hotspot/src/cpu/x86/vm/methodHandles_x86.cpp
changeset 13391 30245956af37
parent 11783 2b50fb0a7c0f
child 13728 882756847a04
equal deleted inserted replaced
13309:50c604cb0d5f 13391:30245956af37
    30 
    30 
    31 #define __ _masm->
    31 #define __ _masm->
    32 
    32 
    33 #ifdef PRODUCT
    33 #ifdef PRODUCT
    34 #define BLOCK_COMMENT(str) /* nothing */
    34 #define BLOCK_COMMENT(str) /* nothing */
       
    35 #define STOP(error) stop(error)
    35 #else
    36 #else
    36 #define BLOCK_COMMENT(str) __ block_comment(str)
    37 #define BLOCK_COMMENT(str) __ block_comment(str)
       
    38 #define STOP(error) block_comment(error); __ stop(error)
    37 #endif
    39 #endif
    38 
    40 
    39 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    41 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
    40 
    42 
    41 // Workaround for C++ overloading nastiness on '0' for RegisterOrConstant.
    43 // Workaround for C++ overloading nastiness on '0' for RegisterOrConstant.
    42 static RegisterOrConstant constant(int value) {
    44 static RegisterOrConstant constant(int value) {
    43   return RegisterOrConstant(value);
    45   return RegisterOrConstant(value);
    44 }
    46 }
    45 
    47 
    46 address MethodHandleEntry::start_compiled_entry(MacroAssembler* _masm,
       
    47                                                 address interpreted_entry) {
       
    48   // Just before the actual machine code entry point, allocate space
       
    49   // for a MethodHandleEntry::Data record, so that we can manage everything
       
    50   // from one base pointer.
       
    51   __ align(wordSize);
       
    52   address target = __ pc() + sizeof(Data);
       
    53   while (__ pc() < target) {
       
    54     __ nop();
       
    55     __ align(wordSize);
       
    56   }
       
    57 
       
    58   MethodHandleEntry* me = (MethodHandleEntry*) __ pc();
       
    59   me->set_end_address(__ pc());         // set a temporary end_address
       
    60   me->set_from_interpreted_entry(interpreted_entry);
       
    61   me->set_type_checking_entry(NULL);
       
    62 
       
    63   return (address) me;
       
    64 }
       
    65 
       
    66 MethodHandleEntry* MethodHandleEntry::finish_compiled_entry(MacroAssembler* _masm,
       
    67                                                 address start_addr) {
       
    68   MethodHandleEntry* me = (MethodHandleEntry*) start_addr;
       
    69   assert(me->end_address() == start_addr, "valid ME");
       
    70 
       
    71   // Fill in the real end_address:
       
    72   __ align(wordSize);
       
    73   me->set_end_address(__ pc());
       
    74 
       
    75   return me;
       
    76 }
       
    77 
       
    78 // stack walking support
       
    79 
       
    80 frame MethodHandles::ricochet_frame_sender(const frame& fr, RegisterMap *map) {
       
    81   RicochetFrame* f = RicochetFrame::from_frame(fr);
       
    82   if (map->update_map())
       
    83     frame::update_map_with_saved_link(map, &f->_sender_link);
       
    84   return frame(f->extended_sender_sp(), f->exact_sender_sp(), f->sender_link(), f->sender_pc());
       
    85 }
       
    86 
       
    87 void MethodHandles::ricochet_frame_oops_do(const frame& fr, OopClosure* blk, const RegisterMap* reg_map) {
       
    88   RicochetFrame* f = RicochetFrame::from_frame(fr);
       
    89 
       
    90   // pick up the argument type descriptor:
       
    91   Thread* thread = Thread::current();
       
    92   Handle cookie(thread, f->compute_saved_args_layout(true, true));
       
    93 
       
    94   // process fixed part
       
    95   blk->do_oop((oop*)f->saved_target_addr());
       
    96   blk->do_oop((oop*)f->saved_args_layout_addr());
       
    97 
       
    98   // process variable arguments:
       
    99   if (cookie.is_null())  return;  // no arguments to describe
       
   100 
       
   101   // the cookie is actually the invokeExact method for my target
       
   102   // his argument signature is what I'm interested in
       
   103   assert(cookie->is_method(), "");
       
   104   methodHandle invoker(thread, methodOop(cookie()));
       
   105   assert(invoker->name() == vmSymbols::invokeExact_name(), "must be this kind of method");
       
   106   assert(!invoker->is_static(), "must have MH argument");
       
   107   int slot_count = invoker->size_of_parameters();
       
   108   assert(slot_count >= 1, "must include 'this'");
       
   109   intptr_t* base = f->saved_args_base();
       
   110   intptr_t* retval = NULL;
       
   111   if (f->has_return_value_slot())
       
   112     retval = f->return_value_slot_addr();
       
   113   int slot_num = slot_count;
       
   114   intptr_t* loc = &base[slot_num -= 1];
       
   115   //blk->do_oop((oop*) loc);   // original target, which is irrelevant
       
   116   int arg_num = 0;
       
   117   for (SignatureStream ss(invoker->signature()); !ss.is_done(); ss.next()) {
       
   118     if (ss.at_return_type())  continue;
       
   119     BasicType ptype = ss.type();
       
   120     if (ptype == T_ARRAY)  ptype = T_OBJECT; // fold all refs to T_OBJECT
       
   121     assert(ptype >= T_BOOLEAN && ptype <= T_OBJECT, "not array or void");
       
   122     loc = &base[slot_num -= type2size[ptype]];
       
   123     bool is_oop = (ptype == T_OBJECT && loc != retval);
       
   124     if (is_oop)  blk->do_oop((oop*)loc);
       
   125     arg_num += 1;
       
   126   }
       
   127   assert(slot_num == 0, "must have processed all the arguments");
       
   128 }
       
   129 
       
   130 oop MethodHandles::RicochetFrame::compute_saved_args_layout(bool read_cache, bool write_cache) {
       
   131   oop cookie = NULL;
       
   132   if (read_cache) {
       
   133     cookie = saved_args_layout();
       
   134     if (cookie != NULL)  return cookie;
       
   135   }
       
   136   oop target = saved_target();
       
   137   oop mtype  = java_lang_invoke_MethodHandle::type(target);
       
   138   oop mtform = java_lang_invoke_MethodType::form(mtype);
       
   139   cookie = java_lang_invoke_MethodTypeForm::vmlayout(mtform);
       
   140   if (write_cache)  {
       
   141     (*saved_args_layout_addr()) = cookie;
       
   142   }
       
   143   return cookie;
       
   144 }
       
   145 
       
   146 void MethodHandles::RicochetFrame::generate_ricochet_blob(MacroAssembler* _masm,
       
   147                                                           // output params:
       
   148                                                           int* bounce_offset,
       
   149                                                           int* exception_offset,
       
   150                                                           int* frame_size_in_words) {
       
   151   (*frame_size_in_words) = RicochetFrame::frame_size_in_bytes() / wordSize;
       
   152 
       
   153   address start = __ pc();
       
   154 
       
   155 #ifdef ASSERT
       
   156   __ hlt(); __ hlt(); __ hlt();
       
   157   // here's a hint of something special:
       
   158   __ push(MAGIC_NUMBER_1);
       
   159   __ push(MAGIC_NUMBER_2);
       
   160 #endif //ASSERT
       
   161   __ hlt();  // not reached
       
   162 
       
   163   // A return PC has just been popped from the stack.
       
   164   // Return values are in registers.
       
   165   // The ebp points into the RicochetFrame, which contains
       
   166   // a cleanup continuation we must return to.
       
   167 
       
   168   (*bounce_offset) = __ pc() - start;
       
   169   BLOCK_COMMENT("ricochet_blob.bounce");
       
   170 
       
   171   if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
       
   172   trace_method_handle(_masm, "return/ricochet_blob.bounce");
       
   173 
       
   174   __ jmp(frame_address(continuation_offset_in_bytes()));
       
   175   __ hlt();
       
   176   DEBUG_ONLY(__ push(MAGIC_NUMBER_2));
       
   177 
       
   178   (*exception_offset) = __ pc() - start;
       
   179   BLOCK_COMMENT("ricochet_blob.exception");
       
   180 
       
   181   // compare this to Interpreter::rethrow_exception_entry, which is parallel code
       
   182   // for example, see TemplateInterpreterGenerator::generate_throw_exception
       
   183   // Live registers in:
       
   184   //   rax: exception
       
   185   //   rdx: return address/pc that threw exception (ignored, always equal to bounce addr)
       
   186   __ verify_oop(rax);
       
   187 
       
   188   // no need to empty_FPU_stack or reinit_heapbase, since caller frame will do the same if needed
       
   189 
       
   190   // Take down the frame.
       
   191 
       
   192   // Cf. InterpreterMacroAssembler::remove_activation.
       
   193   leave_ricochet_frame(_masm, /*rcx_recv=*/ noreg,
       
   194                        saved_last_sp_register(),
       
   195                        /*sender_pc_reg=*/ rdx);
       
   196 
       
   197   // In between activations - previous activation type unknown yet
       
   198   // compute continuation point - the continuation point expects the
       
   199   // following registers set up:
       
   200   //
       
   201   // rax: exception
       
   202   // rdx: return address/pc that threw exception
       
   203   // rsp: expression stack of caller
       
   204   // rbp: ebp of caller
       
   205   __ push(rax);                                  // save exception
       
   206   __ push(rdx);                                  // save return address
       
   207   Register thread_reg = LP64_ONLY(r15_thread) NOT_LP64(rdi);
       
   208   NOT_LP64(__ get_thread(thread_reg));
       
   209   __ call_VM_leaf(CAST_FROM_FN_PTR(address,
       
   210                                    SharedRuntime::exception_handler_for_return_address),
       
   211                   thread_reg, rdx);
       
   212   __ mov(rbx, rax);                              // save exception handler
       
   213   __ pop(rdx);                                   // restore return address
       
   214   __ pop(rax);                                   // restore exception
       
   215   __ jmp(rbx);                                   // jump to exception
       
   216                                                  // handler of caller
       
   217 }
       
   218 
       
   219 void MethodHandles::RicochetFrame::enter_ricochet_frame(MacroAssembler* _masm,
       
   220                                                         Register rcx_recv,
       
   221                                                         Register rax_argv,
       
   222                                                         address return_handler,
       
   223                                                         Register rbx_temp) {
       
   224   const Register saved_last_sp = saved_last_sp_register();
       
   225   Address rcx_mh_vmtarget(    rcx_recv, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes() );
       
   226   Address rcx_amh_conversion( rcx_recv, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes() );
       
   227 
       
   228   // Push the RicochetFrame a word at a time.
       
   229   // This creates something similar to an interpreter frame.
       
   230   // Cf. TemplateInterpreterGenerator::generate_fixed_frame.
       
   231   BLOCK_COMMENT("push RicochetFrame {");
       
   232   DEBUG_ONLY(int rfo = (int) sizeof(RicochetFrame));
       
   233   assert((rfo -= wordSize) == RicochetFrame::sender_pc_offset_in_bytes(), "");
       
   234 #define RF_FIELD(push_value, name)                                      \
       
   235   { push_value;                                                         \
       
   236     assert((rfo -= wordSize) == RicochetFrame::name##_offset_in_bytes(), ""); }
       
   237   RF_FIELD(__ push(rbp),                   sender_link);
       
   238   RF_FIELD(__ push(saved_last_sp),         exact_sender_sp);  // rsi/r13
       
   239   RF_FIELD(__ pushptr(rcx_amh_conversion), conversion);
       
   240   RF_FIELD(__ push(rax_argv),              saved_args_base);   // can be updated if args are shifted
       
   241   RF_FIELD(__ push((int32_t) NULL_WORD),   saved_args_layout); // cache for GC layout cookie
       
   242   if (UseCompressedOops) {
       
   243     __ load_heap_oop(rbx_temp, rcx_mh_vmtarget);
       
   244     RF_FIELD(__ push(rbx_temp),            saved_target);
       
   245   } else {
       
   246     RF_FIELD(__ pushptr(rcx_mh_vmtarget),  saved_target);
       
   247   }
       
   248   __ lea(rbx_temp, ExternalAddress(return_handler));
       
   249   RF_FIELD(__ push(rbx_temp),              continuation);
       
   250 #undef RF_FIELD
       
   251   assert(rfo == 0, "fully initialized the RicochetFrame");
       
   252   // compute new frame pointer:
       
   253   __ lea(rbp, Address(rsp, RicochetFrame::sender_link_offset_in_bytes()));
       
   254   // Push guard word #1 in debug mode.
       
   255   DEBUG_ONLY(__ push((int32_t) RicochetFrame::MAGIC_NUMBER_1));
       
   256   // For debugging, leave behind an indication of which stub built this frame.
       
   257   DEBUG_ONLY({ Label L; __ call(L, relocInfo::none); __ bind(L); });
       
   258   BLOCK_COMMENT("} RicochetFrame");
       
   259 }
       
   260 
       
   261 void MethodHandles::RicochetFrame::leave_ricochet_frame(MacroAssembler* _masm,
       
   262                                                         Register rcx_recv,
       
   263                                                         Register new_sp_reg,
       
   264                                                         Register sender_pc_reg) {
       
   265   assert_different_registers(rcx_recv, new_sp_reg, sender_pc_reg);
       
   266   const Register saved_last_sp = saved_last_sp_register();
       
   267   // Take down the frame.
       
   268   // Cf. InterpreterMacroAssembler::remove_activation.
       
   269   BLOCK_COMMENT("end_ricochet_frame {");
       
   270   // TO DO: If (exact_sender_sp - extended_sender_sp) > THRESH, compact the frame down.
       
   271   // This will keep stack in bounds even with unlimited tailcalls, each with an adapter.
       
   272   if (rcx_recv->is_valid())
       
   273     __ movptr(rcx_recv,    RicochetFrame::frame_address(RicochetFrame::saved_target_offset_in_bytes()));
       
   274   __ movptr(sender_pc_reg, RicochetFrame::frame_address(RicochetFrame::sender_pc_offset_in_bytes()));
       
   275   __ movptr(saved_last_sp, RicochetFrame::frame_address(RicochetFrame::exact_sender_sp_offset_in_bytes()));
       
   276   __ movptr(rbp,           RicochetFrame::frame_address(RicochetFrame::sender_link_offset_in_bytes()));
       
   277   __ mov(rsp, new_sp_reg);
       
   278   BLOCK_COMMENT("} end_ricochet_frame");
       
   279 }
       
   280 
       
   281 // Emit code to verify that RBP is pointing at a valid ricochet frame.
       
   282 #ifndef PRODUCT
       
   283 enum {
       
   284   ARG_LIMIT = 255, SLOP = 4,
       
   285   // use this parameter for checking for garbage stack movements:
       
   286   UNREASONABLE_STACK_MOVE = (ARG_LIMIT + SLOP)
       
   287   // the slop defends against false alarms due to fencepost errors
       
   288 };
       
   289 #endif
       
   290 
       
   291 #ifdef ASSERT
       
   292 void MethodHandles::RicochetFrame::verify_clean(MacroAssembler* _masm) {
       
   293   // The stack should look like this:
       
   294   //    ... keep1 | dest=42 | keep2 | RF | magic | handler | magic | recursive args |
       
   295   // Check various invariants.
       
   296   verify_offsets();
       
   297 
       
   298   Register rdi_temp = rdi;
       
   299   Register rcx_temp = rcx;
       
   300   { __ push(rdi_temp); __ push(rcx_temp); }
       
   301 #define UNPUSH_TEMPS \
       
   302   { __ pop(rcx_temp);  __ pop(rdi_temp); }
       
   303 
       
   304   Address magic_number_1_addr  = RicochetFrame::frame_address(RicochetFrame::magic_number_1_offset_in_bytes());
       
   305   Address magic_number_2_addr  = RicochetFrame::frame_address(RicochetFrame::magic_number_2_offset_in_bytes());
       
   306   Address continuation_addr    = RicochetFrame::frame_address(RicochetFrame::continuation_offset_in_bytes());
       
   307   Address conversion_addr      = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
       
   308   Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes());
       
   309 
       
   310   Label L_bad, L_ok;
       
   311   BLOCK_COMMENT("verify_clean {");
       
   312   // Magic numbers must check out:
       
   313   __ cmpptr(magic_number_1_addr, (int32_t) MAGIC_NUMBER_1);
       
   314   __ jcc(Assembler::notEqual, L_bad);
       
   315   __ cmpptr(magic_number_2_addr, (int32_t) MAGIC_NUMBER_2);
       
   316   __ jcc(Assembler::notEqual, L_bad);
       
   317 
       
   318   // Arguments pointer must look reasonable:
       
   319   __ movptr(rcx_temp, saved_args_base_addr);
       
   320   __ cmpptr(rcx_temp, rbp);
       
   321   __ jcc(Assembler::below, L_bad);
       
   322   __ subptr(rcx_temp, UNREASONABLE_STACK_MOVE * Interpreter::stackElementSize);
       
   323   __ cmpptr(rcx_temp, rbp);
       
   324   __ jcc(Assembler::above, L_bad);
       
   325 
       
   326   load_conversion_dest_type(_masm, rdi_temp, conversion_addr);
       
   327   __ cmpl(rdi_temp, T_VOID);
       
   328   __ jcc(Assembler::equal, L_ok);
       
   329   __ movptr(rcx_temp, saved_args_base_addr);
       
   330   load_conversion_vminfo(_masm, rdi_temp, conversion_addr);
       
   331   __ cmpptr(Address(rcx_temp, rdi_temp, Interpreter::stackElementScale()),
       
   332             (int32_t) RETURN_VALUE_PLACEHOLDER);
       
   333   __ jcc(Assembler::equal, L_ok);
       
   334   __ BIND(L_bad);
       
   335   UNPUSH_TEMPS;
       
   336   __ stop("damaged ricochet frame");
       
   337   __ BIND(L_ok);
       
   338   UNPUSH_TEMPS;
       
   339   BLOCK_COMMENT("} verify_clean");
       
   340 
       
   341 #undef UNPUSH_TEMPS
       
   342 
       
   343 }
       
   344 #endif //ASSERT
       
   345 
       
   346 void MethodHandles::load_klass_from_Class(MacroAssembler* _masm, Register klass_reg) {
    48 void MethodHandles::load_klass_from_Class(MacroAssembler* _masm, Register klass_reg) {
   347   if (VerifyMethodHandles)
    49   if (VerifyMethodHandles)
   348     verify_klass(_masm, klass_reg, SystemDictionaryHandles::Class_klass(),
    50     verify_klass(_masm, klass_reg, SystemDictionaryHandles::Class_klass(),
   349                  "AMH argument is a Class");
    51                  "MH argument is a Class");
   350   __ load_heap_oop(klass_reg, Address(klass_reg, java_lang_Class::klass_offset_in_bytes()));
    52   __ load_heap_oop(klass_reg, Address(klass_reg, java_lang_Class::klass_offset_in_bytes()));
   351 }
    53 }
   352 
    54 
   353 void MethodHandles::load_conversion_vminfo(MacroAssembler* _masm, Register reg, Address conversion_field_addr) {
       
   354   int bits   = BitsPerByte;
       
   355   int offset = (CONV_VMINFO_SHIFT / bits);
       
   356   int shift  = (CONV_VMINFO_SHIFT % bits);
       
