jdk/src/java.base/share/native/libfdlibm/e_hypot.c
changeset 32828 2b92eb818ffd
parent 32827 b00f765af244
parent 32803 51b2db2fa04c
child 32829 9a72f98c3066
child 33086 d9b7f6713bff
equal deleted inserted replaced
32827:b00f765af244 32828:2b92eb818ffd
     1 
       
     2 /*
       
     3  * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
       
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     5  *
       
     6  * This code is free software; you can redistribute it and/or modify it
       
     7  * under the terms of the GNU General Public License version 2 only, as
       
     8  * published by the Free Software Foundation.  Oracle designates this
       
     9  * particular file as subject to the "Classpath" exception as provided
       
    10  * by Oracle in the LICENSE file that accompanied this code.
       
    11  *
       
    12  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    15  * version 2 for more details (a copy is included in the LICENSE file that
       
    16  * accompanied this code).
       
    17  *
       
    18  * You should have received a copy of the GNU General Public License version
       
    19  * 2 along with this work; if not, write to the Free Software Foundation,
       
    20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    21  *
       
    22  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    23  * or visit www.oracle.com if you need additional information or have any
       
    24  * questions.
       
    25  */
       
    26 
       
    27 /* __ieee754_hypot(x,y)
       
    28  *
       
    29  * Method :
       
    30  *      If (assume round-to-nearest) z=x*x+y*y
       
    31  *      has error less than sqrt(2)/2 ulp, than
       
    32  *      sqrt(z) has error less than 1 ulp (exercise).
       
    33  *
       
    34  *      So, compute sqrt(x*x+y*y) with some care as
       
    35  *      follows to get the error below 1 ulp:
       
    36  *
       
    37  *      Assume x>y>0;
       
    38  *      (if possible, set rounding to round-to-nearest)
       
    39  *      1. if x > 2y  use
       
    40  *              x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
       
    41  *      where x1 = x with lower 32 bits cleared, x2 = x-x1; else
       
    42  *      2. if x <= 2y use
       
    43  *              t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
       
    44  *      where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
       
    45  *      y1= y with lower 32 bits chopped, y2 = y-y1.
       
    46  *
       
    47  *      NOTE: scaling may be necessary if some argument is too
       
    48  *            large or too tiny
       
    49  *
       
    50  * Special cases:
       
    51  *      hypot(x,y) is INF if x or y is +INF or -INF; else
       
    52  *      hypot(x,y) is NAN if x or y is NAN.
       
    53  *
       
    54  * Accuracy:
       
    55  *      hypot(x,y) returns sqrt(x^2+y^2) with error less
       
    56  *      than 1 ulps (units in the last place)
       
    57  */
       
    58 
       
    59 #include "fdlibm.h"
       
    60 
       
    61 #ifdef __STDC__
       
    62         double __ieee754_hypot(double x, double y)
       
    63 #else
       
    64         double __ieee754_hypot(x,y)
       
    65         double x, y;
       
    66 #endif
       
    67 {
       
    68         double a=x,b=y,t1,t2,y1,y2,w;
       
    69         int j,k,ha,hb;
       
    70 
       
    71         ha = __HI(x)&0x7fffffff;        /* high word of  x */
       
    72         hb = __HI(y)&0x7fffffff;        /* high word of  y */
       
    73         if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
       
    74         __HI(a) = ha;   /* a <- |a| */
       
    75         __HI(b) = hb;   /* b <- |b| */
       
    76         if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
       
    77         k=0;
       
    78         if(ha > 0x5f300000) {   /* a>2**500 */
       
    79            if(ha >= 0x7ff00000) {       /* Inf or NaN */
       
    80                w = a+b;                 /* for sNaN */
       
    81                if(((ha&0xfffff)|__LO(a))==0) w = a;
       
    82                if(((hb^0x7ff00000)|__LO(b))==0) w = b;
       
    83                return w;
       
    84            }
       
    85            /* scale a and b by 2**-600 */
       
    86            ha -= 0x25800000; hb -= 0x25800000;  k += 600;
       
    87            __HI(a) = ha;
       
    88            __HI(b) = hb;
       
    89         }
       
    90         if(hb < 0x20b00000) {   /* b < 2**-500 */
       
    91             if(hb <= 0x000fffff) {      /* subnormal b or 0 */
       
    92                 if((hb|(__LO(b)))==0) return a;
       
    93                 t1=0;
       
    94                 __HI(t1) = 0x7fd00000;  /* t1=2^1022 */
       
    95                 b *= t1;
       
    96                 a *= t1;
       
    97                 k -= 1022;
       
    98             } else {            /* scale a and b by 2^600 */
       
    99                 ha += 0x25800000;       /* a *= 2^600 */
       
   100                 hb += 0x25800000;       /* b *= 2^600 */
       
   101                 k -= 600;
       
   102                 __HI(a) = ha;
       
   103                 __HI(b) = hb;
       
   104             }
       
   105         }
       
   106     /* medium size a and b */
       
   107         w = a-b;
       
   108         if (w>b) {
       
   109             t1 = 0;
       
   110             __HI(t1) = ha;
       
   111             t2 = a-t1;
       
   112             w  = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
       
   113         } else {
       
   114             a  = a+a;
       
   115             y1 = 0;
       
   116             __HI(y1) = hb;
       
   117             y2 = b - y1;
       
   118             t1 = 0;
       
   119             __HI(t1) = ha+0x00100000;
       
   120             t2 = a - t1;
       
   121             w  = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
       
   122         }
       
   123         if(k!=0) {
       
   124             t1 = 1.0;
       
   125             __HI(t1) += (k<<20);
       
   126             return t1*w;
       
   127         } else return w;
       
   128 }