker
       
   704             // Place indices in the center of array (that is not yet allocated)
       
   705             base = top = INITIAL_QUEUE_CAPACITY >>> 1;
       
   706         }
       
   707 
       
   708         /**
       
   709          * Returns the approximate number of tasks in the queue.
       
   710          */
       
   711         final int queueSize() {
       
   712             int n = base - top;       // non-owner callers must read base first
       
   713             return (n >= 0) ? 0 : -n; // ignore transient negative
       
   714         }
       
   715 
       
   716         /**
       
   717          * Provides a more accurate estimate of whether this queue has
       
   718          * any tasks than does queueSize, by checking whether a
       
   719          * near-empty queue has at least one unclaimed task.
       
   720          */
       
   721         final boolean isEmpty() {
       
   722             ForkJoinTask<?>[] a; int m, s;
       
   723             int n = base - (s = top);
       
   724             return (n >= 0 ||
       
   725                     (n == -1 &&
       
   726                      ((a = array) == null ||
       
   727                       (m = a.length - 1) < 0 ||
       
   728                       U.getObject
       
   729                       (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
       
   730         }
       
   731 
       
   732         /**
       
   733          * Pushes a task. Call only by owner in unshared queues.  (The
       
   734          * shared-queue version is embedded in method externalPush.)
       
   735          *
       
   736          * @param task the task. Caller must ensure non-null.
       
   737          * @throws RejectedExecutionException if array cannot be resized
       
   738          */
       
   739         final void push(ForkJoinTask<?> task) {
       
   740             ForkJoinTask<?>[] a; ForkJoinPool p;
       
   741             int s = top, n;
       
   742             if ((a = array) != null) {    // ignore if queue removed
       
   743                 int m = a.length - 1;
       
   744                 U.putOrderedObject(a, ((m & s) << ASHIFT) + ABASE, task);
       
   745                 if ((n = (top = s + 1) - base) <= 2)
       
   746                     (p = pool).signalWork(p.workQueues, this);
       
   747                 else if (n >= m)
       
   748                     growArray();
       
   749             }
       
   750         }
       
   751 
       
   752         /**
       
   753          * Initializes or doubles the capacity of array. Call either
       
   754          * by owner or with lock held -- it is OK for base, but not
       
   755          * top, to move while resizings are in progress.
       
   756          */
       
   757         final ForkJoinTask<?>[] growArray() {
       
   758             ForkJoinTask<?>[] oldA = array;
       
   759             int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
       
   760             if (size > MAXIMUM_QUEUE_CAPACITY)
       
   761                 throw new RejectedExecutionException("Queue capacity exceeded");
       
   762             int oldMask, t, b;
       
   763             ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
       
   764             if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
       
   765                 (t = top) - (b = base) > 0) {
       
   766                 int mask = size - 1;
       
   767                 do {
       
   768                     ForkJoinTask<?> x;
       
   769                     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
       
   770                     int j    = ((b &    mask) << ASHIFT) + ABASE;
       
   771                     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
       
   772                     if (x != null &&
       
   773                         U.compareAndSwapObject(oldA, oldj, x, null))
       
   774                         U.putObjectVolatile(a, j, x);
       
   775                 } while (++b != t);
       
   776             }
       
   777             return a;
       
   778         }
       
   779 
       
   780         /**
       
   781          * Takes next task, if one exists, in LIFO order.  Call only
       
   782          * by owner in unshared queues.
       
   783          */
       
   784         final ForkJoinTask<?> pop() {
       
   785             ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
       
   786             if ((a = array) != null && (m = a.length - 1) >= 0) {
       
   787                 for (int s; (s = top - 1) - base >= 0;) {
       
   788                     long j = ((m & s) << ASHIFT) + ABASE;
       
   789                     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
       
   790                         break;
       
   791                     if (U.compareAndSwapObject(a, j, t, null)) {
       
   792                         top = s;
       
   793                         return t;
       
   794                     }
       
   795                 }
       
   796             }
       
   797             return null;
       
   798         }
       
   799 
       
   800         /**
       
   801          * Takes a task in FIFO order if b is base of queue and a task
       
   802          * can be claimed without contention. Specialized versions
       
   803          * appear in ForkJoinPool methods scan and tryHelpStealer.
       
   804          */
       
   805         final ForkJoinTask<?> pollAt(int b) {
       
   806             ForkJoinTask<?> t; ForkJoinTask<?>[] a;
       
   807             if ((a = array) != null) {
       
   808                 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
       
   809                 if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
       
   810                     base == b && U.compareAndSwapObject(a, j, t, null)) {
       
   811                     U.putOrderedInt(this, QBASE, b + 1);
       
   812                     return t;
       
   813                 }
       
   814             }
       
   815             return null;
       
   816         }
       
   817 
       
   818         /**
       
   819          * Takes next task, if one exists, in FIFO order.
       
   820          */
       
   821         final ForkJoinTask<?> poll() {
       
   822             ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
       
   823             while ((b = base) - top < 0 && (a = array) != null) {
       
   824                 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
       
   825                 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
       
   826                 if (t != null) {
       
   827                     if (U.compareAndSwapObject(a, j, t, null)) {
       
   828                         U.putOrderedInt(this, QBASE, b + 1);
       
   829                         return t;
       
   830                     }
       
   831                 }
       
   832                 else if (base == b) {
       
   833                     if (b + 1 == top)
       
   834                         break;
       
   835                     Thread.yield(); // wait for lagging update (very rare)
       
   836                 }
       
   837             }
       
   838             return null;
       
   839         }
       
   840 
       
   841         /**
       
   842          * Takes next task, if one exists, in order specified by mode.
       
   843          */
       
   844         final ForkJoinTask<?> nextLocalTask() {
       
   845             return mode == 0 ? pop() : poll();
       
   846         }
       
   847 
       
   848         /**
       
   849          * Returns next task, if one exists, in order specified by mode.
       
   850          */
       
   851         final ForkJoinTask<?> peek() {
       
   852             ForkJoinTask<?>[] a = array; int m;
       
   853             if (a == null || (m = a.length - 1) < 0)
       
   854                 return null;
       
   855             int i = mode == 0 ? top - 1 : base;
       
   856             int j = ((i & m) << ASHIFT) + ABASE;
       
   857             return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
       
   858         }
       
   859 
       
   860         /**
       
   861          * Pops the given task only if it is at the current top.
       
   862          * (A shared version is available only via FJP.tryExternalUnpush)
       
   863          */
       
   864         final boolean tryUnpush(ForkJoinTask<?> t) {
       
   865             ForkJoinTask<?>[] a; int s;
       
   866             if ((a = array) != null && (s = top) != base &&
       
   867                 U.compareAndSwapObject
       
   868                 (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
       
   869                 top = s;
       
   870                 return true;
       
   871             }
       
   872             return false;
       
   873         }
       
   874 
       
   875         /**
       
   876          * Removes and cancels all known tasks, ignoring any exceptions.
       
   877          */
       
   878         final void cancelAll() {
       
   879             ForkJoinTask.cancelIgnoringExceptions(currentJoin);
       
   880             ForkJoinTask.cancelIgnoringExceptions(currentSteal);
       
   881             for (ForkJoinTask<?> t; (t = poll()) != null; )
       
   882                 ForkJoinTask.cancelIgnoringExceptions(t);
       
   883         }
       
   884 
       
   885         // Specialized execution methods
       
   886 
       
   887         /**
       
   888          * Polls and runs tasks until empty.
       
   889          */
       
   890         final void pollAndExecAll() {
       
   891             for (ForkJoinTask<?> t; (t = poll()) != null;)
       
   892                 t.doExec();
       
   893         }
       
   894 
       
   895         /**
       
   896          * Executes a top-level task and any local tasks remaining
       
   897          * after execution.
       
   898          */
       
   899         final void runTask(ForkJoinTask<?> task) {
       
   900             if ((currentSteal = task) != null) {
       
   901                 ForkJoinWorkerThread thread;
       
   902                 task.doExec();
       
   903                 ForkJoinTask<?>[] a = array;
       
   904                 int md = mode;
       
   905                 ++nsteals;
       
   906                 currentSteal = null;
       
   907                 if (md != 0)
       
   908                     pollAndExecAll();
       
   909                 else if (a != null) {
       
   910                     int s, m = a.length - 1;
       
   911                     ForkJoinTask<?> t;
       
   912                     while ((s = top - 1) - base >= 0 &&
       
   913                            (t = (ForkJoinTask<?>)U.getAndSetObject
       
   914                             (a, ((m & s) << ASHIFT) + ABASE, null)) != null) {
       
   915                         top = s;
       
   916                         t.doExec();
       
   917                     }
       
   918                 }
       
   919                 if ((thread = owner) != null) // no need to do in finally clause
       
   920                     thread.afterTopLevelExec();
       
   921             }
       
   922         }
       
   923 
       
   924         /**
       
   925          * If present, removes from queue and executes the given task,
       
   926          * or any other cancelled task. Returns (true) on any CAS
       
   927          * or consistency check failure so caller can retry.
       
   928          *
       
   929          * @return false if no progress can be made, else true
       
   930          */
       
   931         final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
       
   932             boolean stat;
       
   933             ForkJoinTask<?>[] a; int m, s, b, n;
       
   934             if (task != null && (a = array) != null && (m = a.length - 1) >= 0 &&
       
   935                 (n = (s = top) - (b = base)) > 0) {
       
   936                 boolean removed = false, empty = true;
       
   937                 stat = true;
       
   938                 for (ForkJoinTask<?> t;;) {           // traverse from s to b
       
   939                     long j = ((--s & m) << ASHIFT) + ABASE;
       
   940                     t = (ForkJoinTask<?>)U.getObject(a, j);
       
   941                     if (t == null)                    // inconsistent length
       
   942                         break;
       
   943                     else if (t == task) {
       
   944                         if (s + 1 == top) {           // pop
       
   945                             if (!U.compareAndSwapObject(a, j, task, null))
       
   946                                 break;
       
   947                             top = s;
       
   948                             removed = true;
       
   949                         }
       
   950                         else if (base == b)           // replace with proxy
       
   951                             removed = U.compareAndSwapObject(a, j, task,
       
   952                                                              new EmptyTask());
       
   953                         break;
       
   954                     }
       
   955                     else if (t.status >= 0)
       
   956                         empty = false;
       
   957                     else if (s + 1 == top) {          // pop and throw away
       
   958                         if (U.compareAndSwapObject(a, j, t, null))
       
   959                             top = s;
       
   960                         break;
       
   961                     }
       
   962                     if (--n == 0) {
       
   963                         if (!empty && base == b)
       
   964                             stat = false;
       
   965                         break;
       
   966                     }
       
   967                 }
       
   968                 if (removed)
       
   969                     task.doExec();
       
   970             }
       
   971             else
       
   972                 stat = false;
       
   973             return stat;
       
   974         }
       
   975 
       
   976         /**
       
   977          * Tries to poll for and execute the given task or any other
       
   978          * task in its CountedCompleter computation.
       
   979          */
       
   980         final boolean pollAndExecCC(CountedCompleter<?> root) {
       
   981             ForkJoinTask<?>[] a; int b; Object o; CountedCompleter<?> t, r;
       
   982             if ((b = base) - top < 0 && (a = array) != null) {
       
   983                 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
       
   984                 if ((o = U.getObjectVolatile(a, j)) == null)
       
   985                     return true; // retry
       
   986                 if (o instanceof CountedCompleter) {
       
   987                     for (t = (CountedCompleter<?>)o, r = t;;) {
       
   988                         if (r == root) {
       
   989                             if (base == b &&
       
   990                                 U.compareAndSwapObject(a, j, t, null)) {
       
   991                                 U.putOrderedInt(this, QBASE, b + 1);
       
   992                                 t.doExec();
       
   993                             }
       
   994                             return true;
       
   995                         }
       
   996                         else if ((r = r.completer) == null)
       
   997                             break; // not part of root computation
       
   998                     }
       
   999                 }
       
  1000             }
       
  1001             return false;
       
  1002         }
       
  1003 
       
  1004         /**
       
  1005          * Tries to pop and execute the given task or any other task
       
  1006          * in its CountedCompleter computation.
       
  1007          */
       
  1008         final boolean externalPopAndExecCC(CountedCompleter<?> root) {
       
  1009             ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
       
  1010             if (base - (s = top) < 0 && (a = array) != null) {
       
  1011                 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
       
  1012                 if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
       
  1013                     for (t = (CountedCompleter<?>)o, r = t;;) {
       
  1014                         if (r == root) {
       
  1015                             if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
       
  1016                                 if (top == s && array == a &&
       
  1017                                     U.compareAndSwapObject(a, j, t, null)) {
       
  1018                                     top = s - 1;
       
  1019                                     qlock = 0;
       
  1020                                     t.doExec();
       
  1021                                 }
       
  1022                                 else
       
  1023                                     qlock = 0;
       
  1024                             }
       
  1025                             return true;
       
  1026                         }
       
  1027                         else if ((r = r.completer) == null)
       
  1028                             break;
       
  1029                     }
       
  1030                 }
       
  1031             }
       
  1032             return false;
       
  1033         }
       
  1034 
       
  1035         /**
       
  1036          * Internal version
       
  1037          */
       
  1038         final boolean internalPopAndExecCC(CountedCompleter<?> root) {
       
  1039             ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
       
  1040             if (base - (s = top) < 0 && (a = array) != null) {
       
  1041                 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
       
  1042                 if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
       
  1043                     for (t = (CountedCompleter<?>)o, r = t;;) {
       
  1044                         if (r == root) {
       
  1045                             if (U.compareAndSwapObject(a, j, t, null)) {
       
  1046                                 top = s - 1;
       
  1047                                 t.doExec();
       
  1048                             }
       
  1049                             return true;
       
  1050                         }
       
  1051                         else if ((r = r.completer) == null)
       
  1052                             break;
       
  1053                     }
       
  1054                 }
       
  1055             }
       
  1056             return false;
       
  1057         }
       
  1058 
       
  1059         /**
       
  1060          * Returns true if owned and not known to be blocked.
       
