src/hotspot/share/gc/g1/g1Policy.cpp
changeset 49412 2c3b9dbba7bc
parent 48117 d64722b0b371
parent 49392 2956d0ece7a9
child 49607 acffe6ff3ae7
equal deleted inserted replaced
49316:73da889306b7 49412:2c3b9dbba7bc
       
     1 /*
       
     2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "gc/g1/concurrentMarkThread.inline.hpp"
       
    27 #include "gc/g1/g1Analytics.hpp"
       
    28 #include "gc/g1/g1CollectedHeap.inline.hpp"
       
    29 #include "gc/g1/g1CollectionSet.hpp"
       
    30 #include "gc/g1/g1ConcurrentMark.hpp"
       
    31 #include "gc/g1/g1ConcurrentRefine.hpp"
       
    32 #include "gc/g1/g1HotCardCache.hpp"
       
    33 #include "gc/g1/g1IHOPControl.hpp"
       
    34 #include "gc/g1/g1GCPhaseTimes.hpp"
       
    35 #include "gc/g1/g1Policy.hpp"
       
    36 #include "gc/g1/g1SurvivorRegions.hpp"
       
    37 #include "gc/g1/g1YoungGenSizer.hpp"
       
    38 #include "gc/g1/heapRegion.inline.hpp"
       
    39 #include "gc/g1/heapRegionRemSet.hpp"
       
    40 #include "gc/shared/gcPolicyCounters.hpp"
       
    41 #include "logging/logStream.hpp"
       
    42 #include "runtime/arguments.hpp"
       
    43 #include "runtime/java.hpp"
       
    44 #include "runtime/mutexLocker.hpp"
       
    45 #include "utilities/debug.hpp"
       
    46 #include "utilities/growableArray.hpp"
       
    47 #include "utilities/pair.hpp"
       
    48 
       
    49 G1Policy::G1Policy(STWGCTimer* gc_timer) :
       
    50   _predictor(G1ConfidencePercent / 100.0),
       
    51   _analytics(new G1Analytics(&_predictor)),
       
    52   _mmu_tracker(new G1MMUTrackerQueue(GCPauseIntervalMillis / 1000.0, MaxGCPauseMillis / 1000.0)),
       
    53   _ihop_control(create_ihop_control(&_predictor)),
       
    54   _policy_counters(new GCPolicyCounters("GarbageFirst", 1, 2)),
       
    55   _young_list_fixed_length(0),
       
    56   _short_lived_surv_rate_group(new SurvRateGroup()),
       
    57   _survivor_surv_rate_group(new SurvRateGroup()),
       
    58   _reserve_factor((double) G1ReservePercent / 100.0),
       
    59   _reserve_regions(0),
       
    60   _rs_lengths_prediction(0),
       
    61   _bytes_allocated_in_old_since_last_gc(0),
       
    62   _initial_mark_to_mixed(),
       
    63   _collection_set(NULL),
       
    64   _g1(NULL),
       
    65   _phase_times(new G1GCPhaseTimes(gc_timer, ParallelGCThreads)),
       
    66   _tenuring_threshold(MaxTenuringThreshold),
       
    67   _max_survivor_regions(0),
       
    68   _survivors_age_table(true),
       
    69   _collection_pause_end_millis(os::javaTimeNanos() / NANOSECS_PER_MILLISEC) { }
       
    70 
       
    71 G1Policy::~G1Policy() {
       
    72   delete _ihop_control;
       
    73 }
       
    74 
       
    75 G1CollectorState* G1Policy::collector_state() const { return _g1->collector_state(); }
       
    76 
       
    77 void G1Policy::init(G1CollectedHeap* g1h, G1CollectionSet* collection_set) {
       
    78   _g1 = g1h;
       
    79   _collection_set = collection_set;
       
    80 
       
    81   assert(Heap_lock->owned_by_self(), "Locking discipline.");
       
    82 
       
    83   if (!adaptive_young_list_length()) {
       
    84     _young_list_fixed_length = _young_gen_sizer.min_desired_young_length();
       
    85   }
       
    86   _young_gen_sizer.adjust_max_new_size(_g1->max_regions());
       
    87 
       
    88   _free_regions_at_end_of_collection = _g1->num_free_regions();
       
    89 
       
    90   update_young_list_max_and_target_length();
       
    91   // We may immediately start allocating regions and placing them on the
       
    92   // collection set list. Initialize the per-collection set info
       
    93   _collection_set->start_incremental_building();
       
    94 }
       
    95 
       
    96 void G1Policy::note_gc_start() {
       
    97   phase_times()->note_gc_start();
       
    98 }
       
    99 
       
   100 class G1YoungLengthPredictor {
       
   101   const bool _during_cm;
       
   102   const double _base_time_ms;
       
   103   const double _base_free_regions;
       
   104   const double _target_pause_time_ms;
       
   105   const G1Policy* const _policy;
       
   106 
       
   107  public:
       
   108   G1YoungLengthPredictor(bool during_cm,
       
   109                          double base_time_ms,
       
   110                          double base_free_regions,
       
   111                          double target_pause_time_ms,
       
   112                          const G1Policy* policy) :
       
   113     _during_cm(during_cm),
       
   114     _base_time_ms(base_time_ms),
       
   115     _base_free_regions(base_free_regions),
       
   116     _target_pause_time_ms(target_pause_time_ms),
       
   117     _policy(policy) {}
       
   118 
       
   119   bool will_fit(uint young_length) const {
       
   120     if (young_length >= _base_free_regions) {
       
   121       // end condition 1: not enough space for the young regions
       
   122       return false;
       
   123     }
       
   124 
       
   125     const double accum_surv_rate = _policy->accum_yg_surv_rate_pred((int) young_length - 1);
       
   126     const size_t bytes_to_copy =
       
   127                  (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
       
   128     const double copy_time_ms =
       
   129       _policy->analytics()->predict_object_copy_time_ms(bytes_to_copy, _during_cm);
       
   130     const double young_other_time_ms = _policy->analytics()->predict_young_other_time_ms(young_length);
       
   131     const double pause_time_ms = _base_time_ms + copy_time_ms + young_other_time_ms;
       
   132     if (pause_time_ms > _target_pause_time_ms) {
       
   133       // end condition 2: prediction is over the target pause time
       
   134       return false;
       
   135     }
       
   136 
       
   137     const size_t free_bytes = (_base_free_regions - young_length) * HeapRegion::GrainBytes;
       
   138 
       
   139     // When copying, we will likely need more bytes free than is live in the region.
       
   140     // Add some safety margin to factor in the confidence of our guess, and the
       
   141     // natural expected waste.
       
   142     // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
       
   143     // of the calculation: the lower the confidence, the more headroom.
       
   144     // (100 + TargetPLABWastePct) represents the increase in expected bytes during
       
   145     // copying due to anticipated waste in the PLABs.
       