   357   __ load_unsigned_byte(reg, conversion_field_addr.plus_disp(offset));
       
   358   assert(CONV_VMINFO_MASK == right_n_bits(bits - shift), "else change type of previous load");
       
   359   assert(shift == 0, "no shift needed");
       
   360 }
       
   361 
       
   362 void MethodHandles::load_conversion_dest_type(MacroAssembler* _masm, Register reg, Address conversion_field_addr) {
       
   363   int bits   = BitsPerByte;
       
   364   int offset = (CONV_DEST_TYPE_SHIFT / bits);
       
   365   int shift  = (CONV_DEST_TYPE_SHIFT % bits);
       
   366   __ load_unsigned_byte(reg, conversion_field_addr.plus_disp(offset));
       
   367   assert(CONV_TYPE_MASK == right_n_bits(bits - shift), "else change type of previous load");
       
   368   __ shrl(reg, shift);
       
   369   DEBUG_ONLY(int conv_type_bits = (int) exact_log2(CONV_TYPE_MASK+1));
       
   370   assert((shift + conv_type_bits) == bits, "left justified in byte");
       
   371 }
       
   372 
       
   373 void MethodHandles::load_stack_move(MacroAssembler* _masm,
       
   374                                     Register rdi_stack_move,
       
   375                                     Register rcx_amh,
       
   376                                     bool might_be_negative) {
       
   377   BLOCK_COMMENT("load_stack_move {");
       
   378   Address rcx_amh_conversion(rcx_amh, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes());
       
   379   __ movl(rdi_stack_move, rcx_amh_conversion);
       
   380   __ sarl(rdi_stack_move, CONV_STACK_MOVE_SHIFT);
       
   381 #ifdef _LP64
       
   382   if (might_be_negative) {
       
   383     // clean high bits of stack motion register (was loaded as an int)
       
   384     __ movslq(rdi_stack_move, rdi_stack_move);
       
   385   }
       
   386 #endif //_LP64
       
   387 #ifdef ASSERT
    55 #ifdef ASSERT
   388   if (VerifyMethodHandles) {
    56 static int check_nonzero(const char* xname, int x) {
   389     Label L_ok, L_bad;
    57   assert(x != 0, err_msg("%s should be nonzero", xname));
   390     int32_t stack_move_limit = 0x4000;  // extra-large
    58   return x;
   391     __ cmpptr(rdi_stack_move, stack_move_limit);
    59 }
   392     __ jcc(Assembler::greaterEqual, L_bad);
    60 #define NONZERO(x) check_nonzero(#x, x)
   393     __ cmpptr(rdi_stack_move, -stack_move_limit);
    61 #else //ASSERT
   394     __ jcc(Assembler::greater, L_ok);
    62 #define NONZERO(x) (x)
   395     __ bind(L_bad);
    63 #endif //ASSERT
   396     __ stop("load_stack_move of garbage value");
       
   397     __ BIND(L_ok);
       
   398   }
       
   399 #endif
       
   400   BLOCK_COMMENT("} load_stack_move");
       
   401 }
       
   402 
    64 
   403 #ifdef ASSERT
    65 #ifdef ASSERT
   404 void MethodHandles::RicochetFrame::verify_offsets() {
       
   405   // Check compatibility of this struct with the more generally used offsets of class frame:
       
   406   int ebp_off = sender_link_offset_in_bytes();  // offset from struct base to local rbp value
       
   407   assert(ebp_off + wordSize*frame::interpreter_frame_method_offset      == saved_args_base_offset_in_bytes(), "");
       
   408   assert(ebp_off + wordSize*frame::interpreter_frame_last_sp_offset     == conversion_offset_in_bytes(), "");
       
   409   assert(ebp_off + wordSize*frame::interpreter_frame_sender_sp_offset   == exact_sender_sp_offset_in_bytes(), "");
       
   410   // These last two have to be exact:
       
   411   assert(ebp_off + wordSize*frame::link_offset                          == sender_link_offset_in_bytes(), "");
       
   412   assert(ebp_off + wordSize*frame::return_addr_offset                   == sender_pc_offset_in_bytes(), "");
       
   413 }
       
   414 
       
   415 void MethodHandles::RicochetFrame::verify() const {
       
   416   verify_offsets();
       
   417   assert(magic_number_1() == MAGIC_NUMBER_1, err_msg(PTR_FORMAT " == " PTR_FORMAT, magic_number_1(), MAGIC_NUMBER_1));
       
   418   assert(magic_number_2() == MAGIC_NUMBER_2, err_msg(PTR_FORMAT " == " PTR_FORMAT, magic_number_2(), MAGIC_NUMBER_2));
       
   419   if (!Universe::heap()->is_gc_active()) {
       
   420     if (saved_args_layout() != NULL) {
       
   421       assert(saved_args_layout()->is_method(), "must be valid oop");
       
   422     }
       
   423     if (saved_target() != NULL) {
       
   424       assert(java_lang_invoke_MethodHandle::is_instance(saved_target()), "checking frame value");
       
   425     }
       
   426   }
       
   427   int conv_op = adapter_conversion_op(conversion());
       
   428   assert(conv_op == java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS ||
       
   429          conv_op == java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS ||
       
   430          conv_op == java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF,
       
   431          "must be a sane conversion");
       
   432   if (has_return_value_slot()) {
       
   433     assert(*return_value_slot_addr() == RETURN_VALUE_PLACEHOLDER, "");
       
   434   }
       
   435 }
       
   436 #endif //PRODUCT
       
   437 
       
   438 #ifdef ASSERT
       
   439 void MethodHandles::verify_argslot(MacroAssembler* _masm,
       
   440                                    Register argslot_reg,
       
   441                                    const char* error_message) {
       
   442   // Verify that argslot lies within (rsp, rbp].
       
   443   Label L_ok, L_bad;
       
   444   BLOCK_COMMENT("verify_argslot {");
       
   445   __ cmpptr(argslot_reg, rbp);
       
   446   __ jccb(Assembler::above, L_bad);
       
   447   __ cmpptr(rsp, argslot_reg);
       
   448   __ jccb(Assembler::below, L_ok);
       
   449   __ bind(L_bad);
       
   450   __ stop(error_message);
       
   451   __ BIND(L_ok);
       
   452   BLOCK_COMMENT("} verify_argslot");
       
   453 }
       
   454 
       
   455 void MethodHandles::verify_argslots(MacroAssembler* _masm,
       
   456                                     RegisterOrConstant arg_slots,
       
   457                                     Register arg_slot_base_reg,
       
   458                                     bool negate_argslots,
       
   459                                     const char* error_message) {
       
   460   // Verify that [argslot..argslot+size) lies within (rsp, rbp).
       
   461   Label L_ok, L_bad;
       
   462   Register rdi_temp = rdi;
       
   463   BLOCK_COMMENT("verify_argslots {");
       
   464   __ push(rdi_temp);
       
   465   if (negate_argslots) {
       
   466     if (arg_slots.is_constant()) {
       
   467       arg_slots = -1 * arg_slots.as_constant();
       
   468     } else {
       
   469       __ movptr(rdi_temp, arg_slots);
       
   470       __ negptr(rdi_temp);
       
   471       arg_slots = rdi_temp;
       
   472     }
       
   473   }
       
   474   __ lea(rdi_temp, Address(arg_slot_base_reg, arg_slots, Interpreter::stackElementScale()));
       
   475   __ cmpptr(rdi_temp, rbp);
       
   476   __ pop(rdi_temp);
       
   477   __ jcc(Assembler::above, L_bad);
       
   478   __ cmpptr(rsp, arg_slot_base_reg);
       
   479   __ jcc(Assembler::below, L_ok);
       
   480   __ bind(L_bad);
       
   481   __ stop(error_message);
       
   482   __ BIND(L_ok);
       
   483   BLOCK_COMMENT("} verify_argslots");
       
   484 }
       
   485 
       
   486 // Make sure that arg_slots has the same sign as the given direction.
       
   487 // If (and only if) arg_slots is a assembly-time constant, also allow it to be zero.
       
   488 void MethodHandles::verify_stack_move(MacroAssembler* _masm,
       
   489                                       RegisterOrConstant arg_slots, int direction) {
       
   490   bool allow_zero = arg_slots.is_constant();
       
   491   if (direction == 0) { direction = +1; allow_zero = true; }
       
   492   assert(stack_move_unit() == -1, "else add extra checks here");
       
   493   if (arg_slots.is_register()) {
       
   494     Label L_ok, L_bad;
       
   495     BLOCK_COMMENT("verify_stack_move {");
       
   496     // testl(arg_slots.as_register(), -stack_move_unit() - 1);  // no need
       
   497     // jcc(Assembler::notZero, L_bad);
       
   498     __ cmpptr(arg_slots.as_register(), (int32_t) NULL_WORD);
       
   499     if (direction > 0) {
       
   500       __ jcc(allow_zero ? Assembler::less : Assembler::lessEqual, L_bad);
       
   501       __ cmpptr(arg_slots.as_register(), (int32_t) UNREASONABLE_STACK_MOVE);
       
   502       __ jcc(Assembler::less, L_ok);
       
   503     } else {
       
   504       __ jcc(allow_zero ? Assembler::greater : Assembler::greaterEqual, L_bad);
       
   505       __ cmpptr(arg_slots.as_register(), (int32_t) -UNREASONABLE_STACK_MOVE);
       
   506       __ jcc(Assembler::greater, L_ok);
       
   507     }
       
   508     __ bind(L_bad);
       
   509     if (direction > 0)
       
   510       __ stop("assert arg_slots > 0");
       
   511     else
       
   512       __ stop("assert arg_slots < 0");
       
   513     __ BIND(L_ok);
       
   514     BLOCK_COMMENT("} verify_stack_move");
       
   515   } else {
       
   516     intptr_t size = arg_slots.as_constant();
       
   517     if (direction < 0)  size = -size;
       
   518     assert(size >= 0, "correct direction of constant move");
       
   519     assert(size < UNREASONABLE_STACK_MOVE, "reasonable size of constant move");
       
   520   }
       
   521 }
       
   522 
       
   523 void MethodHandles::verify_klass(MacroAssembler* _masm,
    66 void MethodHandles::verify_klass(MacroAssembler* _masm,
   524                                  Register obj, KlassHandle klass,
    67                                  Register obj, KlassHandle klass,
   525                                  const char* error_message) {
    68                                  const char* error_message) {
   526   oop* klass_addr = klass.raw_value();
    69   oop* klass_addr = klass.raw_value();
   527   assert(klass_addr >= SystemDictionaryHandles::Object_klass().raw_value() &&
    70   assert(klass_addr >= SystemDictionaryHandles::Object_klass().raw_value() &&
   528          klass_addr <= SystemDictionaryHandles::Long_klass().raw_value(),
    71          klass_addr <= SystemDictionaryHandles::Long_klass().raw_value(),
   529          "must be one of the SystemDictionaryHandles");
    72          "must be one of the SystemDictionaryHandles");
   530   Register temp = rdi;
    73   Register temp = rdi;
       
    74   Register temp2 = noreg;
       
    75   LP64_ONLY(temp2 = rscratch1);  // used by MacroAssembler::cmpptr
   531   Label L_ok, L_bad;
    76   Label L_ok, L_bad;
   532   BLOCK_COMMENT("verify_klass {");
    77   BLOCK_COMMENT("verify_klass {");
   533   __ verify_oop(obj);
    78   __ verify_oop(obj);
   534   __ testptr(obj, obj);
    79   __ testptr(obj, obj);
   535   __ jcc(Assembler::zero, L_bad);
    80   __ jcc(Assembler::zero, L_bad);
   536   __ push(temp);
    81   __ push(temp); if (temp2 != noreg)  __ push(temp2);
       
    82 #define UNPUSH { if (temp2 != noreg)  __ pop(temp2);  __ pop(temp); }
   537   __ load_klass(temp, obj);
    83   __ load_klass(temp, obj);
   538   __ cmpptr(temp, ExternalAddress((address) klass_addr));
    84   __ cmpptr(temp, ExternalAddress((address) klass_addr));
   539   __ jcc(Assembler::equal, L_ok);
    85   __ jcc(Assembler::equal, L_ok);
   540   intptr_t super_check_offset = klass->super_check_offset();
    86   intptr_t super_check_offset = klass->super_check_offset();
   541   __ movptr(temp, Address(temp, super_check_offset));
    87   __ movptr(temp, Address(temp, super_check_offset));
   542   __ cmpptr(temp, ExternalAddress((address) klass_addr));
    88   __ cmpptr(temp, ExternalAddress((address) klass_addr));
   543   __ jcc(Assembler::equal, L_ok);
    89   __ jcc(Assembler::equal, L_ok);
   544   __ pop(temp);
    90   UNPUSH;
   545   __ bind(L_bad);
    91   __ bind(L_bad);
   546   __ stop(error_message);
    92   __ STOP(error_message);
   547   __ BIND(L_ok);
    93   __ BIND(L_ok);
   548   __ pop(temp);
    94   UNPUSH;
   549   BLOCK_COMMENT("} verify_klass");
    95   BLOCK_COMMENT("} verify_klass");
   550 }
    96 }
       
    97 
       
    98 void MethodHandles::verify_ref_kind(MacroAssembler* _masm, int ref_kind, Register member_reg, Register temp) {
       
    99   Label L;
       
   100   BLOCK_COMMENT("verify_ref_kind {");
       
   101   __ movl(temp, Address(member_reg, NONZERO(java_lang_invoke_MemberName::flags_offset_in_bytes())));
       
   102   __ shrl(temp, java_lang_invoke_MemberName::MN_REFERENCE_KIND_SHIFT);
       
   103   __ andl(temp, java_lang_invoke_MemberName::MN_REFERENCE_KIND_MASK);
       
   104   __ cmpl(temp, ref_kind);
       
   105   __ jcc(Assembler::equal, L);
       
   106   { char* buf = NEW_C_HEAP_ARRAY(char, 100, mtInternal);
       
   107     jio_snprintf(buf, 100, "verify_ref_kind expected %x", ref_kind);
       
   108     if (ref_kind == JVM_REF_invokeVirtual ||
       
   109         ref_kind == JVM_REF_invokeSpecial)
       
   110       // could do this for all ref_kinds, but would explode assembly code size
       
   111       trace_method_handle(_masm, buf);
       
   112     __ STOP(buf);
       
   113   }
       
   114   BLOCK_COMMENT("} verify_ref_kind");
       
   115   __ bind(L);
       
   116 }
       
   117 
   551 #endif //ASSERT
   118 #endif //ASSERT
   552 
   119 
   553 void MethodHandles::jump_from_method_handle(MacroAssembler* _masm, Register method, Register temp) {
   120 void MethodHandles::jump_from_method_handle(MacroAssembler* _masm, Register method, Register temp,
   554   if (JvmtiExport::can_post_interpreter_events()) {
   121                                             bool for_compiler_entry) {
       
   122   assert(method == rbx, "interpreter calling convention");
       
   123   __ verify_oop(method);
       
   124 
       
   125   if (!for_compiler_entry && JvmtiExport::can_post_interpreter_events()) {
   555     Label run_compiled_code;
   126     Label run_compiled_code;
   556     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   127     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   557     // compiled code in threads for which the event is enabled.  Check here for
   128     // compiled code in threads for which the event is enabled.  Check here for
   558     // interp_only_mode if these events CAN be enabled.
   129     // interp_only_mode if these events CAN be enabled.
   559 #ifdef _LP64
   130 #ifdef _LP64
   565     // interp_only is an int, on little endian it is sufficient to test the byte only
   136     // interp_only is an int, on little endian it is sufficient to test the byte only
   566     // Is a cmpl faster?
   137     // Is a cmpl faster?
   567     __ cmpb(Address(rthread, JavaThread::interp_only_mode_offset()), 0);
   138     __ cmpb(Address(rthread, JavaThread::interp_only_mode_offset()), 0);
   568     __ jccb(Assembler::zero, run_compiled_code);
   139     __ jccb(Assembler::zero, run_compiled_code);
   569     __ jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
   140     __ jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
   570     __ bind(run_compiled_code);
   141     __ BIND(run_compiled_code);
   571   }
   142   }
   572   __ jmp(Address(method, methodOopDesc::from_interpreted_offset()));
   143 
   573 }
   144   const ByteSize entry_offset = for_compiler_entry ? methodOopDesc::from_compiled_offset() :
       
   145                                                      methodOopDesc::from_interpreted_offset();
       
   146   __ jmp(Address(method, entry_offset));
       
   147 }
       
   148 
       
   149 void MethodHandles::jump_to_lambda_form(MacroAssembler* _masm,
       
   150                                         Register recv, Register method_temp,
       
   151                                         Register temp2,
       
   152                                         bool for_compiler_entry) {
       
   153   BLOCK_COMMENT("jump_to_lambda_form {");
       
   154   // This is the initial entry point of a lazy method handle.
       
   155   // After type checking, it picks up the invoker from the LambdaForm.
       
   156   assert_different_registers(recv, method_temp, temp2);
       
   157   assert(recv != noreg, "required register");
       
   158   assert(method_temp == rbx, "required register for loading method");
       
   159 
       
   160   //NOT_PRODUCT({ FlagSetting fs(TraceMethodHandles, true); trace_method_handle(_masm, "LZMH"); });
       
   161 
       
   162   // Load the invoker, as MH -> MH.form -> LF.vmentry
       
   163   __ verify_oop(recv);
       
   164   __ load_heap_oop(method_temp, Address(recv, NONZERO(java_lang_invoke_MethodHandle::form_offset_in_bytes())));
       
   165   __ verify_oop(method_temp);
       
   166   __ load_heap_oop(method_temp, Address(method_temp, NONZERO(java_lang_invoke_LambdaForm::vmentry_offset_in_bytes())));
       
   167   __ verify_oop(method_temp);
       
   168   // the following assumes that a methodOop is normally compressed in the vmtarget field:
       
   169   __ load_heap_oop(method_temp, Address(method_temp, NONZERO(java_lang_invoke_MemberName::vmtarget_offset_in_bytes())));
       
   170   __ verify_oop(method_temp);
       
   171 
       
   172   if (VerifyMethodHandles && !for_compiler_entry) {
       
   173     // make sure recv is already on stack
       
   174     __ load_sized_value(temp2,
       
   175                         Address(method_temp, methodOopDesc::size_of_parameters_offset()),
       
   176                         sizeof(u2), /*is_signed*/ false);
       
   177     // assert(sizeof(u2) == sizeof(methodOopDesc::_size_of_parameters), "");
       
   178     Label L;
       
   179     __ cmpptr(recv, __ argument_address(temp2, -1));
       
   180     __ jcc(Assembler::equal, L);
       
   181     __ movptr(rax, __ argument_address(temp2, -1));
       
   182     __ STOP("receiver not on stack");
       
   183     __ BIND(L);
       
   184   }
       
   185 
       
   186   jump_from_method_handle(_masm, method_temp, temp2, for_compiler_entry);
       
   187   BLOCK_COMMENT("} jump_to_lambda_form");
       
   188 }
       
   189 
   574 
   190 
   575 // Code generation
   191 // Code generation
   576 address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm) {
   192 address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm,
       
   193                                                                 vmIntrinsics::ID iid) {
       
   194   const bool not_for_compiler_entry = false;  // this is the interpreter entry
       
   195   assert(is_signature_polymorphic(iid), "expected invoke iid");
       
   196   if (iid == vmIntrinsics::_invokeGeneric ||
       
   197       iid == vmIntrinsics::_compiledLambdaForm) {
       
   198     // Perhaps surprisingly, the symbolic references visible to Java are not directly used.
       