  1061          */
       
  1062         final boolean isApparentlyUnblocked() {
       
  1063             Thread wt; Thread.State s;
       
  1064             return (eventCount >= 0 &&
       
  1065                     (wt = owner) != null &&
       
  1066                     (s = wt.getState()) != Thread.State.BLOCKED &&
       
  1067                     s != Thread.State.WAITING &&
       
  1068                     s != Thread.State.TIMED_WAITING);
       
  1069         }
       
  1070 
       
  1071         // Unsafe mechanics
       
  1072         private static final sun.misc.Unsafe U;
       
  1073         private static final long QBASE;
       
  1074         private static final long QLOCK;
       
  1075         private static final int ABASE;
       
  1076         private static final int ASHIFT;
       
  1077         static {
       
  1078             try {
       
  1079                 U = sun.misc.Unsafe.getUnsafe();
       
  1080                 Class<?> k = WorkQueue.class;
       
  1081                 Class<?> ak = ForkJoinTask[].class;
       
  1082                 QBASE = U.objectFieldOffset
       
  1083                     (k.getDeclaredField("base"));
       
  1084                 QLOCK = U.objectFieldOffset
       
  1085                     (k.getDeclaredField("qlock"));
       
  1086                 ABASE = U.arrayBaseOffset(ak);
       
  1087                 int scale = U.arrayIndexScale(ak);
       
  1088                 if ((scale & (scale - 1)) != 0)
       
  1089                     throw new Error("data type scale not a power of two");
       
  1090                 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
       
  1091             } catch (Exception e) {
       
  1092                 throw new Error(e);
       
  1093             }
       
  1094         }
       
  1095     }
       
  1096 
       
  1097     // static fields (initialized in static initializer below)
       
  1098 
       
  1099     /**
       
  1100      * Creates a new ForkJoinWorkerThread. This factory is used unless
       
  1101      * overridden in ForkJoinPool constructors.
       
  1102      */
       
  1103     public static final ForkJoinWorkerThreadFactory
       
  1104         defaultForkJoinWorkerThreadFactory;
       
  1105 
       
  1106     /**
       
  1107      * Permission required for callers of methods that may start or
       
  1108      * kill threads.
       
  1109      */
       
  1110     private static final RuntimePermission modifyThreadPermission;
       
  1111 
       
  1112     /**
       
  1113      * Common (static) pool. Non-null for public use unless a static
       
  1114      * construction exception, but internal usages null-check on use
       
  1115      * to paranoically avoid potential initialization circularities
       
  1116      * as well as to simplify generated code.
       
  1117      */
       
  1118     static final ForkJoinPool common;
       
  1119 
       
  1120     /**
       
  1121      * Common pool parallelism. To allow simpler use and management
       
  1122      * when common pool threads are disabled, we allow the underlying
       
  1123      * common.parallelism field to be zero, but in that case still report
       
  1124      * parallelism as 1 to reflect resulting caller-runs mechanics.
       
  1125      */
       
  1126     static final int commonParallelism;
       
  1127 
       
  1128     /**
       
  1129      * Sequence number for creating workerNamePrefix.
       
  1130      */
       
  1131     private static int poolNumberSequence;
       
  1132 
       
  1133     /**
       
  1134      * Returns the next sequence number. We don't expect this to
       
  1135      * ever contend, so use simple builtin sync.
       
  1136      */
       
  1137     private static final synchronized int nextPoolId() {
       
  1138         return ++poolNumberSequence;
       
  1139     }
       
  1140 
       
  1141     // static constants
       
  1142 
       
  1143     /**
       
  1144      * Initial timeout value (in nanoseconds) for the thread
       
  1145      * triggering quiescence to park waiting for new work. On timeout,
       
  1146      * the thread will instead try to shrink the number of
       
  1147      * workers. The value should be large enough to avoid overly
       
  1148      * aggressive shrinkage during most transient stalls (long GCs
       
  1149      * etc).
       
  1150      */
       
  1151     private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
       
  1152 
       
  1153     /**
       
  1154      * Timeout value when there are more threads than parallelism level
       
  1155      */
       
  1156     private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
       
  1157 
       
  1158     /**
       
  1159      * Tolerance for idle timeouts, to cope with timer undershoots
       
  1160      */
       
  1161     private static final long TIMEOUT_SLOP = 2000000L;
       
  1162 
       
  1163     /**
       
  1164      * The maximum stolen->joining link depth allowed in method
       
  1165      * tryHelpStealer.  Must be a power of two.  Depths for legitimate
       
  1166      * chains are unbounded, but we use a fixed constant to avoid
       
  1167      * (otherwise unchecked) cycles and to bound staleness of
       
  1168      * traversal parameters at the expense of sometimes blocking when
       
  1169      * we could be helping.
       
  1170      */
       
  1171     private static final int MAX_HELP = 64;
       
  1172 
       
  1173     /**
       
  1174      * Increment for seed generators. See class ThreadLocal for
       
  1175      * explanation.
       
  1176      */
       
  1177     private static final int SEED_INCREMENT = 0x9e3779b9;
       
  1178 
       
  1179     /*
       
  1180      * Bits and masks for control variables
       
  1181      *
       
  1182      * Field ctl is a long packed with:
       
  1183      * AC: Number of active running workers minus target parallelism (16 bits)
       
  1184      * TC: Number of total workers minus target parallelism (16 bits)
       
  1185      * ST: true if pool is terminating (1 bit)
       
  1186      * EC: the wait count of top waiting thread (15 bits)
       
  1187      * ID: poolIndex of top of Treiber stack of waiters (16 bits)
       
  1188      *
       
  1189      * When convenient, we can extract the upper 32 bits of counts and
       
  1190      * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
       
  1191      * (int)ctl.  The ec field is never accessed alone, but always
       
  1192      * together with id and st. The offsets of counts by the target
       
  1193      * parallelism and the positionings of fields makes it possible to
       
  1194      * perform the most common checks via sign tests of fields: When
       
  1195      * ac is negative, there are not enough active workers, when tc is
       
  1196      * negative, there are not enough total workers, and when e is
       
  1197      * negative, the pool is terminating.  To deal with these possibly
       
  1198      * negative fields, we use casts in and out of "short" and/or
       
  1199      * signed shifts to maintain signedness.
       
  1200      *
       
  1201      * When a thread is queued (inactivated), its eventCount field is
       
  1202      * set negative, which is the only way to tell if a worker is
       
  1203      * prevented from executing tasks, even though it must continue to
       
  1204      * scan for them to avoid queuing races. Note however that
       
  1205      * eventCount updates lag releases so usage requires care.
       
  1206      *
       
  1207      * Field plock is an int packed with:
       
  1208      * SHUTDOWN: true if shutdown is enabled (1 bit)
       
  1209      * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
       
  1210      * SIGNAL: set when threads may be waiting on the lock (1 bit)
       
  1211      *
       
  1212      * The sequence number enables simple consistency checks:
       
  1213      * Staleness of read-only operations on the workQueues array can
       
  1214      * be checked by comparing plock before vs after the reads.
       
  1215      */
       
  1216 
       
  1217     // bit positions/shifts for fields
       
  1218     private static final int  AC_SHIFT   = 48;
       
  1219     private static final int  TC_SHIFT   = 32;
       
  1220     private static final int  ST_SHIFT   = 31;
       
  1221     private static final int  EC_SHIFT   = 16;
       
  1222 
       
  1223     // bounds
       
  1224     private static final int  SMASK      = 0xffff;  // short bits
       
  1225     private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
       
  1226     private static final int  EVENMASK   = 0xfffe;  // even short bits
       
  1227     private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
       
  1228     private static final int  SHORT_SIGN = 1 << 15;
       
  1229     private static final int  INT_SIGN   = 1 << 31;
       
  1230 
       
  1231     // masks
       
  1232     private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
       
  1233     private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
       
  1234     private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
       
  1235 
       
  1236     // units for incrementing and decrementing
       
  1237     private static final long TC_UNIT    = 1L << TC_SHIFT;
       
  1238     private static final long AC_UNIT    = 1L << AC_SHIFT;
       
  1239 
       
  1240     // masks and units for dealing with u = (int)(ctl >>> 32)
       
  1241     private static final int  UAC_SHIFT  = AC_SHIFT - 32;
       
  1242     private static final int  UTC_SHIFT  = TC_SHIFT - 32;
       
  1243     private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
       
  1244     private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
       
  1245     private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
       
  1246     private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
       
  1247 
       
  1248     // masks and units for dealing with e = (int)ctl
       
  1249     private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
       
  1250     private static final int E_SEQ       = 1 << EC_SHIFT;
       
  1251 
       
  1252     // plock bits
       
  1253     private static final int SHUTDOWN    = 1 << 31;
       
  1254     private static final int PL_LOCK     = 2;
       
  1255     private static final int PL_SIGNAL   = 1;
       
  1256     private static final int PL_SPINS    = 1 << 8;
       
  1257 
       
  1258     // access mode for WorkQueue
       
  1259     static final int LIFO_QUEUE          =  0;
       
  1260     static final int FIFO_QUEUE          =  1;
       
  1261     static final int SHARED_QUEUE        = -1;
       
  1262 
       
  1263     // Instance fields
       
  1264     volatile long stealCount;                  // collects worker counts
       
  1265     volatile long ctl;                         // main pool control
       
  1266     volatile int plock;                        // shutdown status and seqLock
       
  1267     volatile int indexSeed;                    // worker/submitter index seed
       
  1268     final short parallelism;                   // parallelism level
       
  1269     final short mode;                          // LIFO/FIFO
       
  1270     WorkQueue[] workQueues;                    // main registry
       
  1271     final ForkJoinWorkerThreadFactory factory;
       
  1272     final UncaughtExceptionHandler ueh;        // per-worker UEH
       
  1273     final String workerNamePrefix;             // to create worker name string
       
  1274 
       
  1275     /**
       
  1276      * Acquires the plock lock to protect worker array and related
       
  1277      * updates. This method is called only if an initial CAS on plock
       
  1278      * fails. This acts as a spinlock for normal cases, but falls back
       
  1279      * to builtin monitor to block when (rarely) needed. This would be
       
  1280      * a terrible idea for a highly contended lock, but works fine as
       
  1281      * a more conservative alternative to a pure spinlock.
       
  1282      */
       
  1283     private int acquirePlock() {
       
  1284         int spins = PL_SPINS, ps, nps;
       
  1285         for (;;) {
       
  1286             if (((ps = plock) & PL_LOCK) == 0 &&
       
  1287                 U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
       
  1288                 return nps;
       
  1289             else if (spins >= 0) {
       
  1290                 if (ThreadLocalRandom.nextSecondarySeed() >= 0)
       
  1291                     --spins;
       
  1292             }
       
  1293             else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
       
  1294                 synchronized (this) {
       
  1295                     if ((plock & PL_SIGNAL) != 0) {
       
  1296                         try {
       
  1297                             wait();
       
  1298                         } catch (InterruptedException ie) {
       
  1299                             try {
       
  1300                                 Thread.currentThread().interrupt();
       
  1301                             } catch (SecurityException ignore) {
       
  1302                             }
       
  1303                         }
       
  1304                     }
       
  1305                     else
       
  1306                         notifyAll();
       
  1307                 }
       
  1308             }
       
  1309         }
       
  1310     }
       
  1311 
       
  1312     /**
       
  1313      * Unlocks and signals any thread waiting for plock. Called only
       
  1314      * when CAS of seq value for unlock fails.
       
  1315      */
       
  1316     private void releasePlock(int ps) {
       
  1317         plock = ps;
       
  1318         synchronized (this) { notifyAll(); }
       
  1319     }
       
  1320 
       
  1321     /**
       
  1322      * Tries to create and start one worker if fewer than target
       
  1323      * parallelism level exist. Adjusts counts etc on failure.
       
  1324      */
       
  1325     private void tryAddWorker() {
       
  1326         long c; int u, e;
       
  1327         while ((u = (int)((c = ctl) >>> 32)) < 0 &&
       
  1328                (u & SHORT_SIGN) != 0 && (e = (int)c) >= 0) {
       
  1329             long nc = ((long)(((u + UTC_UNIT) & UTC_MASK) |
       
  1330                               ((u + UAC_UNIT) & UAC_MASK)) << 32) | (long)e;
       
  1331             if (U.compareAndSwapLong(this, CTL, c, nc)) {
       
  1332                 ForkJoinWorkerThreadFactory fac;
       
  1333                 Throwable ex = null;
       
  1334                 ForkJoinWorkerThread wt = null;
       
  1335                 try {
       
  1336                     if ((fac = factory) != null &&
       
  1337                         (wt = fac.newThread(this)) != null) {
       
  1338                         wt.start();
       
  1339                         break;
       
  1340                     }
       
  1341                 } catch (Throwable rex) {
       
  1342                     ex = rex;
       
  1343                 }
       
  1344                 deregisterWorker(wt, ex);
       
  1345                 break;
       
  1346             }
       
  1347         }
       
  1348     }
       
  1349 
       
  1350     //  Registering and deregistering workers
       
  1351 
       
  1352     /**
       
  1353      * Callback from ForkJoinWorkerThread to establish and record its
       
  1354      * WorkQueue. To avoid scanning bias due to packing entries in
       
  1355      * front of the workQueues array, we treat the array as a simple
       
  1356      * power-of-two hash table using per-thread seed as hash,
       
  1357      * expanding as needed.
       
  1358      *
       
  1359      * @param wt the worker thread
       
  1360      * @return the worker's queue
       
  1361      */
       
  1362     final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
       
  1363         UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
       
  1364         wt.setDaemon(true);
       
  1365         if ((handler = ueh) != null)
       
  1366             wt.setUncaughtExceptionHandler(handler);
       
  1367         do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
       
  1368                                           s += SEED_INCREMENT) ||
       
  1369                      s == 0); // skip 0
       
  1370         WorkQueue w = new WorkQueue(this, wt, mode, s);
       
  1371         if (((ps = plock) & PL_LOCK) != 0 ||
       
  1372             !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
       
  1373             ps = acquirePlock();
       
  1374         int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
       
  1375         try {
       
  1376             if ((ws = workQueues) != null) {    // skip if shutting down
       
  1377                 int n = ws.length, m = n - 1;
       
  1378                 int r = (s << 1) | 1;           // use odd-numbered indices
       
  1379                 if (ws[r &= m] != null) {       // collision
       
  1380                     int probes = 0;             // step by approx half size
       
  1381                     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
       
  1382                     while (ws[r = (r + step) & m] != null) {
       
  1383                         if (++probes >= n) {
       
  1384                             workQueues = ws = Arrays.copyOf(ws, n <<= 1);
       
  1385                             m = n - 1;
       
  1386                             probes = 0;
       
  1387                         }
       
  1388                     }
       
  1389                 }
       
  1390                 w.poolIndex = (short)r;
       
  1391                 w.eventCount = r; // volatile write orders
       
  1392                 ws[r] = w;
       
  1393             }
       
  1394         } finally {
       
  1395             if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
       
  1396                 releasePlock(nps);
       
  1397         }
       
  1398         wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex >>> 1)));
       
  1399         return w;
       
  1400     }
       
  1401 
       
  1402     /**
       
  1403      * Final callback from terminating worker, as well as upon failure
       
  1404      * to construct or start a worker.  Removes record of worker from
       
  1405      * array, and adjusts counts. If pool is shutting down, tries to
       
  1406      * complete termination.
       