   146     const double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
       
   147     const size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
       
   148 
       
   149     if (expected_bytes_to_copy > free_bytes) {
       
   150       // end condition 3: out-of-space
       
   151       return false;
       
   152     }
       
   153 
       
   154     // success!
       
   155     return true;
       
   156   }
       
   157 };
       
   158 
       
   159 void G1Policy::record_new_heap_size(uint new_number_of_regions) {
       
   160   // re-calculate the necessary reserve
       
   161   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
       
   162   // We use ceiling so that if reserve_regions_d is > 0.0 (but
       
   163   // smaller than 1.0) we'll get 1.
       
   164   _reserve_regions = (uint) ceil(reserve_regions_d);
       
   165 
       
   166   _young_gen_sizer.heap_size_changed(new_number_of_regions);
       
   167 
       
   168   _ihop_control->update_target_occupancy(new_number_of_regions * HeapRegion::GrainBytes);
       
   169 }
       
   170 
       
   171 uint G1Policy::calculate_young_list_desired_min_length(uint base_min_length) const {
       
   172   uint desired_min_length = 0;
       
   173   if (adaptive_young_list_length()) {
       
   174     if (_analytics->num_alloc_rate_ms() > 3) {
       
   175       double now_sec = os::elapsedTime();
       
   176       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
       
   177       double alloc_rate_ms = _analytics->predict_alloc_rate_ms();
       
   178       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
       
   179     } else {
       
   180       // otherwise we don't have enough info to make the prediction
       
   181     }
       
   182   }
       
   183   desired_min_length += base_min_length;
       
   184   // make sure we don't go below any user-defined minimum bound
       
   185   return MAX2(_young_gen_sizer.min_desired_young_length(), desired_min_length);
       
   186 }
       
   187 
       
   188 uint G1Policy::calculate_young_list_desired_max_length() const {
       
   189   // Here, we might want to also take into account any additional
       
   190   // constraints (i.e., user-defined minimum bound). Currently, we
       
   191   // effectively don't set this bound.
       
   192   return _young_gen_sizer.max_desired_young_length();
       
   193 }
       
   194 
       
   195 uint G1Policy::update_young_list_max_and_target_length() {
       
   196   return update_young_list_max_and_target_length(_analytics->predict_rs_lengths());
       
   197 }
       
   198 
       
   199 uint G1Policy::update_young_list_max_and_target_length(size_t rs_lengths) {
       
   200   uint unbounded_target_length = update_young_list_target_length(rs_lengths);
       
   201   update_max_gc_locker_expansion();
       
   202   return unbounded_target_length;
       
   203 }
       
   204 
       
   205 uint G1Policy::update_young_list_target_length(size_t rs_lengths) {
       
   206   YoungTargetLengths young_lengths = young_list_target_lengths(rs_lengths);
       
   207   _young_list_target_length = young_lengths.first;
       
   208   return young_lengths.second;
       
   209 }
       
   210 
       
   211 G1Policy::YoungTargetLengths G1Policy::young_list_target_lengths(size_t rs_lengths) const {
       
   212   YoungTargetLengths result;
       
   213 
       
   214   // Calculate the absolute and desired min bounds first.
       
   215 
       
   216   // This is how many young regions we already have (currently: the survivors).
       
   217   const uint base_min_length = _g1->survivor_regions_count();
       
   218   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
       
   219   // This is the absolute minimum young length. Ensure that we
       
   220   // will at least have one eden region available for allocation.
       
   221   uint absolute_min_length = base_min_length + MAX2(_g1->eden_regions_count(), (uint)1);
       
   222   // If we shrank the young list target it should not shrink below the current size.
       
   223   desired_min_length = MAX2(desired_min_length, absolute_min_length);
       
   224   // Calculate the absolute and desired max bounds.
       
   225 
       
   226   uint desired_max_length = calculate_young_list_desired_max_length();
       
   227 
       
   228   uint young_list_target_length = 0;
       
   229   if (adaptive_young_list_length()) {
       
   230     if (collector_state()->gcs_are_young()) {
       
   231       young_list_target_length =
       
   232                         calculate_young_list_target_length(rs_lengths,
       
   233                                                            base_min_length,
       
   234                                                            desired_min_length,
       
   235                                                            desired_max_length);
       
   236     } else {
       
   237       // Don't calculate anything and let the code below bound it to
       
   238       // the desired_min_length, i.e., do the next GC as soon as
       
   239       // possible to maximize how many old regions we can add to it.
       
   240     }
       
   241   } else {
       
   242     // The user asked for a fixed young gen so we'll fix the young gen
       
   243     // whether the next GC is young or mixed.
       
   244     young_list_target_length = _young_list_fixed_length;
       
   245   }
       
   246 
       
   247   result.second = young_list_target_length;
       
   248 
       
   249   // We will try our best not to "eat" into the reserve.
       
   250   uint absolute_max_length = 0;
       
   251   if (_free_regions_at_end_of_collection > _reserve_regions) {
       
   252     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
       
   253   }
       
   254   if (desired_max_length > absolute_max_length) {
       
   255     desired_max_length = absolute_max_length;
       
   256   }
       
   257 
       
   258   // Make sure we don't go over the desired max length, nor under the
       
   259   // desired min length. In case they clash, desired_min_length wins
       
   260   // which is why that test is second.
       
   261   if (young_list_target_length > desired_max_length) {
       
   262     young_list_target_length = desired_max_length;
       
   263   }
       
   264   if (young_list_target_length < desired_min_length) {
       
   265     young_list_target_length = desired_min_length;
       
   266   }
       
   267 
       
   268   assert(young_list_target_length > base_min_length,
       
   269          "we should be able to allocate at least one eden region");
       
   270   assert(young_list_target_length >= absolute_min_length, "post-condition");
       
   271 
       
   272   result.first = young_list_target_length;
       
   273   return result;
       
   274 }
       
   275 
       
   276 uint
       
   277 G1Policy::calculate_young_list_target_length(size_t rs_lengths,
       
   278                                                     uint base_min_length,
       
   279                                                     uint desired_min_length,
       
   280                                                     uint desired_max_length) const {
       
   281   assert(adaptive_young_list_length(), "pre-condition");
       
   282   assert(collector_state()->gcs_are_young(), "only call this for young GCs");
       
   283 
       
   284   // In case some edge-condition makes the desired max length too small...
       
   285   if (desired_max_length <= desired_min_length) {
       
   286     return desired_min_length;
       
   287   }
       
   288 
       
   289   // We'll adjust min_young_length and max_young_length not to include
       
   290   // the already allocated young regions (i.e., so they reflect the
       
   291   // min and max eden regions we'll allocate). The base_min_length
       
   292   // will be reflected in the predictions by the
       
   293   // survivor_regions_evac_time prediction.
       