   199     // They are linked to Java-generated adapters via MethodHandleNatives.linkMethod.
       
   200     // They all allow an appendix argument.
       
   201     __ hlt();           // empty stubs make SG sick
       
   202     return NULL;
       
   203   }
       
   204 
       
   205   // rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
   577   // rbx: methodOop
   206   // rbx: methodOop
   578   // rcx: receiver method handle (must load from sp[MethodTypeForm.vmslots])
   207   // rdx: argument locator (parameter slot count, added to rsp)
   579   // rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
   208   // rcx: used as temp to hold mh or receiver
   580   // rdx, rdi: garbage temp, blown away
   209   // rax, rdi: garbage temps, blown away
   581 
   210   Register rdx_argp   = rdx;   // argument list ptr, live on error paths
   582   Register rbx_method = rbx;
   211   Register rax_temp   = rax;
   583   Register rcx_recv   = rcx;
   212   Register rcx_mh     = rcx;   // MH receiver; dies quickly and is recycled
   584   Register rax_mtype  = rax;
   213   Register rbx_method = rbx;   // eventual target of this invocation
   585   Register rdx_temp   = rdx;
   214 
   586   Register rdi_temp   = rdi;
   215   address code_start = __ pc();
   587 
       
   588   // emit WrongMethodType path first, to enable jccb back-branch from main path
       
   589   Label wrong_method_type;
       
   590   __ bind(wrong_method_type);
       
   591   Label invoke_generic_slow_path, invoke_exact_error_path;
       
   592   assert(methodOopDesc::intrinsic_id_size_in_bytes() == sizeof(u1), "");;
       
   593   __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeExact);
       
   594   __ jcc(Assembler::notEqual, invoke_generic_slow_path);
       
   595   __ jmp(invoke_exact_error_path);
       
   596 
   216 
   597   // here's where control starts out:
   217   // here's where control starts out:
   598   __ align(CodeEntryAlignment);
   218   __ align(CodeEntryAlignment);
   599   address entry_point = __ pc();
   219   address entry_point = __ pc();
   600 
   220 
   601   // fetch the MethodType from the method handle into rax (the 'check' register)
       
   602   // FIXME: Interpreter should transmit pre-popped stack pointer, to locate base of arg list.
       
   603   // This would simplify several touchy bits of code.
       
   604   // See 6984712: JSR 292 method handle calls need a clean argument base pointer
       
   605   {
       
   606     Register tem = rbx_method;
       
   607     for (jint* pchase = methodOopDesc::method_type_offsets_chain(); (*pchase) != -1; pchase++) {
       
   608       __ movptr(rax_mtype, Address(tem, *pchase));
       
   609       tem = rax_mtype;          // in case there is another indirection
       
   610     }
       
   611   }
       
   612 
       
   613   // given the MethodType, find out where the MH argument is buried
       
   614   __ load_heap_oop(rdx_temp, Address(rax_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, rdi_temp)));
       
   615   Register rdx_vmslots = rdx_temp;
       
   616   __ movl(rdx_vmslots, Address(rdx_temp, __ delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, rdi_temp)));
       
   617   Address mh_receiver_slot_addr = __ argument_address(rdx_vmslots);
       
   618   __ movptr(rcx_recv, mh_receiver_slot_addr);
       
   619 
       
   620   trace_method_handle(_masm, "invokeExact");
       
   621 
       
   622   __ check_method_handle_type(rax_mtype, rcx_recv, rdi_temp, wrong_method_type);
       
   623 
       
   624   // Nobody uses the MH receiver slot after this.  Make sure.
       
   625   DEBUG_ONLY(__ movptr(mh_receiver_slot_addr, (int32_t)0x999999));
       
   626 
       
   627   __ jump_to_method_handle_entry(rcx_recv, rdi_temp);
       
   628 
       
   629   // error path for invokeExact (only)
       
   630   __ bind(invoke_exact_error_path);
       
   631   // ensure that the top of stack is properly aligned.
       
   632   __ mov(rdi, rsp);
       
   633   __ andptr(rsp, -StackAlignmentInBytes); // Align the stack for the ABI
       
   634   __ pushptr(Address(rdi, 0));  // Pick up the return address
       
   635 
       
   636   // Stub wants expected type in rax and the actual type in rcx
       
   637   __ jump(ExternalAddress(StubRoutines::throw_WrongMethodTypeException_entry()));
       
   638 
       
   639   // for invokeGeneric (only), apply argument and result conversions on the fly
       
   640   __ bind(invoke_generic_slow_path);
       
   641 #ifdef ASSERT
       
   642   if (VerifyMethodHandles) {
   221   if (VerifyMethodHandles) {
   643     Label L;
   222     Label L;
   644     __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) vmIntrinsics::_invokeGeneric);
   223     BLOCK_COMMENT("verify_intrinsic_id {");
       
   224     __ cmpb(Address(rbx_method, methodOopDesc::intrinsic_id_offset_in_bytes()), (int) iid);
   645     __ jcc(Assembler::equal, L);
   225     __ jcc(Assembler::equal, L);
   646     __ stop("bad methodOop::intrinsic_id");
   226     if (iid == vmIntrinsics::_linkToVirtual ||
       
   227         iid == vmIntrinsics::_linkToSpecial) {
       
   228       // could do this for all kinds, but would explode assembly code size
       
   229       trace_method_handle(_masm, "bad methodOop::intrinsic_id");
       
   230     }
       
   231     __ STOP("bad methodOop::intrinsic_id");
   647     __ bind(L);
   232     __ bind(L);
   648   }
   233     BLOCK_COMMENT("} verify_intrinsic_id");
   649 #endif //ASSERT
   234   }
   650   Register rbx_temp = rbx_method;  // don't need it now
   235 
   651 
   236   // First task:  Find out how big the argument list is.
   652   // make room on the stack for another pointer:
   237   Address rdx_first_arg_addr;
   653   Register rcx_argslot = rcx_recv;
   238   int ref_kind = signature_polymorphic_intrinsic_ref_kind(iid);
   654   __ lea(rcx_argslot, __ argument_address(rdx_vmslots, 1));
   239   assert(ref_kind != 0 || iid == vmIntrinsics::_invokeBasic, "must be _invokeBasic or a linkTo intrinsic");
   655   insert_arg_slots(_masm, 2 * stack_move_unit(),
   240   if (ref_kind == 0 || MethodHandles::ref_kind_has_receiver(ref_kind)) {
   656                    rcx_argslot, rbx_temp, rdx_temp);
   241     __ load_sized_value(rdx_argp,
   657 
   242                         Address(rbx_method, methodOopDesc::size_of_parameters_offset()),
   658   // load up an adapter from the calling type (Java weaves this)
   243                         sizeof(u2), /*is_signed*/ false);
   659   Register rdx_adapter = rdx_temp;
   244     // assert(sizeof(u2) == sizeof(methodOopDesc::_size_of_parameters), "");
   660   __ load_heap_oop(rdx_temp,    Address(rax_mtype, __ delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes,               rdi_temp)));
   245     rdx_first_arg_addr = __ argument_address(rdx_argp, -1);
   661   __ load_heap_oop(rdx_adapter, Address(rdx_temp,  __ delayed_value(java_lang_invoke_MethodTypeForm::genericInvoker_offset_in_bytes, rdi_temp)));
   246   } else {
   662   __ verify_oop(rdx_adapter);
   247     DEBUG_ONLY(rdx_argp = noreg);
   663   __ movptr(Address(rcx_argslot, 1 * Interpreter::stackElementSize), rdx_adapter);
   248   }
   664   // As a trusted first argument, pass the type being called, so the adapter knows
   249 
   665   // the actual types of the arguments and return values.
   250   if (!is_signature_polymorphic_static(iid)) {
   666   // (Generic invokers are shared among form-families of method-type.)
   251     __ movptr(rcx_mh, rdx_first_arg_addr);
   667   __ movptr(Address(rcx_argslot, 0 * Interpreter::stackElementSize), rax_mtype);
   252     DEBUG_ONLY(rdx_argp = noreg);
   668   // FIXME: assert that rdx_adapter is of the right method-type.
   253   }
   669   __ mov(rcx, rdx_adapter);
   254 
   670   trace_method_handle(_masm, "invokeGeneric");
   255   // rdx_first_arg_addr is live!
   671   __ jump_to_method_handle_entry(rcx, rdi_temp);
   256 
       
   257   if (TraceMethodHandles) {
       
   258     const char* name = vmIntrinsics::name_at(iid);
       
   259     if (*name == '_')  name += 1;
       
   260     const size_t len = strlen(name) + 50;
       
   261     char* qname = NEW_C_HEAP_ARRAY(char, len, mtInternal);
       
   262     const char* suffix = "";
       
   263     if (vmIntrinsics::method_for(iid) == NULL ||
       
   264         !vmIntrinsics::method_for(iid)->access_flags().is_public()) {
       
   265       if (is_signature_polymorphic_static(iid))
       
   266         suffix = "/static";
       
   267       else
       
   268         suffix = "/private";
       
   269     }
       
   270     jio_snprintf(qname, len, "MethodHandle::interpreter_entry::%s%s", name, suffix);
       
   271     // note: stub look for mh in rcx
       
   272     trace_method_handle(_masm, qname);
       
   273   }
       
   274 
       
   275   if (iid == vmIntrinsics::_invokeBasic) {
       
   276     generate_method_handle_dispatch(_masm, iid, rcx_mh, noreg, not_for_compiler_entry);
       
   277 
       
   278   } else {
       
   279     // Adjust argument list by popping the trailing MemberName argument.
       
   280     Register rcx_recv = noreg;
       
   281     if (MethodHandles::ref_kind_has_receiver(ref_kind)) {
       
   282       // Load the receiver (not the MH; the actual MemberName's receiver) up from the interpreter stack.
       
   283       __ movptr(rcx_recv = rcx, rdx_first_arg_addr);
       
   284     }
       
   285     DEBUG_ONLY(rdx_argp = noreg);
       
   286     Register rbx_member = rbx_method;  // MemberName ptr; incoming method ptr is dead now
       
   287     __ pop(rax_temp);           // return address
       
   288     __ pop(rbx_member);         // extract last argument
       
   289     __ push(rax_temp);          // re-push return address
       
   290     generate_method_handle_dispatch(_masm, iid, rcx_recv, rbx_member, not_for_compiler_entry);
       
   291   }
       
   292 
       
   293   if (PrintMethodHandleStubs) {
       
   294     address code_end = __ pc();
       
   295     tty->print_cr("--------");
       
   296     tty->print_cr("method handle interpreter entry for %s", vmIntrinsics::name_at(iid));
       
   297     Disassembler::decode(code_start, code_end);
       
   298     tty->cr();
       
   299   }
   672 
   300 
   673   return entry_point;
   301   return entry_point;
   674 }
   302 }
   675 
   303 
   676 // Helper to insert argument slots into the stack.
   304 void MethodHandles::generate_method_handle_dispatch(MacroAssembler* _masm,
   677 // arg_slots must be a multiple of stack_move_unit() and < 0
   305                                                     vmIntrinsics::ID iid,
   678 // rax_argslot is decremented to point to the new (shifted) location of the argslot
   306                                                     Register receiver_reg,
   679 // But, rdx_temp ends up holding the original value of rax_argslot.
   307                                                     Register member_reg,
   680 void MethodHandles::insert_arg_slots(MacroAssembler* _masm,
   308                                                     bool for_compiler_entry) {
   681                                      RegisterOrConstant arg_slots,
   309   assert(is_signature_polymorphic(iid), "expected invoke iid");
   682                                      Register rax_argslot,
   310   Register rbx_method = rbx;   // eventual target of this invocation
   683                                      Register rbx_temp, Register rdx_temp) {
   311   // temps used in this code are not used in *either* compiled or interpreted calling sequences
   684   // allow constant zero
   312 #ifdef _LP64
   685   if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
   313   Register temp1 = rscratch1;
   686     return;
   314   Register temp2 = rscratch2;
   687   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
   315   Register temp3 = rax;
   688                              (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
   316   if (for_compiler_entry) {
   689   if (VerifyMethodHandles)
   317     assert(receiver_reg == (iid == vmIntrinsics::_linkToStatic ? noreg : j_rarg0), "only valid assignment");
   690     verify_argslot(_masm, rax_argslot, "insertion point must fall within current frame");
   318     assert_different_registers(temp1,        j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5);
   691   if (VerifyMethodHandles)
   319     assert_different_registers(temp2,        j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5);
   692     verify_stack_move(_masm, arg_slots, -1);
   320     assert_different_registers(temp3,        j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5);
   693 
   321   }
   694   // Make space on the stack for the inserted argument(s).
   322 #else
   695   // Then pull down everything shallower than rax_argslot.
   323   Register temp1 = (for_compiler_entry ? rsi : rdx);
   696   // The stacked return address gets pulled down with everything else.
   324   Register temp2 = rdi;
   697   // That is, copy [rsp, argslot) downward by -size words.  In pseudo-code:
   325   Register temp3 = rax;
   698   //   rsp -= size;
   326   if (for_compiler_entry) {
   699   //   for (rdx = rsp + size; rdx < argslot; rdx++)
   327     assert(receiver_reg == (iid == vmIntrinsics::_linkToStatic ? noreg : rcx), "only valid assignment");
   700   //     rdx[-size] = rdx[0]
   328     assert_different_registers(temp1,        rcx, rdx);
   701   //   argslot -= size;
   329     assert_different_registers(temp2,        rcx, rdx);
   702   BLOCK_COMMENT("insert_arg_slots {");
   330     assert_different_registers(temp3,        rcx, rdx);
   703   __ mov(rdx_temp, rsp);                        // source pointer for copy
   331   }
   704   __ lea(rsp, Address(rsp, arg_slots, Interpreter::stackElementScale()));
   332 #endif
   705   {
   333   assert_different_registers(temp1, temp2, temp3, receiver_reg);
   706     Label loop;
   334   assert_different_registers(temp1, temp2, temp3, member_reg);
   707     __ BIND(loop);
   335   if (!for_compiler_entry)
   708     // pull one word down each time through the loop
   336     assert_different_registers(temp1, temp2, temp3, saved_last_sp_register());  // don't trash lastSP
   709     __ movptr(rbx_temp, Address(rdx_temp, 0));
   337 
   710     __ movptr(Address(rdx_temp, arg_slots, Interpreter::stackElementScale()), rbx_temp);
   338   if (iid == vmIntrinsics::_invokeBasic) {
   711     __ addptr(rdx_temp, wordSize);
   339     // indirect through MH.form.vmentry.vmtarget
   712     __ cmpptr(rdx_temp, rax_argslot);
   340     jump_to_lambda_form(_masm, receiver_reg, rbx_method, temp1, for_compiler_entry);
   713     __ jcc(Assembler::below, loop);
   341 
   714   }
       
   715 
       
   716   // Now move the argslot down, to point to the opened-up space.
       
   717   __ lea(rax_argslot, Address(rax_argslot, arg_slots, Interpreter::stackElementScale()));
       
   718   BLOCK_COMMENT("} insert_arg_slots");
       
   719 }
       
   720 
       
   721 // Helper to remove argument slots from the stack.
       
   722 // arg_slots must be a multiple of stack_move_unit() and > 0
       
   723 void MethodHandles::remove_arg_slots(MacroAssembler* _masm,
       
   724                                      RegisterOrConstant arg_slots,
       
   725                                      Register rax_argslot,
       
   726                                      Register rbx_temp, Register rdx_temp) {
       
   727   // allow constant zero
       
   728   if (arg_slots.is_constant() && arg_slots.as_constant() == 0)
       
   729     return;
       
   730   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
       
   731                              (!arg_slots.is_register() ? rsp : arg_slots.as_register()));
       
   732   if (VerifyMethodHandles)
       
   733     verify_argslots(_masm, arg_slots, rax_argslot, false,
       
   734                     "deleted argument(s) must fall within current frame");
       
   735   if (VerifyMethodHandles)
       
   736     verify_stack_move(_masm, arg_slots, +1);
       
   737 
       
   738   BLOCK_COMMENT("remove_arg_slots {");
       
   739   // Pull up everything shallower than rax_argslot.
       
   740   // Then remove the excess space on the stack.
       
   741   // The stacked return address gets pulled up with everything else.
       
   742   // That is, copy [rsp, argslot) upward by size words.  In pseudo-code:
       
   743   //   for (rdx = argslot-1; rdx >= rsp; --rdx)
       
   744   //     rdx[size] = rdx[0]
       
   745   //   argslot += size;
       
   746   //   rsp += size;
       
   747   __ lea(rdx_temp, Address(rax_argslot, -wordSize)); // source pointer for copy
       
   748   {
       
   749     Label loop;
       
   750     __ BIND(loop);
       
   751     // pull one word up each time through the loop
       
   752     __ movptr(rbx_temp, Address(rdx_temp, 0));
       
   753     __ movptr(Address(rdx_temp, arg_slots, Interpreter::stackElementScale()), rbx_temp);
       
   754     __ addptr(rdx_temp, -wordSize);
       
   755     __ cmpptr(rdx_temp, rsp);
       
   756     __ jcc(Assembler::aboveEqual, loop);
       
   757   }
       
   758 
       
   759   // Now move the argslot up, to point to the just-copied block.
       
   760   __ lea(rsp, Address(rsp, arg_slots, Interpreter::stackElementScale()));
       
   761   // And adjust the argslot address to point at the deletion point.
       
   762   __ lea(rax_argslot, Address(rax_argslot, arg_slots, Interpreter::stackElementScale()));
       
   763   BLOCK_COMMENT("} remove_arg_slots");
       
   764 }
       
   765 
       
   766 // Helper to copy argument slots to the top of the stack.
       
   767 // The sequence starts with rax_argslot and is counted by slot_count
       
   768 // slot_count must be a multiple of stack_move_unit() and >= 0
       
   769 // This function blows the temps but does not change rax_argslot.
       
   770 void MethodHandles::push_arg_slots(MacroAssembler* _masm,
       
   771                                    Register rax_argslot,
       
   772                                    RegisterOrConstant slot_count,
       
   773                                    int skip_words_count,
       
   774                                    Register rbx_temp, Register rdx_temp) {
       
   775   assert_different_registers(rax_argslot, rbx_temp, rdx_temp,
       
   776                              (!slot_count.is_register() ? rbp : slot_count.as_register()),
       
   777                              rsp);
       
   778   assert(Interpreter::stackElementSize == wordSize, "else change this code");
       
   779 
       
   780   if (VerifyMethodHandles)
       
   781     verify_stack_move(_masm, slot_count, 0);
       
   782 
       
   783   // allow constant zero
       
   784   if (slot_count.is_constant() && slot_count.as_constant() == 0)
       
   785     return;
       
   786 
       
   787   BLOCK_COMMENT("push_arg_slots {");
       
   788 
       
   789   Register rbx_top = rbx_temp;
       
   790 
       
   791   // There is at most 1 word to carry down with the TOS.
       