  1407      *
       
  1408      * @param wt the worker thread, or null if construction failed
       
  1409      * @param ex the exception causing failure, or null if none
       
  1410      */
       
  1411     final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
       
  1412         WorkQueue w = null;
       
  1413         if (wt != null && (w = wt.workQueue) != null) {
       
  1414             int ps;
       
  1415             w.qlock = -1;                // ensure set
       
  1416             U.getAndAddLong(this, STEALCOUNT, w.nsteals); // collect steals
       
  1417             if (((ps = plock) & PL_LOCK) != 0 ||
       
  1418                 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
       
  1419                 ps = acquirePlock();
       
  1420             int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
       
  1421             try {
       
  1422                 int idx = w.poolIndex;
       
  1423                 WorkQueue[] ws = workQueues;
       
  1424                 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
       
  1425                     ws[idx] = null;
       
  1426             } finally {
       
  1427                 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
       
  1428                     releasePlock(nps);
       
  1429             }
       
  1430         }
       
  1431 
       
  1432         long c;                          // adjust ctl counts
       
  1433         do {} while (!U.compareAndSwapLong
       
  1434                      (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
       
  1435                                            ((c - TC_UNIT) & TC_MASK) |
       
  1436                                            (c & ~(AC_MASK|TC_MASK)))));
       
  1437 
       
  1438         if (!tryTerminate(false, false) && w != null && w.array != null) {
       
  1439             w.cancelAll();               // cancel remaining tasks
       
  1440             WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
       
  1441             while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
       
  1442                 if (e > 0) {             // activate or create replacement
       
  1443                     if ((ws = workQueues) == null ||
       
  1444                         (i = e & SMASK) >= ws.length ||
       
  1445                         (v = ws[i]) == null)
       
  1446                         break;
       
  1447                     long nc = (((long)(v.nextWait & E_MASK)) |
       
  1448                                ((long)(u + UAC_UNIT) << 32));
       
  1449                     if (v.eventCount != (e | INT_SIGN))
       
  1450                         break;
       
  1451                     if (U.compareAndSwapLong(this, CTL, c, nc)) {
       
  1452                         v.eventCount = (e + E_SEQ) & E_MASK;
       
  1453                         if ((p = v.parker) != null)
       
  1454                             U.unpark(p);
       
  1455                         break;
       
  1456                     }
       
  1457                 }
       
  1458                 else {
       
  1459                     if ((short)u < 0)
       
  1460                         tryAddWorker();
       
  1461                     break;
       
  1462                 }
       
  1463             }
       
  1464         }
       
  1465         if (ex == null)                     // help clean refs on way out
       
  1466             ForkJoinTask.helpExpungeStaleExceptions();
       
  1467         else                                // rethrow
       
  1468             ForkJoinTask.rethrow(ex);
       
  1469     }
       
  1470 
       
  1471     // Submissions
       
  1472 
       
  1473     /**
       
  1474      * Unless shutting down, adds the given task to a submission queue
       
  1475      * at submitter's current queue index (modulo submission
       
  1476      * range). Only the most common path is directly handled in this
       
  1477      * method. All others are relayed to fullExternalPush.
       
  1478      *
       
  1479      * @param task the task. Caller must ensure non-null.
       
  1480      */
       
  1481     final void externalPush(ForkJoinTask<?> task) {
       
  1482         WorkQueue q; int m, s, n, am; ForkJoinTask<?>[] a;
       
  1483         int r = ThreadLocalRandom.getProbe();
       
  1484         int ps = plock;
       
  1485         WorkQueue[] ws = workQueues;
       
  1486         if (ps > 0 && ws != null && (m = (ws.length - 1)) >= 0 &&
       
  1487             (q = ws[m & r & SQMASK]) != null && r != 0 &&
       
  1488             U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
       
  1489             if ((a = q.array) != null &&
       
  1490                 (am = a.length - 1) > (n = (s = q.top) - q.base)) {
       
  1491                 int j = ((am & s) << ASHIFT) + ABASE;
       
  1492                 U.putOrderedObject(a, j, task);
       
  1493                 q.top = s + 1;                     // push on to deque
       
  1494                 q.qlock = 0;
       
  1495                 if (n <= 1)
       
  1496                     signalWork(ws, q);
       
  1497                 return;
       
  1498             }
       
  1499             q.qlock = 0;
       
  1500         }
       
  1501         fullExternalPush(task);
       
  1502     }
       
  1503 
       
  1504     /**
       
  1505      * Full version of externalPush. This method is called, among
       
  1506      * other times, upon the first submission of the first task to the
       
  1507      * pool, so must perform secondary initialization.  It also
       
  1508      * detects first submission by an external thread by looking up
       
  1509      * its ThreadLocal, and creates a new shared queue if the one at
       
  1510      * index if empty or contended. The plock lock body must be
       
  1511      * exception-free (so no try/finally) so we optimistically
       
  1512      * allocate new queues outside the lock and throw them away if
       
  1513      * (very rarely) not needed.
       
  1514      *
       
  1515      * Secondary initialization occurs when plock is zero, to create
       
  1516      * workQueue array and set plock to a valid value.  This lock body
       
  1517      * must also be exception-free. Because the plock seq value can
       
  1518      * eventually wrap around zero, this method harmlessly fails to
       
  1519      * reinitialize if workQueues exists, while still advancing plock.
       
  1520      */
       
  1521     private void fullExternalPush(ForkJoinTask<?> task) {
       
  1522         int r;
       
  1523         if ((r = ThreadLocalRandom.getProbe()) == 0) {
       
  1524             ThreadLocalRandom.localInit();
       
  1525             r = ThreadLocalRandom.getProbe();
       
  1526         }
       
  1527         for (;;) {
       
  1528             WorkQueue[] ws; WorkQueue q; int ps, m, k;
       
  1529             boolean move = false;
       
  1530             if ((ps = plock) < 0)
       
  1531                 throw new RejectedExecutionException();
       
  1532             else if (ps == 0 || (ws = workQueues) == null ||
       
  1533                      (m = ws.length - 1) < 0) { // initialize workQueues
       
  1534                 int p = parallelism;            // find power of two table size
       
  1535                 int n = (p > 1) ? p - 1 : 1;    // ensure at least 2 slots
       
  1536                 n |= n >>> 1; n |= n >>> 2;  n |= n >>> 4;
       
  1537                 n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
       
  1538                 WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
       
  1539                                    new WorkQueue[n] : null);
       
  1540                 if (((ps = plock) & PL_LOCK) != 0 ||
       
  1541                     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
       
  1542                     ps = acquirePlock();
       
  1543                 if (((ws = workQueues) == null || ws.length == 0) && nws != null)
       
  1544                     workQueues = nws;
       
  1545                 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
       
  1546                 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
       
  1547                     releasePlock(nps);
       
  1548             }
       
  1549             else if ((q = ws[k = r & m & SQMASK]) != null) {
       
  1550                 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
       
  1551                     ForkJoinTask<?>[] a = q.array;
       
  1552                     int s = q.top;
       
  1553                     boolean submitted = false;
       
  1554                     try {                      // locked version of push
       
  1555                         if ((a != null && a.length > s + 1 - q.base) ||
       
  1556                             (a = q.growArray()) != null) {   // must presize
       
  1557                             int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
       
  1558                             U.putOrderedObject(a, j, task);
       
  1559                             q.top = s + 1;
       
  1560                             submitted = true;
       
  1561                         }
       
  1562                     } finally {
       
  1563                         q.qlock = 0;  // unlock
       
  1564                     }
       
  1565                     if (submitted) {
       
  1566                         signalWork(ws, q);
       
  1567                         return;
       
  1568                     }
       
  1569                 }
       
  1570                 move = true; // move on failure
       
  1571             }
       
  1572             else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
       
  1573                 q = new WorkQueue(this, null, SHARED_QUEUE, r);
       
  1574                 q.poolIndex = (short)k;
       
  1575                 if (((ps = plock) & PL_LOCK) != 0 ||
       
  1576                     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
       
  1577                     ps = acquirePlock();
       
  1578                 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
       
  1579                     ws[k] = q;
       
  1580                 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
       
  1581                 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
       
  1582                     releasePlock(nps);
       
  1583             }
       
  1584             else
       
  1585                 move = true; // move if busy
       
  1586             if (move)
       
  1587                 r = ThreadLocalRandom.advanceProbe(r);
       
  1588         }
       
  1589     }
       
  1590 
       
  1591     // Maintaining ctl counts
       
  1592 
       
  1593     /**
       
  1594      * Increments active count; mainly called upon return from blocking.
       
  1595      */
       
  1596     final void incrementActiveCount() {
       
  1597         long c;
       
  1598         do {} while (!U.compareAndSwapLong
       
  1599                      (this, CTL, c = ctl, ((c & ~AC_MASK) |
       
  1600                                            ((c & AC_MASK) + AC_UNIT))));
       
  1601     }
       
  1602 
       
  1603     /**
       
  1604      * Tries to create or activate a worker if too few are active.
       
  1605      *
       
  1606      * @param ws the worker array to use to find signallees
       
  1607      * @param q if non-null, the queue holding tasks to be processed
       
  1608      */
       
  1609     final void signalWork(WorkQueue[] ws, WorkQueue q) {
       
  1610         for (;;) {
       
  1611             long c; int e, u, i; WorkQueue w; Thread p;
       
  1612             if ((u = (int)((c = ctl) >>> 32)) >= 0)
       
  1613                 break;
       
  1614             if ((e = (int)c) <= 0) {
       
  1615                 if ((short)u < 0)
       
  1616                     tryAddWorker();
       
  1617                 break;
       
  1618             }
       
  1619             if (ws == null || ws.length <= (i = e & SMASK) ||
       
  1620                 (w = ws[i]) == null)
       
  1621                 break;
       
  1622             long nc = (((long)(w.nextWait & E_MASK)) |
       
  1623                        ((long)(u + UAC_UNIT)) << 32);
       
  1624             int ne = (e + E_SEQ) & E_MASK;
       
  1625             if (w.eventCount == (e | INT_SIGN) &&
       
  1626                 U.compareAndSwapLong(this, CTL, c, nc)) {
       
  1627                 w.eventCount = ne;
       
  1628                 if ((p = w.parker) != null)
       
  1629                     U.unpark(p);
       
  1630                 break;
       
  1631             }
       
  1632             if (q != null && q.base >= q.top)
       
  1633                 break;
       
  1634         }
       
  1635     }
       
  1636 
       
  1637     // Scanning for tasks
       
  1638 
       
  1639     /**
       
  1640      * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
       
  1641      */
       
  1642     final void runWorker(WorkQueue w) {
       
  1643         w.growArray(); // allocate queue
       
  1644         for (int r = w.hint; scan(w, r) == 0; ) {
       
  1645             r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
       
  1646         }
       
  1647     }
       
  1648 
       
  1649     /**
       
  1650      * Scans for and, if found, runs one task, else possibly
       
  1651      * inactivates the worker. This method operates on single reads of
       
  1652      * volatile state and is designed to be re-invoked continuously,
       
  1653      * in part because it returns upon detecting inconsistencies,
       
  1654      * contention, or state changes that indicate possible success on
       
  1655      * re-invocation.
       
  1656      *
       
  1657      * The scan searches for tasks across queues starting at a random
       
  1658      * index, checking each at least twice.  The scan terminates upon
       
  1659      * either finding a non-empty queue, or completing the sweep. If
       
  1660      * the worker is not inactivated, it takes and runs a task from
       
  1661      * this queue. Otherwise, if not activated, it tries to activate
       
  1662      * itself or some other worker by signalling. On failure to find a
       
  1663      * task, returns (for retry) if pool state may have changed during
       
  1664      * an empty scan, or tries to inactivate if active, else possibly
       
  1665      * blocks or terminates via method awaitWork.
       
  1666      *
       
  1667      * @param w the worker (via its WorkQueue)
       
  1668      * @param r a random seed
       
  1669      * @return worker qlock status if would have waited, else 0
       
  1670      */
       
  1671     private final int scan(WorkQueue w, int r) {
       
  1672         WorkQueue[] ws; int m;
       
  1673         long c = ctl;                            // for consistency check
       
  1674         if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 && w != null) {
       
  1675             for (int j = m + m + 1, ec = w.eventCount;;) {
       
  1676                 WorkQueue q; int b, e; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
       
  1677                 if ((q = ws[(r - j) & m]) != null &&
       
  1678                     (b = q.base) - q.top < 0 && (a = q.array) != null) {
       
  1679                     long i = (((a.length - 1) & b) << ASHIFT) + ABASE;
       
  1680                     if ((t = ((ForkJoinTask<?>)
       
  1681                               U.getObjectVolatile(a, i))) != null) {
       
  1682                         if (ec < 0)
       
  1683                             helpRelease(c, ws, w, q, b);
       
  1684                         else if (q.base == b &&
       
  1685                                  U.compareAndSwapObject(a, i, t, null)) {
       
  1686                             U.putOrderedInt(q, QBASE, b + 1);
       
  1687                             if ((b + 1) - q.top < 0)
       
  1688                                 signalWork(ws, q);
       
  1689                             w.runTask(t);
       
  1690                         }
       
  1691                     }
       
  1692                     break;
       
  1693                 }
       
  1694                 else if (--j < 0) {
       
  1695                     if ((ec | (e = (int)c)) < 0) // inactive or terminating
       
  1696                         return awaitWork(w, c, ec);
       
  1697                     else if (ctl == c) {         // try to inactivate and enqueue
       
  1698                         long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
       
  1699                         w.nextWait = e;
       
  1700                         w.eventCount = ec | INT_SIGN;
       
  1701                         if (!U.compareAndSwapLong(this, CTL, c, nc))
       
  1702                             w.eventCount = ec;   // back out
       
  1703                     }
       
  1704                     break;
       
  1705                 }
       
  1706             }
       
  1707         }
       
  1708         return 0;
       
  1709     }
       
  1710 
       
  1711     /**
       
  1712      * A continuation of scan(), possibly blocking or terminating
       
  1713      * worker w. Returns without blocking if pool state has apparently
       
  1714      * changed since last invocation.  Also, if inactivating w has
       
  1715      * caused the pool to become quiescent, checks for pool
       
  1716      * termination, and, so long as this is not the only worker, waits
       
  1717      * for event for up to a given duration.  On timeout, if ctl has
       
  1718      * not changed, terminates the worker, which will in turn wake up
       
  1719      * another worker to possibly repeat this process.
       