   294   assert(desired_min_length > base_min_length, "invariant");
       
   295   uint min_young_length = desired_min_length - base_min_length;
       
   296   assert(desired_max_length > base_min_length, "invariant");
       
   297   uint max_young_length = desired_max_length - base_min_length;
       
   298 
       
   299   const double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
       
   300   const double survivor_regions_evac_time = predict_survivor_regions_evac_time();
       
   301   const size_t pending_cards = _analytics->predict_pending_cards();
       
   302   const size_t adj_rs_lengths = rs_lengths + _analytics->predict_rs_length_diff();
       
   303   const size_t scanned_cards = _analytics->predict_card_num(adj_rs_lengths, /* gcs_are_young */ true);
       
   304   const double base_time_ms =
       
   305     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
       
   306     survivor_regions_evac_time;
       
   307   const uint available_free_regions = _free_regions_at_end_of_collection;
       
   308   const uint base_free_regions =
       
   309     available_free_regions > _reserve_regions ? available_free_regions - _reserve_regions : 0;
       
   310 
       
   311   // Here, we will make sure that the shortest young length that
       
   312   // makes sense fits within the target pause time.
       
   313 
       
   314   G1YoungLengthPredictor p(collector_state()->during_concurrent_mark(),
       
   315                            base_time_ms,
       
   316                            base_free_regions,
       
   317                            target_pause_time_ms,
       
   318                            this);
       
   319   if (p.will_fit(min_young_length)) {
       
   320     // The shortest young length will fit into the target pause time;
       
   321     // we'll now check whether the absolute maximum number of young
       
   322     // regions will fit in the target pause time. If not, we'll do
       
   323     // a binary search between min_young_length and max_young_length.
       
   324     if (p.will_fit(max_young_length)) {
       
   325       // The maximum young length will fit into the target pause time.
       
   326       // We are done so set min young length to the maximum length (as
       
   327       // the result is assumed to be returned in min_young_length).
       
   328       min_young_length = max_young_length;
       
   329     } else {
       
   330       // The maximum possible number of young regions will not fit within
       
   331       // the target pause time so we'll search for the optimal
       
   332       // length. The loop invariants are:
       
   333       //
       
   334       // min_young_length < max_young_length
       
   335       // min_young_length is known to fit into the target pause time
       
   336       // max_young_length is known not to fit into the target pause time
       
   337       //
       
   338       // Going into the loop we know the above hold as we've just
       
   339       // checked them. Every time around the loop we check whether
       
   340       // the middle value between min_young_length and
       
   341       // max_young_length fits into the target pause time. If it
       
   342       // does, it becomes the new min. If it doesn't, it becomes
       
   343       // the new max. This way we maintain the loop invariants.
       
   344 
       
   345       assert(min_young_length < max_young_length, "invariant");
       
   346       uint diff = (max_young_length - min_young_length) / 2;
       
   347       while (diff > 0) {
       
   348         uint young_length = min_young_length + diff;
       
   349         if (p.will_fit(young_length)) {
       
   350           min_young_length = young_length;
       
   351         } else {
       
   352           max_young_length = young_length;
       
   353         }
       
   354         assert(min_young_length <  max_young_length, "invariant");
       
   355         diff = (max_young_length - min_young_length) / 2;
       
   356       }
       
   357       // The results is min_young_length which, according to the
       
   358       // loop invariants, should fit within the target pause time.
       
   359 
       
   360       // These are the post-conditions of the binary search above:
       
   361       assert(min_young_length < max_young_length,
       
   362              "otherwise we should have discovered that max_young_length "
       
   363              "fits into the pause target and not done the binary search");
       
   364       assert(p.will_fit(min_young_length),
       
   365              "min_young_length, the result of the binary search, should "
       
   366              "fit into the pause target");
       
   367       assert(!p.will_fit(min_young_length + 1),
       
   368              "min_young_length, the result of the binary search, should be "
       
   369              "optimal, so no larger length should fit into the pause target");
       
   370     }
       
   371   } else {
       
   372     // Even the minimum length doesn't fit into the pause time
       
   373     // target, return it as the result nevertheless.
       
   374   }
       
   375   return base_min_length + min_young_length;
       
   376 }
       
   377 
       
   378 double G1Policy::predict_survivor_regions_evac_time() const {
       
   379   double survivor_regions_evac_time = 0.0;
       
   380   const GrowableArray<HeapRegion*>* survivor_regions = _g1->survivor()->regions();
       
   381 
       
   382   for (GrowableArrayIterator<HeapRegion*> it = survivor_regions->begin();
       
   383        it != survivor_regions->end();
       
   384        ++it) {
       
   385     survivor_regions_evac_time += predict_region_elapsed_time_ms(*it, collector_state()->gcs_are_young());
       
   386   }
       
   387   return survivor_regions_evac_time;
       
   388 }
       
   389 
       
   390 void G1Policy::revise_young_list_target_length_if_necessary(size_t rs_lengths) {
       
   391   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
       
   392 
       
   393   if (rs_lengths > _rs_lengths_prediction) {
       
   394     // add 10% to avoid having to recalculate often
       
   395     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
       
   396     update_rs_lengths_prediction(rs_lengths_prediction);
       
   397 
       
   398     update_young_list_max_and_target_length(rs_lengths_prediction);
       
   399   }
       
   400 }
       
   401 
       
   402 void G1Policy::update_rs_lengths_prediction() {
       
   403   update_rs_lengths_prediction(_analytics->predict_rs_lengths());
       
   404 }
       
   405 
       
   406 void G1Policy::update_rs_lengths_prediction(size_t prediction) {
       
   407   if (collector_state()->gcs_are_young() && adaptive_young_list_length()) {
       
   408     _rs_lengths_prediction = prediction;
       
   409   }
       
   410 }
       
   411 
       
   412 void G1Policy::record_full_collection_start() {
       
   413   _full_collection_start_sec = os::elapsedTime();
       
   414   // Release the future to-space so that it is available for compaction into.
       
   415   collector_state()->set_full_collection(true);
       
   416 }
       
   417 
       
   418 void G1Policy::record_full_collection_end() {
       
   419   // Consider this like a collection pause for the purposes of allocation
       
   420   // since last pause.
       
   421   double end_sec = os::elapsedTime();
       
   422   double full_gc_time_sec = end_sec - _full_collection_start_sec;
       
   423   double full_gc_time_ms = full_gc_time_sec * 1000.0;
       
   424 
       
   425   _analytics->update_recent_gc_times(end_sec, full_gc_time_ms);
       
   426 
       
   427   collector_state()->set_full_collection(false);
       
   428 
       
   429   // "Nuke" the heuristics that control the young/mixed GC
       
   430   // transitions and make sure we start with young GCs after the Full GC.
       
