src/hotspot/share/runtime/tieredThresholdPolicy.cpp
branchstuefe-new-metaspace-branch
changeset 58645 28c7e6711871
parent 58494 54c1ba464b78
parent 58644 64597a6fd186
child 58646 bcdba1c9f1fe
equal deleted inserted replaced
58494:54c1ba464b78 58645:28c7e6711871
     1 /*
       
     2  * Copyright (c) 2010, 2019, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "compiler/compileBroker.hpp"
       
    27 #include "compiler/compilerOracle.hpp"
       
    28 #include "memory/resourceArea.hpp"
       
    29 #include "runtime/arguments.hpp"
       
    30 #include "runtime/handles.inline.hpp"
       
    31 #include "runtime/safepoint.hpp"
       
    32 #include "runtime/safepointVerifiers.hpp"
       
    33 #include "runtime/tieredThresholdPolicy.hpp"
       
    34 #include "code/scopeDesc.hpp"
       
    35 #include "oops/method.inline.hpp"
       
    36 #if INCLUDE_JVMCI
       
    37 #include "jvmci/jvmci.hpp"
       
    38 #endif
       
    39 
       
    40 #ifdef TIERED
       
    41 
       
    42 #include "c1/c1_Compiler.hpp"
       
    43 #include "opto/c2compiler.hpp"
       
    44 
       
    45 template<CompLevel level>
       
    46 bool TieredThresholdPolicy::call_predicate_helper(int i, int b, double scale, Method* method) {
       
    47   double threshold_scaling;
       
    48   if (CompilerOracle::has_option_value(method, "CompileThresholdScaling", threshold_scaling)) {
       
    49     scale *= threshold_scaling;
       
    50   }
       
    51   switch(level) {
       
    52   case CompLevel_aot:
       
    53     return (i >= Tier3AOTInvocationThreshold * scale) ||
       
    54            (i >= Tier3AOTMinInvocationThreshold * scale && i + b >= Tier3AOTCompileThreshold * scale);
       
    55   case CompLevel_none:
       
    56   case CompLevel_limited_profile:
       
    57     return (i >= Tier3InvocationThreshold * scale) ||
       
    58            (i >= Tier3MinInvocationThreshold * scale && i + b >= Tier3CompileThreshold * scale);
       
    59   case CompLevel_full_profile:
       
    60    return (i >= Tier4InvocationThreshold * scale) ||
       
    61           (i >= Tier4MinInvocationThreshold * scale && i + b >= Tier4CompileThreshold * scale);
       
    62   }
       
    63   return true;
       
    64 }
       
    65 
       
    66 template<CompLevel level>
       
    67 bool TieredThresholdPolicy::loop_predicate_helper(int i, int b, double scale, Method* method) {
       
    68   double threshold_scaling;
       
    69   if (CompilerOracle::has_option_value(method, "CompileThresholdScaling", threshold_scaling)) {
       
    70     scale *= threshold_scaling;
       
    71   }
       
    72   switch(level) {
       
    73   case CompLevel_aot:
       
    74     return b >= Tier3AOTBackEdgeThreshold * scale;
       
    75   case CompLevel_none:
       
    76   case CompLevel_limited_profile:
       
    77     return b >= Tier3BackEdgeThreshold * scale;
       
    78   case CompLevel_full_profile:
       
    79     return b >= Tier4BackEdgeThreshold * scale;
       
    80   }
       
    81   return true;
       
    82 }
       
    83 
       
    84 // Simple methods are as good being compiled with C1 as C2.
       
    85 // Determine if a given method is such a case.
       
    86 bool TieredThresholdPolicy::is_trivial(Method* method) {
       
    87   if (method->is_accessor() ||
       
    88       method->is_constant_getter()) {
       
    89     return true;
       
    90   }
       
    91   return false;
       
    92 }
       
    93 
       
    94 bool TieredThresholdPolicy::should_compile_at_level_simple(Method* method) {
       
    95   if (TieredThresholdPolicy::is_trivial(method)) {
       
    96     return true;
       
    97   }
       
    98 #if INCLUDE_JVMCI
       
    99   if (UseJVMCICompiler) {
       
   100     AbstractCompiler* comp = CompileBroker::compiler(CompLevel_full_optimization);
       
   101     if (comp != NULL && comp->is_jvmci() && ((JVMCICompiler*) comp)->force_comp_at_level_simple(method)) {
       
   102       return true;
       
   103     }
       
   104   }
       
   105 #endif
       
   106   return false;
       
   107 }
       
   108 
       
   109 CompLevel TieredThresholdPolicy::comp_level(Method* method) {
       
   110   CompiledMethod *nm = method->code();
       
   111   if (nm != NULL && nm->is_in_use()) {
       
   112     return (CompLevel)nm->comp_level();
       
   113   }
       
   114   return CompLevel_none;
       
   115 }
       
   116 
       
   117 void TieredThresholdPolicy::print_counters(const char* prefix, const methodHandle& mh) {
       
   118   int invocation_count = mh->invocation_count();
       
   119   int backedge_count = mh->backedge_count();
       
   120   MethodData* mdh = mh->method_data();
       
   121   int mdo_invocations = 0, mdo_backedges = 0;
       
   122   int mdo_invocations_start = 0, mdo_backedges_start = 0;
       
   123   if (mdh != NULL) {
       
   124     mdo_invocations = mdh->invocation_count();
       
   125     mdo_backedges = mdh->backedge_count();
       
   126     mdo_invocations_start = mdh->invocation_count_start();
       
   127     mdo_backedges_start = mdh->backedge_count_start();
       
   128   }
       
   129   tty->print(" %stotal=%d,%d %smdo=%d(%d),%d(%d)", prefix,
       
   130       invocation_count, backedge_count, prefix,
       
   131       mdo_invocations, mdo_invocations_start,
       
   132       mdo_backedges, mdo_backedges_start);
       
   133   tty->print(" %smax levels=%d,%d", prefix,
       
   134       mh->highest_comp_level(), mh->highest_osr_comp_level());
       
   135 }
       
   136 
       
   137 // Print an event.
       