  1720      *
       
  1721      * @param w the calling worker
       
  1722      * @param c the ctl value on entry to scan
       
  1723      * @param ec the worker's eventCount on entry to scan
       
  1724      */
       
  1725     private final int awaitWork(WorkQueue w, long c, int ec) {
       
  1726         int stat, ns; long parkTime, deadline;
       
  1727         if ((stat = w.qlock) >= 0 && w.eventCount == ec && ctl == c &&
       
  1728             !Thread.interrupted()) {
       
  1729             int e = (int)c;
       
  1730             int u = (int)(c >>> 32);
       
  1731             int d = (u >> UAC_SHIFT) + parallelism; // active count
       
  1732 
       
  1733             if (e < 0 || (d <= 0 && tryTerminate(false, false)))
       
  1734                 stat = w.qlock = -1;          // pool is terminating
       
  1735             else if ((ns = w.nsteals) != 0) { // collect steals and retry
       
  1736                 w.nsteals = 0;
       
  1737                 U.getAndAddLong(this, STEALCOUNT, (long)ns);
       
  1738             }
       
  1739             else {
       
  1740                 long pc = ((d > 0 || ec != (e | INT_SIGN)) ? 0L :
       
  1741                            ((long)(w.nextWait & E_MASK)) | // ctl to restore
       
  1742                            ((long)(u + UAC_UNIT)) << 32);
       
  1743                 if (pc != 0L) {               // timed wait if last waiter
       
  1744                     int dc = -(short)(c >>> TC_SHIFT);
       
  1745                     parkTime = (dc < 0 ? FAST_IDLE_TIMEOUT:
       
  1746                                 (dc + 1) * IDLE_TIMEOUT);
       
  1747                     deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
       
  1748                 }
       
  1749                 else
       
  1750                     parkTime = deadline = 0L;
       
  1751                 if (w.eventCount == ec && ctl == c) {
       
  1752                     Thread wt = Thread.currentThread();
       
  1753                     U.putObject(wt, PARKBLOCKER, this);
       
  1754                     w.parker = wt;            // emulate LockSupport.park
       
  1755                     if (w.eventCount == ec && ctl == c)
       
  1756                         U.park(false, parkTime);  // must recheck before park
       
  1757                     w.parker = null;
       
  1758                     U.putObject(wt, PARKBLOCKER, null);
       
  1759                     if (parkTime != 0L && ctl == c &&
       
  1760                         deadline - System.nanoTime() <= 0L &&
       
  1761                         U.compareAndSwapLong(this, CTL, c, pc))
       
  1762                         stat = w.qlock = -1;  // shrink pool
       
  1763                 }
       
  1764             }
       
  1765         }
       
  1766         return stat;
       
  1767     }
       
  1768 
       
  1769     /**
       
  1770      * Possibly releases (signals) a worker. Called only from scan()
       
  1771      * when a worker with apparently inactive status finds a non-empty
       
  1772      * queue. This requires revalidating all of the associated state
       
  1773      * from caller.
       
  1774      */
       
  1775     private final void helpRelease(long c, WorkQueue[] ws, WorkQueue w,
       
  1776                                    WorkQueue q, int b) {
       
  1777         WorkQueue v; int e, i; Thread p;
       
  1778         if (w != null && w.eventCount < 0 && (e = (int)c) > 0 &&
       
  1779             ws != null && ws.length > (i = e & SMASK) &&
       
  1780             (v = ws[i]) != null && ctl == c) {
       
  1781             long nc = (((long)(v.nextWait & E_MASK)) |
       
  1782                        ((long)((int)(c >>> 32) + UAC_UNIT)) << 32);
       
  1783             int ne = (e + E_SEQ) & E_MASK;
       
  1784             if (q != null && q.base == b && w.eventCount < 0 &&
       
  1785                 v.eventCount == (e | INT_SIGN) &&
       
  1786                 U.compareAndSwapLong(this, CTL, c, nc)) {
       
  1787                 v.eventCount = ne;
       
  1788                 if ((p = v.parker) != null)
       
  1789                     U.unpark(p);
       
  1790             }
       
  1791         }
       
  1792     }
       
  1793 
       
  1794     /**
       
  1795      * Tries to locate and execute tasks for a stealer of the given
       
  1796      * task, or in turn one of its stealers, Traces currentSteal ->
       
  1797      * currentJoin links looking for a thread working on a descendant
       
  1798      * of the given task and with a non-empty queue to steal back and
       
  1799      * execute tasks from. The first call to this method upon a
       
  1800      * waiting join will often entail scanning/search, (which is OK
       
  1801      * because the joiner has nothing better to do), but this method
       
  1802      * leaves hints in workers to speed up subsequent calls. The
       
  1803      * implementation is very branchy to cope with potential
       
  1804      * inconsistencies or loops encountering chains that are stale,
       
  1805      * unknown, or so long that they are likely cyclic.
       
  1806      *
       
  1807      * @param joiner the joining worker
       
  1808      * @param task the task to join
       
  1809      * @return 0 if no progress can be made, negative if task
       
  1810      * known complete, else positive
       
  1811      */
       
  1812     private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
       
  1813         int stat = 0, steps = 0;                    // bound to avoid cycles
       
  1814         if (task != null && joiner != null &&
       
  1815             joiner.base - joiner.top >= 0) {        // hoist checks
       
  1816             restart: for (;;) {
       
  1817                 ForkJoinTask<?> subtask = task;     // current target
       
  1818                 for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
       
  1819                     WorkQueue[] ws; int m, s, h;
       
  1820                     if ((s = task.status) < 0) {
       
  1821                         stat = s;
       
  1822                         break restart;
       
  1823                     }
       
  1824                     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
       
  1825                         break restart;              // shutting down
       
  1826                     if ((v = ws[h = (j.hint | 1) & m]) == null ||
       
  1827                         v.currentSteal != subtask) {
       
  1828                         for (int origin = h;;) {    // find stealer
       
  1829                             if (((h = (h + 2) & m) & 15) == 1 &&
       
  1830                                 (subtask.status < 0 || j.currentJoin != subtask))
       
  1831                                 continue restart;   // occasional staleness check
       
  1832                             if ((v = ws[h]) != null &&
       
  1833                                 v.currentSteal == subtask) {
       
  1834                                 j.hint = h;        // save hint
       
  1835                                 break;
       
  1836                             }
       
  1837                             if (h == origin)
       
  1838                                 break restart;      // cannot find stealer
       
  1839                         }
       
  1840                     }
       
  1841                     for (;;) { // help stealer or descend to its stealer
       
  1842                         ForkJoinTask<?>[] a; int b;
       
  1843                         if (subtask.status < 0)     // surround probes with
       
  1844                             continue restart;       //   consistency checks
       
  1845                         if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
       
  1846                             int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
       
  1847                             ForkJoinTask<?> t =
       
  1848                                 (ForkJoinTask<?>)U.getObjectVolatile(a, i);
       
  1849                             if (subtask.status < 0 || j.currentJoin != subtask ||
       
  1850                                 v.currentSteal != subtask)
       
  1851                                 continue restart;   // stale
       
  1852                             stat = 1;               // apparent progress
       
  1853                             if (v.base == b) {
       
  1854                                 if (t == null)
       
  1855                                     break restart;
       
  1856                                 if (U.compareAndSwapObject(a, i, t, null)) {
       
  1857                                     U.putOrderedInt(v, QBASE, b + 1);
       
  1858                                     ForkJoinTask<?> ps = joiner.currentSteal;
       
  1859                                     int jt = joiner.top;
       
  1860                                     do {
       
  1861                                         joiner.currentSteal = t;
       
  1862                                         t.doExec(); // clear local tasks too
       
  1863                                     } while (task.status >= 0 &&
       
  1864                                              joiner.top != jt &&
       
  1865                                              (t = joiner.pop()) != null);
       
  1866                                     joiner.currentSteal = ps;
       
  1867                                     break restart;
       
  1868                                 }
       
  1869                             }
       
  1870                         }
       
  1871                         else {                      // empty -- try to descend
       
  1872                             ForkJoinTask<?> next = v.currentJoin;
       
  1873                             if (subtask.status < 0 || j.currentJoin != subtask ||
       
  1874                                 v.currentSteal != subtask)
       
  1875                                 continue restart;   // stale
       
  1876                             else if (next == null || ++steps == MAX_HELP)
       
  1877                                 break restart;      // dead-end or maybe cyclic
       
  1878                             else {
       
  1879                                 subtask = next;
       
  1880                                 j = v;
       
  1881                                 break;
       
  1882                             }
       
  1883                         }
       
  1884                     }
       
  1885                 }
       
  1886             }
       
  1887         }
       
  1888         return stat;
       
  1889     }
       
  1890 
       
  1891     /**
       
  1892      * Analog of tryHelpStealer for CountedCompleters. Tries to steal
       
  1893      * and run tasks within the target's computation.
       
  1894      *
       
  1895      * @param task the task to join
       
  1896      * @param maxTasks the maximum number of other tasks to run
       
  1897      */
       
  1898     final int helpComplete(WorkQueue joiner, CountedCompleter<?> task,
       
  1899                            int maxTasks) {
       
  1900         WorkQueue[] ws; int m;
       
  1901         int s = 0;
       
  1902         if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
       
  1903             joiner != null && task != null) {
       
  1904             int j = joiner.poolIndex;
       
  1905             int scans = m + m + 1;
       
  1906             long c = 0L;              // for stability check
       
  1907             for (int k = scans; ; j += 2) {
       
  1908                 WorkQueue q;
       
  1909                 if ((s = task.status) < 0)
       
  1910                     break;
       
  1911                 else if (joiner.internalPopAndExecCC(task)) {
       
  1912                     if (--maxTasks <= 0) {
       
  1913                         s = task.status;
       
  1914                         break;
       
  1915                     }
       
  1916                     k = scans;
       
  1917                 }
       
  1918                 else if ((s = task.status) < 0)
       
  1919                     break;
       
  1920                 else if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
       
  1921                     if (--maxTasks <= 0) {
       
  1922                         s = task.status;
       
  1923                         break;
       
  1924                     }
       
  1925                     k = scans;
       
  1926                 }
       
  1927                 else if (--k < 0) {
       
  1928                     if (c == (c = ctl))
       
  1929                         break;
       
  1930                     k = scans;
       
  1931                 }
       
  1932             }
       
  1933         }
       
  1934         return s;
       
  1935     }
       
  1936 
       
  1937     /**
       
  1938      * Tries to decrement active count (sometimes implicitly) and
       
  1939      * possibly release or create a compensating worker in preparation
       
  1940      * for blocking. Fails on contention or termination. Otherwise,
       
  1941      * adds a new thread if no idle workers are available and pool
       
  1942      * may become starved.
       
  1943      *
       
  1944      * @param c the assumed ctl value
       
  1945      */
       
  1946     final boolean tryCompensate(long c) {
       
  1947         WorkQueue[] ws = workQueues;
       
  1948         int pc = parallelism, e = (int)c, m, tc;
       
  1949         if (ws != null && (m = ws.length - 1) >= 0 && e >= 0 && ctl == c) {
       
  1950             WorkQueue w = ws[e & m];
       
  1951             if (e != 0 && w != null) {
       
  1952                 Thread p;
       
  1953                 long nc = ((long)(w.nextWait & E_MASK) |
       
  1954                            (c & (AC_MASK|TC_MASK)));
       
  1955                 int ne = (e + E_SEQ) & E_MASK;
       
  1956                 if (w.eventCount == (e | INT_SIGN) &&
       
  1957                     U.compareAndSwapLong(this, CTL, c, nc)) {
       
  1958                     w.eventCount = ne;
       
  1959                     if ((p = w.parker) != null)
       
  1960                         U.unpark(p);
       
  1961                     return true;   // replace with idle worker
       
  1962                 }
       
  1963             }
       
  1964             else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
       
  1965                      (int)(c >> AC_SHIFT) + pc > 1) {
       
  1966                 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
       
  1967                 if (U.compareAndSwapLong(this, CTL, c, nc))
       
  1968                     return true;   // no compensation
       
  1969             }
       
  1970             else if (tc + pc < MAX_CAP) {
       
  1971                 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
       
  1972                 if (U.compareAndSwapLong(this, CTL, c, nc)) {
       
  1973                     ForkJoinWorkerThreadFactory fac;
       
  1974                     Throwable ex = null;
       
  1975                     ForkJoinWorkerThread wt = null;
       
  1976                     try {
       
  1977                         if ((fac = factory) != null &&
       
  1978                             (wt = fac.newThread(this)) != null) {
       
  1979                             wt.start();
       
  1980                             return true;
       
  1981                         }
       
  1982                     } catch (Throwable rex) {
       
  1983                         ex = rex;
       
  1984                     }
       
  1985                     deregisterWorker(wt, ex); // clean up and return false
       
  1986                 }
       
  1987             }
       
  1988         }
       
  1989         return false;
       
  1990     }
       
  1991 
       
  1992     /**
       
  1993      * Helps and/or blocks until the given task is done.
       
  1994      *
       
  1995      * @param joiner the joining worker
       
  1996      * @param task the task
       
  1997      * @return task status on exit
       
  1998      */
       
  1999     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
       
  2000         int s = 0;
       
  2001         if (task != null && (s = task.status) >= 0 && joiner != null) {
       
  2002             ForkJoinTask<?> prevJoin = joiner.currentJoin;
       
  2003             joiner.currentJoin = task;
       
  2004             do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
       
  2005                          (s = task.status) >= 0);
       
  2006             if (s >= 0 && (task instanceof CountedCompleter))
       
  2007                 s = helpComplete(joiner, (CountedCompleter<?>)task, Integer.MAX_VALUE);
       
  2008             long cc = 0;        // for stability checks
       
  2009             while (s >= 0 && (s = task.status) >= 0) {
       
  2010                 if ((s = tryHelpStealer(joiner, task)) == 0 &&
       
  2011                     (s = task.status) >= 0) {
       
  2012                     if (!tryCompensate(cc))
       
  2013                         cc = ctl;
       
  2014                     else {
       
  2015                         if (task.trySetSignal() && (s = task.status) >= 0) {
       
  2016                             synchronized (task) {
       
  2017                                 if (task.status >= 0) {
       
  2018                                     try {                // see ForkJoinTask
       
  2019                                         task.wait();     //  for explanation
       
  2020                                     } catch (InterruptedException ie) {
       
  2021                                     }
       
  2022                                 }
       
  2023                                 else
       
  2024                                     task.notifyAll();
       
  2025                             }
       
  2026                         }
       
  2027                         long c; // reactivate
       
  2028                         do {} while (!U.compareAndSwapLong
       
  2029                                      (this, CTL, c = ctl,
       
  2030                                       ((c & ~AC_MASK) |
       
  2031                                        ((c & AC_MASK) + AC_UNIT))));
       
  2032                     }
       
  2033                 }
       
  2034             }
       
  2035             joiner.currentJoin = prevJoin;
       
  2036         }
       
  2037         return s;
       
  2038     }
       
  2039 
       
  2040     /**
       
  2041      * Stripped-down variant of awaitJoin used by timed joins. Tries
       
  2042      * to help join only while there is continuous progress. (Caller
       
  2043      * will then enter a timed wait.)
       