   431   collector_state()->set_gcs_are_young(true);
       
   432   collector_state()->set_last_young_gc(false);
       
   433   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
       
   434   collector_state()->set_during_initial_mark_pause(false);
       
   435   collector_state()->set_in_marking_window(false);
       
   436   collector_state()->set_in_marking_window_im(false);
       
   437 
       
   438   _short_lived_surv_rate_group->start_adding_regions();
       
   439   // also call this on any additional surv rate groups
       
   440 
       
   441   _free_regions_at_end_of_collection = _g1->num_free_regions();
       
   442   // Reset survivors SurvRateGroup.
       
   443   _survivor_surv_rate_group->reset();
       
   444   update_young_list_max_and_target_length();
       
   445   update_rs_lengths_prediction();
       
   446   cset_chooser()->clear();
       
   447 
       
   448   _bytes_allocated_in_old_since_last_gc = 0;
       
   449 
       
   450   record_pause(FullGC, _full_collection_start_sec, end_sec);
       
   451 }
       
   452 
       
   453 void G1Policy::record_collection_pause_start(double start_time_sec) {
       
   454   // We only need to do this here as the policy will only be applied
       
   455   // to the GC we're about to start. so, no point is calculating this
       
   456   // every time we calculate / recalculate the target young length.
       
   457   update_survivors_policy();
       
   458 
       
   459   assert(_g1->used() == _g1->recalculate_used(),
       
   460          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
       
   461          _g1->used(), _g1->recalculate_used());
       
   462 
       
   463   phase_times()->record_cur_collection_start_sec(start_time_sec);
       
   464   _pending_cards = _g1->pending_card_num();
       
   465 
       
   466   _collection_set->reset_bytes_used_before();
       
   467   _bytes_copied_during_gc = 0;
       
   468 
       
   469   collector_state()->set_last_gc_was_young(false);
       
   470 
       
   471   // do that for any other surv rate groups
       
   472   _short_lived_surv_rate_group->stop_adding_regions();
       
   473   _survivors_age_table.clear();
       
   474 
       
   475   assert(_g1->collection_set()->verify_young_ages(), "region age verification failed");
       
   476 }
       
   477 
       
   478 void G1Policy::record_concurrent_mark_init_end(double mark_init_elapsed_time_ms) {
       
   479   collector_state()->set_during_marking(true);
       
   480   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
       
   481   collector_state()->set_during_initial_mark_pause(false);
       
   482 }
       
   483 
       
   484 void G1Policy::record_concurrent_mark_remark_start() {
       
   485   _mark_remark_start_sec = os::elapsedTime();
       
   486   collector_state()->set_during_marking(false);
       
   487 }
       
   488 
       
   489 void G1Policy::record_concurrent_mark_remark_end() {
       
   490   double end_time_sec = os::elapsedTime();
       
   491   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
       
   492   _analytics->report_concurrent_mark_remark_times_ms(elapsed_time_ms);
       
   493   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
       
   494 
       
   495   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
       
   496 }
       
   497 
       
   498 void G1Policy::record_concurrent_mark_cleanup_start() {
       
   499   _mark_cleanup_start_sec = os::elapsedTime();
       
   500 }
       
   501 
       
   502 void G1Policy::record_concurrent_mark_cleanup_completed() {
       
   503   bool should_continue_with_reclaim = next_gc_should_be_mixed("request last young-only gc",
       
   504                                                               "skip last young-only gc");
       
   505   collector_state()->set_last_young_gc(should_continue_with_reclaim);
       
   506   // We skip the marking phase.
       
   507   if (!should_continue_with_reclaim) {
       
   508     abort_time_to_mixed_tracking();
       
   509   }
       
   510   collector_state()->set_in_marking_window(false);
       
   511 }
       
   512 
       
   513 double G1Policy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
       
   514   return phase_times()->average_time_ms(phase);
       
   515 }
       
   516 
       
   517 double G1Policy::young_other_time_ms() const {
       
   518   return phase_times()->young_cset_choice_time_ms() +
       
   519          phase_times()->average_time_ms(G1GCPhaseTimes::YoungFreeCSet);
       
   520 }
       
   521 
       
   522 double G1Policy::non_young_other_time_ms() const {
       
   523   return phase_times()->non_young_cset_choice_time_ms() +
       
   524          phase_times()->average_time_ms(G1GCPhaseTimes::NonYoungFreeCSet);
       
   525 }
       
   526 
       
   527 double G1Policy::other_time_ms(double pause_time_ms) const {
       
   528   return pause_time_ms - phase_times()->cur_collection_par_time_ms();
       
   529 }
       
   530 
       
   531 double G1Policy::constant_other_time_ms(double pause_time_ms) const {
       
   532   return other_time_ms(pause_time_ms) - phase_times()->total_free_cset_time_ms();
       
   533 }
       
   534 
       
   535 CollectionSetChooser* G1Policy::cset_chooser() const {
       
   536   return _collection_set->cset_chooser();
       
   537 }
       
   538 
       
   539 bool G1Policy::about_to_start_mixed_phase() const {
       
   540   return _g1->concurrent_mark()->cm_thread()->during_cycle() || collector_state()->last_young_gc();
       
   541 }
       
   542 
       
   543 bool G1Policy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
       
   544   if (about_to_start_mixed_phase()) {
       
   545     return false;
       
   546   }
       
   547 
       
   548   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
       
   549 
       
   550   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
       
   551   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
       
   552   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
       
   553 
       
   554   bool result = false;
       
   555   if (marking_request_bytes > marking_initiating_used_threshold) {
       
   556     result = collector_state()->gcs_are_young() && !collector_state()->last_young_gc();
       
   557     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
       
   558                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
       
   559                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1->capacity() * 100, source);
       
   560   }
       
   561 
       
   562   return result;
       
   563 }
       
   564 
       
   565 // Anything below that is considered to be zero
       
   566 #define MIN_TIMER_GRANULARITY 0.0000001
       
   567 
       
   568 void G1Policy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc) {
       
   569   double end_time_sec = os::elapsedTime();
       
   570 
       
   571   size_t cur_used_bytes = _g1->used();
       
   572   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
       
   573   bool last_pause_included_initial_mark = false;
       
   574   bool update_stats = !_g1->evacuation_failed();
       
   575 
       
   576   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
       
   577 
       
   578   _collection_pause_end_millis = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
       
   579 
       
   580   last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
       
   581   if (last_pause_included_initial_mark) {
       
   582     record_concurrent_mark_init_end(0.0);
       
   583   } else {
       
   584     maybe_start_marking();
       
   585   }
       
   586 
       
   587   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _analytics->prev_collection_pause_end_ms());
       
   588   if (app_time_ms < MIN_TIMER_GRANULARITY) {
       
   589     // This usually happens due to the timer not having the required
       
   590     // granularity. Some Linuxes are the usual culprits.
       