   792   switch (skip_words_count) {
       
   793   case 1: __ pop(rdx_temp); break;
       
   794   case 0:                   break;
       
   795   default: ShouldNotReachHere();
       
   796   }
       
   797 
       
   798   if (slot_count.is_constant()) {
       
   799     for (int i = slot_count.as_constant() - 1; i >= 0; i--) {
       
   800       __ pushptr(Address(rax_argslot, i * wordSize));
       
   801     }
       
   802   } else {
   342   } else {
   803     Label L_plural, L_loop, L_break;
   343     // The method is a member invoker used by direct method handles.
   804     // Emit code to dynamically check for the common cases, zero and one slot.
   344     if (VerifyMethodHandles) {
   805     __ cmpl(slot_count.as_register(), (int32_t) 1);
   345       // make sure the trailing argument really is a MemberName (caller responsibility)
   806     __ jccb(Assembler::greater, L_plural);
   346       verify_klass(_masm, member_reg, SystemDictionaryHandles::MemberName_klass(),
   807     __ jccb(Assembler::less, L_break);
   347                    "MemberName required for invokeVirtual etc.");
   808     __ pushptr(Address(rax_argslot, 0));
   348     }
   809     __ jmpb(L_break);
   349 
   810     __ BIND(L_plural);
   350     Address member_clazz(    member_reg, NONZERO(java_lang_invoke_MemberName::clazz_offset_in_bytes()));
   811 
   351     Address member_vmindex(  member_reg, NONZERO(java_lang_invoke_MemberName::vmindex_offset_in_bytes()));
   812     // Loop for 2 or more:
   352     Address member_vmtarget( member_reg, NONZERO(java_lang_invoke_MemberName::vmtarget_offset_in_bytes()));
   813     //   rbx = &rax[slot_count]
   353 
   814     //   while (rbx > rax)  *(--rsp) = *(--rbx)
   354     Register temp1_recv_klass = temp1;
   815     __ lea(rbx_top, Address(rax_argslot, slot_count, Address::times_ptr));
   355     if (iid != vmIntrinsics::_linkToStatic) {
   816     __ BIND(L_loop);
   356       __ verify_oop(receiver_reg);
   817     __ subptr(rbx_top, wordSize);
   357       if (iid == vmIntrinsics::_linkToSpecial) {
   818     __ pushptr(Address(rbx_top, 0));
   358         // Don't actually load the klass; just null-check the receiver.
   819     __ cmpptr(rbx_top, rax_argslot);
   359         __ null_check(receiver_reg);
   820     __ jcc(Assembler::above, L_loop);
   360       } else {
   821     __ bind(L_break);
   361         // load receiver klass itself
   822   }
   362         __ null_check(receiver_reg, oopDesc::klass_offset_in_bytes());
   823   switch (skip_words_count) {
   363         __ load_klass(temp1_recv_klass, receiver_reg);
   824   case 1: __ push(rdx_temp); break;
   364         __ verify_oop(temp1_recv_klass);
   825   case 0:                    break;
   365       }
   826   default: ShouldNotReachHere();
   366       BLOCK_COMMENT("check_receiver {");
   827   }
   367       // The receiver for the MemberName must be in receiver_reg.
   828   BLOCK_COMMENT("} push_arg_slots");
   368       // Check the receiver against the MemberName.clazz
   829 }
   369       if (VerifyMethodHandles && iid == vmIntrinsics::_linkToSpecial) {
   830 
   370         // Did not load it above...
   831 // in-place movement; no change to rsp
   371         __ load_klass(temp1_recv_klass, receiver_reg);
   832 // blows rax_temp, rdx_temp
   372         __ verify_oop(temp1_recv_klass);
   833 void MethodHandles::move_arg_slots_up(MacroAssembler* _masm,
   373       }
   834                                       Register rbx_bottom,  // invariant
   374       if (VerifyMethodHandles && iid != vmIntrinsics::_linkToInterface) {
   835                                       Address  top_addr,     // can use rax_temp
   375         Label L_ok;
   836                                       RegisterOrConstant positive_distance_in_slots,
   376         Register temp2_defc = temp2;
   837                                       Register rax_temp, Register rdx_temp) {
   377         __ load_heap_oop(temp2_defc, member_clazz);
   838   BLOCK_COMMENT("move_arg_slots_up {");
   378         load_klass_from_Class(_masm, temp2_defc);
   839   assert_different_registers(rbx_bottom,
   379         __ verify_oop(temp2_defc);
   840                              rax_temp, rdx_temp,
   380         __ check_klass_subtype(temp1_recv_klass, temp2_defc, temp3, L_ok);
   841                              positive_distance_in_slots.register_or_noreg());
   381         // If we get here, the type check failed!
   842   Label L_loop, L_break;
   382         __ STOP("receiver class disagrees with MemberName.clazz");
   843   Register rax_top = rax_temp;
   383         __ bind(L_ok);
   844   if (!top_addr.is_same_address(Address(rax_top, 0)))
   384       }
   845     __ lea(rax_top, top_addr);
   385       BLOCK_COMMENT("} check_receiver");
   846   // Detect empty (or broken) loop:
   386     }
   847 #ifdef ASSERT
   387     if (iid == vmIntrinsics::_linkToSpecial ||
   848   if (VerifyMethodHandles) {
   388         iid == vmIntrinsics::_linkToStatic) {
   849     // Verify that &bottom < &top (non-empty interval)
   389       DEBUG_ONLY(temp1_recv_klass = noreg);  // these guys didn't load the recv_klass
   850     Label L_ok, L_bad;
   390     }
   851     if (positive_distance_in_slots.is_register()) {
   391 
   852       __ cmpptr(positive_distance_in_slots.as_register(), (int32_t) 0);
   392     // Live registers at this point:
   853       __ jcc(Assembler::lessEqual, L_bad);
   393     //  member_reg - MemberName that was the trailing argument
   854     }
   394     //  temp1_recv_klass - klass of stacked receiver, if needed
   855     __ cmpptr(rbx_bottom, rax_top);
   395     //  rsi/r13 - interpreter linkage (if interpreted)
   856     __ jcc(Assembler::below, L_ok);
   396     //  rcx, rdx, rsi, rdi, r8, r8 - compiler arguments (if compiled)
   857     __ bind(L_bad);
   397 
   858     __ stop("valid bounds (copy up)");
   398     bool method_is_live = false;
   859     __ BIND(L_ok);
   399     switch (iid) {
   860   }
   400     case vmIntrinsics::_linkToSpecial:
   861 #endif
   401       if (VerifyMethodHandles) {
   862   __ cmpptr(rbx_bottom, rax_top);
   402         verify_ref_kind(_masm, JVM_REF_invokeSpecial, member_reg, temp3);
   863   __ jccb(Assembler::aboveEqual, L_break);
   403       }
   864   // work rax down to rbx, copying contiguous data upwards
   404       __ load_heap_oop(rbx_method, member_vmtarget);
   865   // In pseudo-code:
   405       method_is_live = true;
   866   //   [rbx, rax) = &[bottom, top)
   406       break;
   867   //   while (--rax >= rbx) *(rax + distance) = *(rax + 0), rax--;
   407 
   868   __ BIND(L_loop);
   408     case vmIntrinsics::_linkToStatic:
   869   __ subptr(rax_top, wordSize);
   409       if (VerifyMethodHandles) {
   870   __ movptr(rdx_temp, Address(rax_top, 0));
   410         verify_ref_kind(_masm, JVM_REF_invokeStatic, member_reg, temp3);
   871   __ movptr(          Address(rax_top, positive_distance_in_slots, Address::times_ptr), rdx_temp);
   411       }
   872   __ cmpptr(rax_top, rbx_bottom);
   412       __ load_heap_oop(rbx_method, member_vmtarget);
   873   __ jcc(Assembler::above, L_loop);
   413       method_is_live = true;
   874   assert(Interpreter::stackElementSize == wordSize, "else change loop");
   414       break;
   875   __ bind(L_break);
   415 
   876   BLOCK_COMMENT("} move_arg_slots_up");
   416     case vmIntrinsics::_linkToVirtual:
   877 }
   417     {
   878 
   418       // same as TemplateTable::invokevirtual,
   879 // in-place movement; no change to rsp
   419       // minus the CP setup and profiling:
   880 // blows rax_temp, rdx_temp
   420 
   881 void MethodHandles::move_arg_slots_down(MacroAssembler* _masm,
   421       if (VerifyMethodHandles) {
   882                                         Address  bottom_addr,  // can use rax_temp
   422         verify_ref_kind(_masm, JVM_REF_invokeVirtual, member_reg, temp3);
   883                                         Register rbx_top,      // invariant
   423       }
   884                                         RegisterOrConstant negative_distance_in_slots,
   424 
   885                                         Register rax_temp, Register rdx_temp) {
   425       // pick out the vtable index from the MemberName, and then we can discard it:
   886   BLOCK_COMMENT("move_arg_slots_down {");
   426       Register temp2_index = temp2;
   887   assert_different_registers(rbx_top,
   427       __ movptr(temp2_index, member_vmindex);
   888                              negative_distance_in_slots.register_or_noreg(),
   428 
   889                              rax_temp, rdx_temp);
   429       if (VerifyMethodHandles) {
   890   Label L_loop, L_break;
   430         Label L_index_ok;
   891   Register rax_bottom = rax_temp;
   431         __ cmpl(temp2_index, 0);
   892   if (!bottom_addr.is_same_address(Address(rax_bottom, 0)))
   432         __ jcc(Assembler::greaterEqual, L_index_ok);
   893     __ lea(rax_bottom, bottom_addr);
   433         __ STOP("no virtual index");
   894   // Detect empty (or broken) loop:
   434         __ BIND(L_index_ok);
   895 #ifdef ASSERT
   435       }
   896   assert(!negative_distance_in_slots.is_constant() || negative_distance_in_slots.as_constant() < 0, "");
   436 
   897   if (VerifyMethodHandles) {
   437       // Note:  The verifier invariants allow us to ignore MemberName.clazz and vmtarget
   898     // Verify that &bottom < &top (non-empty interval)
   438       // at this point.  And VerifyMethodHandles has already checked clazz, if needed.
   899     Label L_ok, L_bad;
   439 
   900     if (negative_distance_in_slots.is_register()) {
   440       // get target methodOop & entry point
   901       __ cmpptr(negative_distance_in_slots.as_register(), (int32_t) 0);
   441       __ lookup_virtual_method(temp1_recv_klass, temp2_index, rbx_method);
   902       __ jcc(Assembler::greaterEqual, L_bad);
   442       method_is_live = true;
   903     }
   443       break;
   904     __ cmpptr(rax_bottom, rbx_top);
   444     }
   905     __ jcc(Assembler::below, L_ok);
   445 
   906     __ bind(L_bad);
   446     case vmIntrinsics::_linkToInterface:
   907     __ stop("valid bounds (copy down)");
   447     {
   908     __ BIND(L_ok);
   448       // same as TemplateTable::invokeinterface
   909   }
   449       // (minus the CP setup and profiling, with different argument motion)
   910 #endif
   450       if (VerifyMethodHandles) {
   911   __ cmpptr(rax_bottom, rbx_top);
   451         verify_ref_kind(_masm, JVM_REF_invokeInterface, member_reg, temp3);
   912   __ jccb(Assembler::aboveEqual, L_break);
   452       }
   913   // work rax up to rbx, copying contiguous data downwards
   453 
   914   // In pseudo-code:
   454       Register temp3_intf = temp3;
   915   //   [rax, rbx) = &[bottom, top)
   455       __ load_heap_oop(temp3_intf, member_clazz);
   916   //   while (rax < rbx) *(rax - distance) = *(rax + 0), rax++;
   456       load_klass_from_Class(_masm, temp3_intf);
   917   __ BIND(L_loop);
   457       __ verify_oop(temp3_intf);
   918   __ movptr(rdx_temp, Address(rax_bottom, 0));
   458 
   919   __ movptr(          Address(rax_bottom, negative_distance_in_slots, Address::times_ptr), rdx_temp);
   459       Register rbx_index = rbx_method;
   920   __ addptr(rax_bottom, wordSize);
   460       __ movptr(rbx_index, member_vmindex);
   921   __ cmpptr(rax_bottom, rbx_top);
   461       if (VerifyMethodHandles) {
   922   __ jcc(Assembler::below, L_loop);
   462         Label L;
   923   assert(Interpreter::stackElementSize == wordSize, "else change loop");
   463         __ cmpl(rbx_index, 0);
   924   __ bind(L_break);
   464         __ jcc(Assembler::greaterEqual, L);
   925   BLOCK_COMMENT("} move_arg_slots_down");
   465         __ STOP("invalid vtable index for MH.invokeInterface");
   926 }
   466         __ bind(L);
   927 
   467       }
   928 // Copy from a field or array element to a stacked argument slot.
   468 
   929 // is_element (ignored) says whether caller is loading an array element instead of an instance field.
   469       // given intf, index, and recv klass, dispatch to the implementation method
   930 void MethodHandles::move_typed_arg(MacroAssembler* _masm,
   470       Label L_no_such_interface;
   931                                    BasicType type, bool is_element,
   471       __ lookup_interface_method(temp1_recv_klass, temp3_intf,
   932                                    Address slot_dest, Address value_src,
   472                                  // note: next two args must be the same:
   933                                    Register rbx_temp, Register rdx_temp) {
   473                                  rbx_index, rbx_method,
   934   BLOCK_COMMENT(!is_element ? "move_typed_arg {" : "move_typed_arg { (array element)");
   474                                  temp2,
   935   if (type == T_OBJECT || type == T_ARRAY) {
   475                                  L_no_such_interface);
   936     __ load_heap_oop(rbx_temp, value_src);
   476 
   937     __ movptr(slot_dest, rbx_temp);
   477       __ verify_oop(rbx_method);
   938   } else if (type != T_VOID) {
   478       jump_from_method_handle(_masm, rbx_method, temp2, for_compiler_entry);
   939     int  arg_size      = type2aelembytes(type);
   479       __ hlt();
   940     bool arg_is_signed = is_signed_subword_type(type);
   480 
   941     int  slot_size     = (arg_size > wordSize) ? arg_size : wordSize;
   481       __ bind(L_no_such_interface);
   942     __ load_sized_value(  rdx_temp,  value_src, arg_size, arg_is_signed, rbx_temp);
   482       __ jump(RuntimeAddress(StubRoutines::throw_IncompatibleClassChangeError_entry()));
   943     __ store_sized_value( slot_dest, rdx_temp,  slot_size,               rbx_temp);
   483       break;
   944   }
   484     }
   945   BLOCK_COMMENT("} move_typed_arg");
   485 
   946 }
   486     default:
   947 
   487       fatal(err_msg("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
   948 void MethodHandles::move_return_value(MacroAssembler* _masm, BasicType type,
   488       break;
   949                                       Address return_slot) {
   489     }
   950   BLOCK_COMMENT("move_return_value {");
   490 
   951   // Old versions of the JVM must clean the FPU stack after every return.
   491     if (method_is_live) {
   952 #ifndef _LP64
   492       // live at this point:  rbx_method, rsi/r13 (if interpreted)
   953 #ifdef COMPILER2
   493 
   954   // The FPU stack is clean if UseSSE >= 2 but must be cleaned in other cases
   494       // After figuring out which concrete method to call, jump into it.
   955   if ((type == T_FLOAT && UseSSE < 1) || (type == T_DOUBLE && UseSSE < 2)) {
   495       // Note that this works in the interpreter with no data motion.
   956     for (int i = 1; i < 8; i++) {
   496       // But the compiled version will require that rcx_recv be shifted out.
   957         __ ffree(i);
   497       __ verify_oop(rbx_method);
   958     }
   498       jump_from_method_handle(_masm, rbx_method, temp1, for_compiler_entry);
   959   } else if (UseSSE < 2) {
   499     }
   960     __ empty_FPU_stack();
   500   }
   961   }
       
   962 #endif //COMPILER2
       
   963 #endif //!_LP64
       
   964 
       
   965   // Look at the type and pull the value out of the corresponding register.
       
   966   if (type == T_VOID) {
       
   967     // nothing to do
       
   968   } else if (type == T_OBJECT) {
       
   969     __ movptr(return_slot, rax);
       
   970   } else if (type == T_INT || is_subword_type(type)) {
       
   971     // write the whole word, even if only 32 bits is significant
       
   972     __ movptr(return_slot, rax);
       
   973   } else if (type == T_LONG) {
       
   974     // store the value by parts
       
   975     // Note: We assume longs are continguous (if misaligned) on the interpreter stack.
       
   976     __ store_sized_value(return_slot, rax, BytesPerLong, rdx);
       
   977   } else if (NOT_LP64((type == T_FLOAT  && UseSSE < 1) ||
       
   978                       (type == T_DOUBLE && UseSSE < 2) ||)
       
   979              false) {
       
   980     // Use old x86 FPU registers:
       
   981     if (type == T_FLOAT)
       
   982       __ fstp_s(return_slot);
       
   983     else
       
   984       __ fstp_d(return_slot);
       
   985   } else if (type == T_FLOAT) {
       
   986     __ movflt(return_slot, xmm0);
       
   987   } else if (type == T_DOUBLE) {
       
   988     __ movdbl(return_slot, xmm0);
       
   989   } else {
       
   990     ShouldNotReachHere();
       
   991   }
       
   992   BLOCK_COMMENT("} move_return_value");
       
   993 }
   501 }
   994 
   502 
   995 #ifndef PRODUCT
   503 #ifndef PRODUCT
   996 #define DESCRIBE_RICOCHET_OFFSET(rf, name) \
       
   997   values.describe(frame_no, (intptr_t *) (((uintptr_t)rf) + MethodHandles::RicochetFrame::name##_offset_in_bytes()), #name)
       
   998 
       
   999 void MethodHandles::RicochetFrame::describe(const frame* fr, FrameValues& values, int frame_no)  {
       
  1000     address bp = (address) fr->fp();
       
  1001     RicochetFrame* rf = (RicochetFrame*)(bp - sender_link_offset_in_bytes());
       
  1002 
       
  1003     // ricochet slots
       
  1004     DESCRIBE_RICOCHET_OFFSET(rf, exact_sender_sp);
       
  1005     DESCRIBE_RICOCHET_OFFSET(rf, conversion);
       
  1006     DESCRIBE_RICOCHET_OFFSET(rf, saved_args_base);
       
  1007     DESCRIBE_RICOCHET_OFFSET(rf, saved_args_layout);
       
  1008     DESCRIBE_RICOCHET_OFFSET(rf, saved_target);
       
  1009     DESCRIBE_RICOCHET_OFFSET(rf, continuation);
       
  1010 
       
  1011     // relevant ricochet targets (in caller frame)
       
  1012     values.describe(-1, rf->saved_args_base(),  err_msg("*saved_args_base for #%d", frame_no));
       
  1013 }
       
  1014 #endif // ASSERT
       
  1015 
       
  1016 #ifndef PRODUCT
       
  1017 extern "C" void print_method_handle(oop mh);
       
  1018 void trace_method_handle_stub(const char* adaptername,
   504 void trace_method_handle_stub(const char* adaptername,
  1019                               oop mh,
   505                               oop mh,
  1020                               intptr_t* saved_regs,
   506                               intptr_t* saved_regs,
  1021                               intptr_t* entry_sp) {
   507                               intptr_t* entry_sp) {
  1022   // called as a leaf from native code: do not block the JVM!
   508   // called as a leaf from native code: do not block the JVM!
  1023   bool has_mh = (strstr(adaptername, "return/") == NULL);  // return adapters don't have rcx_mh
   509   bool has_mh = (strstr(adaptername, "/static") == NULL &&
       
