hotspot/src/cpu/ppc/vm/sharedRuntime_ppc.cpp
changeset 22824 28258dd5cb2e
child 22834 3e2df6a4a28c
equal deleted inserted replaced
22823:40b2c6c30123 22824:28258dd5cb2e
       
     1 /*
       
     2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
       
     3  * Copyright 2012, 2013 SAP AG. All rights reserved.
       
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     5  *
       
     6  * This code is free software; you can redistribute it and/or modify it
       
     7  * under the terms of the GNU General Public License version 2 only, as
       
     8  * published by the Free Software Foundation.
       
     9  *
       
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    13  * version 2 for more details (a copy is included in the LICENSE file that
       
    14  * accompanied this code).
       
    15  *
       
    16  * You should have received a copy of the GNU General Public License version
       
    17  * 2 along with this work; if not, write to the Free Software Foundation,
       
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    19  *
       
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    21  * or visit www.oracle.com if you need additional information or have any
       
    22  * questions.
       
    23  *
       
    24  */
       
    25 
       
    26 #include "precompiled.hpp"
       
    27 #include "asm/macroAssembler.inline.hpp"
       
    28 #include "code/debugInfoRec.hpp"
       
    29 #include "code/icBuffer.hpp"
       
    30 #include "code/vtableStubs.hpp"
       
    31 #include "interpreter/interpreter.hpp"
       
    32 #include "oops/compiledICHolder.hpp"
       
    33 #include "prims/jvmtiRedefineClassesTrace.hpp"
       
    34 #include "runtime/sharedRuntime.hpp"
       
    35 #include "runtime/vframeArray.hpp"
       
    36 #include "vmreg_ppc.inline.hpp"
       
    37 #ifdef COMPILER1
       
    38 #include "c1/c1_Runtime1.hpp"
       
    39 #endif
       
    40 #ifdef COMPILER2
       
    41 #include "opto/runtime.hpp"
       
    42 #endif
       
    43 
       
    44 #define __ masm->
       
    45 
       
    46 #ifdef PRODUCT
       
    47 #define BLOCK_COMMENT(str) // nothing
       
    48 #else
       
    49 #define BLOCK_COMMENT(str) __ block_comment(str)
       
    50 #endif
       
    51 
       
    52 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
       
    53 
       
    54 
       
    55 // Used by generate_deopt_blob.  Defined in .ad file.
       
    56 extern uint size_deopt_handler();
       
    57 
       
    58 
       
    59 class RegisterSaver {
       
    60  // Used for saving volatile registers.
       
    61  public:
       
    62 
       
    63   // Support different return pc locations.
       
    64   enum ReturnPCLocation {
       
    65     return_pc_is_lr,
       
    66     return_pc_is_r4,
       
    67     return_pc_is_thread_saved_exception_pc
       
    68   };
       
    69 
       
    70   static OopMap* push_frame_abi112_and_save_live_registers(MacroAssembler* masm,
       
    71                          int* out_frame_size_in_bytes,
       
    72                          bool generate_oop_map,
       
    73                          int return_pc_adjustment,
       
    74                          ReturnPCLocation return_pc_location);
       
    75   static void    restore_live_registers_and_pop_frame(MacroAssembler* masm,
       
    76                          int frame_size_in_bytes,
       
    77                          bool restore_ctr);
       
    78 
       
    79   static void push_frame_and_save_argument_registers(MacroAssembler* masm,
       
    80                          Register r_temp,
       
    81                          int frame_size,
       
    82                          int total_args,
       
    83                          const VMRegPair *regs, const VMRegPair *regs2 = NULL);
       
    84   static void restore_argument_registers_and_pop_frame(MacroAssembler*masm,
       
    85                          int frame_size,
       
    86                          int total_args,
       
    87                          const VMRegPair *regs, const VMRegPair *regs2 = NULL);
       
    88 
       
    89   // During deoptimization only the result registers need to be restored
       
    90   // all the other values have already been extracted.
       
    91   static void restore_result_registers(MacroAssembler* masm, int frame_size_in_bytes);
       
    92 
       
    93   // Constants and data structures:
       
    94 
       
    95   typedef enum {
       
    96     int_reg           = 0,
       
    97     float_reg         = 1,
       
    98     special_reg       = 2
       
    99   } RegisterType;
       
   100 
       
   101   typedef enum {
       
   102     reg_size          = 8,
       
   103     half_reg_size     = reg_size / 2,
       
   104   } RegisterConstants;
       
   105 
       
   106   typedef struct {
       
   107     RegisterType        reg_type;
       
   108     int                 reg_num;
       
   109     VMReg               vmreg;
       
   110   } LiveRegType;
       
   111 };
       
   112 
       
   113 
       
   114 #define RegisterSaver_LiveSpecialReg(regname) \
       
   115   { RegisterSaver::special_reg, regname->encoding(), regname->as_VMReg() }
       
   116 
       
   117 #define RegisterSaver_LiveIntReg(regname) \
       
   118   { RegisterSaver::int_reg,     regname->encoding(), regname->as_VMReg() }
       
   119 
       
   120 #define RegisterSaver_LiveFloatReg(regname) \
       
   121   { RegisterSaver::float_reg,   regname->encoding(), regname->as_VMReg() }
       
   122 
       
   123 static const RegisterSaver::LiveRegType RegisterSaver_LiveRegs[] = {
       
   124   // Live registers which get spilled to the stack. Register
       
   125   // positions in this array correspond directly to the stack layout.
       