   138 void TieredThresholdPolicy::print_event(EventType type, const methodHandle& mh, const methodHandle& imh,
       
   139                                         int bci, CompLevel level) {
       
   140   bool inlinee_event = mh() != imh();
       
   141 
       
   142   ttyLocker tty_lock;
       
   143   tty->print("%lf: [", os::elapsedTime());
       
   144 
       
   145   switch(type) {
       
   146   case CALL:
       
   147     tty->print("call");
       
   148     break;
       
   149   case LOOP:
       
   150     tty->print("loop");
       
   151     break;
       
   152   case COMPILE:
       
   153     tty->print("compile");
       
   154     break;
       
   155   case REMOVE_FROM_QUEUE:
       
   156     tty->print("remove-from-queue");
       
   157     break;
       
   158   case UPDATE_IN_QUEUE:
       
   159     tty->print("update-in-queue");
       
   160     break;
       
   161   case REPROFILE:
       
   162     tty->print("reprofile");
       
   163     break;
       
   164   case MAKE_NOT_ENTRANT:
       
   165     tty->print("make-not-entrant");
       
   166     break;
       
   167   default:
       
   168     tty->print("unknown");
       
   169   }
       
   170 
       
   171   tty->print(" level=%d ", level);
       
   172 
       
   173   ResourceMark rm;
       
   174   char *method_name = mh->name_and_sig_as_C_string();
       
   175   tty->print("[%s", method_name);
       
   176   if (inlinee_event) {
       
   177     char *inlinee_name = imh->name_and_sig_as_C_string();
       
   178     tty->print(" [%s]] ", inlinee_name);
       
   179   }
       
   180   else tty->print("] ");
       
   181   tty->print("@%d queues=%d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile),
       
   182                                       CompileBroker::queue_size(CompLevel_full_optimization));
       
   183 
       
   184   print_specific(type, mh, imh, bci, level);
       
   185 
       
   186   if (type != COMPILE) {
       
   187     print_counters("", mh);
       
   188     if (inlinee_event) {
       
   189       print_counters("inlinee ", imh);
       
   190     }
       
   191     tty->print(" compilable=");
       
   192     bool need_comma = false;
       
   193     if (!mh->is_not_compilable(CompLevel_full_profile)) {
       
   194       tty->print("c1");
       
   195       need_comma = true;
       
   196     }
       
   197     if (!mh->is_not_osr_compilable(CompLevel_full_profile)) {
       
   198       if (need_comma) tty->print(",");
       
   199       tty->print("c1-osr");
       
   200       need_comma = true;
       
   201     }
       
   202     if (!mh->is_not_compilable(CompLevel_full_optimization)) {
       
   203       if (need_comma) tty->print(",");
       
   204       tty->print("c2");
       
   205       need_comma = true;
       
   206     }
       
   207     if (!mh->is_not_osr_compilable(CompLevel_full_optimization)) {
       
   208       if (need_comma) tty->print(",");
       
   209       tty->print("c2-osr");
       
   210     }
       
   211     tty->print(" status=");
       
   212     if (mh->queued_for_compilation()) {
       
   213       tty->print("in-queue");
       
   214     } else tty->print("idle");
       
   215   }
       
   216   tty->print_cr("]");
       
   217 }
       
   218 
       
   219 void TieredThresholdPolicy::initialize() {
       
   220   int count = CICompilerCount;
       
   221   bool c1_only = TieredStopAtLevel < CompLevel_full_optimization;
       
   222 #ifdef _LP64
       
   223   // Turn on ergonomic compiler count selection
       
   224   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
       
   225     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
       
   226   }
       
   227   if (CICompilerCountPerCPU) {
       
   228     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
       
   229     int log_cpu = log2_int(os::active_processor_count());
       
   230     int loglog_cpu = log2_int(MAX2(log_cpu, 1));
       
   231     count = MAX2(log_cpu * loglog_cpu * 3 / 2, 2);
       
   232     // Make sure there is enough space in the code cache to hold all the compiler buffers
       
   233     size_t c1_size = Compiler::code_buffer_size();
       
   234     size_t c2_size = C2Compiler::initial_code_buffer_size();
       
   235     size_t buffer_size = c1_only ? c1_size : (c1_size/3 + 2*c2_size/3);
       
   236     int max_count = (ReservedCodeCacheSize - (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3))) / (int)buffer_size;
       
   237     if (count > max_count) {
       
   238       // Lower the compiler count such that all buffers fit into the code cache
       
   239       count = MAX2(max_count, c1_only ? 1 : 2);
       
   240     }
       
   241     FLAG_SET_ERGO(CICompilerCount, count);
       
   242   }
       
   243 #else
       
   244   // On 32-bit systems, the number of compiler threads is limited to 3.
       
   245   // On these systems, the virtual address space available to the JVM
       
   246   // is usually limited to 2-4 GB (the exact value depends on the platform).
       