   591     // We'll just set it to something (arbitrarily) small.
       
   592     app_time_ms = 1.0;
       
   593   }
       
   594 
       
   595   if (update_stats) {
       
   596     // We maintain the invariant that all objects allocated by mutator
       
   597     // threads will be allocated out of eden regions. So, we can use
       
   598     // the eden region number allocated since the previous GC to
       
   599     // calculate the application's allocate rate. The only exception
       
   600     // to that is humongous objects that are allocated separately. But
       
   601     // given that humongous object allocations do not really affect
       
   602     // either the pause's duration nor when the next pause will take
       
   603     // place we can safely ignore them here.
       
   604     uint regions_allocated = _collection_set->eden_region_length();
       
   605     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
       
   606     _analytics->report_alloc_rate_ms(alloc_rate_ms);
       
   607 
       
   608     double interval_ms =
       
   609       (end_time_sec - _analytics->last_known_gc_end_time_sec()) * 1000.0;
       
   610     _analytics->update_recent_gc_times(end_time_sec, pause_time_ms);
       
   611     _analytics->compute_pause_time_ratio(interval_ms, pause_time_ms);
       
   612   }
       
   613 
       
   614   bool new_in_marking_window = collector_state()->in_marking_window();
       
   615   bool new_in_marking_window_im = false;
       
   616   if (last_pause_included_initial_mark) {
       
   617     new_in_marking_window = true;
       
   618     new_in_marking_window_im = true;
       
   619   }
       
   620 
       
   621   if (collector_state()->last_young_gc()) {
       
   622     // This is supposed to to be the "last young GC" before we start
       
   623     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
       
   624     assert(!last_pause_included_initial_mark, "The last young GC is not allowed to be an initial mark GC");
       
   625 
       
   626     if (next_gc_should_be_mixed("start mixed GCs",
       
   627                                 "do not start mixed GCs")) {
       
   628       collector_state()->set_gcs_are_young(false);
       
   629     } else {
       
   630       // We aborted the mixed GC phase early.
       
   631       abort_time_to_mixed_tracking();
       
   632     }
       
   633 
       
   634     collector_state()->set_last_young_gc(false);
       
   635   }
       
   636 
       
   637   if (!collector_state()->last_gc_was_young()) {
       
   638     // This is a mixed GC. Here we decide whether to continue doing
       
   639     // mixed GCs or not.
       
   640     if (!next_gc_should_be_mixed("continue mixed GCs",
       
   641                                  "do not continue mixed GCs")) {
       
   642       collector_state()->set_gcs_are_young(true);
       
   643 
       
   644       maybe_start_marking();
       
   645     }
       
   646   }
       
   647 
       
   648   _short_lived_surv_rate_group->start_adding_regions();
       
   649   // Do that for any other surv rate groups
       
   650 
       
   651   double scan_hcc_time_ms = G1HotCardCache::default_use_cache() ? average_time_ms(G1GCPhaseTimes::ScanHCC) : 0.0;
       
   652 
       
   653   if (update_stats) {
       
   654     double cost_per_card_ms = 0.0;
       
   655     if (_pending_cards > 0) {
       
   656       cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms) / (double) _pending_cards;
       
   657       _analytics->report_cost_per_card_ms(cost_per_card_ms);
       
   658     }
       
   659     _analytics->report_cost_scan_hcc(scan_hcc_time_ms);
       
   660 
       
   661     double cost_per_entry_ms = 0.0;
       
   662     if (cards_scanned > 10) {
       
   663       cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
       
   664       _analytics->report_cost_per_entry_ms(cost_per_entry_ms, collector_state()->last_gc_was_young());
       
   665     }
       
   666 
       
   667     if (_max_rs_lengths > 0) {
       
   668       double cards_per_entry_ratio =
       
   669         (double) cards_scanned / (double) _max_rs_lengths;
       
   670       _analytics->report_cards_per_entry_ratio(cards_per_entry_ratio, collector_state()->last_gc_was_young());
       
   671     }
       
   672 
       
   673     // This is defensive. For a while _max_rs_lengths could get
       
   674     // smaller than _recorded_rs_lengths which was causing
       
   675     // rs_length_diff to get very large and mess up the RSet length
       
   676     // predictions. The reason was unsafe concurrent updates to the
       
   677     // _inc_cset_recorded_rs_lengths field which the code below guards
       
   678     // against (see CR 7118202). This bug has now been fixed (see CR
       
   679     // 7119027). However, I'm still worried that
       
   680     // _inc_cset_recorded_rs_lengths might still end up somewhat
       
   681     // inaccurate. The concurrent refinement thread calculates an
       
   682     // RSet's length concurrently with other CR threads updating it
       
   683     // which might cause it to calculate the length incorrectly (if,
       
   684     // say, it's in mid-coarsening). So I'll leave in the defensive
       
   685     // conditional below just in case.
       
   686     size_t rs_length_diff = 0;
       
   687     size_t recorded_rs_lengths = _collection_set->recorded_rs_lengths();
       
   688     if (_max_rs_lengths > recorded_rs_lengths) {
       
   689       rs_length_diff = _max_rs_lengths - recorded_rs_lengths;
       
   690     }
       
   691     _analytics->report_rs_length_diff((double) rs_length_diff);
       
   692 
       
   693     size_t freed_bytes = heap_used_bytes_before_gc - cur_used_bytes;
       
   694     size_t copied_bytes = _collection_set->bytes_used_before() - freed_bytes;
       
   695     double cost_per_byte_ms = 0.0;
       
   696 
       
   697     if (copied_bytes > 0) {
       
   698       cost_per_byte_ms = average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
       
   699       _analytics->report_cost_per_byte_ms(cost_per_byte_ms, collector_state()->in_marking_window());
       
   700     }
       
   701 
       
   702     if (_collection_set->young_region_length() > 0) {
       
   703       _analytics->report_young_other_cost_per_region_ms(young_other_time_ms() /
       
   704                                                         _collection_set->young_region_length());
       
   705     }
       
   706 
       
   707     if (_collection_set->old_region_length() > 0) {
       
   708       _analytics->report_non_young_other_cost_per_region_ms(non_young_other_time_ms() /
       
   709                                                             _collection_set->old_region_length());
       
   710     }
       
   711 
       
   712     _analytics->report_constant_other_time_ms(constant_other_time_ms(pause_time_ms));
       
   713 
       
   714     _analytics->report_pending_cards((double) _pending_cards);
       
   715     _analytics->report_rs_lengths((double) _max_rs_lengths);
       
   716   }
       
   717 
       
   718   collector_state()->set_in_marking_window(new_in_marking_window);
       
   719   collector_state()->set_in_marking_window_im(new_in_marking_window_im);
       
   720   _free_regions_at_end_of_collection = _g1->num_free_regions();
       
   721   // IHOP control wants to know the expected young gen length if it were not
       
   722   // restrained by the heap reserve. Using the actual length would make the
       
   723   // prediction too small and the limit the young gen every time we get to the
       
   724   // predicted target occupancy.
       