  2044      *
       
  2045      * @param joiner the joining worker
       
  2046      * @param task the task
       
  2047      */
       
  2048     final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
       
  2049         int s;
       
  2050         if (joiner != null && task != null && (s = task.status) >= 0) {
       
  2051             ForkJoinTask<?> prevJoin = joiner.currentJoin;
       
  2052             joiner.currentJoin = task;
       
  2053             do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
       
  2054                          (s = task.status) >= 0);
       
  2055             if (s >= 0) {
       
  2056                 if (task instanceof CountedCompleter)
       
  2057                     helpComplete(joiner, (CountedCompleter<?>)task, Integer.MAX_VALUE);
       
  2058                 do {} while (task.status >= 0 &&
       
  2059                              tryHelpStealer(joiner, task) > 0);
       
  2060             }
       
  2061             joiner.currentJoin = prevJoin;
       
  2062         }
       
  2063     }
       
  2064 
       
  2065     /**
       
  2066      * Returns a (probably) non-empty steal queue, if one is found
       
  2067      * during a scan, else null.  This method must be retried by
       
  2068      * caller if, by the time it tries to use the queue, it is empty.
       
  2069      */
       
  2070     private WorkQueue findNonEmptyStealQueue() {
       
  2071         int r = ThreadLocalRandom.nextSecondarySeed();
       
  2072         for (;;) {
       
  2073             int ps = plock, m; WorkQueue[] ws; WorkQueue q;
       
  2074             if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
       
  2075                 for (int j = (m + 1) << 2; j >= 0; --j) {
       
  2076                     if ((q = ws[(((r - j) << 1) | 1) & m]) != null &&
       
  2077                         q.base - q.top < 0)
       
  2078                         return q;
       
  2079                 }
       
  2080             }
       
  2081             if (plock == ps)
       
  2082                 return null;
       
  2083         }
       
  2084     }
       
  2085 
       
  2086     /**
       
  2087      * Runs tasks until {@code isQuiescent()}. We piggyback on
       
  2088      * active count ctl maintenance, but rather than blocking
       
  2089      * when tasks cannot be found, we rescan until all others cannot
       
  2090      * find tasks either.
       
  2091      */
       
  2092     final void helpQuiescePool(WorkQueue w) {
       
  2093         ForkJoinTask<?> ps = w.currentSteal;
       
  2094         for (boolean active = true;;) {
       
  2095             long c; WorkQueue q; ForkJoinTask<?> t; int b;
       
  2096             while ((t = w.nextLocalTask()) != null)
       
  2097                 t.doExec();
       
  2098             if ((q = findNonEmptyStealQueue()) != null) {
       
  2099                 if (!active) {      // re-establish active count
       
  2100                     active = true;
       
  2101                     do {} while (!U.compareAndSwapLong
       
  2102                                  (this, CTL, c = ctl,
       
  2103                                   ((c & ~AC_MASK) |
       
  2104                                    ((c & AC_MASK) + AC_UNIT))));
       
  2105                 }
       
  2106                 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
       
  2107                     w.runTask(t);
       
  2108             }
       
  2109             else if (active) {      // decrement active count without queuing
       
  2110                 long nc = ((c = ctl) & ~AC_MASK) | ((c & AC_MASK) - AC_UNIT);
       
  2111                 if ((int)(nc >> AC_SHIFT) + parallelism == 0)
       
  2112                     break;          // bypass decrement-then-increment
       
  2113                 if (U.compareAndSwapLong(this, CTL, c, nc))
       
  2114                     active = false;
       
  2115             }
       
  2116             else if ((int)((c = ctl) >> AC_SHIFT) + parallelism <= 0 &&
       
  2117                      U.compareAndSwapLong
       
  2118                      (this, CTL, c, ((c & ~AC_MASK) |
       
  2119                                      ((c & AC_MASK) + AC_UNIT))))
       
  2120                 break;
       
  2121         }
       
  2122     }
       
  2123 
       
  2124     /**
       
  2125      * Gets and removes a local or stolen task for the given worker.
       
  2126      *
       
  2127      * @return a task, if available
       
  2128      */
       
  2129     final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
       
  2130         for (ForkJoinTask<?> t;;) {
       
  2131             WorkQueue q; int b;
       
  2132             if ((t = w.nextLocalTask()) != null)
       
  2133                 return t;
       
  2134             if ((q = findNonEmptyStealQueue()) == null)
       
  2135                 return null;
       
  2136             if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
       
  2137                 return t;
       
  2138         }
       
  2139     }
       
  2140 
       
  2141     /**
       
  2142      * Returns a cheap heuristic guide for task partitioning when
       
  2143      * programmers, frameworks, tools, or languages have little or no
       
  2144      * idea about task granularity.  In essence by offering this
       
  2145      * method, we ask users only about tradeoffs in overhead vs
       
  2146      * expected throughput and its variance, rather than how finely to
       
  2147      * partition tasks.
       
  2148      *
       
  2149      * In a steady state strict (tree-structured) computation, each
       
  2150      * thread makes available for stealing enough tasks for other
       
  2151      * threads to remain active. Inductively, if all threads play by
       
  2152      * the same rules, each thread should make available only a
       
  2153      * constant number of tasks.
       
  2154      *
       
  2155      * The minimum useful constant is just 1. But using a value of 1
       
  2156      * would require immediate replenishment upon each steal to
       
  2157      * maintain enough tasks, which is infeasible.  Further,
       
  2158      * partitionings/granularities of offered tasks should minimize
       
  2159      * steal rates, which in general means that threads nearer the top
       
  2160      * of computation tree should generate more than those nearer the
       
  2161      * bottom. In perfect steady state, each thread is at
       
  2162      * approximately the same level of computation tree. However,
       
  2163      * producing extra tasks amortizes the uncertainty of progress and
       
  2164      * diffusion assumptions.
       
  2165      *
       
  2166      * So, users will want to use values larger (but not much larger)
       
  2167      * than 1 to both smooth over transient shortages and hedge
       
  2168      * against uneven progress; as traded off against the cost of
       
  2169      * extra task overhead. We leave the user to pick a threshold
       
  2170      * value to compare with the results of this call to guide
       
  2171      * decisions, but recommend values such as 3.
       
  2172      *
       
  2173      * When all threads are active, it is on average OK to estimate
       
  2174      * surplus strictly locally. In steady-state, if one thread is
       
  2175      * maintaining say 2 surplus tasks, then so are others. So we can
       
  2176      * just use estimated queue length.  However, this strategy alone
       
  2177      * leads to serious mis-estimates in some non-steady-state
       
  2178      * conditions (ramp-up, ramp-down, other stalls). We can detect
       
  2179      * many of these by further considering the number of "idle"
       
  2180      * threads, that are known to have zero queued tasks, so
       
  2181      * compensate by a factor of (#idle/#active) threads.
       
  2182      *
       
  2183      * Note: The approximation of #busy workers as #active workers is
       
  2184      * not very good under current signalling scheme, and should be
       
  2185      * improved.
       
  2186      */
       
  2187     static int getSurplusQueuedTaskCount() {
       
  2188         Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
       
  2189         if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
       
  2190             int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).parallelism;
       
  2191             int n = (q = wt.workQueue).top - q.base;
       
  2192             int a = (int)(pool.ctl >> AC_SHIFT) + p;
       
  2193             return n - (a > (p >>>= 1) ? 0 :
       
  2194                         a > (p >>>= 1) ? 1 :
       
  2195                         a > (p >>>= 1) ? 2 :
       
  2196                         a > (p >>>= 1) ? 4 :
       
  2197                         8);
       
  2198         }
       
  2199         return 0;
       
  2200     }
       
  2201 
       
  2202     //  Termination
       
  2203 
       
  2204     /**
       
  2205      * Possibly initiates and/or completes termination.  The caller
       
  2206      * triggering termination runs three passes through workQueues:
       
  2207      * (0) Setting termination status, followed by wakeups of queued
       
  2208      * workers; (1) cancelling all tasks; (2) interrupting lagging
       
  2209      * threads (likely in external tasks, but possibly also blocked in
       
  2210      * joins).  Each pass repeats previous steps because of potential
       
  2211      * lagging thread creation.
       
  2212      *
       
  2213      * @param now if true, unconditionally terminate, else only
       
  2214      * if no work and no active workers
       
  2215      * @param enable if true, enable shutdown when next possible
       
  2216      * @return true if now terminating or terminated
       
  2217      */
       
  2218     private boolean tryTerminate(boolean now, boolean enable) {
       
  2219         int ps;
       
  2220         if (this == common)                        // cannot shut down
       
  2221             return false;
       
  2222         if ((ps = plock) >= 0) {                   // enable by setting plock
       
  2223             if (!enable)
       
  2224                 return false;
       
  2225             if ((ps & PL_LOCK) != 0 ||
       
  2226                 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
       
  2227                 ps = acquirePlock();
       
  2228             int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
       
  2229             if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
       
  2230                 releasePlock(nps);
       
  2231         }
       
  2232         for (long c;;) {
       
  2233             if (((c = ctl) & STOP_BIT) != 0) {     // already terminating
       
  2234                 if ((short)(c >>> TC_SHIFT) + parallelism <= 0) {
       
  2235                     synchronized (this) {
       
  2236                         notifyAll();               // signal when 0 workers
       
  2237                     }
       
  2238                 }
       
  2239                 return true;
       
  2240             }
       
  2241             if (!now) {                            // check if idle & no tasks
       
  2242                 WorkQueue[] ws; WorkQueue w;
       
  2243                 if ((int)(c >> AC_SHIFT) + parallelism > 0)
       
  2244                     return false;
       
  2245                 if ((ws = workQueues) != null) {
       
  2246                     for (int i = 0; i < ws.length; ++i) {
       
  2247                         if ((w = ws[i]) != null &&
       
  2248                             (!w.isEmpty() ||
       
  2249                              ((i & 1) != 0 && w.eventCount >= 0))) {
       
  2250                             signalWork(ws, w);
       
  2251                             return false;
       
  2252                         }
       
  2253                     }
       
  2254                 }
       
  2255             }
       
  2256             if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
       
  2257                 for (int pass = 0; pass < 3; ++pass) {
       
  2258                     WorkQueue[] ws; WorkQueue w; Thread wt;
       
  2259                     if ((ws = workQueues) != null) {
       
  2260                         int n = ws.length;
       
  2261                         for (int i = 0; i < n; ++i) {
       
  2262                             if ((w = ws[i]) != null) {
       
  2263                                 w.qlock = -1;
       
  2264                                 if (pass > 0) {
       
  2265                                     w.cancelAll();
       
  2266                                     if (pass > 1 && (wt = w.owner) != null) {
       
  2267                                         if (!wt.isInterrupted()) {
       
  2268                                             try {
       
  2269                                                 wt.interrupt();
       
  2270                                             } catch (Throwable ignore) {
       
  2271                                             }
       
  2272                                         }
       
  2273                                         U.unpark(wt);
       
  2274                                     }
       
  2275                                 }
       
  2276                             }
       
  2277                         }
       
  2278                         // Wake up workers parked on event queue
       
  2279                         int i, e; long cc; Thread p;
       
  2280                         while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
       
  2281                                (i = e & SMASK) < n && i >= 0 &&
       
  2282                                (w = ws[i]) != null) {
       
  2283                             long nc = ((long)(w.nextWait & E_MASK) |
       
  2284                                        ((cc + AC_UNIT) & AC_MASK) |
       
  2285                                        (cc & (TC_MASK|STOP_BIT)));
       
  2286                             if (w.eventCount == (e | INT_SIGN) &&
       
  2287                                 U.compareAndSwapLong(this, CTL, cc, nc)) {
       
  2288                                 w.eventCount = (e + E_SEQ) & E_MASK;
       
  2289                                 w.qlock = -1;
       
  2290                                 if ((p = w.parker) != null)
       
  2291                                     U.unpark(p);
       
  2292                             }
       
  2293                         }
       
  2294                     }
       
  2295                 }
       
  2296             }
       
  2297         }
       
  2298     }
       
  2299 
       
  2300     // external operations on common pool
       
  2301 
       
  2302     /**
       
  2303      * Returns common pool queue for a thread that has submitted at
       
  2304      * least one task.
       
  2305      */
       
  2306     static WorkQueue commonSubmitterQueue() {
       
  2307         ForkJoinPool p; WorkQueue[] ws; int m, z;
       
  2308         return ((z = ThreadLocalRandom.getProbe()) != 0 &&
       
  2309                 (p = common) != null &&
       
  2310                 (ws = p.workQueues) != null &&
       
  2311                 (m = ws.length - 1) >= 0) ?
       
  2312             ws[m & z & SQMASK] : null;
       
  2313     }
       
  2314 
       
  2315     /**
       
  2316      * Tries to pop the given task from submitter's queue in common pool.
       