   510                  strstr(adaptername, "linkTo") == NULL);    // static linkers don't have MH
  1024   const char* mh_reg_name = has_mh ? "rcx_mh" : "rcx";
   511   const char* mh_reg_name = has_mh ? "rcx_mh" : "rcx";
  1025   tty->print_cr("MH %s %s="PTR_FORMAT" sp="PTR_FORMAT, adaptername, mh_reg_name, mh, entry_sp);
   512   tty->print_cr("MH %s %s="PTR_FORMAT" sp="PTR_FORMAT,
       
   513                 adaptername, mh_reg_name,
       
   514                 mh, entry_sp);
  1026 
   515 
  1027   if (Verbose) {
   516   if (Verbose) {
  1028     tty->print_cr("Registers:");
   517     tty->print_cr("Registers:");
  1029     const int saved_regs_count = RegisterImpl::number_of_registers;
   518     const int saved_regs_count = RegisterImpl::number_of_registers;
  1030     for (int i = 0; i < saved_regs_count; i++) {
   519     for (int i = 0; i < saved_regs_count; i++) {
  1084         // Stack may not be walkable (invalid PC above FP):
   573         // Stack may not be walkable (invalid PC above FP):
  1085         // Add descriptions without building a Java frame to avoid issues
   574         // Add descriptions without building a Java frame to avoid issues
  1086         values.describe(-1, dump_fp, "fp for #1 <not parsed, cannot trust pc>");
   575         values.describe(-1, dump_fp, "fp for #1 <not parsed, cannot trust pc>");
  1087         values.describe(-1, dump_sp, "sp for #1");
   576         values.describe(-1, dump_sp, "sp for #1");
  1088       }
   577       }
       
   578       values.describe(-1, entry_sp, "raw top of stack");
  1089 
   579 
  1090       tty->print_cr("Stack layout:");
   580       tty->print_cr("Stack layout:");
  1091       values.print(p);
   581       values.print(p);
  1092     }
   582     }
  1093     if (has_mh)
   583     if (has_mh && mh->is_oop()) {
  1094       print_method_handle(mh);
   584       mh->print();
       
   585       if (java_lang_invoke_MethodHandle::is_instance(mh)) {
       
   586         if (java_lang_invoke_MethodHandle::form_offset_in_bytes() != 0)
       
   587           java_lang_invoke_MethodHandle::form(mh)->print();
       
   588       }
       
   589     }
  1095   }
   590   }
  1096 }
   591 }
  1097 
   592 
  1098 // The stub wraps the arguments in a struct on the stack to avoid
   593 // The stub wraps the arguments in a struct on the stack to avoid
  1099 // dealing with the different calling conventions for passing 6
   594 // dealing with the different calling conventions for passing 6
  1157   __ leave();
   652   __ leave();
  1158   BLOCK_COMMENT("} trace_method_handle");
   653   BLOCK_COMMENT("} trace_method_handle");
  1159 }
   654 }
  1160 #endif //PRODUCT
   655 #endif //PRODUCT
  1161 
   656 
  1162 // which conversion op types are implemented here?
       
  1163 int MethodHandles::adapter_conversion_ops_supported_mask() {
       
  1164   return ((1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_ONLY)
       
  1165          |(1<<java_lang_invoke_AdapterMethodHandle::OP_RETYPE_RAW)
       
  1166          |(1<<java_lang_invoke_AdapterMethodHandle::OP_CHECK_CAST)
       
  1167          |(1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_PRIM)
       
  1168          |(1<<java_lang_invoke_AdapterMethodHandle::OP_REF_TO_PRIM)
       
  1169           //OP_PRIM_TO_REF is below...
       
  1170          |(1<<java_lang_invoke_AdapterMethodHandle::OP_SWAP_ARGS)
       
  1171          |(1<<java_lang_invoke_AdapterMethodHandle::OP_ROT_ARGS)
       
  1172          |(1<<java_lang_invoke_AdapterMethodHandle::OP_DUP_ARGS)
       
  1173          |(1<<java_lang_invoke_AdapterMethodHandle::OP_DROP_ARGS)
       
  1174           //OP_COLLECT_ARGS is below...
       
  1175          |(1<<java_lang_invoke_AdapterMethodHandle::OP_SPREAD_ARGS)
       
  1176          |(
       
  1177            java_lang_invoke_MethodTypeForm::vmlayout_offset_in_bytes() <= 0 ? 0 :
       
  1178            ((1<<java_lang_invoke_AdapterMethodHandle::OP_PRIM_TO_REF)
       
  1179            |(1<<java_lang_invoke_AdapterMethodHandle::OP_COLLECT_ARGS)
       
  1180            |(1<<java_lang_invoke_AdapterMethodHandle::OP_FOLD_ARGS)
       
  1181             ))
       
  1182          );
       
  1183 }
       
  1184 
       
  1185 //------------------------------------------------------------------------------
       
  1186 // MethodHandles::generate_method_handle_stub
       
  1187 //
       
  1188 // Generate an "entry" field for a method handle.
       
  1189 // This determines how the method handle will respond to calls.
       
  1190 void MethodHandles::generate_method_handle_stub(MacroAssembler* _masm, MethodHandles::EntryKind ek) {
       
  1191   MethodHandles::EntryKind ek_orig = ek_original_kind(ek);
       
  1192 
       
  1193   // Here is the register state during an interpreted call,
       
  1194   // as set up by generate_method_handle_interpreter_entry():
       
  1195   // - rbx: garbage temp (was MethodHandle.invoke methodOop, unused)
       
  1196   // - rcx: receiver method handle
       
  1197   // - rax: method handle type (only used by the check_mtype entry point)
       
  1198   // - rsi/r13: sender SP (must preserve; see prepare_to_jump_from_interpreted)
       
  1199   // - rdx: garbage temp, can blow away
       
  1200 
       
  1201   const Register rcx_recv    = rcx;
       
  1202   const Register rax_argslot = rax;
       
  1203   const Register rbx_temp    = rbx;
       
  1204   const Register rdx_temp    = rdx;
       
  1205   const Register rdi_temp    = rdi;
       
  1206 
       
  1207   // This guy is set up by prepare_to_jump_from_interpreted (from interpreted calls)
       
  1208   // and gen_c2i_adapter (from compiled calls):
       
  1209   const Register saved_last_sp = saved_last_sp_register();
       
  1210 
       
  1211   // Argument registers for _raise_exception.
       
  1212   // 32-bit: Pass first two oop/int args in registers ECX and EDX.
       
  1213   const Register rarg0_code     = LP64_ONLY(j_rarg0) NOT_LP64(rcx);
       
  1214   const Register rarg1_actual   = LP64_ONLY(j_rarg1) NOT_LP64(rdx);
       
  1215   const Register rarg2_required = LP64_ONLY(j_rarg2) NOT_LP64(rdi);
       
  1216   assert_different_registers(rarg0_code, rarg1_actual, rarg2_required, saved_last_sp);
       
  1217 
       
  1218   guarantee(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes() != 0, "must have offsets");
       
  1219 
       
  1220   // some handy addresses
       
  1221   Address rcx_mh_vmtarget(    rcx_recv, java_lang_invoke_MethodHandle::vmtarget_offset_in_bytes() );
       
  1222   Address rcx_dmh_vmindex(    rcx_recv, java_lang_invoke_DirectMethodHandle::vmindex_offset_in_bytes() );
       
  1223 
       
  1224   Address rcx_bmh_vmargslot(  rcx_recv, java_lang_invoke_BoundMethodHandle::vmargslot_offset_in_bytes() );
       
  1225   Address rcx_bmh_argument(   rcx_recv, java_lang_invoke_BoundMethodHandle::argument_offset_in_bytes() );
       
  1226 
       
  1227   Address rcx_amh_vmargslot(  rcx_recv, java_lang_invoke_AdapterMethodHandle::vmargslot_offset_in_bytes() );
       
  1228   Address rcx_amh_argument(   rcx_recv, java_lang_invoke_AdapterMethodHandle::argument_offset_in_bytes() );
       
  1229   Address rcx_amh_conversion( rcx_recv, java_lang_invoke_AdapterMethodHandle::conversion_offset_in_bytes() );
       
  1230   Address vmarg;                // __ argument_address(vmargslot)
       
  1231 
       
  1232   const int java_mirror_offset = in_bytes(Klass::java_mirror_offset());
       
  1233 
       
  1234   if (have_entry(ek)) {
       
  1235     __ nop();                   // empty stubs make SG sick
       
  1236     return;
       
  1237   }
       
  1238 
       
  1239 #ifdef ASSERT
       
  1240   __ push((int32_t) 0xEEEEEEEE);
       
  1241   __ push((int32_t) (intptr_t) entry_name(ek));
       
  1242   LP64_ONLY(__ push((int32_t) high((intptr_t) entry_name(ek))));
       
  1243   __ push((int32_t) 0x33333333);
       
  1244 #endif //ASSERT
       
  1245 
       
  1246   address interp_entry = __ pc();
       
  1247 
       
  1248   trace_method_handle(_masm, entry_name(ek));
       
  1249 
       
  1250   BLOCK_COMMENT(err_msg("Entry %s {", entry_name(ek)));
       
  1251 
       
  1252   switch ((int) ek) {
       
  1253   case _raise_exception:
       
  1254     {
       
  1255       // Not a real MH entry, but rather shared code for raising an
       
  1256       // exception.  Since we use the compiled entry, arguments are
       
  1257       // expected in compiler argument registers.
       
  1258       assert(raise_exception_method(), "must be set");
       
  1259       assert(raise_exception_method()->from_compiled_entry(), "method must be linked");
       
  1260 
       
  1261       const Register rax_pc = rax;
       
  1262       __ pop(rax_pc);  // caller PC
       
  1263       __ mov(rsp, saved_last_sp);  // cut the stack back to where the caller started
       
  1264 
       
  1265       Register rbx_method = rbx_temp;
       
  1266       __ movptr(rbx_method, ExternalAddress((address) &_raise_exception_method));
       
  1267 
       
  1268       const int jobject_oop_offset = 0;
       
  1269       __ movptr(rbx_method, Address(rbx_method, jobject_oop_offset));  // dereference the jobject
       
  1270 
       
  1271       __ movptr(saved_last_sp, rsp);
       
  1272       __ subptr(rsp, 3 * wordSize);
       
  1273       __ push(rax_pc);         // restore caller PC
       
  1274 
       
  1275       __ movl  (__ argument_address(constant(2)), rarg0_code);
       
  1276       __ movptr(__ argument_address(constant(1)), rarg1_actual);
       
  1277       __ movptr(__ argument_address(constant(0)), rarg2_required);
       
  1278       jump_from_method_handle(_masm, rbx_method, rax);
       
  1279     }
       
  1280     break;
       
  1281 
       
  1282   case _invokestatic_mh:
       
  1283   case _invokespecial_mh:
       
  1284     {
       
  1285       Register rbx_method = rbx_temp;
       
  1286       __ load_heap_oop(rbx_method, rcx_mh_vmtarget); // target is a methodOop
       
  1287       __ verify_oop(rbx_method);
       
  1288       // same as TemplateTable::invokestatic or invokespecial,
       
  1289       // minus the CP setup and profiling:
       
  1290       if (ek == _invokespecial_mh) {
       
  1291         // Must load & check the first argument before entering the target method.
       
  1292         __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
       
  1293         __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
       
  1294         __ null_check(rcx_recv);
       
  1295         __ verify_oop(rcx_recv);
       
  1296       }
       
  1297       jump_from_method_handle(_masm, rbx_method, rax);
       
  1298     }
       
  1299     break;
       
  1300 
       
  1301   case _invokevirtual_mh:
       
  1302     {
       
  1303       // same as TemplateTable::invokevirtual,
       
  1304       // minus the CP setup and profiling:
       
  1305 
       
  1306       // pick out the vtable index and receiver offset from the MH,
       
  1307       // and then we can discard it:
       
  1308       __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
       
  1309       Register rbx_index = rbx_temp;
       
  1310       __ movl(rbx_index, rcx_dmh_vmindex);
       
  1311       // Note:  The verifier allows us to ignore rcx_mh_vmtarget.
       
  1312       __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
       
  1313       __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
       
  1314 
       
  1315       // get receiver klass
       
  1316       Register rax_klass = rax_argslot;
       
  1317       __ load_klass(rax_klass, rcx_recv);
       
  1318       __ verify_oop(rax_klass);
       
  1319 
       
  1320       // get target methodOop & entry point
       
  1321       const int base = instanceKlass::vtable_start_offset() * wordSize;
       
  1322       assert(vtableEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
       
  1323       Address vtable_entry_addr(rax_klass,
       
  1324                                 rbx_index, Address::times_ptr,
       
  1325                                 base + vtableEntry::method_offset_in_bytes());
       
  1326       Register rbx_method = rbx_temp;
       
  1327       __ movptr(rbx_method, vtable_entry_addr);
       
  1328 
       
  1329       __ verify_oop(rbx_method);
       
  1330       jump_from_method_handle(_masm, rbx_method, rax);
       
  1331     }
       
  1332     break;
       
  1333 
       
  1334   case _invokeinterface_mh:
       
  1335     {
       
  1336       // same as TemplateTable::invokeinterface,
       
  1337       // minus the CP setup and profiling:
       
  1338 
       
  1339       // pick out the interface and itable index from the MH.
       
  1340       __ load_method_handle_vmslots(rax_argslot, rcx_recv, rdx_temp);
       
  1341       Register rdx_intf  = rdx_temp;
       
  1342       Register rbx_index = rbx_temp;
       
  1343       __ load_heap_oop(rdx_intf, rcx_mh_vmtarget);
       
  1344       __ movl(rbx_index, rcx_dmh_vmindex);
       
  1345       __ movptr(rcx_recv, __ argument_address(rax_argslot, -1));
       
  1346       __ null_check(rcx_recv, oopDesc::klass_offset_in_bytes());
       
  1347 
       
  1348       // get receiver klass
       
  1349       Register rax_klass = rax_argslot;
       
  1350       __ load_klass(rax_klass, rcx_recv);
       
  1351       __ verify_oop(rax_klass);
       
  1352 
       
  1353       Register rbx_method = rbx_index;
       
  1354 
       
  1355       // get interface klass
       
  1356       Label no_such_interface;
       
  1357       __ verify_oop(rdx_intf);
       
  1358       __ lookup_interface_method(rax_klass, rdx_intf,
       
  1359                                  // note: next two args must be the same:
       
  1360                                  rbx_index, rbx_method,
       
  1361                                  rdi_temp,
       
  1362                                  no_such_interface);
       
  1363 
       
  1364       __ verify_oop(rbx_method);
       
  1365       jump_from_method_handle(_masm, rbx_method, rax);
       
  1366       __ hlt();
       
  1367 
       
  1368       __ bind(no_such_interface);
       
  1369       // Throw an exception.
       
  1370       // For historical reasons, it will be IncompatibleClassChangeError.
       
  1371       __ mov(rbx_temp, rcx_recv);  // rarg2_required might be RCX
       
  1372       assert_different_registers(rarg2_required, rbx_temp);
       
  1373       __ movptr(rarg2_required, Address(rdx_intf, java_mirror_offset));  // required interface
       
  1374       __ mov(   rarg1_actual,   rbx_temp);                               // bad receiver
       
  1375       __ movl(  rarg0_code,     (int) Bytecodes::_invokeinterface);      // who is complaining?
       
  1376       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
       
  1377     }
       
  1378     break;
       
  1379 
       
  1380   case _bound_ref_mh:
       
  1381   case _bound_int_mh:
       
  1382   case _bound_long_mh:
       
  1383   case _bound_ref_direct_mh:
       
  1384   case _bound_int_direct_mh:
       
  1385   case _bound_long_direct_mh:
       
  1386     {
       
  1387       const bool direct_to_method = (ek >= _bound_ref_direct_mh);
       
  1388       BasicType arg_type  = ek_bound_mh_arg_type(ek);
       
  1389       int       arg_slots = type2size[arg_type];
       
  1390 
       
  1391       // make room for the new argument:
       
  1392       __ movl(rax_argslot, rcx_bmh_vmargslot);
       
  1393       __ lea(rax_argslot, __ argument_address(rax_argslot));
       
  1394 
       
  1395       insert_arg_slots(_masm, arg_slots * stack_move_unit(), rax_argslot, rbx_temp, rdx_temp);
       
  1396 
       
  1397       // store bound argument into the new stack slot:
       
  1398       __ load_heap_oop(rbx_temp, rcx_bmh_argument);
       
  1399       if (arg_type == T_OBJECT) {
       
  1400         __ movptr(Address(rax_argslot, 0), rbx_temp);
       
  1401       } else {
       
  1402         Address prim_value_addr(rbx_temp, java_lang_boxing_object::value_offset_in_bytes(arg_type));
       
  1403         move_typed_arg(_masm, arg_type, false,
       
  1404                        Address(rax_argslot, 0),
       
  1405                        prim_value_addr,
       
  1406                        rbx_temp, rdx_temp);
       
  1407       }
       
  1408 
       
  1409       if (direct_to_method) {
       
  1410         Register rbx_method = rbx_temp;
       
  1411         __ load_heap_oop(rbx_method, rcx_mh_vmtarget);
       
  1412         __ verify_oop(rbx_method);
       
  1413         jump_from_method_handle(_masm, rbx_method, rax);
       
  1414       } else {
       
  1415         __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
       
  1416         __ verify_oop(rcx_recv);
       
  1417         __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
       
  1418       }
       
  1419     }
       
  1420     break;
       
  1421 
       
  1422   case _adapter_opt_profiling:
       
  1423     if (java_lang_invoke_CountingMethodHandle::vmcount_offset_in_bytes() != 0) {
       
  1424       Address rcx_mh_vmcount(rcx_recv, java_lang_invoke_CountingMethodHandle::vmcount_offset_in_bytes());
       
  1425       __ incrementl(rcx_mh_vmcount);
       
  1426     }
       
  1427     // fall through
       
  1428 
       
  1429   case _adapter_retype_only:
       
  1430   case _adapter_retype_raw:
       
  1431     // immediately jump to the next MH layer:
       
  1432     __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
       
  1433     __ verify_oop(rcx_recv);
       
  1434     __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
       
  1435     // This is OK when all parameter types widen.
       
  1436     // It is also OK when a return type narrows.
       
  1437     break;
       
  1438 
       
  1439   case _adapter_check_cast:
       
  1440     {
       
  1441       // temps:
       
  1442       Register rbx_klass = rbx_temp; // interesting AMH data
       
  1443 
       
  1444       // check a reference argument before jumping to the next layer of MH:
       
  1445       __ movl(rax_argslot, rcx_amh_vmargslot);
       
  1446       vmarg = __ argument_address(rax_argslot);
       
  1447 
       
  1448       // What class are we casting to?
       
  1449       __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
       
  1450       load_klass_from_Class(_masm, rbx_klass);
       
  1451 
       
  1452       Label done;
       
  1453       __ movptr(rdx_temp, vmarg);
       
  1454       __ testptr(rdx_temp, rdx_temp);
       
  1455       __ jcc(Assembler::zero, done);         // no cast if null
       
  1456       __ load_klass(rdx_temp, rdx_temp);
       
  1457 
       
  1458       // live at this point:
       
  1459       // - rbx_klass:  klass required by the target method
       
  1460       // - rdx_temp:   argument klass to test
       
  1461       // - rcx_recv:   adapter method handle
       
  1462       __ check_klass_subtype(rdx_temp, rbx_klass, rax_argslot, done);
       
  1463 
       
  1464       // If we get here, the type check failed!
       