   725   size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
       
   726   update_rs_lengths_prediction();
       
   727 
       
   728   update_ihop_prediction(app_time_ms / 1000.0,
       
   729                          _bytes_allocated_in_old_since_last_gc,
       
   730                          last_unrestrained_young_length * HeapRegion::GrainBytes);
       
   731   _bytes_allocated_in_old_since_last_gc = 0;
       
   732 
       
   733   _ihop_control->send_trace_event(_g1->gc_tracer_stw());
       
   734 
       
   735   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
       
   736   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
       
   737 
       
   738   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
       
   739     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
       
   740                                 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
       
   741                                 update_rs_time_goal_ms, scan_hcc_time_ms);
       
   742 
       
   743     update_rs_time_goal_ms = 0;
       
   744   } else {
       
   745     update_rs_time_goal_ms -= scan_hcc_time_ms;
       
   746   }
       
   747   _g1->concurrent_refine()->adjust(average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms,
       
   748                                       phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
       
   749                                       update_rs_time_goal_ms);
       
   750 
       
   751   cset_chooser()->verify();
       
   752 }
       
   753 
       
   754 G1IHOPControl* G1Policy::create_ihop_control(const G1Predictions* predictor){
       
   755   if (G1UseAdaptiveIHOP) {
       
   756     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
       
   757                                      predictor,
       
   758                                      G1ReservePercent,
       
   759                                      G1HeapWastePercent);
       
   760   } else {
       
   761     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent);
       
   762   }
       
   763 }
       
   764 
       
   765 void G1Policy::update_ihop_prediction(double mutator_time_s,
       
   766                                       size_t mutator_alloc_bytes,
       
   767                                       size_t young_gen_size) {
       
   768   // Always try to update IHOP prediction. Even evacuation failures give information
       
   769   // about e.g. whether to start IHOP earlier next time.
       
   770 
       
   771   // Avoid using really small application times that might create samples with
       
   772   // very high or very low values. They may be caused by e.g. back-to-back gcs.
       
   773   double const min_valid_time = 1e-6;
       
   774 
       
   775   bool report = false;
       
   776 
       
   777   double marking_to_mixed_time = -1.0;
       
   778   if (!collector_state()->last_gc_was_young() && _initial_mark_to_mixed.has_result()) {
       
   779     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
       
   780     assert(marking_to_mixed_time > 0.0,
       
   781            "Initial mark to mixed time must be larger than zero but is %.3f",
       
   782            marking_to_mixed_time);
       
   783     if (marking_to_mixed_time > min_valid_time) {
       
   784       _ihop_control->update_marking_length(marking_to_mixed_time);
       
   785       report = true;
       
   786     }
       
   787   }
       
   788 
       
   789   // As an approximation for the young gc promotion rates during marking we use
       
   790   // all of them. In many applications there are only a few if any young gcs during
       
   791   // marking, which makes any prediction useless. This increases the accuracy of the
       
   792   // prediction.
       
   793   if (collector_state()->last_gc_was_young() && mutator_time_s > min_valid_time) {
       
   794     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
       
   795     report = true;
       
   796   }
       
   797 
       
   798   if (report) {
       
   799     report_ihop_statistics();
       
   800   }
       
   801 }
       
   802 
       
   803 void G1Policy::report_ihop_statistics() {
       
   804   _ihop_control->print();
       
   805 }
       
   806 
       
   807 void G1Policy::print_phases() {
       
   808   phase_times()->print();
       
   809 }
       
   810 
       
   811 double G1Policy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
       
   812   TruncatedSeq* seq = surv_rate_group->get_seq(age);
       
   813   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
       
   814   double pred = _predictor.get_new_prediction(seq);
       
   815   if (pred > 1.0) {
       
   816     pred = 1.0;
       
   817   }
       
   818   return pred;
       
   819 }
       
   820 
       
   821 double G1Policy::accum_yg_surv_rate_pred(int age) const {
       
   822   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
       
   823 }
       
   824 
       
   825 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards,
       
   826                                               size_t scanned_cards) const {
       
   827   return
       
   828     _analytics->predict_rs_update_time_ms(pending_cards) +
       
   829     _analytics->predict_rs_scan_time_ms(scanned_cards, collector_state()->gcs_are_young()) +
       
   830     _analytics->predict_constant_other_time_ms();
       
   831 }
       
   832 
       
   833 double G1Policy::predict_base_elapsed_time_ms(size_t pending_cards) const {
       
   834   size_t rs_length = _analytics->predict_rs_lengths() + _analytics->predict_rs_length_diff();
       
   835   size_t card_num = _analytics->predict_card_num(rs_length, collector_state()->gcs_are_young());
       
   836   return predict_base_elapsed_time_ms(pending_cards, card_num);
       
   837 }
       
   838 
       
   839 size_t G1Policy::predict_bytes_to_copy(HeapRegion* hr) const {
       
   840   size_t bytes_to_copy;
       
   841   if (hr->is_marked())
       
   842     bytes_to_copy = hr->max_live_bytes();
       
   843   else {
       
   844     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
       
   845     int age = hr->age_in_surv_rate_group();
       
   846     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
       
   847     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
       
   848   }
       
   849   return bytes_to_copy;
       
   850 }
       
   851 
       
   852 double G1Policy::predict_region_elapsed_time_ms(HeapRegion* hr,
       
   853                                                 bool for_young_gc) const {
       
   854   size_t rs_length = hr->rem_set()->occupied();
       
   855   // Predicting the number of cards is based on which type of GC
       
   856   // we're predicting for.
       
   857   size_t card_num = _analytics->predict_card_num(rs_length, for_young_gc);
       
   858   size_t bytes_to_copy = predict_bytes_to_copy(hr);
       
   859 
       
   860   double region_elapsed_time_ms =
       
   861     _analytics->predict_rs_scan_time_ms(card_num, collector_state()->gcs_are_young()) +
       
   862     _analytics->predict_object_copy_time_ms(bytes_to_copy, collector_state()->during_concurrent_mark());
       
   863 
       
   864   // The prediction of the "other" time for this region is based
       
   865   // upon the region type and NOT the GC type.
       