  2317      */
       
  2318     final boolean tryExternalUnpush(ForkJoinTask<?> task) {
       
  2319         WorkQueue joiner; ForkJoinTask<?>[] a; int m, s;
       
  2320         WorkQueue[] ws = workQueues;
       
  2321         int z = ThreadLocalRandom.getProbe();
       
  2322         boolean popped = false;
       
  2323         if (ws != null && (m = ws.length - 1) >= 0 &&
       
  2324             (joiner = ws[z & m & SQMASK]) != null &&
       
  2325             joiner.base != (s = joiner.top) &&
       
  2326             (a = joiner.array) != null) {
       
  2327             long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
       
  2328             if (U.getObject(a, j) == task &&
       
  2329                 U.compareAndSwapInt(joiner, QLOCK, 0, 1)) {
       
  2330                 if (joiner.top == s && joiner.array == a &&
       
  2331                     U.compareAndSwapObject(a, j, task, null)) {
       
  2332                     joiner.top = s - 1;
       
  2333                     popped = true;
       
  2334                 }
       
  2335                 joiner.qlock = 0;
       
  2336             }
       
  2337         }
       
  2338         return popped;
       
  2339     }
       
  2340 
       
  2341     final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
       
  2342         WorkQueue joiner; int m;
       
  2343         WorkQueue[] ws = workQueues;
       
  2344         int j = ThreadLocalRandom.getProbe();
       
  2345         int s = 0;
       
  2346         if (ws != null && (m = ws.length - 1) >= 0 &&
       
  2347             (joiner = ws[j & m & SQMASK]) != null && task != null) {
       
  2348             int scans = m + m + 1;
       
  2349             long c = 0L;             // for stability check
       
  2350             j |= 1;                  // poll odd queues
       
  2351             for (int k = scans; ; j += 2) {
       
  2352                 WorkQueue q;
       
  2353                 if ((s = task.status) < 0)
       
  2354                     break;
       
  2355                 else if (joiner.externalPopAndExecCC(task)) {
       
  2356                     if (--maxTasks <= 0) {
       
  2357                         s = task.status;
       
  2358                         break;
       
  2359                     }
       
  2360                     k = scans;
       
  2361                 }
       
  2362                 else if ((s = task.status) < 0)
       
  2363                     break;
       
  2364                 else if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
       
  2365                     if (--maxTasks <= 0) {
       
  2366                         s = task.status;
       
  2367                         break;
       
  2368                     }
       
  2369                     k = scans;
       
  2370                 }
       
  2371                 else if (--k < 0) {
       
  2372                     if (c == (c = ctl))
       
  2373                         break;
       
  2374                     k = scans;
       
  2375                 }
       
  2376             }
       
  2377         }
       
  2378         return s;
       
  2379     }
       
  2380 
       
  2381     // Exported methods
       
  2382 
       
  2383     // Constructors
       
  2384 
       
  2385     /**
       
  2386      * Creates a {@code ForkJoinPool} with parallelism equal to {@link
       
  2387      * java.lang.Runtime#availableProcessors}, using the {@linkplain
       
  2388      * #defaultForkJoinWorkerThreadFactory default thread factory},
       
  2389      * no UncaughtExceptionHandler, and non-async LIFO processing mode.
       
  2390      *
       
  2391      * @throws SecurityException if a security manager exists and
       
  2392      *         the caller is not permitted to modify threads
       
  2393      *         because it does not hold {@link
       
  2394      *         java.lang.RuntimePermission}{@code ("modifyThread")}
       
  2395      */
       
  2396     public ForkJoinPool() {
       
  2397         this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
       
  2398              defaultForkJoinWorkerThreadFactory, null, false);
       
  2399     }
       
  2400 
       
  2401     /**
       
  2402      * Creates a {@code ForkJoinPool} with the indicated parallelism
       
  2403      * level, the {@linkplain
       
  2404      * #defaultForkJoinWorkerThreadFactory default thread factory},
       
  2405      * no UncaughtExceptionHandler, and non-async LIFO processing mode.
       
  2406      *
       
  2407      * @param parallelism the parallelism level
       
  2408      * @throws IllegalArgumentException if parallelism less than or
       
  2409      *         equal to zero, or greater than implementation limit
       
  2410      * @throws SecurityException if a security manager exists and
       
  2411      *         the caller is not permitted to modify threads
       
  2412      *         because it does not hold {@link
       
  2413      *         java.lang.RuntimePermission}{@code ("modifyThread")}
       
  2414      */
       
  2415     public ForkJoinPool(int parallelism) {
       
  2416         this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
       
  2417     }
       
  2418 
       
  2419     /**
       
  2420      * Creates a {@code ForkJoinPool} with the given parameters.
       
  2421      *
       
  2422      * @param parallelism the parallelism level. For default value,
       
  2423      * use {@link java.lang.Runtime#availableProcessors}.
       
  2424      * @param factory the factory for creating new threads. For default value,
       
  2425      * use {@link #defaultForkJoinWorkerThreadFactory}.
       
  2426      * @param handler the handler for internal worker threads that
       
  2427      * terminate due to unrecoverable errors encountered while executing
       
  2428      * tasks. For default value, use {@code null}.
       
  2429      * @param asyncMode if true,
       
  2430      * establishes local first-in-first-out scheduling mode for forked
       
  2431      * tasks that are never joined. This mode may be more appropriate
       
  2432      * than default locally stack-based mode in applications in which
       
  2433      * worker threads only process event-style asynchronous tasks.
       
  2434      * For default value, use {@code false}.
       
  2435      * @throws IllegalArgumentException if parallelism less than or
       
  2436      *         equal to zero, or greater than implementation limit
       
  2437      * @throws NullPointerException if the factory is null
       
  2438      * @throws SecurityException if a security manager exists and
       
  2439      *         the caller is not permitted to modify threads
       
  2440      *         because it does not hold {@link
       
  2441      *         java.lang.RuntimePermission}{@code ("modifyThread")}
       
  2442      */
       
  2443     public ForkJoinPool(int parallelism,
       
  2444                         ForkJoinWorkerThreadFactory factory,
       
  2445                         UncaughtExceptionHandler handler,
       
  2446                         boolean asyncMode) {
       
  2447         this(checkParallelism(parallelism),
       
  2448              checkFactory(factory),
       
  2449              handler,
       
  2450              (asyncMode ? FIFO_QUEUE : LIFO_QUEUE),
       
  2451              "ForkJoinPool-" + nextPoolId() + "-worker-");
       
  2452         checkPermission();
       
  2453     }
       
  2454 
       
  2455     private static int checkParallelism(int parallelism) {
       
  2456         if (parallelism <= 0 || parallelism > MAX_CAP)
       
  2457             throw new IllegalArgumentException();
       
  2458         return parallelism;
       
  2459     }
       
  2460 
       
  2461     private static ForkJoinWorkerThreadFactory checkFactory
       
  2462         (ForkJoinWorkerThreadFactory factory) {
       
  2463         if (factory == null)
       
  2464             throw new NullPointerException();
       
  2465         return factory;
       
  2466     }
       
  2467 
       
  2468     /**
       
  2469      * Creates a {@code ForkJoinPool} with the given parameters, without
       
  2470      * any security checks or parameter validation.  Invoked directly by
       
  2471      * makeCommonPool.
       
  2472      */
       
  2473     private ForkJoinPool(int parallelism,
       
  2474                          ForkJoinWorkerThreadFactory factory,
       
  2475                          UncaughtExceptionHandler handler,
       
  2476                          int mode,
       
  2477                          String workerNamePrefix) {
       
  2478         this.workerNamePrefix = workerNamePrefix;
       
  2479         this.factory = factory;
       
  2480         this.ueh = handler;
       
  2481         this.mode = (short)mode;
       
  2482         this.parallelism = (short)parallelism;
       
  2483         long np = (long)(-parallelism); // offset ctl counts
       
  2484         this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
       
  2485     }
       
  2486 
       
  2487     /**
       
  2488      * Returns the common pool instance. This pool is statically
       
  2489      * constructed; its run state is unaffected by attempts to {@link
       
  2490      * #shutdown} or {@link #shutdownNow}. However this pool and any
       
  2491      * ongoing processing are automatically terminated upon program
       
  2492      * {@link System#exit}.  Any program that relies on asynchronous
       
  2493      * task processing to complete before program termination should
       
  2494      * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
       
  2495      * before exit.
       
  2496      *
       
  2497      * @return the common pool instance
       
  2498      * @since 1.8
       
  2499      */
       
  2500     public static ForkJoinPool commonPool() {
       
  2501         // assert common != null : "static init error";
       
  2502         return common;
       
  2503     }
       
  2504 
       
  2505     // Execution methods
       
  2506 
       
  2507     /**
       
  2508      * Performs the given task, returning its result upon completion.
       
  2509      * If the computation encounters an unchecked Exception or Error,
       
  2510      * it is rethrown as the outcome of this invocation.  Rethrown
       
  2511      * exceptions behave in the same way as regular exceptions, but,
       
  2512      * when possible, contain stack traces (as displayed for example
       
  2513      * using {@code ex.printStackTrace()}) of both the current thread
       
  2514      * as well as the thread actually encountering the exception;
       
  2515      * minimally only the latter.
       
  2516      *
       
  2517      * @param task the task
       
  2518      * @param <T> the type of the task's result
       
  2519      * @return the task's result
       
  2520      * @throws NullPointerException if the task is null
       
  2521      * @throws RejectedExecutionException if the task cannot be
       
  2522      *         scheduled for execution
       
  2523      */
       
  2524     public <T> T invoke(ForkJoinTask<T> task) {
       
  2525         if (task == null)
       
  2526             throw new NullPointerException();
       
  2527         externalPush(task);
       
  2528         return task.join();
       
  2529     }
       
  2530 
       
  2531     /**
       
  2532      * Arranges for (asynchronous) execution of the given task.
       
  2533      *
       
  2534      * @param task the task
       
  2535      * @throws NullPointerException if the task is null
       
  2536      * @throws RejectedExecutionException if the task cannot be
       
  2537      *         scheduled for execution
       
  2538      */
       
  2539     public void execute(ForkJoinTask<?> task) {
       
  2540         if (task == null)
       
  2541             throw new NullPointerException();
       
  2542         externalPush(task);
       
  2543     }
       
  2544 
       
  2545     // AbstractExecutorService methods
       
  2546 
       
  2547     /**
       
  2548      * @throws NullPointerException if the task is null
       
  2549      * @throws RejectedExecutionException if the task cannot be
       
  2550      *         scheduled for execution
       
  2551      */
       
  2552     public void execute(Runnable task) {
       
  2553         if (task == null)
       
  2554             throw new NullPointerException();
       
  2555         ForkJoinTask<?> job;
       
  2556         if (task instanceof ForkJoinTask<?>) // avoid re-wrap
       
  2557             job = (ForkJoinTask<?>) task;
       
  2558         else
       
  2559             job = new ForkJoinTask.RunnableExecuteAction(task);
       
  2560         externalPush(job);
       
  2561     }
       
  2562 
       
  2563     /**
       
  2564      * Submits a ForkJoinTask for execution.
       
  2565      *
       
  2566      * @param task the task to submit
       
  2567      * @param <T> the type of the task's result
       
  2568      * @return the task
       
  2569      * @throws NullPointerException if the task is null
       
  2570      * @throws RejectedExecutionException if the task cannot be
       
  2571      *         scheduled for execution
       
  2572      */
       
  2573     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
       
  2574         if (task == null)
       
  2575             throw new NullPointerException();
       
  2576         externalPush(task);
       
  2577         return task;
       
  2578     }
       
  2579 
       
  2580     /**
       
  2581      * @throws NullPointerException if the task is null
       
  2582      * @throws RejectedExecutionException if the task cannot be
       
  2583      *         scheduled for execution
       
  2584      */
       
  2585     public <T> ForkJoinTask<T> submit(Callable<T> task) {
       
  2586         ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
       
  2587         externalPush(job);
       
  2588         return job;
       
  2589     }
       
  2590 
       
  2591     /**
       
  2592      * @throws NullPointerException if the task is null
       
  2593      * @throws RejectedExecutionException if the task cannot be
       
  2594      *         scheduled for execution
       
  2595      */
       
  2596     public <T> ForkJoinTask<T> submit(Runnable task, T result) {
       
  2597         ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
       
  2598         externalPush(job);
       
  2599         return job;
       
  2600     }
       
  2601 
       
  2602     /**
       
  2603      * @throws NullPointerException if the task is null
       
  2604      * @throws RejectedExecutionException if the task cannot be
       
  2605      *         scheduled for execution
       
  2606      */
       
  2607     public ForkJoinTask<?> submit(Runnable task) {
       
  2608         if (task == null)
       
  2609             throw new NullPointerException();
       
  2610         ForkJoinTask<?> job;
       
  2611         if (task instanceof ForkJoinTask<?>) // avoid re-wrap
       
  2612             job = (ForkJoinTask<?>) task;
       
  2613         else
       
  2614             job = new ForkJoinTask.AdaptedRunnableAction(task);
       
  2615         externalPush(job);
       
  2616         return job;
       
  2617     }
       
  2618 
       
  2619     /**
       
  2620      * @throws NullPointerException       {@inheritDoc}
       
  2621      * @throws RejectedExecutionException {@inheritDoc}
       
  2622      */
       
  2623     public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
       
  2624         // In previous versions of this class, this method constructed
       
  2625         // a task to run ForkJoinTask.invokeAll, but now external
       
  2626         // invocation of multiple tasks is at least as efficient.
       
  2627         ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
       
  2628 
       
  2629         boolean done = false;
       
  2630         try {
       
  2631             for (Callable<T> t : tasks) {
       
  2632                 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
       
  2633                 futures.add(f);
       
  2634                 externalPush(f);
       
  2635             }
       
  2636             for (int i = 0, size = futures.size(); i < size; i++)
       
  2637                 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
       
  2638             done = true;
       
  2639             return futures;
       
  2640         } finally {
       
  2641             if (!done)
       
  2642                 for (int i = 0, size = futures.size(); i < size; i++)
       
  2643                     futures.get(i).cancel(false);
       
  2644         }
       
  2645     }
       
  2646 
       
  2647     /**
       
  2648      * Returns the factory used for constructing new workers.
       
  2649      *
       
  2650      * @return the factory used for constructing new workers
       
  2651      */
       
  2652     public ForkJoinWorkerThreadFactory getFactory() {
       
  2653         return factory;
       
  2654     }
       
  2655 
       
  2656     /**
       
  2657      * Returns the handler for internal worker threads that terminate
       
  2658      * due to unrecoverable errors encountered while executing tasks.
       
  2659      *
       
  2660      * @return the handler, or {@code null} if none
       
  2661      */
       
  2662     public UncaughtExceptionHandler getUncaughtExceptionHandler() {
       
  2663         return ueh;
       
  2664     }
       
  2665 
       
  2666     /**
       
  2667      * Returns the targeted parallelism level of this pool.
       
  2668      *
       
  2669      * @return the targeted parallelism level of this pool
       
  2670      */
       
  2671     public int getParallelism() {
       
  2672         int par;
       
  2673         return ((par = parallelism) > 0) ? par : 1;
       
  2674     }
       
  2675 
       
  2676     /**
       
  2677      * Returns the targeted parallelism level of the common pool.
       
  2678      *
       
  2679      * @return the targeted parallelism level of the common pool
       
  2680      * @since 1.8
       
  2681      */
       
  2682     public static int getCommonPoolParallelism() {
       
  2683         return commonParallelism;
       
  2684     }
       
  2685 
       
  2686     /**
       
  2687      * Returns the number of worker threads that have started but not
       
  2688      * yet terminated.  The result returned by this method may differ
       
  2689      * from {@link #getParallelism} when threads are created to
       
  2690      * maintain parallelism when others are cooperatively blocked.
       
  2691      *
       
  2692      * @return the number of worker threads
       
  2693      */
       
  2694     public int getPoolSize() {
       
  2695         return parallelism + (short)(ctl >>> TC_SHIFT);
       
  2696     }
       
  2697 
       
  2698     /**
       
  2699      * Returns {@code true} if this pool uses local first-in-first-out
       
  2700      * scheduling mode for forked tasks that are never joined.
       