  1465       // Call the wrong_method_type stub, passing the failing argument type in rax.
       
  1466       Register rax_mtype = rax_argslot;
       
  1467       __ movl(rax_argslot, rcx_amh_vmargslot);  // reload argslot field
       
  1468       __ movptr(rdx_temp, vmarg);
       
  1469 
       
  1470       assert_different_registers(rarg2_required, rdx_temp);
       
  1471       __ load_heap_oop(rarg2_required, rcx_amh_argument);             // required class
       
  1472       __ mov(          rarg1_actual,   rdx_temp);                     // bad object
       
  1473       __ movl(         rarg0_code,     (int) Bytecodes::_checkcast);  // who is complaining?
       
  1474       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
       
  1475 
       
  1476       __ bind(done);
       
  1477       // get the new MH:
       
  1478       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
       
  1479       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
       
  1480     }
       
  1481     break;
       
  1482 
       
  1483   case _adapter_prim_to_prim:
       
  1484   case _adapter_ref_to_prim:
       
  1485   case _adapter_prim_to_ref:
       
  1486     // handled completely by optimized cases
       
  1487     __ stop("init_AdapterMethodHandle should not issue this");
       
  1488     break;
       
  1489 
       
  1490   case _adapter_opt_i2i:        // optimized subcase of adapt_prim_to_prim
       
  1491 //case _adapter_opt_f2i:        // optimized subcase of adapt_prim_to_prim
       
  1492   case _adapter_opt_l2i:        // optimized subcase of adapt_prim_to_prim
       
  1493   case _adapter_opt_unboxi:     // optimized subcase of adapt_ref_to_prim
       
  1494     {
       
  1495       // perform an in-place conversion to int or an int subword
       
  1496       __ movl(rax_argslot, rcx_amh_vmargslot);
       
  1497       vmarg = __ argument_address(rax_argslot);
       
  1498 
       
  1499       switch (ek) {
       
  1500       case _adapter_opt_i2i:
       
  1501         __ movl(rdx_temp, vmarg);
       
  1502         break;
       
  1503       case _adapter_opt_l2i:
       
  1504         {
       
  1505           // just delete the extra slot; on a little-endian machine we keep the first
       
  1506           __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
       
  1507           remove_arg_slots(_masm, -stack_move_unit(),
       
  1508                            rax_argslot, rbx_temp, rdx_temp);
       
  1509           vmarg = Address(rax_argslot, -Interpreter::stackElementSize);
       
  1510           __ movl(rdx_temp, vmarg);
       
  1511         }
       
  1512         break;
       
  1513       case _adapter_opt_unboxi:
       
  1514         {
       
  1515           // Load the value up from the heap.
       
  1516           __ movptr(rdx_temp, vmarg);
       
  1517           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_INT);
       
  1518 #ifdef ASSERT
       
  1519           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
       
  1520             if (is_subword_type(BasicType(bt)))
       
  1521               assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(BasicType(bt)), "");
       
  1522           }
       
  1523 #endif
       
  1524           __ null_check(rdx_temp, value_offset);
       
  1525           __ movl(rdx_temp, Address(rdx_temp, value_offset));
       
  1526           // We load this as a word.  Because we are little-endian,
       
  1527           // the low bits will be correct, but the high bits may need cleaning.
       
  1528           // The vminfo will guide us to clean those bits.
       
  1529         }
       
  1530         break;
       
  1531       default:
       
  1532         ShouldNotReachHere();
       
  1533       }
       
  1534 
       
  1535       // Do the requested conversion and store the value.
       
  1536       Register rbx_vminfo = rbx_temp;
       
  1537       load_conversion_vminfo(_masm, rbx_vminfo, rcx_amh_conversion);
       
  1538 
       
  1539       // get the new MH:
       
  1540       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
       
  1541       // (now we are done with the old MH)
       
  1542 
       
  1543       // original 32-bit vmdata word must be of this form:
       
  1544       //    | MBZ:6 | signBitCount:8 | srcDstTypes:8 | conversionOp:8 |
       
  1545       __ xchgptr(rcx, rbx_vminfo);                // free rcx for shifts
       
  1546       __ shll(rdx_temp /*, rcx*/);
       
  1547       Label zero_extend, done;
       
  1548       __ testl(rcx, CONV_VMINFO_SIGN_FLAG);
       
  1549       __ jccb(Assembler::zero, zero_extend);
       
  1550 
       
  1551       // this path is taken for int->byte, int->short
       
  1552       __ sarl(rdx_temp /*, rcx*/);
       
  1553       __ jmpb(done);
       
  1554 
       
  1555       __ bind(zero_extend);
       
  1556       // this is taken for int->char
       
  1557       __ shrl(rdx_temp /*, rcx*/);
       
  1558 
       
  1559       __ bind(done);
       
  1560       __ movl(vmarg, rdx_temp);  // Store the value.
       
  1561       __ xchgptr(rcx, rbx_vminfo);                // restore rcx_recv
       
  1562 
       
  1563       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
       
  1564     }
       
  1565     break;
       
  1566 
       
  1567   case _adapter_opt_i2l:        // optimized subcase of adapt_prim_to_prim
       
  1568   case _adapter_opt_unboxl:     // optimized subcase of adapt_ref_to_prim
       
  1569     {
       
  1570       // perform an in-place int-to-long or ref-to-long conversion
       
  1571       __ movl(rax_argslot, rcx_amh_vmargslot);
       
  1572 
       
  1573       // on a little-endian machine we keep the first slot and add another after
       
  1574       __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
       
  1575       insert_arg_slots(_masm, stack_move_unit(),
       
  1576                        rax_argslot, rbx_temp, rdx_temp);
       
  1577       Address vmarg1(rax_argslot, -Interpreter::stackElementSize);
       
  1578       Address vmarg2 = vmarg1.plus_disp(Interpreter::stackElementSize);
       
  1579 
       
  1580       switch (ek) {
       
  1581       case _adapter_opt_i2l:
       
  1582         {
       
  1583 #ifdef _LP64
       
  1584           __ movslq(rdx_temp, vmarg1);  // Load sign-extended
       
  1585           __ movq(vmarg1, rdx_temp);    // Store into first slot
       
  1586 #else
       
  1587           __ movl(rdx_temp, vmarg1);
       
  1588           __ sarl(rdx_temp, BitsPerInt - 1);  // __ extend_sign()
       
  1589           __ movl(vmarg2, rdx_temp); // store second word
       
  1590 #endif
       
  1591         }
       
  1592         break;
       
  1593       case _adapter_opt_unboxl:
       
  1594         {
       
  1595           // Load the value up from the heap.
       
  1596           __ movptr(rdx_temp, vmarg1);
       
  1597           int value_offset = java_lang_boxing_object::value_offset_in_bytes(T_LONG);
       
  1598           assert(value_offset == java_lang_boxing_object::value_offset_in_bytes(T_DOUBLE), "");
       
  1599           __ null_check(rdx_temp, value_offset);
       
  1600 #ifdef _LP64
       
  1601           __ movq(rbx_temp, Address(rdx_temp, value_offset));
       
  1602           __ movq(vmarg1, rbx_temp);
       
  1603 #else
       
  1604           __ movl(rbx_temp, Address(rdx_temp, value_offset + 0*BytesPerInt));
       
  1605           __ movl(rdx_temp, Address(rdx_temp, value_offset + 1*BytesPerInt));
       
  1606           __ movl(vmarg1, rbx_temp);
       
  1607           __ movl(vmarg2, rdx_temp);
       
  1608 #endif
       
  1609         }
       
  1610         break;
       
  1611       default:
       
  1612         ShouldNotReachHere();
       
  1613       }
       
  1614 
       
  1615       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
       
  1616       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
       
  1617     }
       
  1618     break;
       
  1619 
       
  1620   case _adapter_opt_f2d:        // optimized subcase of adapt_prim_to_prim
       
  1621   case _adapter_opt_d2f:        // optimized subcase of adapt_prim_to_prim
       
  1622     {
       
  1623       // perform an in-place floating primitive conversion
       
  1624       __ movl(rax_argslot, rcx_amh_vmargslot);
       
  1625       __ lea(rax_argslot, __ argument_address(rax_argslot, 1));
       
  1626       if (ek == _adapter_opt_f2d) {
       
  1627         insert_arg_slots(_masm, stack_move_unit(),
       
  1628                          rax_argslot, rbx_temp, rdx_temp);
       
  1629       }
       
  1630       Address vmarg(rax_argslot, -Interpreter::stackElementSize);
       
  1631 
       
  1632 #ifdef _LP64
       
  1633       if (ek == _adapter_opt_f2d) {
       
  1634         __ movflt(xmm0, vmarg);
       
  1635         __ cvtss2sd(xmm0, xmm0);
       
  1636         __ movdbl(vmarg, xmm0);
       
  1637       } else {
       
  1638         __ movdbl(xmm0, vmarg);
       
  1639         __ cvtsd2ss(xmm0, xmm0);
       
  1640         __ movflt(vmarg, xmm0);
       
  1641       }
       
  1642 #else //_LP64
       
  1643       if (ek == _adapter_opt_f2d) {
       
  1644         __ fld_s(vmarg);        // load float to ST0
       
  1645         __ fstp_d(vmarg);       // store double
       
  1646       } else {
       
  1647         __ fld_d(vmarg);        // load double to ST0
       
  1648         __ fstp_s(vmarg);       // store single
       
  1649       }
       
  1650 #endif //_LP64
       
  1651 
       
  1652       if (ek == _adapter_opt_d2f) {
       
  1653         remove_arg_slots(_masm, -stack_move_unit(),
       
  1654                          rax_argslot, rbx_temp, rdx_temp);
       
  1655       }
       
  1656 
       
  1657       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
       
  1658       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
       
  1659     }
       
  1660     break;
       
  1661 
       
  1662   case _adapter_swap_args:
       
  1663   case _adapter_rot_args:
       
  1664     // handled completely by optimized cases
       
  1665     __ stop("init_AdapterMethodHandle should not issue this");
       
  1666     break;
       
  1667 
       
  1668   case _adapter_opt_swap_1:
       
  1669   case _adapter_opt_swap_2:
       
  1670   case _adapter_opt_rot_1_up:
       
  1671   case _adapter_opt_rot_1_down:
       
  1672   case _adapter_opt_rot_2_up:
       
  1673   case _adapter_opt_rot_2_down:
       
  1674     {
       
  1675       int swap_slots = ek_adapter_opt_swap_slots(ek);
       
  1676       int rotate     = ek_adapter_opt_swap_mode(ek);
       
  1677 
       
  1678       // 'argslot' is the position of the first argument to swap
       
  1679       __ movl(rax_argslot, rcx_amh_vmargslot);
       
  1680       __ lea(rax_argslot, __ argument_address(rax_argslot));
       
  1681 
       
  1682       // 'vminfo' is the second
       
  1683       Register rbx_destslot = rbx_temp;
       
  1684       load_conversion_vminfo(_masm, rbx_destslot, rcx_amh_conversion);
       
  1685       __ lea(rbx_destslot, __ argument_address(rbx_destslot));
       
  1686       if (VerifyMethodHandles)
       
  1687         verify_argslot(_masm, rbx_destslot, "swap point must fall within current frame");
       
  1688 
       
  1689       assert(Interpreter::stackElementSize == wordSize, "else rethink use of wordSize here");
       
  1690       if (!rotate) {
       
  1691         // simple swap
       
  1692         for (int i = 0; i < swap_slots; i++) {
       
  1693           __ movptr(rdi_temp, Address(rax_argslot,  i * wordSize));
       
  1694           __ movptr(rdx_temp, Address(rbx_destslot, i * wordSize));
       
  1695           __ movptr(Address(rax_argslot,  i * wordSize), rdx_temp);
       
  1696           __ movptr(Address(rbx_destslot, i * wordSize), rdi_temp);
       
  1697         }
       
  1698       } else {
       
  1699         // A rotate is actually pair of moves, with an "odd slot" (or pair)
       
  1700         // changing place with a series of other slots.
       
  1701         // First, push the "odd slot", which is going to get overwritten
       
  1702         for (int i = swap_slots - 1; i >= 0; i--) {
       
  1703           // handle one with rdi_temp instead of a push:
       
  1704           if (i == 0)  __ movptr(rdi_temp, Address(rax_argslot, i * wordSize));
       
  1705           else         __ pushptr(         Address(rax_argslot, i * wordSize));
       
  1706         }
       
  1707         if (rotate > 0) {
       
  1708           // Here is rotate > 0:
       
  1709           // (low mem)                                          (high mem)
       
  1710           //     | dest:     more_slots...     | arg: odd_slot :arg+1 |
       
  1711           // =>
       
  1712           //     | dest: odd_slot | dest+1: more_slots...      :arg+1 |
       
  1713           // work argslot down to destslot, copying contiguous data upwards
       
  1714           // pseudo-code:
       
  1715           //   rax = src_addr - swap_bytes
       
  1716           //   rbx = dest_addr
       
  1717           //   while (rax >= rbx) *(rax + swap_bytes) = *(rax + 0), rax--;
       
  1718           move_arg_slots_up(_masm,
       
  1719                             rbx_destslot,
       
  1720                             Address(rax_argslot, 0),
       
  1721                             swap_slots,
       
  1722                             rax_argslot, rdx_temp);
       
  1723         } else {
       
  1724           // Here is the other direction, rotate < 0:
       
  1725           // (low mem)                                          (high mem)
       
  1726           //     | arg: odd_slot | arg+1: more_slots...       :dest+1 |
       
  1727           // =>
       
  1728           //     | arg:    more_slots...     | dest: odd_slot :dest+1 |
       
  1729           // work argslot up to destslot, copying contiguous data downwards
       
  1730           // pseudo-code:
       
  1731           //   rax = src_addr + swap_bytes
       
  1732           //   rbx = dest_addr
       
  1733           //   while (rax <= rbx) *(rax - swap_bytes) = *(rax + 0), rax++;
       
  1734           // dest_slot denotes an exclusive upper limit
       
  1735           int limit_bias = OP_ROT_ARGS_DOWN_LIMIT_BIAS;
       
  1736           if (limit_bias != 0)
       
  1737             __ addptr(rbx_destslot, - limit_bias * wordSize);
       
  1738           move_arg_slots_down(_masm,
       
  1739                               Address(rax_argslot, swap_slots * wordSize),
       
  1740                               rbx_destslot,
       
  1741                               -swap_slots,
       
  1742                               rax_argslot, rdx_temp);
       
  1743           __ subptr(rbx_destslot, swap_slots * wordSize);
       
  1744         }
       
  1745         // pop the original first chunk into the destination slot, now free
       
  1746         for (int i = 0; i < swap_slots; i++) {
       
  1747           if (i == 0)  __ movptr(Address(rbx_destslot, i * wordSize), rdi_temp);
       
  1748           else         __ popptr(Address(rbx_destslot, i * wordSize));
       
  1749         }
       
  1750       }
       
  1751 
       
  1752       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
       
  1753       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
       
  1754     }
       
  1755     break;
       
  1756 
       
  1757   case _adapter_dup_args:
       
  1758     {
       
  1759       // 'argslot' is the position of the first argument to duplicate
       
  1760       __ movl(rax_argslot, rcx_amh_vmargslot);
       
  1761       __ lea(rax_argslot, __ argument_address(rax_argslot));
       
  1762 
       
  1763       // 'stack_move' is negative number of words to duplicate
       
  1764       Register rdi_stack_move = rdi_temp;
       
  1765       load_stack_move(_masm, rdi_stack_move, rcx_recv, true);
       
  1766 
       
  1767       if (VerifyMethodHandles) {
       
  1768         verify_argslots(_masm, rdi_stack_move, rax_argslot, true,
       
  1769                         "copied argument(s) must fall within current frame");
       
  1770       }
       
  1771 
       
  1772       // insert location is always the bottom of the argument list:
       
  1773       Address insert_location = __ argument_address(constant(0));
       
  1774       int pre_arg_words = insert_location.disp() / wordSize;   // return PC is pushed
       
  1775       assert(insert_location.base() == rsp, "");
       
  1776 
       
  1777       __ negl(rdi_stack_move);
       
  1778       push_arg_slots(_masm, rax_argslot, rdi_stack_move,
       
  1779                      pre_arg_words, rbx_temp, rdx_temp);
       
  1780 
       
  1781       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
       
  1782       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
       
  1783     }
       
  1784     break;
       
  1785 
       
  1786   case _adapter_drop_args:
       
  1787     {
       
  1788       // 'argslot' is the position of the first argument to nuke
       
  1789       __ movl(rax_argslot, rcx_amh_vmargslot);
       
  1790       __ lea(rax_argslot, __ argument_address(rax_argslot));
       
  1791 
       
  1792       // (must do previous push after argslot address is taken)
       
  1793 
       
  1794       // 'stack_move' is number of words to drop
       
  1795       Register rdi_stack_move = rdi_temp;
       
  1796       load_stack_move(_masm, rdi_stack_move, rcx_recv, false);
       
  1797       remove_arg_slots(_masm, rdi_stack_move,
       
  1798                        rax_argslot, rbx_temp, rdx_temp);
       
  1799 
       
  1800       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
       
  1801       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
       
  1802     }
       
  1803     break;
       
  1804 
       
  1805   case _adapter_collect_args:
       
  1806   case _adapter_fold_args:
       
  1807   case _adapter_spread_args:
       
  1808     // handled completely by optimized cases
       
  1809     __ stop("init_AdapterMethodHandle should not issue this");
       
  1810     break;
       
  1811 
       
  1812   case _adapter_opt_collect_ref:
       
  1813   case _adapter_opt_collect_int:
       
  1814   case _adapter_opt_collect_long:
       
  1815   case _adapter_opt_collect_float:
       
  1816   case _adapter_opt_collect_double:
       
  1817   case _adapter_opt_collect_void:
       
  1818   case _adapter_opt_collect_0_ref:
       
  1819   case _adapter_opt_collect_1_ref:
       
  1820   case _adapter_opt_collect_2_ref:
       
  1821   case _adapter_opt_collect_3_ref:
       
  1822   case _adapter_opt_collect_4_ref:
       
  1823   case _adapter_opt_collect_5_ref:
       
  1824   case _adapter_opt_filter_S0_ref:
       
  1825   case _adapter_opt_filter_S1_ref:
       
  1826   case _adapter_opt_filter_S2_ref:
       
  1827   case _adapter_opt_filter_S3_ref:
       
  1828   case _adapter_opt_filter_S4_ref:
       
  1829   case _adapter_opt_filter_S5_ref:
       
  1830   case _adapter_opt_collect_2_S0_ref:
       
  1831   case _adapter_opt_collect_2_S1_ref:
       
  1832   case _adapter_opt_collect_2_S2_ref:
       
  1833   case _adapter_opt_collect_2_S3_ref:
       
  1834   case _adapter_opt_collect_2_S4_ref:
       
  1835   case _adapter_opt_collect_2_S5_ref:
       
  1836   case _adapter_opt_fold_ref:
       
  1837   case _adapter_opt_fold_int:
       
  1838   case _adapter_opt_fold_long:
       
  1839   case _adapter_opt_fold_float:
       
  1840   case _adapter_opt_fold_double:
       
  1841   case _adapter_opt_fold_void:
       
  1842   case _adapter_opt_fold_1_ref:
       
  1843   case _adapter_opt_fold_2_ref:
       
  1844   case _adapter_opt_fold_3_ref:
       
  1845   case _adapter_opt_fold_4_ref:
       
  1846   case _adapter_opt_fold_5_ref:
       
  1847     {
       
  1848       // Given a fresh incoming stack frame, build a new ricochet frame.
       