   247   // As the compilers (especially C2) can consume a large amount of
       
   248   // memory, scaling the number of compiler threads with the number of
       
   249   // available cores can result in the exhaustion of the address space
       
   250   /// available to the VM and thus cause the VM to crash.
       
   251   if (FLAG_IS_DEFAULT(CICompilerCount)) {
       
   252     count = 3;
       
   253     FLAG_SET_ERGO(CICompilerCount, count);
       
   254   }
       
   255 #endif
       
   256 
       
   257   if (c1_only) {
       
   258     // No C2 compiler thread required
       
   259     set_c1_count(count);
       
   260   } else {
       
   261     set_c1_count(MAX2(count / 3, 1));
       
   262     set_c2_count(MAX2(count - c1_count(), 1));
       
   263   }
       
   264   assert(count == c1_count() + c2_count(), "inconsistent compiler thread count");
       
   265 
       
   266   // Some inlining tuning
       
   267 #ifdef X86
       
   268   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
       
   269     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
       
   270   }
       
   271 #endif
       
   272 
       
   273 #if defined SPARC || defined AARCH64
       
   274   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
       
   275     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
       
   276   }
       
   277 #endif
       
   278 
       
   279   set_increase_threshold_at_ratio();
       
   280   set_start_time(os::javaTimeMillis());
       
   281 }
       
   282 
       
   283 void TieredThresholdPolicy::set_carry_if_necessary(InvocationCounter *counter) {
       
   284   if (!counter->carry() && counter->count() > InvocationCounter::count_limit / 2) {
       
   285     counter->set_carry_flag();
       
   286   }
       
   287 }
       
   288 
       
   289 // Set carry flags on the counters if necessary
       
   290 void TieredThresholdPolicy::handle_counter_overflow(Method* method) {
       
   291   MethodCounters *mcs = method->method_counters();
       
   292   if (mcs != NULL) {
       
   293     set_carry_if_necessary(mcs->invocation_counter());
       
   294     set_carry_if_necessary(mcs->backedge_counter());
       
   295   }
       
   296   MethodData* mdo = method->method_data();
       
   297   if (mdo != NULL) {
       
   298     set_carry_if_necessary(mdo->invocation_counter());
       
   299     set_carry_if_necessary(mdo->backedge_counter());
       
   300   }
       
   301 }
       
   302 
       
   303 // Called with the queue locked and with at least one element
       
   304 CompileTask* TieredThresholdPolicy::select_task(CompileQueue* compile_queue) {
       
   305   CompileTask *max_blocking_task = NULL;
       
   306   CompileTask *max_task = NULL;
       
   307   Method* max_method = NULL;
       
   308   jlong t = os::javaTimeMillis();
       
   309   // Iterate through the queue and find a method with a maximum rate.
       
   310   for (CompileTask* task = compile_queue->first(); task != NULL;) {
       
   311     CompileTask* next_task = task->next();
       
   312     Method* method = task->method();
       
   313     // If a method was unloaded or has been stale for some time, remove it from the queue.
       
   314     // Blocking tasks and tasks submitted from whitebox API don't become stale
       
   315     if (task->is_unloaded() || (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method))) {
       
   316       if (!task->is_unloaded()) {
       
   317         if (PrintTieredEvents) {
       
   318           print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level());
       
   319         }
       
   320         method->clear_queued_for_compilation();
       
   321       }
       
   322       compile_queue->remove_and_mark_stale(task);
       
   323       task = next_task;
       
   324       continue;
       
   325     }
       
   326     update_rate(t, method);
       
   327     if (max_task == NULL || compare_methods(method, max_method)) {
       
   328       // Select a method with the highest rate
       
   329       max_task = task;
       
   330       max_method = method;
       
   331     }
       
   332 
       
   333     if (task->is_blocking()) {
       
   334       if (max_blocking_task == NULL || compare_methods(method, max_blocking_task->method())) {
       
   335         max_blocking_task = task;
       
   336       }
       
   337     }
       
   338 
       
   339     task = next_task;
       
   340   }
       
   341 
       
   342   if (max_blocking_task != NULL) {
       
   343     // In blocking compilation mode, the CompileBroker will make
       
   344     // compilations submitted by a JVMCI compiler thread non-blocking. These
       
   345     // compilations should be scheduled after all blocking compilations
       
   346     // to service non-compiler related compilations sooner and reduce the
       
   347     // chance of such compilations timing out.
       
   348     max_task = max_blocking_task;
       
   349     max_method = max_task->method();
       
   350   }
       
   351 
       
   352   if (max_task != NULL && max_task->comp_level() == CompLevel_full_profile &&
       
   353       TieredStopAtLevel > CompLevel_full_profile &&
       
   354       max_method != NULL && is_method_profiled(max_method)) {
       
   355     max_task->set_comp_level(CompLevel_limited_profile);
       
   356 
       
   357     if (CompileBroker::compilation_is_complete(max_method, max_task->osr_bci(), CompLevel_limited_profile)) {
       
   358       if (PrintTieredEvents) {
       
   359         print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
       
   360       }
       
   361       compile_queue->remove_and_mark_stale(max_task);
       
   362       max_method->clear_queued_for_compilation();
       
   363       return NULL;
       
   364     }
       
   365 
       
   366     if (PrintTieredEvents) {
       
   367       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
       
   368     }
       
   369   }
       
   370 
       
   371   return max_task;
       
   372 }
       
   373 
       
   374 void TieredThresholdPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) {
       