  2701      *
       
  2702      * @return {@code true} if this pool uses async mode
       
  2703      */
       
  2704     public boolean getAsyncMode() {
       
  2705         return mode == FIFO_QUEUE;
       
  2706     }
       
  2707 
       
  2708     /**
       
  2709      * Returns an estimate of the number of worker threads that are
       
  2710      * not blocked waiting to join tasks or for other managed
       
  2711      * synchronization. This method may overestimate the
       
  2712      * number of running threads.
       
  2713      *
       
  2714      * @return the number of worker threads
       
  2715      */
       
  2716     public int getRunningThreadCount() {
       
  2717         int rc = 0;
       
  2718         WorkQueue[] ws; WorkQueue w;
       
  2719         if ((ws = workQueues) != null) {
       
  2720             for (int i = 1; i < ws.length; i += 2) {
       
  2721                 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
       
  2722                     ++rc;
       
  2723             }
       
  2724         }
       
  2725         return rc;
       
  2726     }
       
  2727 
       
  2728     /**
       
  2729      * Returns an estimate of the number of threads that are currently
       
  2730      * stealing or executing tasks. This method may overestimate the
       
  2731      * number of active threads.
       
  2732      *
       
  2733      * @return the number of active threads
       
  2734      */
       
  2735     public int getActiveThreadCount() {
       
  2736         int r = parallelism + (int)(ctl >> AC_SHIFT);
       
  2737         return (r <= 0) ? 0 : r; // suppress momentarily negative values
       
  2738     }
       
  2739 
       
  2740     /**
       
  2741      * Returns {@code true} if all worker threads are currently idle.
       
  2742      * An idle worker is one that cannot obtain a task to execute
       
  2743      * because none are available to steal from other threads, and
       
  2744      * there are no pending submissions to the pool. This method is
       
  2745      * conservative; it might not return {@code true} immediately upon
       
  2746      * idleness of all threads, but will eventually become true if
       
  2747      * threads remain inactive.
       
  2748      *
       
  2749      * @return {@code true} if all threads are currently idle
       
  2750      */
       
  2751     public boolean isQuiescent() {
       
  2752         return parallelism + (int)(ctl >> AC_SHIFT) <= 0;
       
  2753     }
       
  2754 
       
  2755     /**
       
  2756      * Returns an estimate of the total number of tasks stolen from
       
  2757      * one thread's work queue by another. The reported value
       
  2758      * underestimates the actual total number of steals when the pool
       
  2759      * is not quiescent. This value may be useful for monitoring and
       
  2760      * tuning fork/join programs: in general, steal counts should be
       
  2761      * high enough to keep threads busy, but low enough to avoid
       
  2762      * overhead and contention across threads.
       
  2763      *
       
  2764      * @return the number of steals
       
  2765      */
       
  2766     public long getStealCount() {
       
  2767         long count = stealCount;
       
  2768         WorkQueue[] ws; WorkQueue w;
       
  2769         if ((ws = workQueues) != null) {
       
  2770             for (int i = 1; i < ws.length; i += 2) {
       
  2771                 if ((w = ws[i]) != null)
       
  2772                     count += w.nsteals;
       
  2773             }
       
  2774         }
       
  2775         return count;
       
  2776     }
       
  2777 
       
  2778     /**
       
  2779      * Returns an estimate of the total number of tasks currently held
       
  2780      * in queues by worker threads (but not including tasks submitted
       
  2781      * to the pool that have not begun executing). This value is only
       
  2782      * an approximation, obtained by iterating across all threads in
       
  2783      * the pool. This method may be useful for tuning task
       
  2784      * granularities.
       
  2785      *
       
  2786      * @return the number of queued tasks
       
  2787      */
       
  2788     public long getQueuedTaskCount() {
       
  2789         long count = 0;
       
  2790         WorkQueue[] ws; WorkQueue w;
       
  2791         if ((ws = workQueues) != null) {
       
  2792             for (int i = 1; i < ws.length; i += 2) {
       
  2793                 if ((w = ws[i]) != null)
       
  2794                     count += w.queueSize();
       
  2795             }
       
  2796         }
       
  2797         return count;
       
  2798     }
       
  2799 
       
  2800     /**
       
  2801      * Returns an estimate of the number of tasks submitted to this
       
  2802      * pool that have not yet begun executing.  This method may take
       
  2803      * time proportional to the number of submissions.
       
  2804      *
       
  2805      * @return the number of queued submissions
       
  2806      */
       
  2807     public int getQueuedSubmissionCount() {
       
  2808         int count = 0;
       
  2809         WorkQueue[] ws; WorkQueue w;
       
  2810         if ((ws = workQueues) != null) {
       
  2811             for (int i = 0; i < ws.length; i += 2) {
       
  2812                 if ((w = ws[i]) != null)
       
  2813                     count += w.queueSize();
       
  2814             }
       
  2815         }
       
  2816         return count;
       
  2817     }
       
  2818 
       
  2819     /**
       
  2820      * Returns {@code true} if there are any tasks submitted to this
       
  2821      * pool that have not yet begun executing.
       
  2822      *
       
  2823      * @return {@code true} if there are any queued submissions
       
  2824      */
       
  2825     public boolean hasQueuedSubmissions() {
       
  2826         WorkQueue[] ws; WorkQueue w;
       
  2827         if ((ws = workQueues) != null) {
       
  2828             for (int i = 0; i < ws.length; i += 2) {
       
  2829                 if ((w = ws[i]) != null && !w.isEmpty())
       
  2830                     return true;
       
  2831             }
       
  2832         }
       
  2833         return false;
       
  2834     }
       
  2835 
       
  2836     /**
       
  2837      * Removes and returns the next unexecuted submission if one is
       
  2838      * available.  This method may be useful in extensions to this
       
  2839      * class that re-assign work in systems with multiple pools.
       
  2840      *
       
  2841      * @return the next submission, or {@code null} if none
       
  2842      */
       
  2843     protected ForkJoinTask<?> pollSubmission() {
       
  2844         WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
       
  2845         if ((ws = workQueues) != null) {
       
  2846             for (int i = 0; i < ws.length; i += 2) {
       
  2847                 if ((w = ws[i]) != null && (t = w.poll()) != null)
       
  2848                     return t;
       
  2849             }
       
  2850         }
       
  2851         return null;
       
  2852     }
       
  2853 
       
  2854     /**
       
  2855      * Removes all available unexecuted submitted and forked tasks
       
  2856      * from scheduling queues and adds them to the given collection,
       
  2857      * without altering their execution status. These may include
       
  2858      * artificially generated or wrapped tasks. This method is
       
  2859      * designed to be invoked only when the pool is known to be
       
  2860      * quiescent. Invocations at other times may not remove all
       
  2861      * tasks. A failure encountered while attempting to add elements
       
  2862      * to collection {@code c} may result in elements being in
       
  2863      * neither, either or both collections when the associated
       
  2864      * exception is thrown.  The behavior of this operation is
       
  2865      * undefined if the specified collection is modified while the
       
  2866      * operation is in progress.
       
  2867      *
       
  2868      * @param c the collection to transfer elements into
       
  2869      * @return the number of elements transferred
       
  2870      */
       
  2871     protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
       
  2872         int count = 0;
       
  2873         WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
       
  2874         if ((ws = workQueues) != null) {
       
  2875             for (int i = 0; i < ws.length; ++i) {
       
  2876                 if ((w = ws[i]) != null) {
       
  2877                     while ((t = w.poll()) != null) {
       
  2878                         c.add(t);
       
  2879                         ++count;
       
  2880                     }
       
  2881                 }
       
  2882             }
       
  2883         }
       
  2884         return count;
       
  2885     }
       
  2886 
       
  2887     /**
       
  2888      * Returns a string identifying this pool, as well as its state,
       
  2889      * including indications of run state, parallelism level, and
       
  2890      * worker and task counts.
       
  2891      *
       
  2892      * @return a string identifying this pool, as well as its state
       
  2893      */
       
  2894     public String toString() {
       
  2895         // Use a single pass through workQueues to collect counts
       
  2896         long qt = 0L, qs = 0L; int rc = 0;
       
  2897         long st = stealCount;
       
  2898         long c = ctl;
       
  2899         WorkQueue[] ws; WorkQueue w;
       
  2900         if ((ws = workQueues) != null) {
       
  2901             for (int i = 0; i < ws.length; ++i) {
       
  2902                 if ((w = ws[i]) != null) {
       
  2903                     int size = w.queueSize();
       
  2904                     if ((i & 1) == 0)
       
  2905                         qs += size;
       
  2906                     else {
       
  2907                         qt += size;
       
  2908                         st += w.nsteals;
       
  2909                         if (w.isApparentlyUnblocked())
       
  2910                             ++rc;
       
  2911                     }
       
  2912                 }
       
  2913             }
       
  2914         }
       
  2915         int pc = parallelism;
       
  2916         int tc = pc + (short)(c >>> TC_SHIFT);
       
  2917         int ac = pc + (int)(c >> AC_SHIFT);
       
  2918         if (ac < 0) // ignore transient negative
       
  2919             ac = 0;
       
  2920         String level;
       
  2921         if ((c & STOP_BIT) != 0)
       
  2922             level = (tc == 0) ? "Terminated" : "Terminating";
       
  2923         else
       
  2924             level = plock < 0 ? "Shutting down" : "Running";
       
  2925         return super.toString() +
       
  2926             "[" + level +
       
  2927             ", parallelism = " + pc +
       
  2928             ", size = " + tc +
       
  2929             ", active = " + ac +
       
  2930             ", running = " + rc +
       
  2931             ", steals = " + st +
       
  2932             ", tasks = " + qt +
       
  2933             ", submissions = " + qs +
       
  2934             "]";
       
  2935     }
       
  2936 
       
  2937     /**
       
  2938      * Possibly initiates an orderly shutdown in which previously
       
  2939      * submitted tasks are executed, but no new tasks will be
       
  2940      * accepted. Invocation has no effect on execution state if this
       
  2941      * is the {@link #commonPool()}, and no additional effect if
       
  2942      * already shut down.  Tasks that are in the process of being
       
  2943      * submitted concurrently during the course of this method may or
       
  2944      * may not be rejected.
       
  2945      *
       
  2946      * @throws SecurityException if a security manager exists and
       
  2947      *         the caller is not permitted to modify threads
       
  2948      *         because it does not hold {@link
       
  2949      *         java.lang.RuntimePermission}{@code ("modifyThread")}
       
  2950      */
       
  2951     public void shutdown() {
       
  2952         checkPermission();
       
  2953         tryTerminate(false, true);
       
  2954     }
       
  2955 
       
  2956     /**
       
  2957      * Possibly attempts to cancel and/or stop all tasks, and reject
       
  2958      * all subsequently submitted tasks.  Invocation has no effect on
       
  2959      * execution state if this is the {@link #commonPool()}, and no
       
  2960      * additional effect if already shut down. Otherwise, tasks that
       
  2961      * are in the process of being submitted or executed concurrently
       
  2962      * during the course of this method may or may not be
       
  2963      * rejected. This method cancels both existing and unexecuted
       
  2964      * tasks, in order to permit termination in the presence of task
       
  2965      * dependencies. So the method always returns an empty list
       
  2966      * (unlike the case for some other Executors).
       
  2967      *
       
  2968      * @return an empty list
       
  2969      * @throws SecurityException if a security manager exists and
       
  2970      *         the caller is not permitted to modify threads
       
  2971      *         because it does not hold {@link
       
  2972      *         java.lang.RuntimePermission}{@code ("modifyThread")}
       
  2973      */
       
  2974     public List<Runnable> shutdownNow() {
       
  2975         checkPermission();
       
  2976         tryTerminate(true, true);
       
  2977         return Collections.emptyList();
       
  2978     }
       
  2979 
       
  2980     /**
       
  2981      * Returns {@code true} if all tasks have completed following shut down.
       
  2982      *
       
  2983      * @return {@code true} if all tasks have completed following shut down
       
  2984      */
       
  2985     public boolean isTerminated() {
       
  2986         long c = ctl;
       
  2987         return ((c & STOP_BIT) != 0L &&
       
  2988                 (short)(c >>> TC_SHIFT) + parallelism <= 0);
       
  2989     }
       
  2990 
       
  2991     /**
       
  2992      * Returns {@code true} if the process of termination has
       
  2993      * commenced but not yet completed.  This method may be useful for
       
  2994      * debugging. A return of {@code true} reported a sufficient
       
  2995      * period after shutdown may indicate that submitted tasks have
       
  2996      * ignored or suppressed interruption, or are waiting for I/O,
       
  2997      * causing this executor not to properly terminate. (See the
       
  2998      * advisory notes for class {@link ForkJoinTask} stating that
       
  2999      * tasks should not normally entail blocking operations.  But if
       
  3000      * they do, they must abort them on interrupt.)
       
  3001      *
       
  3002      * @return {@code true} if terminating but not yet terminated
       
  3003      */
       
  3004     public boolean isTerminating() {
       
  3005         long c = ctl;
       
  3006         return ((c & STOP_BIT) != 0L &&
       
  3007                 (short)(c >>> TC_SHIFT) + parallelism > 0);
       
  3008     }
       
  3009 
       
  3010     /**
       
  3011      * Returns {@code true} if this pool has been shut down.
       
  3012      *
       
  3013      * @return {@code true} if this pool has been shut down
       
  3014      */
       
  3015     public boolean isShutdown() {
       
  3016         return plock < 0;
       
  3017     }
       
  3018 
       
  3019     /**
       
  3020      * Blocks until all tasks have completed execution after a
       
  3021      * shutdown request, or the timeout occurs, or the current thread
       
  3022      * is interrupted, whichever happens first. Because the {@link
       
  3023      * #commonPool()} never terminates until program shutdown, when
       
  3024      * applied to the common pool, this method is equivalent to {@link
       
  3025      * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
       
  3026      *
       
  3027      * @param timeout the maximum time to wait
       
  3028      * @param unit the time unit of the timeout argument
       
  3029      * @return {@code true} if this executor terminated and
       
  3030      *         {@code false} if the timeout elapsed before termination
       
  3031      * @throws InterruptedException if interrupted while waiting
       
  3032      */
       
  3033     public boolean awaitTermination(long timeout, TimeUnit unit)
       
  3034         throws InterruptedException {
       
  3035         if (Thread.interrupted())
       
  3036             throw new InterruptedException();
       
  3037         if (this == common) {
       
  3038             awaitQuiescence(timeout, unit);
       
  3039             return false;
       
  3040         }
       
  3041         long nanos = unit.toNanos(timeout);
       
  3042         if (isTerminated())
       
  3043             return true;
       
  3044         if (nanos <= 0L)
       
  3045             return false;
       
  3046         long deadline = System.nanoTime() + nanos;
       
  3047         synchronized (this) {
       
  3048             for (;;) {
       
  3049                 if (isTerminated())
       
  3050                     return true;
       
  3051                 if (nanos <= 0L)
       
  3052                     return false;
       
  3053                 long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
       
  3054                 wait(millis > 0L ? millis : 1L);
       
  3055                 nanos = deadline - System.nanoTime();
       
  3056             }
       
  3057         }
       
  3058     }
       
  3059 
       
  3060     /**
       
  3061      * If called by a ForkJoinTask operating in this pool, equivalent
       
  3062      * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
       
  3063      * waits and/or attempts to assist performing tasks until this
       
  3064      * pool {@link #isQuiescent} or the indicated timeout elapses.
       