   866   if (hr->is_young()) {
       
   867     region_elapsed_time_ms += _analytics->predict_young_other_time_ms(1);
       
   868   } else {
       
   869     region_elapsed_time_ms += _analytics->predict_non_young_other_time_ms(1);
       
   870   }
       
   871   return region_elapsed_time_ms;
       
   872 }
       
   873 
       
   874 bool G1Policy::should_allocate_mutator_region() const {
       
   875   uint young_list_length = _g1->young_regions_count();
       
   876   uint young_list_target_length = _young_list_target_length;
       
   877   return young_list_length < young_list_target_length;
       
   878 }
       
   879 
       
   880 bool G1Policy::can_expand_young_list() const {
       
   881   uint young_list_length = _g1->young_regions_count();
       
   882   uint young_list_max_length = _young_list_max_length;
       
   883   return young_list_length < young_list_max_length;
       
   884 }
       
   885 
       
   886 bool G1Policy::adaptive_young_list_length() const {
       
   887   return _young_gen_sizer.adaptive_young_list_length();
       
   888 }
       
   889 
       
   890 size_t G1Policy::desired_survivor_size() const {
       
   891   size_t const survivor_capacity = HeapRegion::GrainWords * _max_survivor_regions;
       
   892   return (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
       
   893 }
       
   894 
       
   895 void G1Policy::print_age_table() {
       
   896   _survivors_age_table.print_age_table(_tenuring_threshold);
       
   897 }
       
   898 
       
   899 void G1Policy::update_max_gc_locker_expansion() {
       
   900   uint expansion_region_num = 0;
       
   901   if (GCLockerEdenExpansionPercent > 0) {
       
   902     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
       
   903     double expansion_region_num_d = perc * (double) _young_list_target_length;
       
   904     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
       
   905     // less than 1.0) we'll get 1.
       
   906     expansion_region_num = (uint) ceil(expansion_region_num_d);
       
   907   } else {
       
   908     assert(expansion_region_num == 0, "sanity");
       
   909   }
       
   910   _young_list_max_length = _young_list_target_length + expansion_region_num;
       
   911   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
       
   912 }
       
   913 
       
   914 // Calculates survivor space parameters.
       
   915 void G1Policy::update_survivors_policy() {
       
   916   double max_survivor_regions_d =
       
   917                  (double) _young_list_target_length / (double) SurvivorRatio;
       
   918   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
       
   919   // smaller than 1.0) we'll get 1.
       
   920   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
       
   921 
       
   922   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(desired_survivor_size());
       
   923   if (UsePerfData) {
       
   924     _policy_counters->tenuring_threshold()->set_value(_tenuring_threshold);
       
   925     _policy_counters->desired_survivor_size()->set_value(desired_survivor_size() * oopSize);
       
   926   }
       
   927 }
       
   928 
       
   929 bool G1Policy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
       
   930   // We actually check whether we are marking here and not if we are in a
       
   931   // reclamation phase. This means that we will schedule a concurrent mark
       
   932   // even while we are still in the process of reclaiming memory.
       
   933   bool during_cycle = _g1->concurrent_mark()->cm_thread()->during_cycle();
       
   934   if (!during_cycle) {
       
   935     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
       
   936     collector_state()->set_initiate_conc_mark_if_possible(true);
       
   937     return true;
       
   938   } else {
       
   939     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
       
   940     return false;
       
   941   }
       
   942 }
       
   943 
       
   944 void G1Policy::initiate_conc_mark() {
       
   945   collector_state()->set_during_initial_mark_pause(true);
       
   946   collector_state()->set_initiate_conc_mark_if_possible(false);
       
   947 }
       
   948 
       
   949 void G1Policy::decide_on_conc_mark_initiation() {
       
   950   // We are about to decide on whether this pause will be an
       
   951   // initial-mark pause.
       
   952 
       
   953   // First, collector_state()->during_initial_mark_pause() should not be already set. We
       
   954   // will set it here if we have to. However, it should be cleared by
       
   955   // the end of the pause (it's only set for the duration of an
       
   956   // initial-mark pause).
       
   957   assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
       
   958 
       
   959   if (collector_state()->initiate_conc_mark_if_possible()) {
       
   960     // We had noticed on a previous pause that the heap occupancy has
       
   961     // gone over the initiating threshold and we should start a
       
   962     // concurrent marking cycle. So we might initiate one.
       
   963 
       
   964     if (!about_to_start_mixed_phase() && collector_state()->gcs_are_young()) {
       
   965       // Initiate a new initial mark if there is no marking or reclamation going on.
       
   966       initiate_conc_mark();
       
   967       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
       
   968     } else if (_g1->is_user_requested_concurrent_full_gc(_g1->gc_cause())) {
       
   969       // Initiate a user requested initial mark. An initial mark must be young only
       
   970       // GC, so the collector state must be updated to reflect this.
       
   971       collector_state()->set_gcs_are_young(true);
       
   972       collector_state()->set_last_young_gc(false);
       
   973 
       
   974       abort_time_to_mixed_tracking();
       
   975       initiate_conc_mark();
       
   976       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
       
   977     } else {
       
   978       // The concurrent marking thread is still finishing up the
       
   979       // previous cycle. If we start one right now the two cycles
       
   980       // overlap. In particular, the concurrent marking thread might
       
   981       // be in the process of clearing the next marking bitmap (which
       
   982       // we will use for the next cycle if we start one). Starting a
       
   983       // cycle now will be bad given that parts of the marking
       
   984       // information might get cleared by the marking thread. And we
       
   985       // cannot wait for the marking thread to finish the cycle as it
       
   986       // periodically yields while clearing the next marking bitmap
       
   987       // and, if it's in a yield point, it's waiting for us to
       
   988       // finish. So, at this point we will not start a cycle and we'll
       
   989       // let the concurrent marking thread complete the last one.
       
   990       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
       
   991     }
       
   992   }
       
   993 }
       
   994 
       
   995 void G1Policy::record_concurrent_mark_cleanup_end() {
       
   996   cset_chooser()->rebuild(_g1->workers(), _g1->num_regions());
       
   997 
       
   998   double end_sec = os::elapsedTime();
       
   999   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
       
  1000   _analytics->report_concurrent_mark_cleanup_times_ms(elapsed_time_ms);
       
  1001   _analytics->append_prev_collection_pause_end_ms(elapsed_time_ms);
       
  1002 
       
  1003   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
       
  1004 }
       
  1005 
       
  1006 double G1Policy::reclaimable_bytes_percent(size_t reclaimable_bytes) const {
       
  1007   return percent_of(reclaimable_bytes, _g1->capacity());
       
  1008 }
       
  1009 
       
  1010 void G1Policy::maybe_start_marking() {
       
  1011   if (need_to_start_conc_mark("end of GC")) {
       
  1012     // Note: this might have already been set, if during the last
       
  1013     // pause we decided to start a cycle but at the beginning of
       
  1014     // this pause we decided to postpone it. That's OK.
       