  1849       // On entry, TOS points at a return PC, and RBP is the callers frame ptr.
       
  1850       // RSI/R13 has the caller's exact stack pointer, which we must also preserve.
       
  1851       // RCX contains an AdapterMethodHandle of the indicated kind.
       
  1852 
       
  1853       // Relevant AMH fields:
       
  1854       // amh.vmargslot:
       
  1855       //   points to the trailing edge of the arguments
       
  1856       //   to filter, collect, or fold.  For a boxing operation,
       
  1857       //   it points just after the single primitive value.
       
  1858       // amh.argument:
       
  1859       //   recursively called MH, on |collect| arguments
       
  1860       // amh.vmtarget:
       
  1861       //   final destination MH, on return value, etc.
       
  1862       // amh.conversion.dest:
       
  1863       //   tells what is the type of the return value
       
  1864       //   (not needed here, since dest is also derived from ek)
       
  1865       // amh.conversion.vminfo:
       
  1866       //   points to the trailing edge of the return value
       
  1867       //   when the vmtarget is to be called; this is
       
  1868       //   equal to vmargslot + (retained ? |collect| : 0)
       
  1869 
       
  1870       // Pass 0 or more argument slots to the recursive target.
       
  1871       int collect_count_constant = ek_adapter_opt_collect_count(ek);
       
  1872 
       
  1873       // The collected arguments are copied from the saved argument list:
       
  1874       int collect_slot_constant = ek_adapter_opt_collect_slot(ek);
       
  1875 
       
  1876       assert(ek_orig == _adapter_collect_args ||
       
  1877              ek_orig == _adapter_fold_args, "");
       
  1878       bool retain_original_args = (ek_orig == _adapter_fold_args);
       
  1879 
       
  1880       // The return value is replaced (or inserted) at the 'vminfo' argslot.
       
  1881       // Sometimes we can compute this statically.
       
  1882       int dest_slot_constant = -1;
       
  1883       if (!retain_original_args)
       
  1884         dest_slot_constant = collect_slot_constant;
       
  1885       else if (collect_slot_constant >= 0 && collect_count_constant >= 0)
       
  1886         // We are preserving all the arguments, and the return value is prepended,
       
  1887         // so the return slot is to the left (above) the |collect| sequence.
       
  1888         dest_slot_constant = collect_slot_constant + collect_count_constant;
       
  1889 
       
  1890       // Replace all those slots by the result of the recursive call.
       
  1891       // The result type can be one of ref, int, long, float, double, void.
       
  1892       // In the case of void, nothing is pushed on the stack after return.
       
  1893       BasicType dest = ek_adapter_opt_collect_type(ek);
       
  1894       assert(dest == type2wfield[dest], "dest is a stack slot type");
       
  1895       int dest_count = type2size[dest];
       
  1896       assert(dest_count == 1 || dest_count == 2 || (dest_count == 0 && dest == T_VOID), "dest has a size");
       
  1897 
       
  1898       // Choose a return continuation.
       
  1899       EntryKind ek_ret = _adapter_opt_return_any;
       
  1900       if (dest != T_CONFLICT && OptimizeMethodHandles) {
       
  1901         switch (dest) {
       
  1902         case T_INT    : ek_ret = _adapter_opt_return_int;     break;
       
  1903         case T_LONG   : ek_ret = _adapter_opt_return_long;    break;
       
  1904         case T_FLOAT  : ek_ret = _adapter_opt_return_float;   break;
       
  1905         case T_DOUBLE : ek_ret = _adapter_opt_return_double;  break;
       
  1906         case T_OBJECT : ek_ret = _adapter_opt_return_ref;     break;
       
  1907         case T_VOID   : ek_ret = _adapter_opt_return_void;    break;
       
  1908         default       : ShouldNotReachHere();
       
  1909         }
       
  1910         if (dest == T_OBJECT && dest_slot_constant >= 0) {
       
  1911           EntryKind ek_try = EntryKind(_adapter_opt_return_S0_ref + dest_slot_constant);
       
  1912           if (ek_try <= _adapter_opt_return_LAST &&
       
  1913               ek_adapter_opt_return_slot(ek_try) == dest_slot_constant) {
       
  1914             ek_ret = ek_try;
       
  1915           }
       
  1916         }
       
  1917         assert(ek_adapter_opt_return_type(ek_ret) == dest, "");
       
  1918       }
       
  1919 
       
  1920       // Already pushed:  ... keep1 | collect | keep2 | sender_pc |
       
  1921       // push(sender_pc);
       
  1922 
       
  1923       // Compute argument base:
       
  1924       Register rax_argv = rax_argslot;
       
  1925       __ lea(rax_argv, __ argument_address(constant(0)));
       
  1926 
       
  1927       // Push a few extra argument words, if we need them to store the return value.
       
  1928       {
       
  1929         int extra_slots = 0;
       
  1930         if (retain_original_args) {
       
  1931           extra_slots = dest_count;
       
  1932         } else if (collect_count_constant == -1) {
       
  1933           extra_slots = dest_count;  // collect_count might be zero; be generous
       
  1934         } else if (dest_count > collect_count_constant) {
       
  1935           extra_slots = (dest_count - collect_count_constant);
       
  1936         } else {
       
  1937           // else we know we have enough dead space in |collect| to repurpose for return values
       
  1938         }
       
  1939         DEBUG_ONLY(extra_slots += 1);
       
  1940         if (extra_slots > 0) {
       
  1941           __ pop(rbx_temp);   // return value
       
  1942           __ subptr(rsp, (extra_slots * Interpreter::stackElementSize));
       
  1943           // Push guard word #2 in debug mode.
       
  1944           DEBUG_ONLY(__ movptr(Address(rsp, 0), (int32_t) RicochetFrame::MAGIC_NUMBER_2));
       
  1945           __ push(rbx_temp);
       
  1946         }
       
  1947       }
       
  1948 
       
  1949       RicochetFrame::enter_ricochet_frame(_masm, rcx_recv, rax_argv,
       
  1950                                           entry(ek_ret)->from_interpreted_entry(), rbx_temp);
       
  1951 
       
  1952       // Now pushed:  ... keep1 | collect | keep2 | RF |
       
  1953       // some handy frame slots:
       
  1954       Address exact_sender_sp_addr = RicochetFrame::frame_address(RicochetFrame::exact_sender_sp_offset_in_bytes());
       
  1955       Address conversion_addr      = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
       
  1956       Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes());
       
  1957 
       
  1958 #ifdef ASSERT
       
  1959       if (VerifyMethodHandles && dest != T_CONFLICT) {
       
  1960         BLOCK_COMMENT("verify AMH.conv.dest");
       
  1961         load_conversion_dest_type(_masm, rbx_temp, conversion_addr);
       
  1962         Label L_dest_ok;
       
  1963         __ cmpl(rbx_temp, (int) dest);
       
  1964         __ jcc(Assembler::equal, L_dest_ok);
       
  1965         if (dest == T_INT) {
       
  1966           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
       
  1967             if (is_subword_type(BasicType(bt))) {
       
  1968               __ cmpl(rbx_temp, (int) bt);
       
  1969               __ jcc(Assembler::equal, L_dest_ok);
       
  1970             }
       
  1971           }
       
  1972         }
       
  1973         __ stop("bad dest in AMH.conv");
       
  1974         __ BIND(L_dest_ok);
       
  1975       }
       
  1976 #endif //ASSERT
       
  1977 
       
  1978       // Find out where the original copy of the recursive argument sequence begins.
       
  1979       Register rax_coll = rax_argv;
       
  1980       {
       
  1981         RegisterOrConstant collect_slot = collect_slot_constant;
       
  1982         if (collect_slot_constant == -1) {
       
  1983           __ movl(rdi_temp, rcx_amh_vmargslot);
       
  1984           collect_slot = rdi_temp;
       
  1985         }
       
  1986         if (collect_slot_constant != 0)
       
  1987           __ lea(rax_coll, Address(rax_argv, collect_slot, Interpreter::stackElementScale()));
       
  1988         // rax_coll now points at the trailing edge of |collect| and leading edge of |keep2|
       
  1989       }
       
  1990 
       
  1991       // Replace the old AMH with the recursive MH.  (No going back now.)
       
  1992       // In the case of a boxing call, the recursive call is to a 'boxer' method,
       
  1993       // such as Integer.valueOf or Long.valueOf.  In the case of a filter
       
  1994       // or collect call, it will take one or more arguments, transform them,
       
  1995       // and return some result, to store back into argument_base[vminfo].
       
  1996       __ load_heap_oop(rcx_recv, rcx_amh_argument);
       
  1997       if (VerifyMethodHandles)  verify_method_handle(_masm, rcx_recv);
       
  1998 
       
  1999       // Push a space for the recursively called MH first:
       
  2000       __ push((int32_t)NULL_WORD);
       
  2001 
       
  2002       // Calculate |collect|, the number of arguments we are collecting.
       
  2003       Register rdi_collect_count = rdi_temp;
       
  2004       RegisterOrConstant collect_count;
       
  2005       if (collect_count_constant >= 0) {
       
  2006         collect_count = collect_count_constant;
       
  2007       } else {
       
  2008         __ load_method_handle_vmslots(rdi_collect_count, rcx_recv, rdx_temp);
       
  2009         collect_count = rdi_collect_count;
       
  2010       }
       
  2011 #ifdef ASSERT
       
  2012       if (VerifyMethodHandles && collect_count_constant >= 0) {
       
  2013         __ load_method_handle_vmslots(rbx_temp, rcx_recv, rdx_temp);
       
  2014         Label L_count_ok;
       
  2015         __ cmpl(rbx_temp, collect_count_constant);
       
  2016         __ jcc(Assembler::equal, L_count_ok);
       
  2017         __ stop("bad vminfo in AMH.conv");
       
  2018         __ BIND(L_count_ok);
       
  2019       }
       
  2020 #endif //ASSERT
       
  2021 
       
  2022       // copy |collect| slots directly to TOS:
       
  2023       push_arg_slots(_masm, rax_coll, collect_count, 0, rbx_temp, rdx_temp);
       
  2024       // Now pushed:  ... keep1 | collect | keep2 | RF... | collect |
       
  2025       // rax_coll still points at the trailing edge of |collect| and leading edge of |keep2|
       
  2026 
       
  2027       // If necessary, adjust the saved arguments to make room for the eventual return value.
       
  2028       // Normal adjustment:  ... keep1 | +dest+ | -collect- | keep2 | RF... | collect |
       
  2029       // If retaining args:  ... keep1 | +dest+ |  collect  | keep2 | RF... | collect |
       
  2030       // In the non-retaining case, this might move keep2 either up or down.
       
  2031       // We don't have to copy the whole | RF... collect | complex,
       
  2032       // but we must adjust RF.saved_args_base.
       
  2033       // Also, from now on, we will forget about the original copy of |collect|.
       
  2034       // If we are retaining it, we will treat it as part of |keep2|.
       
  2035       // For clarity we will define |keep3| = |collect|keep2| or |keep2|.
       
  2036 
       
  2037       BLOCK_COMMENT("adjust trailing arguments {");
       
  2038       // Compare the sizes of |+dest+| and |-collect-|, which are opposed opening and closing movements.
       
  2039       int                open_count  = dest_count;
       
  2040       RegisterOrConstant close_count = collect_count_constant;
       
  2041       Register rdi_close_count = rdi_collect_count;
       
  2042       if (retain_original_args) {
       
  2043         close_count = constant(0);
       
  2044       } else if (collect_count_constant == -1) {
       
  2045         close_count = rdi_collect_count;
       
  2046       }
       
  2047 
       
  2048       // How many slots need moving?  This is simply dest_slot (0 => no |keep3|).
       
  2049       RegisterOrConstant keep3_count;
       
  2050       Register rsi_keep3_count = rsi;  // can repair from RF.exact_sender_sp
       
  2051       if (dest_slot_constant >= 0) {
       
  2052         keep3_count = dest_slot_constant;
       
  2053       } else  {
       
  2054         load_conversion_vminfo(_masm, rsi_keep3_count, conversion_addr);
       
  2055         keep3_count = rsi_keep3_count;
       
  2056       }
       
  2057 #ifdef ASSERT
       
  2058       if (VerifyMethodHandles && dest_slot_constant >= 0) {
       
  2059         load_conversion_vminfo(_masm, rbx_temp, conversion_addr);
       
  2060         Label L_vminfo_ok;
       
  2061         __ cmpl(rbx_temp, dest_slot_constant);
       
  2062         __ jcc(Assembler::equal, L_vminfo_ok);
       
  2063         __ stop("bad vminfo in AMH.conv");
       
  2064         __ BIND(L_vminfo_ok);
       
  2065       }
       
  2066 #endif //ASSERT
       
  2067 
       
  2068       // tasks remaining:
       
  2069       bool move_keep3 = (!keep3_count.is_constant() || keep3_count.as_constant() != 0);
       
  2070       bool stomp_dest = (NOT_DEBUG(dest == T_OBJECT) DEBUG_ONLY(dest_count != 0));
       
  2071       bool fix_arg_base = (!close_count.is_constant() || open_count != close_count.as_constant());
       
  2072 
       
  2073       if (stomp_dest | fix_arg_base) {
       
  2074         // we will probably need an updated rax_argv value
       
  2075         if (collect_slot_constant >= 0) {
       
  2076           // rax_coll already holds the leading edge of |keep2|, so tweak it
       
  2077           assert(rax_coll == rax_argv, "elided a move");
       
  2078           if (collect_slot_constant != 0)
       
  2079             __ subptr(rax_argv, collect_slot_constant * Interpreter::stackElementSize);
       
  2080         } else {
       
  2081           // Just reload from RF.saved_args_base.
       
  2082           __ movptr(rax_argv, saved_args_base_addr);
       
  2083         }
       
  2084       }
       
  2085 
       
  2086       // Old and new argument locations (based at slot 0).
       
  2087       // Net shift (&new_argv - &old_argv) is (close_count - open_count).
       
  2088       bool zero_open_count = (open_count == 0);  // remember this bit of info
       
  2089       if (move_keep3 && fix_arg_base) {
       
  2090         // It will be easier to have everything in one register:
       
  2091         if (close_count.is_register()) {
       
  2092           // Deduct open_count from close_count register to get a clean +/- value.
       
  2093           __ subptr(close_count.as_register(), open_count);
       
  2094         } else {
       
  2095           close_count = close_count.as_constant() - open_count;
       
  2096         }
       
  2097         open_count = 0;
       
  2098       }
       
  2099       Address old_argv(rax_argv, 0);
       
  2100       Address new_argv(rax_argv, close_count,  Interpreter::stackElementScale(),
       
  2101                                 - open_count * Interpreter::stackElementSize);
       
  2102 
       
  2103       // First decide if any actual data are to be moved.
       
  2104       // We can skip if (a) |keep3| is empty, or (b) the argument list size didn't change.
       
  2105       // (As it happens, all movements involve an argument list size change.)
       
  2106 
       
  2107       // If there are variable parameters, use dynamic checks to skip around the whole mess.
       
  2108       Label L_done;
       
  2109       if (!keep3_count.is_constant()) {
       
  2110         __ testl(keep3_count.as_register(), keep3_count.as_register());
       
  2111         __ jcc(Assembler::zero, L_done);
       
  2112       }
       
  2113       if (!close_count.is_constant()) {
       
  2114         __ cmpl(close_count.as_register(), open_count);
       
  2115         __ jcc(Assembler::equal, L_done);
       
  2116       }
       
  2117 
       
  2118       if (move_keep3 && fix_arg_base) {
       
  2119         bool emit_move_down = false, emit_move_up = false, emit_guard = false;
       
  2120         if (!close_count.is_constant()) {
       
  2121           emit_move_down = emit_guard = !zero_open_count;
       
  2122           emit_move_up   = true;
       
  2123         } else if (open_count != close_count.as_constant()) {
       
  2124           emit_move_down = (open_count > close_count.as_constant());
       
  2125           emit_move_up   = !emit_move_down;
       
  2126         }
       
  2127         Label L_move_up;
       
  2128         if (emit_guard) {
       
  2129           __ cmpl(close_count.as_register(), open_count);
       
  2130           __ jcc(Assembler::greater, L_move_up);
       
  2131         }
       
  2132 
       
  2133         if (emit_move_down) {
       
  2134           // Move arguments down if |+dest+| > |-collect-|
       
  2135           // (This is rare, except when arguments are retained.)
       
  2136           // This opens space for the return value.
       
  2137           if (keep3_count.is_constant()) {
       
  2138             for (int i = 0; i < keep3_count.as_constant(); i++) {
       
  2139               __ movptr(rdx_temp, old_argv.plus_disp(i * Interpreter::stackElementSize));
       
  2140               __ movptr(          new_argv.plus_disp(i * Interpreter::stackElementSize), rdx_temp);
       
  2141             }
       
  2142           } else {
       
  2143             Register rbx_argv_top = rbx_temp;
       
  2144             __ lea(rbx_argv_top, old_argv.plus_disp(keep3_count, Interpreter::stackElementScale()));
       
  2145             move_arg_slots_down(_masm,
       
  2146                                 old_argv,     // beginning of old argv
       
  2147                                 rbx_argv_top, // end of old argv
       
  2148                                 close_count,  // distance to move down (must be negative)
       
  2149                                 rax_argv, rdx_temp);
       
  2150             // Used argv as an iteration variable; reload from RF.saved_args_base.
       
  2151             __ movptr(rax_argv, saved_args_base_addr);
       
  2152           }
       
  2153         }
       
  2154 
       
  2155         if (emit_guard) {
       
  2156           __ jmp(L_done);  // assumes emit_move_up is true also
       
  2157           __ BIND(L_move_up);
       
  2158         }
       
  2159 
       
  2160         if (emit_move_up) {
       
  2161 
       
  2162           // Move arguments up if |+dest+| < |-collect-|
       
  2163           // (This is usual, except when |keep3| is empty.)
       
  2164           // This closes up the space occupied by the now-deleted collect values.
       
  2165           if (keep3_count.is_constant()) {
       
  2166             for (int i = keep3_count.as_constant() - 1; i >= 0; i--) {
       
  2167               __ movptr(rdx_temp, old_argv.plus_disp(i * Interpreter::stackElementSize));
       
  2168               __ movptr(          new_argv.plus_disp(i * Interpreter::stackElementSize), rdx_temp);
       
  2169             }
       
  2170           } else {
       
  2171             Address argv_top = old_argv.plus_disp(keep3_count, Interpreter::stackElementScale());
       
  2172             move_arg_slots_up(_masm,
       
  2173                               rax_argv,     // beginning of old argv
       
  2174                               argv_top,     // end of old argv
       
  2175                               close_count,  // distance to move up (must be positive)
       
  2176                               rbx_temp, rdx_temp);
       
  2177           }
       
  2178         }
       
  2179       }
       
  2180       __ BIND(L_done);
       
  2181 
       
  2182       if (fix_arg_base) {
       
  2183         // adjust RF.saved_args_base by adding (close_count - open_count)
       
  2184         if (!new_argv.is_same_address(Address(rax_argv, 0)))
       
  2185           __ lea(rax_argv, new_argv);
       
  2186         __ movptr(saved_args_base_addr, rax_argv);
       
  2187       }
       
  2188 
       
  2189       if (stomp_dest) {
       
  2190         // Stomp the return slot, so it doesn't hold garbage.
       