   375   for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) {
       
   376     if (PrintTieredEvents) {
       
   377       methodHandle mh(sd->method());
       
   378       print_event(REPROFILE, mh, mh, InvocationEntryBci, CompLevel_none);
       
   379     }
       
   380     MethodData* mdo = sd->method()->method_data();
       
   381     if (mdo != NULL) {
       
   382       mdo->reset_start_counters();
       
   383     }
       
   384     if (sd->is_top()) break;
       
   385   }
       
   386 }
       
   387 
       
   388 nmethod* TieredThresholdPolicy::event(const methodHandle& method, const methodHandle& inlinee,
       
   389                                       int branch_bci, int bci, CompLevel comp_level, CompiledMethod* nm, JavaThread* thread) {
       
   390   if (comp_level == CompLevel_none &&
       
   391       JvmtiExport::can_post_interpreter_events() &&
       
   392       thread->is_interp_only_mode()) {
       
   393     return NULL;
       
   394   }
       
   395   if (ReplayCompiles) {
       
   396     // Don't trigger other compiles in testing mode
       
   397     return NULL;
       
   398   }
       
   399 
       
   400   handle_counter_overflow(method());
       
   401   if (method() != inlinee()) {
       
   402     handle_counter_overflow(inlinee());
       
   403   }
       
   404 
       
   405   if (PrintTieredEvents) {
       
   406     print_event(bci == InvocationEntryBci ? CALL : LOOP, method, inlinee, bci, comp_level);
       
   407   }
       
   408 
       
   409   if (bci == InvocationEntryBci) {
       
   410     method_invocation_event(method, inlinee, comp_level, nm, thread);
       
   411   } else {
       
   412     // method == inlinee if the event originated in the main method
       
   413     method_back_branch_event(method, inlinee, bci, comp_level, nm, thread);
       
   414     // Check if event led to a higher level OSR compilation
       
   415     CompLevel expected_comp_level = comp_level;
       
   416     if (inlinee->is_not_osr_compilable(expected_comp_level)) {
       
   417       // It's not possble to reach the expected level so fall back to simple.
       
   418       expected_comp_level = CompLevel_simple;
       
   419     }
       
   420     nmethod* osr_nm = inlinee->lookup_osr_nmethod_for(bci, expected_comp_level, false);
       
   421     assert(osr_nm == NULL || osr_nm->comp_level() >= expected_comp_level, "lookup_osr_nmethod_for is broken");
       
   422     if (osr_nm != NULL) {
       
   423       // Perform OSR with new nmethod
       
   424       return osr_nm;
       
   425     }
       
   426   }
       
   427   return NULL;
       
   428 }
       
   429 
       
   430 // Check if the method can be compiled, change level if necessary
       
   431 void TieredThresholdPolicy::compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
       
   432   assert(level <= TieredStopAtLevel, "Invalid compilation level");
       
   433   if (level == CompLevel_none) {
       
   434     return;
       
   435   }
       
   436   if (level == CompLevel_aot) {
       
   437     if (mh->has_aot_code()) {
       
   438       if (PrintTieredEvents) {
       
   439         print_event(COMPILE, mh, mh, bci, level);
       
   440       }
       
   441       MutexLocker ml(Compile_lock);
       
   442       NoSafepointVerifier nsv;
       
   443       if (mh->has_aot_code() && mh->code() != mh->aot_code()) {
       
   444         mh->aot_code()->make_entrant();
       
   445         if (mh->has_compiled_code()) {
       
   446           mh->code()->make_not_entrant();
       
   447         }
       
   448         MutexLocker pl(CompiledMethod_lock, Mutex::_no_safepoint_check_flag);
       
   449         Method::set_code(mh, mh->aot_code());
       
   450       }
       
   451     }
       
   452     return;
       
   453   }
       
   454 
       
   455   // Check if the method can be compiled. If it cannot be compiled with C1, continue profiling
       
   456   // in the interpreter and then compile with C2 (the transition function will request that,
       
   457   // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with
       
   458   // pure C1.
       
   459   if ((bci == InvocationEntryBci && !can_be_compiled(mh, level))) {
       
   460     if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) {
       
   461       compile(mh, bci, CompLevel_simple, thread);
       
   462     }
       
   463     return;
       
   464   }
       
   465   if ((bci != InvocationEntryBci && !can_be_osr_compiled(mh, level))) {
       
   466     if (level == CompLevel_full_optimization && can_be_osr_compiled(mh, CompLevel_simple)) {
       
   467       nmethod* osr_nm = mh->lookup_osr_nmethod_for(bci, CompLevel_simple, false);
       
   468       if (osr_nm != NULL && osr_nm->comp_level() > CompLevel_simple) {
       
   469         // Invalidate the existing OSR nmethod so that a compile at CompLevel_simple is permitted.
       
   470         osr_nm->make_not_entrant();
       
   471       }
       
   472       compile(mh, bci, CompLevel_simple, thread);
       
   473     }
       
   474     return;
       
   475   }
       
   476   if (bci != InvocationEntryBci && mh->is_not_osr_compilable(level)) {
       
   477     return;
       
   478   }
       
   479   if (!CompileBroker::compilation_is_in_queue(mh)) {
       
   480     if (PrintTieredEvents) {
       
   481       print_event(COMPILE, mh, mh, bci, level);
       
   482     }
       
   483     submit_compile(mh, bci, level, thread);
       
   484   }
       
   485 }
       
   486 
       
   487 // Update the rate and submit compile
       
   488 void TieredThresholdPolicy::submit_compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
       
   489   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
       
   490   update_rate(os::javaTimeMillis(), mh());
       
   491   CompileBroker::compile_method(mh, bci, level, mh, hot_count, CompileTask::Reason_Tiered, thread);
       
   492 }
       
   493 
       
   494 // Print an event.
       