  1015     collector_state()->set_initiate_conc_mark_if_possible(true);
       
  1016   }
       
  1017 }
       
  1018 
       
  1019 G1Policy::PauseKind G1Policy::young_gc_pause_kind() const {
       
  1020   assert(!collector_state()->full_collection(), "must be");
       
  1021   if (collector_state()->during_initial_mark_pause()) {
       
  1022     assert(collector_state()->last_gc_was_young(), "must be");
       
  1023     assert(!collector_state()->last_young_gc(), "must be");
       
  1024     return InitialMarkGC;
       
  1025   } else if (collector_state()->last_young_gc()) {
       
  1026     assert(!collector_state()->during_initial_mark_pause(), "must be");
       
  1027     assert(collector_state()->last_gc_was_young(), "must be");
       
  1028     return LastYoungGC;
       
  1029   } else if (!collector_state()->last_gc_was_young()) {
       
  1030     assert(!collector_state()->during_initial_mark_pause(), "must be");
       
  1031     assert(!collector_state()->last_young_gc(), "must be");
       
  1032     return MixedGC;
       
  1033   } else {
       
  1034     assert(collector_state()->last_gc_was_young(), "must be");
       
  1035     assert(!collector_state()->during_initial_mark_pause(), "must be");
       
  1036     assert(!collector_state()->last_young_gc(), "must be");
       
  1037     return YoungOnlyGC;
       
  1038   }
       
  1039 }
       
  1040 
       
  1041 void G1Policy::record_pause(PauseKind kind, double start, double end) {
       
  1042   // Manage the MMU tracker. For some reason it ignores Full GCs.
       
  1043   if (kind != FullGC) {
       
  1044     _mmu_tracker->add_pause(start, end);
       
  1045   }
       
  1046   // Manage the mutator time tracking from initial mark to first mixed gc.
       
  1047   switch (kind) {
       
  1048     case FullGC:
       
  1049       abort_time_to_mixed_tracking();
       
  1050       break;
       
  1051     case Cleanup:
       
  1052     case Remark:
       
  1053     case YoungOnlyGC:
       
  1054     case LastYoungGC:
       
  1055       _initial_mark_to_mixed.add_pause(end - start);
       
  1056       break;
       
  1057     case InitialMarkGC:
       
  1058       _initial_mark_to_mixed.record_initial_mark_end(end);
       
  1059       break;
       
  1060     case MixedGC:
       
  1061       _initial_mark_to_mixed.record_mixed_gc_start(start);
       
  1062       break;
       
  1063     default:
       
  1064       ShouldNotReachHere();
       
  1065   }
       
  1066 }
       
  1067 
       
  1068 void G1Policy::abort_time_to_mixed_tracking() {
       
  1069   _initial_mark_to_mixed.reset();
       
  1070 }
       
  1071 
       
  1072 bool G1Policy::next_gc_should_be_mixed(const char* true_action_str,
       
  1073                                        const char* false_action_str) const {
       
  1074   if (cset_chooser()->is_empty()) {
       
  1075     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
       
  1076     return false;
       
  1077   }
       
  1078 
       
  1079   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
       
  1080   size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
       
  1081   double reclaimable_percent = reclaimable_bytes_percent(reclaimable_bytes);
       
  1082   double threshold = (double) G1HeapWastePercent;
       
  1083   if (reclaimable_percent <= threshold) {
       
  1084     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
       
  1085                         false_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
       
  1086     return false;
       
  1087   }
       
  1088   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
       
  1089                       true_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_percent, G1HeapWastePercent);
       
  1090   return true;
       
  1091 }
       
  1092 
       
  1093 uint G1Policy::calc_min_old_cset_length() const {
       
  1094   // The min old CSet region bound is based on the maximum desired
       
  1095   // number of mixed GCs after a cycle. I.e., even if some old regions
       
  1096   // look expensive, we should add them to the CSet anyway to make
       
  1097   // sure we go through the available old regions in no more than the
       
  1098   // maximum desired number of mixed GCs.
       
  1099   //
       
  1100   // The calculation is based on the number of marked regions we added
       
  1101   // to the CSet chooser in the first place, not how many remain, so
       
  1102   // that the result is the same during all mixed GCs that follow a cycle.
       
  1103 
       
  1104   const size_t region_num = (size_t) cset_chooser()->length();
       
  1105   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
       
  1106   size_t result = region_num / gc_num;
       
  1107   // emulate ceiling
       
  1108   if (result * gc_num < region_num) {
       
  1109     result += 1;
       
  1110   }
       
  1111   return (uint) result;
       
  1112 }
       
  1113 
       
  1114 uint G1Policy::calc_max_old_cset_length() const {
       
  1115   // The max old CSet region bound is based on the threshold expressed
       
  1116   // as a percentage of the heap size. I.e., it should bound the
       
  1117   // number of old regions added to the CSet irrespective of how many
       
  1118   // of them are available.
       
  1119 
       
  1120   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
       
  1121   const size_t region_num = g1h->num_regions();
       
  1122   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
       
  1123   size_t result = region_num * perc / 100;
       
  1124   // emulate ceiling
       
  1125   if (100 * result < region_num * perc) {
       
  1126     result += 1;
       
  1127   }
       
  1128   return (uint) result;
       
  1129 }
       
  1130 
       
  1131 void G1Policy::finalize_collection_set(double target_pause_time_ms, G1SurvivorRegions* survivor) {
       
  1132   double time_remaining_ms = _collection_set->finalize_young_part(target_pause_time_ms, survivor);
       
  1133   _collection_set->finalize_old_part(time_remaining_ms);
       
  1134 }
       
  1135 
       
  1136 void G1Policy::transfer_survivors_to_cset(const G1SurvivorRegions* survivors) {
       
  1137 
       
  1138   // Add survivor regions to SurvRateGroup.
       
  1139   note_start_adding_survivor_regions();
       
  1140   finished_recalculating_age_indexes(true /* is_survivors */);
       
  1141 
       
  1142   HeapRegion* last = NULL;
       
  1143   for (GrowableArrayIterator<HeapRegion*> it = survivors->regions()->begin();
       
  1144        it != survivors->regions()->end();
       
  1145        ++it) {
       
  1146     HeapRegion* curr = *it;
       
  1147     set_region_survivor(curr);
       
  1148 
       
  1149     // The region is a non-empty survivor so let's add it to
       
  1150     // the incremental collection set for the next evacuation
       
  1151     // pause.
       
  1152     _collection_set->add_survivor_regions(curr);
       
  1153 
       
  1154     last = curr;
       
  1155   }
       
  1156   note_stop_adding_survivor_regions();
       
  1157 
       
  1158   // Don't clear the survivor list handles until the start of
       
  1159   // the next evacuation pause - we need it in order to re-tag
       
  1160   // the survivor regions from this evacuation pause as 'young'
       
  1161   // at the start of the next.
       
  1162 
       
  1163   finished_recalculating_age_indexes(false /* is_survivors */);
       
  1164 }