  2191         // This isn't strictly necessary, but it may help detect bugs.
       
  2192         int forty_two = RicochetFrame::RETURN_VALUE_PLACEHOLDER;
       
  2193         __ movptr(Address(rax_argv, keep3_count, Address::times_ptr),
       
  2194                   (int32_t) forty_two);
       
  2195         // uses rsi_keep3_count
       
  2196       }
       
  2197       BLOCK_COMMENT("} adjust trailing arguments");
       
  2198 
       
  2199       BLOCK_COMMENT("do_recursive_call");
       
  2200       __ mov(saved_last_sp, rsp);    // set rsi/r13 for callee
       
  2201       __ pushptr(ExternalAddress(SharedRuntime::ricochet_blob()->bounce_addr()).addr());
       
  2202       // The globally unique bounce address has two purposes:
       
  2203       // 1. It helps the JVM recognize this frame (frame::is_ricochet_frame).
       
  2204       // 2. When returned to, it cuts back the stack and redirects control flow
       
  2205       //    to the return handler.
       
  2206       // The return handler will further cut back the stack when it takes
       
  2207       // down the RF.  Perhaps there is a way to streamline this further.
       
  2208 
       
  2209       // State during recursive call:
       
  2210       // ... keep1 | dest | dest=42 | keep3 | RF... | collect | bounce_pc |
       
  2211       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
       
  2212 
       
  2213       break;
       
  2214     }
       
  2215 
       
  2216   case _adapter_opt_return_ref:
       
  2217   case _adapter_opt_return_int:
       
  2218   case _adapter_opt_return_long:
       
  2219   case _adapter_opt_return_float:
       
  2220   case _adapter_opt_return_double:
       
  2221   case _adapter_opt_return_void:
       
  2222   case _adapter_opt_return_S0_ref:
       
  2223   case _adapter_opt_return_S1_ref:
       
  2224   case _adapter_opt_return_S2_ref:
       
  2225   case _adapter_opt_return_S3_ref:
       
  2226   case _adapter_opt_return_S4_ref:
       
  2227   case _adapter_opt_return_S5_ref:
       
  2228     {
       
  2229       BasicType dest_type_constant = ek_adapter_opt_return_type(ek);
       
  2230       int       dest_slot_constant = ek_adapter_opt_return_slot(ek);
       
  2231 
       
  2232       if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
       
  2233 
       
  2234       if (dest_slot_constant == -1) {
       
  2235         // The current stub is a general handler for this dest_type.
       
  2236         // It can be called from _adapter_opt_return_any below.
       
  2237         // Stash the address in a little table.
       
  2238         assert((dest_type_constant & CONV_TYPE_MASK) == dest_type_constant, "oob");
       
  2239         address return_handler = __ pc();
       
  2240         _adapter_return_handlers[dest_type_constant] = return_handler;
       
  2241         if (dest_type_constant == T_INT) {
       
  2242           // do the subword types too
       
  2243           for (int bt = T_BOOLEAN; bt < T_INT; bt++) {
       
  2244             if (is_subword_type(BasicType(bt)) &&
       
  2245                 _adapter_return_handlers[bt] == NULL) {
       
  2246               _adapter_return_handlers[bt] = return_handler;
       
  2247             }
       
  2248           }
       
  2249         }
       
  2250       }
       
  2251 
       
  2252       Register rbx_arg_base = rbx_temp;
       
  2253       assert_different_registers(rax, rdx,  // possibly live return value registers
       
  2254                                  rdi_temp, rbx_arg_base);
       
  2255 
       
  2256       Address conversion_addr      = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
       
  2257       Address saved_args_base_addr = RicochetFrame::frame_address(RicochetFrame::saved_args_base_offset_in_bytes());
       
  2258 
       
  2259       __ movptr(rbx_arg_base, saved_args_base_addr);
       
  2260       RegisterOrConstant dest_slot = dest_slot_constant;
       
  2261       if (dest_slot_constant == -1) {
       
  2262         load_conversion_vminfo(_masm, rdi_temp, conversion_addr);
       
  2263         dest_slot = rdi_temp;
       
  2264       }
       
  2265       // Store the result back into the argslot.
       
  2266       // This code uses the interpreter calling sequence, in which the return value
       
  2267       // is usually left in the TOS register, as defined by InterpreterMacroAssembler::pop.
       
  2268       // There are certain irregularities with floating point values, which can be seen
       
  2269       // in TemplateInterpreterGenerator::generate_return_entry_for.
       
  2270       move_return_value(_masm, dest_type_constant, Address(rbx_arg_base, dest_slot, Interpreter::stackElementScale()));
       
  2271 
       
  2272       RicochetFrame::leave_ricochet_frame(_masm, rcx_recv, rbx_arg_base, rdx_temp);
       
  2273       __ push(rdx_temp);  // repush the return PC
       
  2274 
       
  2275       // Load the final target and go.
       
  2276       if (VerifyMethodHandles)  verify_method_handle(_masm, rcx_recv);
       
  2277       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
       
  2278       __ hlt(); // --------------------
       
  2279       break;
       
  2280     }
       
  2281 
       
  2282   case _adapter_opt_return_any:
       
  2283     {
       
  2284       if (VerifyMethodHandles)  RicochetFrame::verify_clean(_masm);
       
  2285       Register rdi_conv = rdi_temp;
       
  2286       assert_different_registers(rax, rdx,  // possibly live return value registers
       
  2287                                  rdi_conv, rbx_temp);
       
  2288 
       
  2289       Address conversion_addr = RicochetFrame::frame_address(RicochetFrame::conversion_offset_in_bytes());
       
  2290       load_conversion_dest_type(_masm, rdi_conv, conversion_addr);
       
  2291       __ lea(rbx_temp, ExternalAddress((address) &_adapter_return_handlers[0]));
       
  2292       __ movptr(rbx_temp, Address(rbx_temp, rdi_conv, Address::times_ptr));
       
  2293 
       
  2294 #ifdef ASSERT
       
  2295       { Label L_badconv;
       
  2296         __ testptr(rbx_temp, rbx_temp);
       
  2297         __ jccb(Assembler::zero, L_badconv);
       
  2298         __ jmp(rbx_temp);
       
  2299         __ bind(L_badconv);
       
  2300         __ stop("bad method handle return");
       
  2301       }
       
  2302 #else //ASSERT
       
  2303       __ jmp(rbx_temp);
       
  2304 #endif //ASSERT
       
  2305       break;
       
  2306     }
       
  2307 
       
  2308   case _adapter_opt_spread_0:
       
  2309   case _adapter_opt_spread_1_ref:
       
  2310   case _adapter_opt_spread_2_ref:
       
  2311   case _adapter_opt_spread_3_ref:
       
  2312   case _adapter_opt_spread_4_ref:
       
  2313   case _adapter_opt_spread_5_ref:
       
  2314   case _adapter_opt_spread_ref:
       
  2315   case _adapter_opt_spread_byte:
       
  2316   case _adapter_opt_spread_char:
       
  2317   case _adapter_opt_spread_short:
       
  2318   case _adapter_opt_spread_int:
       
  2319   case _adapter_opt_spread_long:
       
  2320   case _adapter_opt_spread_float:
       
  2321   case _adapter_opt_spread_double:
       
  2322     {
       
  2323       // spread an array out into a group of arguments
       
  2324       int length_constant = ek_adapter_opt_spread_count(ek);
       
  2325       bool length_can_be_zero = (length_constant == 0);
       
  2326       if (length_constant < 0) {
       
  2327         // some adapters with variable length must handle the zero case
       
  2328         if (!OptimizeMethodHandles ||
       
  2329             ek_adapter_opt_spread_type(ek) != T_OBJECT)
       
  2330           length_can_be_zero = true;
       
  2331       }
       
  2332 
       
  2333       // find the address of the array argument
       
  2334       __ movl(rax_argslot, rcx_amh_vmargslot);
       
  2335       __ lea(rax_argslot, __ argument_address(rax_argslot));
       
  2336 
       
  2337       // grab another temp
       
  2338       Register rsi_temp = rsi;
       
  2339 
       
  2340       // arx_argslot points both to the array and to the first output arg
       
  2341       vmarg = Address(rax_argslot, 0);
       
  2342 
       
  2343       // Get the array value.
       
  2344       Register  rdi_array       = rdi_temp;
       
  2345       Register  rdx_array_klass = rdx_temp;
       
  2346       BasicType elem_type = ek_adapter_opt_spread_type(ek);
       
  2347       int       elem_slots = type2size[elem_type];  // 1 or 2
       
  2348       int       array_slots = 1;  // array is always a T_OBJECT
       
  2349       int       length_offset   = arrayOopDesc::length_offset_in_bytes();
       
  2350       int       elem0_offset    = arrayOopDesc::base_offset_in_bytes(elem_type);
       
  2351       __ movptr(rdi_array, vmarg);
       
  2352 
       
  2353       Label L_array_is_empty, L_insert_arg_space, L_copy_args, L_args_done;
       
  2354       if (length_can_be_zero) {
       
  2355         // handle the null pointer case, if zero is allowed
       
  2356         Label L_skip;
       
  2357         if (length_constant < 0) {
       
  2358           load_conversion_vminfo(_masm, rbx_temp, rcx_amh_conversion);
       
  2359           __ testl(rbx_temp, rbx_temp);
       
  2360           __ jcc(Assembler::notZero, L_skip);
       
  2361         }
       
  2362         __ testptr(rdi_array, rdi_array);
       
  2363         __ jcc(Assembler::notZero, L_skip);
       
  2364 
       
  2365         // If 'rsi' contains the 'saved_last_sp' (this is only the
       
  2366         // case in a 32-bit version of the VM) we have to save 'rsi'
       
  2367         // on the stack because later on (at 'L_array_is_empty') 'rsi'
       
  2368         // will be overwritten.
       
  2369         { if (rsi_temp == saved_last_sp)  __ push(saved_last_sp); }
       
  2370         // Also prepare a handy macro which restores 'rsi' if required.
       
  2371 #define UNPUSH_RSI                                                      \
       
  2372         { if (rsi_temp == saved_last_sp)  __ pop(saved_last_sp); }
       
  2373 
       
  2374         __ jmp(L_array_is_empty);
       
  2375         __ bind(L_skip);
       
  2376       }
       
  2377       __ null_check(rdi_array, oopDesc::klass_offset_in_bytes());
       
  2378       __ load_klass(rdx_array_klass, rdi_array);
       
  2379 
       
  2380       // Save 'rsi' if required (see comment above).  Do this only
       
  2381       // after the null check such that the exception handler which is
       
  2382       // called in the case of a null pointer exception will not be
       
  2383       // confused by the extra value on the stack (it expects the
       
  2384       // return pointer on top of the stack)
       
  2385       { if (rsi_temp == saved_last_sp)  __ push(saved_last_sp); }
       
  2386 
       
  2387       // Check the array type.
       
  2388       Register rbx_klass = rbx_temp;
       
  2389       __ load_heap_oop(rbx_klass, rcx_amh_argument); // this is a Class object!
       
  2390       load_klass_from_Class(_masm, rbx_klass);
       
  2391 
       
  2392       Label ok_array_klass, bad_array_klass, bad_array_length;
       
  2393       __ check_klass_subtype(rdx_array_klass, rbx_klass, rsi_temp, ok_array_klass);
       
  2394       // If we get here, the type check failed!
       
  2395       __ jmp(bad_array_klass);
       
  2396       __ BIND(ok_array_klass);
       
  2397 
       
  2398       // Check length.
       
  2399       if (length_constant >= 0) {
       
  2400         __ cmpl(Address(rdi_array, length_offset), length_constant);
       
  2401       } else {
       
  2402         Register rbx_vminfo = rbx_temp;
       
  2403         load_conversion_vminfo(_masm, rbx_vminfo, rcx_amh_conversion);
       
  2404         __ cmpl(rbx_vminfo, Address(rdi_array, length_offset));
       
  2405       }
       
  2406       __ jcc(Assembler::notEqual, bad_array_length);
       
  2407 
       
  2408       Register rdx_argslot_limit = rdx_temp;
       
  2409 
       
  2410       // Array length checks out.  Now insert any required stack slots.
       
  2411       if (length_constant == -1) {
       
  2412         // Form a pointer to the end of the affected region.
       
  2413         __ lea(rdx_argslot_limit, Address(rax_argslot, Interpreter::stackElementSize));
       
  2414         // 'stack_move' is negative number of words to insert
       
  2415         // This number already accounts for elem_slots.
       
  2416         Register rsi_stack_move = rsi_temp;
       
  2417         load_stack_move(_masm, rsi_stack_move, rcx_recv, true);
       
  2418         __ cmpptr(rsi_stack_move, 0);
       
  2419         assert(stack_move_unit() < 0, "else change this comparison");
       
  2420         __ jcc(Assembler::less, L_insert_arg_space);
       
  2421         __ jcc(Assembler::equal, L_copy_args);
       
  2422         // single argument case, with no array movement
       
  2423         __ BIND(L_array_is_empty);
       
  2424         remove_arg_slots(_masm, -stack_move_unit() * array_slots,
       
  2425                          rax_argslot, rbx_temp, rdx_temp);
       
  2426         __ jmp(L_args_done);  // no spreading to do
       
  2427         __ BIND(L_insert_arg_space);
       
  2428         // come here in the usual case, stack_move < 0 (2 or more spread arguments)
       
  2429         Register rdi_temp = rdi_array;  // spill this
       
  2430         insert_arg_slots(_masm, rsi_stack_move,
       
  2431                          rax_argslot, rbx_temp, rdi_temp);
       
  2432         // reload the array since rsi was killed
       
  2433         // reload from rdx_argslot_limit since rax_argslot is now decremented
       
  2434         __ movptr(rdi_array, Address(rdx_argslot_limit, -Interpreter::stackElementSize));
       
  2435       } else if (length_constant >= 1) {
       
  2436         int new_slots = (length_constant * elem_slots) - array_slots;
       
  2437         insert_arg_slots(_masm, new_slots * stack_move_unit(),
       
  2438                          rax_argslot, rbx_temp, rdx_temp);
       
  2439       } else if (length_constant == 0) {
       
  2440         __ BIND(L_array_is_empty);
       
  2441         remove_arg_slots(_masm, -stack_move_unit() * array_slots,
       
  2442                          rax_argslot, rbx_temp, rdx_temp);
       
  2443       } else {
       
  2444         ShouldNotReachHere();
       
  2445       }
       
  2446 
       
  2447       // Copy from the array to the new slots.
       
  2448       // Note: Stack change code preserves integrity of rax_argslot pointer.
       
  2449       // So even after slot insertions, rax_argslot still points to first argument.
       
  2450       // Beware:  Arguments that are shallow on the stack are deep in the array,
       
  2451       // and vice versa.  So a downward-growing stack (the usual) has to be copied
       
  2452       // elementwise in reverse order from the source array.
       
  2453       __ BIND(L_copy_args);
       
  2454       if (length_constant == -1) {
       
  2455         // [rax_argslot, rdx_argslot_limit) is the area we are inserting into.
       
  2456         // Array element [0] goes at rdx_argslot_limit[-wordSize].
       
  2457         Register rdi_source = rdi_array;
       
  2458         __ lea(rdi_source, Address(rdi_array, elem0_offset));
       
  2459         Register rdx_fill_ptr = rdx_argslot_limit;
       
  2460         Label loop;
       
  2461         __ BIND(loop);
       
  2462         __ addptr(rdx_fill_ptr, -Interpreter::stackElementSize * elem_slots);
       
  2463         move_typed_arg(_masm, elem_type, true,
       
  2464                        Address(rdx_fill_ptr, 0), Address(rdi_source, 0),
       
  2465                        rbx_temp, rsi_temp);
       
  2466         __ addptr(rdi_source, type2aelembytes(elem_type));
       
  2467         __ cmpptr(rdx_fill_ptr, rax_argslot);
       
  2468         __ jcc(Assembler::above, loop);
       
  2469       } else if (length_constant == 0) {
       
  2470         // nothing to copy
       
  2471       } else {
       
  2472         int elem_offset = elem0_offset;
       
  2473         int slot_offset = length_constant * Interpreter::stackElementSize;
       
  2474         for (int index = 0; index < length_constant; index++) {
       
  2475           slot_offset -= Interpreter::stackElementSize * elem_slots;  // fill backward
       
  2476           move_typed_arg(_masm, elem_type, true,
       
  2477                          Address(rax_argslot, slot_offset), Address(rdi_array, elem_offset),
       
  2478                          rbx_temp, rsi_temp);
       
  2479           elem_offset += type2aelembytes(elem_type);
       
  2480         }
       
  2481       }
       
  2482       __ BIND(L_args_done);
       
  2483 
       
  2484       // Arguments are spread.  Move to next method handle.
       
  2485       UNPUSH_RSI;
       
  2486       __ load_heap_oop(rcx_recv, rcx_mh_vmtarget);
       
  2487       __ jump_to_method_handle_entry(rcx_recv, rdx_temp);
       
  2488 
       
  2489       __ bind(bad_array_klass);
       
  2490       UNPUSH_RSI;
       
  2491       assert(!vmarg.uses(rarg2_required), "must be different registers");
       
  2492       __ load_heap_oop( rarg2_required, Address(rdx_array_klass, java_mirror_offset));  // required type
       
  2493       __ movptr(        rarg1_actual,   vmarg);                                         // bad array
       
  2494       __ movl(          rarg0_code,     (int) Bytecodes::_aaload);                      // who is complaining?
       
  2495       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
       
  2496 
       
  2497       __ bind(bad_array_length);
       
  2498       UNPUSH_RSI;
       
  2499       assert(!vmarg.uses(rarg2_required), "must be different registers");
       
  2500       __ mov(    rarg2_required, rcx_recv);                       // AMH requiring a certain length
       
  2501       __ movptr( rarg1_actual,   vmarg);                          // bad array
       
  2502       __ movl(   rarg0_code,     (int) Bytecodes::_arraylength);  // who is complaining?
       
  2503       __ jump(ExternalAddress(from_interpreted_entry(_raise_exception)));
       
  2504 #undef UNPUSH_RSI
       
  2505 
       
  2506       break;
       
  2507     }
       
  2508 
       
  2509   default:
       
  2510     // do not require all platforms to recognize all adapter types
       
  2511     __ nop();
       
  2512     return;
       
  2513   }
       
  2514   BLOCK_COMMENT(err_msg("} Entry %s", entry_name(ek)));
       
  2515   __ hlt();
       
  2516 
       
  2517   address me_cookie = MethodHandleEntry::start_compiled_entry(_masm, interp_entry);
       
  2518   __ unimplemented(entry_name(ek)); // %%% FIXME: NYI
       
  2519 
       
  2520   init_entry(ek, MethodHandleEntry::finish_compiled_entry(_masm, me_cookie));
       
  2521 }