   495 void TieredThresholdPolicy::print_specific(EventType type, const methodHandle& mh, const methodHandle& imh,
       
   496                                              int bci, CompLevel level) {
       
   497   tty->print(" rate=");
       
   498   if (mh->prev_time() == 0) tty->print("n/a");
       
   499   else tty->print("%f", mh->rate());
       
   500 
       
   501   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
       
   502                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
       
   503 
       
   504 }
       
   505 
       
   506 // update_rate() is called from select_task() while holding a compile queue lock.
       
   507 void TieredThresholdPolicy::update_rate(jlong t, Method* m) {
       
   508   // Skip update if counters are absent.
       
   509   // Can't allocate them since we are holding compile queue lock.
       
   510   if (m->method_counters() == NULL)  return;
       
   511 
       
   512   if (is_old(m)) {
       
   513     // We don't remove old methods from the queue,
       
   514     // so we can just zero the rate.
       
   515     m->set_rate(0);
       
   516     return;
       
   517   }
       
   518 
       
   519   // We don't update the rate if we've just came out of a safepoint.
       
   520   // delta_s is the time since last safepoint in milliseconds.
       
   521   jlong delta_s = t - SafepointTracing::end_of_last_safepoint_epoch_ms();
       
   522   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
       
   523   // How many events were there since the last time?
       
   524   int event_count = m->invocation_count() + m->backedge_count();
       
   525   int delta_e = event_count - m->prev_event_count();
       
   526 
       
   527   // We should be running for at least 1ms.
       
   528   if (delta_s >= TieredRateUpdateMinTime) {
       
   529     // And we must've taken the previous point at least 1ms before.
       
   530     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
       
   531       m->set_prev_time(t);
       
   532       m->set_prev_event_count(event_count);
       
   533       m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
       
   534     } else {
       
   535       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
       
   536         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
       
   537         m->set_rate(0);
       
   538       }
       
   539     }
       
   540   }
       
   541 }
       
   542 
       
   543 // Check if this method has been stale for a given number of milliseconds.
       
   544 // See select_task().
       
   545 bool TieredThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
       
   546   jlong delta_s = t - SafepointTracing::end_of_last_safepoint_epoch_ms();
       
   547   jlong delta_t = t - m->prev_time();
       
   548   if (delta_t > timeout && delta_s > timeout) {
       
   549     int event_count = m->invocation_count() + m->backedge_count();
       
   550     int delta_e = event_count - m->prev_event_count();
       
   551     // Return true if there were no events.
       
   552     return delta_e == 0;
       
   553   }
       
   554   return false;
       
   555 }
       
   556 
       
   557 // We don't remove old methods from the compile queue even if they have
       
   558 // very low activity. See select_task().
       
   559 bool TieredThresholdPolicy::is_old(Method* method) {
       
   560   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
       
   561 }
       
   562 
       
   563 double TieredThresholdPolicy::weight(Method* method) {
       
   564   return (double)(method->rate() + 1) *
       
   565     (method->invocation_count() + 1) * (method->backedge_count() + 1);
       
   566 }
       
   567 
       
   568 // Apply heuristics and return true if x should be compiled before y
       
   569 bool TieredThresholdPolicy::compare_methods(Method* x, Method* y) {
       
   570   if (x->highest_comp_level() > y->highest_comp_level()) {
       
   571     // recompilation after deopt
       
   572     return true;
       
   573   } else
       
   574     if (x->highest_comp_level() == y->highest_comp_level()) {
       
   575       if (weight(x) > weight(y)) {
       
   576         return true;
       
   577       }
       
   578     }
       
   579   return false;
       
   580 }
       
   581 
       
   582 // Is method profiled enough?
       
   583 bool TieredThresholdPolicy::is_method_profiled(Method* method) {
       
   584   MethodData* mdo = method->method_data();
       
   585   if (mdo != NULL) {
       
   586     int i = mdo->invocation_count_delta();
       
   587     int b = mdo->backedge_count_delta();
       
   588     return call_predicate_helper<CompLevel_full_profile>(i, b, 1, method);
       
   589   }
       
   590   return false;
       
   591 }
       
   592 
       
   593 double TieredThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
       
   594   double queue_size = CompileBroker::queue_size(level);
       
   595   int comp_count = compiler_count(level);
       
   596   double k = queue_size / (feedback_k * comp_count) + 1;
       
   597 
       
   598   // Increase C1 compile threshold when the code cache is filled more
       
   599   // than specified by IncreaseFirstTierCompileThresholdAt percentage.
       
   600   // The main intention is to keep enough free space for C2 compiled code
       
   601   // to achieve peak performance if the code cache is under stress.
       
   602   if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
       
   603     double current_reverse_free_ratio = CodeCache::reverse_free_ratio(CodeCache::get_code_blob_type(level));
       
   604     if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
       
   605       k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
       
   606     }
       
   607   }
       
   608   return k;
       
   609 }
       
   610 
       
   611 // Call and loop predicates determine whether a transition to a higher
       
   612 // compilation level should be performed (pointers to predicate functions
       
   613 // are passed to common()).
       
   614 // Tier?LoadFeedback is basically a coefficient that determines of
       
   615 // how many methods per compiler thread can be in the queue before
       
   616 // the threshold values double.
       