  3065      *
       
  3066      * @param timeout the maximum time to wait
       
  3067      * @param unit the time unit of the timeout argument
       
  3068      * @return {@code true} if quiescent; {@code false} if the
       
  3069      * timeout elapsed.
       
  3070      */
       
  3071     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
       
  3072         long nanos = unit.toNanos(timeout);
       
  3073         ForkJoinWorkerThread wt;
       
  3074         Thread thread = Thread.currentThread();
       
  3075         if ((thread instanceof ForkJoinWorkerThread) &&
       
  3076             (wt = (ForkJoinWorkerThread)thread).pool == this) {
       
  3077             helpQuiescePool(wt.workQueue);
       
  3078             return true;
       
  3079         }
       
  3080         long startTime = System.nanoTime();
       
  3081         WorkQueue[] ws;
       
  3082         int r = 0, m;
       
  3083         boolean found = true;
       
  3084         while (!isQuiescent() && (ws = workQueues) != null &&
       
  3085                (m = ws.length - 1) >= 0) {
       
  3086             if (!found) {
       
  3087                 if ((System.nanoTime() - startTime) > nanos)
       
  3088                     return false;
       
  3089                 Thread.yield(); // cannot block
       
  3090             }
       
  3091             found = false;
       
  3092             for (int j = (m + 1) << 2; j >= 0; --j) {
       
  3093                 ForkJoinTask<?> t; WorkQueue q; int b;
       
  3094                 if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
       
  3095                     found = true;
       
  3096                     if ((t = q.pollAt(b)) != null)
       
  3097                         t.doExec();
       
  3098                     break;
       
  3099                 }
       
  3100             }
       
  3101         }
       
  3102         return true;
       
  3103     }
       
  3104 
       
  3105     /**
       
  3106      * Waits and/or attempts to assist performing tasks indefinitely
       
  3107      * until the {@link #commonPool()} {@link #isQuiescent}.
       
  3108      */
       
  3109     static void quiesceCommonPool() {
       
  3110         common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
       
  3111     }
       
  3112 
       
  3113     /**
       
  3114      * Interface for extending managed parallelism for tasks running
       
  3115      * in {@link ForkJoinPool}s.
       
  3116      *
       
  3117      * <p>A {@code ManagedBlocker} provides two methods.  Method
       
  3118      * {@code isReleasable} must return {@code true} if blocking is
       
  3119      * not necessary. Method {@code block} blocks the current thread
       
  3120      * if necessary (perhaps internally invoking {@code isReleasable}
       
  3121      * before actually blocking). These actions are performed by any
       
  3122      * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
       
  3123      * The unusual methods in this API accommodate synchronizers that
       
  3124      * may, but don't usually, block for long periods. Similarly, they
       
  3125      * allow more efficient internal handling of cases in which
       
  3126      * additional workers may be, but usually are not, needed to
       
  3127      * ensure sufficient parallelism.  Toward this end,
       
  3128      * implementations of method {@code isReleasable} must be amenable
       
  3129      * to repeated invocation.
       
  3130      *
       
  3131      * <p>For example, here is a ManagedBlocker based on a
       
  3132      * ReentrantLock:
       
  3133      *  <pre> {@code
       
  3134      * class ManagedLocker implements ManagedBlocker {
       
  3135      *   final ReentrantLock lock;
       
  3136      *   boolean hasLock = false;
       
  3137      *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
       
  3138      *   public boolean block() {
       
  3139      *     if (!hasLock)
       
  3140      *       lock.lock();
       
  3141      *     return true;
       
  3142      *   }
       
  3143      *   public boolean isReleasable() {
       
  3144      *     return hasLock || (hasLock = lock.tryLock());
       
  3145      *   }
       
  3146      * }}</pre>
       
  3147      *
       
  3148      * <p>Here is a class that possibly blocks waiting for an
       
  3149      * item on a given queue:
       
  3150      *  <pre> {@code
       
  3151      * class QueueTaker<E> implements ManagedBlocker {
       
  3152      *   final BlockingQueue<E> queue;
       
  3153      *   volatile E item = null;
       
  3154      *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
       
  3155      *   public boolean block() throws InterruptedException {
       
  3156      *     if (item == null)
       
  3157      *       item = queue.take();
       
  3158      *     return true;
       
  3159      *   }
       
  3160      *   public boolean isReleasable() {
       
  3161      *     return item != null || (item = queue.poll()) != null;
       
  3162      *   }
       
  3163      *   public E getItem() { // call after pool.managedBlock completes
       
  3164      *     return item;
       
  3165      *   }
       
  3166      * }}</pre>
       
  3167      */
       
  3168     public static interface ManagedBlocker {
       
  3169         /**
       
  3170          * Possibly blocks the current thread, for example waiting for
       
  3171          * a lock or condition.
       
  3172          *
       
  3173          * @return {@code true} if no additional blocking is necessary
       
  3174          * (i.e., if isReleasable would return true)
       
  3175          * @throws InterruptedException if interrupted while waiting
       
  3176          * (the method is not required to do so, but is allowed to)
       
  3177          */
       
  3178         boolean block() throws InterruptedException;
       
  3179 
       
  3180         /**
       
  3181          * Returns {@code true} if blocking is unnecessary.
       
  3182          * @return {@code true} if blocking is unnecessary
       
  3183          */
       
  3184         boolean isReleasable();
       
  3185     }
       
  3186 
       
  3187     /**
       
  3188      * Blocks in accord with the given blocker.  If the current thread
       
  3189      * is a {@link ForkJoinWorkerThread}, this method possibly
       
  3190      * arranges for a spare thread to be activated if necessary to
       
  3191      * ensure sufficient parallelism while the current thread is blocked.
       
  3192      *
       
  3193      * <p>If the caller is not a {@link ForkJoinTask}, this method is
       
  3194      * behaviorally equivalent to
       
  3195      *  <pre> {@code
       
  3196      * while (!blocker.isReleasable())
       
  3197      *   if (blocker.block())
       
  3198      *     return;
       
  3199      * }</pre>
       
  3200      *
       
  3201      * If the caller is a {@code ForkJoinTask}, then the pool may
       
  3202      * first be expanded to ensure parallelism, and later adjusted.
       
  3203      *
       
  3204      * @param blocker the blocker
       
  3205      * @throws InterruptedException if blocker.block did so
       
  3206      */
       
  3207     public static void managedBlock(ManagedBlocker blocker)
       
  3208         throws InterruptedException {
       
  3209         Thread t = Thread.currentThread();
       
  3210         if (t instanceof ForkJoinWorkerThread) {
       
  3211             ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
       
  3212             while (!blocker.isReleasable()) {
       
  3213                 if (p.tryCompensate(p.ctl)) {
       
  3214                     try {
       
  3215                         do {} while (!blocker.isReleasable() &&
       
  3216                                      !blocker.block());
       
  3217                     } finally {
       
  3218                         p.incrementActiveCount();
       
  3219                     }
       
  3220                     break;
       
  3221                 }
       
  3222             }
       
  3223         }
       
  3224         else {
       
  3225             do {} while (!blocker.isReleasable() &&
       
  3226                          !blocker.block());
       
  3227         }
       
  3228     }
       
  3229 
       
  3230     // AbstractExecutorService overrides.  These rely on undocumented
       
  3231     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
       
  3232     // implement RunnableFuture.
       
  3233 
       
  3234     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
       
  3235         return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
       
  3236     }
       
  3237 
       
  3238     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
       
  3239         return new ForkJoinTask.AdaptedCallable<T>(callable);
       
  3240     }
       
  3241 
       
  3242     // Unsafe mechanics
       
  3243     private static final sun.misc.Unsafe U;
       
  3244     private static final long CTL;
       
  3245     private static final long PARKBLOCKER;
       
  3246     private static final int ABASE;
       
  3247     private static final int ASHIFT;
       
  3248     private static final long STEALCOUNT;
       
  3249     private static final long PLOCK;
       
  3250     private static final long INDEXSEED;
       
  3251     private static final long QBASE;
       
  3252     private static final long QLOCK;
       
  3253 
       
  3254     static {
       
  3255         // initialize field offsets for CAS etc
       
  3256         try {
       
  3257             U = sun.misc.Unsafe.getUnsafe();
       
  3258             Class<?> k = ForkJoinPool.class;
       
  3259             CTL = U.objectFieldOffset
       
  3260                 (k.getDeclaredField("ctl"));
       
  3261             STEALCOUNT = U.objectFieldOffset
       
  3262                 (k.getDeclaredField("stealCount"));
       
  3263             PLOCK = U.objectFieldOffset
       
  3264                 (k.getDeclaredField("plock"));
       
  3265             INDEXSEED = U.objectFieldOffset
       
  3266                 (k.getDeclaredField("indexSeed"));
       
  3267             Class<?> tk = Thread.class;
       
  3268             PARKBLOCKER = U.objectFieldOffset
       
  3269                 (tk.getDeclaredField("parkBlocker"));
       
  3270             Class<?> wk = WorkQueue.class;
       
  3271             QBASE = U.objectFieldOffset
       
  3272                 (wk.getDeclaredField("base"));
       
  3273             QLOCK = U.objectFieldOffset
       
  3274                 (wk.getDeclaredField("qlock"));
       
  3275             Class<?> ak = ForkJoinTask[].class;
       
  3276             ABASE = U.arrayBaseOffset(ak);
       
  3277             int scale = U.arrayIndexScale(ak);
       
  3278             if ((scale & (scale - 1)) != 0)
       
  3279                 throw new Error("data type scale not a power of two");
       
  3280             ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
       
  3281         } catch (Exception e) {
       
  3282             throw new Error(e);
       
  3283         }
       
  3284 
       
  3285         defaultForkJoinWorkerThreadFactory =
       
  3286             new DefaultForkJoinWorkerThreadFactory();
       
  3287         modifyThreadPermission = new RuntimePermission("modifyThread");
       
  3288 
       
  3289         common = java.security.AccessController.doPrivileged
       
  3290             (new java.security.PrivilegedAction<ForkJoinPool>() {
       
  3291                 public ForkJoinPool run() { return makeCommonPool(); }});
       
  3292         int par = common.parallelism; // report 1 even if threads disabled
       
  3293         commonParallelism = par > 0 ? par : 1;
       
  3294     }
       
  3295 
       
  3296     /**
       
  3297      * Creates and returns the common pool, respecting user settings
       
  3298      * specified via system properties.
       
  3299      */
       
  3300     private static ForkJoinPool makeCommonPool() {
       
  3301         int parallelism = -1;
       
  3302         ForkJoinWorkerThreadFactory factory = null;
       
  3303         UncaughtExceptionHandler handler = null;
       
  3304         try {  // ignore exceptions in accessing/parsing properties
       
  3305             String pp = System.getProperty
       
  3306                 ("java.util.concurrent.ForkJoinPool.common.parallelism");
       
  3307             String fp = System.getProperty
       
  3308                 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
       
  3309             String hp = System.getProperty
       
  3310                 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
       
  3311             if (pp != null)
       
  3312                 parallelism = Integer.parseInt(pp);
       
  3313             if (fp != null)
       
  3314                 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
       
  3315                            getSystemClassLoader().loadClass(fp).newInstance());
       
  3316             if (hp != null)
       
  3317                 handler = ((UncaughtExceptionHandler)ClassLoader.
       
  3318                            getSystemClassLoader().loadClass(hp).newInstance());
       
  3319         } catch (Exception ignore) {
       
  3320         }
       
  3321         if (factory == null) {
       
  3322             if (System.getSecurityManager() == null)
       
  3323                 factory = defaultForkJoinWorkerThreadFactory;
       
  3324             else // use security-managed default
       
  3325                 factory = new InnocuousForkJoinWorkerThreadFactory();
       
  3326         }
       
  3327         if (parallelism < 0 && // default 1 less than #cores
       
  3328             (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
       
  3329             parallelism = 1;
       
  3330         if (parallelism > MAX_CAP)
       
  3331             parallelism = MAX_CAP;
       
  3332         return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
       
  3333                                 "ForkJoinPool.commonPool-worker-");
       
  3334     }
       
  3335 
       
  3336     /**
       
  3337      * Factory for innocuous worker threads
       
  3338      */
       
  3339     static final class InnocuousForkJoinWorkerThreadFactory
       
  3340         implements ForkJoinWorkerThreadFactory {
       
  3341 
       
  3342         /**
       
  3343          * An ACC to restrict permissions for the factory itself.
       
  3344          * The constructed workers have no permissions set.
       
  3345          */
       
  3346         private static final AccessControlContext innocuousAcc;
       
  3347         static {
       
  3348             Permissions innocuousPerms = new Permissions();
       
  3349             innocuousPerms.add(modifyThreadPermission);
       
  3350             innocuousPerms.add(new RuntimePermission(
       
  3351                                    "enableContextClassLoaderOverride"));
       
  3352             innocuousPerms.add(new RuntimePermission(
       
  3353                                    "modifyThreadGroup"));
       
  3354             innocuousAcc = new AccessControlContext(new ProtectionDomain[] {
       
  3355                     new ProtectionDomain(null, innocuousPerms)
       
  3356                 });
       
  3357         }
       
  3358 
       
  3359         public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
       
  3360             return (ForkJoinWorkerThread.InnocuousForkJoinWorkerThread)
       
  3361                 java.security.AccessController.doPrivileged(
       
  3362                     new java.security.PrivilegedAction<ForkJoinWorkerThread>() {
       
  3363                     public ForkJoinWorkerThread run() {
       
  3364                         return new ForkJoinWorkerThread.
       
  3365                             InnocuousForkJoinWorkerThread(pool);
       
  3366                     }}, innocuousAcc);
       
  3367         }
       
  3368     }
       
  3369 
       
  3370 }