   617 bool TieredThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level, Method* method) {
       
   618   switch(cur_level) {
       
   619   case CompLevel_aot: {
       
   620     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
       
   621     return loop_predicate_helper<CompLevel_aot>(i, b, k, method);
       
   622   }
       
   623   case CompLevel_none:
       
   624   case CompLevel_limited_profile: {
       
   625     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
       
   626     return loop_predicate_helper<CompLevel_none>(i, b, k, method);
       
   627   }
       
   628   case CompLevel_full_profile: {
       
   629     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
       
   630     return loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
       
   631   }
       
   632   default:
       
   633     return true;
       
   634   }
       
   635 }
       
   636 
       
   637 bool TieredThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level, Method* method) {
       
   638   switch(cur_level) {
       
   639   case CompLevel_aot: {
       
   640     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
       
   641     return call_predicate_helper<CompLevel_aot>(i, b, k, method);
       
   642   }
       
   643   case CompLevel_none:
       
   644   case CompLevel_limited_profile: {
       
   645     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
       
   646     return call_predicate_helper<CompLevel_none>(i, b, k, method);
       
   647   }
       
   648   case CompLevel_full_profile: {
       
   649     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
       
   650     return call_predicate_helper<CompLevel_full_profile>(i, b, k, method);
       
   651   }
       
   652   default:
       
   653     return true;
       
   654   }
       
   655 }
       
   656 
       
   657 // Determine is a method is mature.
       
   658 bool TieredThresholdPolicy::is_mature(Method* method) {
       
   659   if (should_compile_at_level_simple(method)) return true;
       
   660   MethodData* mdo = method->method_data();
       
   661   if (mdo != NULL) {
       
   662     int i = mdo->invocation_count();
       
   663     int b = mdo->backedge_count();
       
   664     double k = ProfileMaturityPercentage / 100.0;
       
   665     return call_predicate_helper<CompLevel_full_profile>(i, b, k, method) ||
       
   666            loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
       
   667   }
       
   668   return false;
       
   669 }
       
   670 
       
   671 // If a method is old enough and is still in the interpreter we would want to
       
   672 // start profiling without waiting for the compiled method to arrive.
       
   673 // We also take the load on compilers into the account.
       
   674 bool TieredThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
       
   675   if (cur_level == CompLevel_none &&
       
   676       CompileBroker::queue_size(CompLevel_full_optimization) <=
       
   677       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
       
   678     int i = method->invocation_count();
       
   679     int b = method->backedge_count();
       
   680     double k = Tier0ProfilingStartPercentage / 100.0;
       
   681     return call_predicate_helper<CompLevel_none>(i, b, k, method) || loop_predicate_helper<CompLevel_none>(i, b, k, method);
       
   682   }
       
   683   return false;
       
   684 }
       
   685 
       
   686 // Inlining control: if we're compiling a profiled method with C1 and the callee
       
   687 // is known to have OSRed in a C2 version, don't inline it.
       
   688 bool TieredThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
       
   689   CompLevel comp_level = (CompLevel)env->comp_level();
       
   690   if (comp_level == CompLevel_full_profile ||
       
   691       comp_level == CompLevel_limited_profile) {
       
   692     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
       
   693   }
       
   694   return false;
       
   695 }
       
   696 
       
   697 // Create MDO if necessary.
       
   698 void TieredThresholdPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) {
       
   699   if (mh->is_native() ||
       
   700       mh->is_abstract() ||
       
   701       mh->is_accessor() ||
       
   702       mh->is_constant_getter()) {
       
   703     return;
       
   704   }
       
   705   if (mh->method_data() == NULL) {
       
   706     Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
       
   707   }
       
   708 }
       
   709 
       
   710 
       
   711 /*
       
   712  * Method states:
       
   713  *   0 - interpreter (CompLevel_none)
       
   714  *   1 - pure C1 (CompLevel_simple)
       
   715  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
       
   716  *   3 - C1 with full profiling (CompLevel_full_profile)
       
   717  *   4 - C2 (CompLevel_full_optimization)
       
   718  *
       
   719  * Common state transition patterns:
       
   720  * a. 0 -> 3 -> 4.
       
   721  *    The most common path. But note that even in this straightforward case
       
   722  *    profiling can start at level 0 and finish at level 3.
       
   723  *
       
   724  * b. 0 -> 2 -> 3 -> 4.
       
   725  *    This case occurs when the load on C2 is deemed too high. So, instead of transitioning
       
   726  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
       
   727  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
       
   728  *
       
   729  * c. 0 -> (3->2) -> 4.
       
   730  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
       
   731  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
       
   732  *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
       
   733  *    without full profiling while c2 is compiling.
       
   734  *
       
   735  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
       
   736  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
       
   737  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
       
   738  *
       
   739  * e. 0 -> 4.
       
   740  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
       
   741  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
       
   742  *    the compiled version already exists).
       
   743  *
       
   744  * Note that since state 0 can be reached from any other state via deoptimization different loops
       
   745  * are possible.
       
   746  *
       
   747  */
       
   748 
       
   749 // Common transition function. Given a predicate determines if a method should transition to another level.
       
   750 CompLevel TieredThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
       
   751   CompLevel next_level = cur_level;
       
   752   int i = method->invocation_count();
       
   753   int b = method->backedge_count();
       
   754 
       
   755   if (should_compile_at_level_simple(method)) {
       
   756     next_level = CompLevel_simple;
       
   757   } else {
       
   758     switch(cur_level) {
       
   759       default: break;
       
   760       case CompLevel_aot: {
       
   761       // If we were at full profile level, would we switch to full opt?
       
   762       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
       
   763         next_level = CompLevel_full_optimization;
       
   764       } else if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
       
   765                                Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
       
   766                                (this->*p)(i, b, cur_level, method))) {
       
   767         next_level = CompLevel_full_profile;
       
   768       }
       
   769     }
       
   770     break;
       
   771     case CompLevel_none:
       
   772       // If we were at full profile level, would we switch to full opt?
       
   773       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
       
   774         next_level = CompLevel_full_optimization;
       
   775       } else if ((this->*p)(i, b, cur_level, method)) {
       
   776 #if INCLUDE_JVMCI
       
   777         if (EnableJVMCI && UseJVMCICompiler) {
       
   778           // Since JVMCI takes a while to warm up, its queue inevitably backs up during
       
   779           // early VM execution. As of 2014-06-13, JVMCI's inliner assumes that the root
       
   780           // compilation method and all potential inlinees have mature profiles (which
       
   781           // includes type profiling). If it sees immature profiles, JVMCI's inliner
       
   782           // can perform pathologically bad (e.g., causing OutOfMemoryErrors due to
       
   783           // exploring/inlining too many graphs). Since a rewrite of the inliner is
       
   784           // in progress, we simply disable the dialing back heuristic for now and will
       
   785           // revisit this decision once the new inliner is completed.
       
   786           next_level = CompLevel_full_profile;
       
   787         } else
       
   788 #endif
       
   789         {
       
   790           // C1-generated fully profiled code is about 30% slower than the limited profile
       
   791           // code that has only invocation and backedge counters. The observation is that
       
   792           // if C2 queue is large enough we can spend too much time in the fully profiled code
       
   793           // while waiting for C2 to pick the method from the queue. To alleviate this problem
       
   794           // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
       
   795           // we choose to compile a limited profiled version and then recompile with full profiling
       
   796           // when the load on C2 goes down.
       
   797           if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
       
   798               Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
       
   799             next_level = CompLevel_limited_profile;
       
   800           } else {
       
   801             next_level = CompLevel_full_profile;
       
   802           }
       
   803         }
       
   804       }
       
   805       break;
       
   806     case CompLevel_limited_profile:
       
   807       if (is_method_profiled(method)) {
       
   808         // Special case: we got here because this method was fully profiled in the interpreter.
       
   809         next_level = CompLevel_full_optimization;
       
   810       } else {
       
   811         MethodData* mdo = method->method_data();
       
   812         if (mdo != NULL) {
       
   813           if (mdo->would_profile()) {
       
   814             if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
       
   815                                      Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
       
   816                                      (this->*p)(i, b, cur_level, method))) {
       
   817               next_level = CompLevel_full_profile;
       
   818             }
       
   819           } else {
       
   820             next_level = CompLevel_full_optimization;
       
   821           }
       
   822         } else {
       
   823           // If there is no MDO we need to profile
       
   824           if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
       
   825                                    Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
       
   826                                    (this->*p)(i, b, cur_level, method))) {
       
   827             next_level = CompLevel_full_profile;
       
   828           }
       
   829         }
       
   830       }
       
   831       break;
       
   832     case CompLevel_full_profile:
       
   833       {
       
   834         MethodData* mdo = method->method_data();
       
   835         if (mdo != NULL) {
       
   836           if (mdo->would_profile()) {
       
   837             int mdo_i = mdo->invocation_count_delta();
       
   838             int mdo_b = mdo->backedge_count_delta();
       
   839             if ((this->*p)(mdo_i, mdo_b, cur_level, method)) {
       
   840               next_level = CompLevel_full_optimization;
       
   841             }
       
   842           } else {
       
   843             next_level = CompLevel_full_optimization;
       
   844           }
       
   845         }
       
   846       }
       
   847       break;
       
   848     }
       
   849   }
       
   850   return MIN2(next_level, (CompLevel)TieredStopAtLevel);
       
   851 }
       
   852 
       
   853 // Determine if a method should be compiled with a normal entry point at a different level.
       
   854 CompLevel TieredThresholdPolicy::call_event(Method* method, CompLevel cur_level, JavaThread * thread) {
       
   855   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
       
   856                              common(&TieredThresholdPolicy::loop_predicate, method, cur_level, true));
       
   857   CompLevel next_level = common(&TieredThresholdPolicy::call_predicate, method, cur_level);
       
   858 
       
   859   // If OSR method level is greater than the regular method level, the levels should be
       
   860   // equalized by raising the regular method level in order to avoid OSRs during each
       
   861   // invocation of the method.
       
   862   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
       
   863     MethodData* mdo = method->method_data();
       
   864     guarantee(mdo != NULL, "MDO should not be NULL");
       
   865     if (mdo->invocation_count() >= 1) {
       
   866       next_level = CompLevel_full_optimization;
       
   867     }
       
   868   } else {
       
   869     next_level = MAX2(osr_level, next_level);
       
   870   }
       
   871   return next_level;
       
   872 }
       
   873 
       
   874 // Determine if we should do an OSR compilation of a given method.
       
   875 CompLevel TieredThresholdPolicy::loop_event(Method* method, CompLevel cur_level, JavaThread* thread) {
       
   876   CompLevel next_level = common(&TieredThresholdPolicy::loop_predicate, method, cur_level, true);
       
   877   if (cur_level == CompLevel_none) {
       
   878     // If there is a live OSR method that means that we deopted to the interpreter
       
   879     // for the transition.
       
   880     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
       
   881     if (osr_level > CompLevel_none) {
       
   882       return osr_level;
       
   883     }
       
   884   }
       
   885   return next_level;
       
   886 }
       
   887 
       
   888 bool TieredThresholdPolicy::maybe_switch_to_aot(const methodHandle& mh, CompLevel cur_level, CompLevel next_level, JavaThread* thread) {
       
   889   if (UseAOT) {
       
   890     if (cur_level == CompLevel_full_profile || cur_level == CompLevel_none) {
       
   891       // If the current level is full profile or interpreter and we're switching to any other level,
       
   892       // activate the AOT code back first so that we won't waste time overprofiling.
       
   893       compile(mh, InvocationEntryBci, CompLevel_aot, thread);
       
   894       // Fall through for JIT compilation.
       
   895     }
       
   896     if (next_level == CompLevel_limited_profile && cur_level != CompLevel_aot && mh->has_aot_code()) {
       
   897       // If the next level is limited profile, use the aot code (if there is any),
       
   898       // since it's essentially the same thing.
       
   899       compile(mh, InvocationEntryBci, CompLevel_aot, thread);
       
   900       // Not need to JIT, we're done.
       
   901       return true;
       
   902     }
       
   903   }
       
   904   return false;
       
   905 }
       
   906 
       
   907 
       
   908 // Handle the invocation event.
       
   909 void TieredThresholdPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
       
   910                                                       CompLevel level, CompiledMethod* nm, JavaThread* thread) {
       
   911   if (should_create_mdo(mh(), level)) {
       
   912     create_mdo(mh, thread);
       
   913   }
       
   914   CompLevel next_level = call_event(mh(), level, thread);
       
   915   if (next_level != level) {
       
   916     if (maybe_switch_to_aot(mh, level, next_level, thread)) {
       
   917       // No JITting necessary
       
   918       return;
       
   919     }
       
   920     if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
       
   921       compile(mh, InvocationEntryBci, next_level, thread);
       
   922     }
       
   923   }
       
   924 }
       
   925 
       
   926 // Handle the back branch event. Notice that we can compile the method
       
   927 // with a regular entry from here.
       
   928 void TieredThresholdPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
       
   929                                                      int bci, CompLevel level, CompiledMethod* nm, JavaThread* thread) {
       
   930   if (should_create_mdo(mh(), level)) {
       
   931     create_mdo(mh, thread);
       
   932   }
       
   933   // Check if MDO should be created for the inlined method
       
   934   if (should_create_mdo(imh(), level)) {
       
   935     create_mdo(imh, thread);
       
   936   }
       
   937 
       
   938   if (is_compilation_enabled()) {
       
   939     CompLevel next_osr_level = loop_event(imh(), level, thread);
       
   940     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
       
   941     // At the very least compile the OSR version
       
   942     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
       
   943       compile(imh, bci, next_osr_level, thread);
       
   944     }
       
   945 
       
   946     // Use loop event as an opportunity to also check if there's been
       
   947     // enough calls.
       
   948     CompLevel cur_level, next_level;
       
   949     if (mh() != imh()) { // If there is an enclosing method
       
   950       if (level == CompLevel_aot) {
       
   951         // Recompile the enclosing method to prevent infinite OSRs. Stay at AOT level while it's compiling.
       
   952         if (max_osr_level != CompLevel_none && !CompileBroker::compilation_is_in_queue(mh)) {
       
   953           compile(mh, InvocationEntryBci, MIN2((CompLevel)TieredStopAtLevel, CompLevel_full_profile), thread);
       
   954         }
       
   955       } else {
       
   956         // Current loop event level is not AOT
       
   957         guarantee(nm != NULL, "Should have nmethod here");
       
   958         cur_level = comp_level(mh());
       
   959         next_level = call_event(mh(), cur_level, thread);
       
   960 
       
   961         if (max_osr_level == CompLevel_full_optimization) {
       
   962           // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
       
   963           bool make_not_entrant = false;
       
   964           if (nm->is_osr_method()) {
       
   965             // This is an osr method, just make it not entrant and recompile later if needed
       
   966             make_not_entrant = true;
       
   967           } else {
       
   968             if (next_level != CompLevel_full_optimization) {
       
   969               // next_level is not full opt, so we need to recompile the
       
   970               // enclosing method without the inlinee
       
   971               cur_level = CompLevel_none;
       
   972               make_not_entrant = true;
       
   973             }
       
   974           }
       
   975           if (make_not_entrant) {
       
   976             if (PrintTieredEvents) {
       
   977               int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
       
   978               print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
       
   979             }
       
   980             nm->make_not_entrant();
       
   981           }
       
   982         }
       
   983         // Fix up next_level if necessary to avoid deopts
       
   984         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
       
   985           next_level = CompLevel_full_profile;
       
   986         }
       
   987         if (cur_level != next_level) {
       
   988           if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) {
       
   989             compile(mh, InvocationEntryBci, next_level, thread);
       
   990           }
       
   991         }
       
   992       }
       
   993     } else {
       
   994       cur_level = comp_level(mh());
       
   995       next_level = call_event(mh(), cur_level, thread);
       
   996       if (next_level != cur_level) {
       
   997         if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) {
       
   998           compile(mh, InvocationEntryBci, next_level, thread);
       
   999         }
       
  1000       }
       
  1001     }
       
  1002   }
       
  1003 }
       
  1004 
       
  1005 #endif