   126 
       
   127   //
       
   128   // live special registers:
       
   129   //
       
   130   RegisterSaver_LiveSpecialReg(SR_CTR),
       
   131   //
       
   132   // live float registers:
       
   133   //
       
   134   RegisterSaver_LiveFloatReg( F0  ),
       
   135   RegisterSaver_LiveFloatReg( F1  ),
       
   136   RegisterSaver_LiveFloatReg( F2  ),
       
   137   RegisterSaver_LiveFloatReg( F3  ),
       
   138   RegisterSaver_LiveFloatReg( F4  ),
       
   139   RegisterSaver_LiveFloatReg( F5  ),
       
   140   RegisterSaver_LiveFloatReg( F6  ),
       
   141   RegisterSaver_LiveFloatReg( F7  ),
       
   142   RegisterSaver_LiveFloatReg( F8  ),
       
   143   RegisterSaver_LiveFloatReg( F9  ),
       
   144   RegisterSaver_LiveFloatReg( F10 ),
       
   145   RegisterSaver_LiveFloatReg( F11 ),
       
   146   RegisterSaver_LiveFloatReg( F12 ),
       
   147   RegisterSaver_LiveFloatReg( F13 ),
       
   148   RegisterSaver_LiveFloatReg( F14 ),
       
   149   RegisterSaver_LiveFloatReg( F15 ),
       
   150   RegisterSaver_LiveFloatReg( F16 ),
       
   151   RegisterSaver_LiveFloatReg( F17 ),
       
   152   RegisterSaver_LiveFloatReg( F18 ),
       
   153   RegisterSaver_LiveFloatReg( F19 ),
       
   154   RegisterSaver_LiveFloatReg( F20 ),
       
   155   RegisterSaver_LiveFloatReg( F21 ),
       
   156   RegisterSaver_LiveFloatReg( F22 ),
       
   157   RegisterSaver_LiveFloatReg( F23 ),
       
   158   RegisterSaver_LiveFloatReg( F24 ),
       
   159   RegisterSaver_LiveFloatReg( F25 ),
       
   160   RegisterSaver_LiveFloatReg( F26 ),
       
   161   RegisterSaver_LiveFloatReg( F27 ),
       
   162   RegisterSaver_LiveFloatReg( F28 ),
       
   163   RegisterSaver_LiveFloatReg( F29 ),
       
   164   RegisterSaver_LiveFloatReg( F30 ),
       
   165   RegisterSaver_LiveFloatReg( F31 ),
       
   166   //
       
   167   // live integer registers:
       
   168   //
       
   169   RegisterSaver_LiveIntReg(   R0  ),
       
   170   //RegisterSaver_LiveIntReg( R1  ), // stack pointer
       
   171   RegisterSaver_LiveIntReg(   R2  ),
       
   172   RegisterSaver_LiveIntReg(   R3  ),
       
   173   RegisterSaver_LiveIntReg(   R4  ),
       
   174   RegisterSaver_LiveIntReg(   R5  ),
       
   175   RegisterSaver_LiveIntReg(   R6  ),
       
   176   RegisterSaver_LiveIntReg(   R7  ),
       
   177   RegisterSaver_LiveIntReg(   R8  ),
       
   178   RegisterSaver_LiveIntReg(   R9  ),
       
   179   RegisterSaver_LiveIntReg(   R10 ),
       
   180   RegisterSaver_LiveIntReg(   R11 ),
       
   181   RegisterSaver_LiveIntReg(   R12 ),
       
   182   //RegisterSaver_LiveIntReg( R13 ), // system thread id
       
   183   RegisterSaver_LiveIntReg(   R14 ),
       
   184   RegisterSaver_LiveIntReg(   R15 ),
       
   185   RegisterSaver_LiveIntReg(   R16 ),
       
   186   RegisterSaver_LiveIntReg(   R17 ),
       
   187   RegisterSaver_LiveIntReg(   R18 ),
       
   188   RegisterSaver_LiveIntReg(   R19 ),
       
   189   RegisterSaver_LiveIntReg(   R20 ),
       
   190   RegisterSaver_LiveIntReg(   R21 ),
       
   191   RegisterSaver_LiveIntReg(   R22 ),
       
   192   RegisterSaver_LiveIntReg(   R23 ),
       
   193   RegisterSaver_LiveIntReg(   R24 ),
       
   194   RegisterSaver_LiveIntReg(   R25 ),
       
   195   RegisterSaver_LiveIntReg(   R26 ),
       
   196   RegisterSaver_LiveIntReg(   R27 ),
       
   197   RegisterSaver_LiveIntReg(   R28 ),
       
   198   RegisterSaver_LiveIntReg(   R29 ),
       
   199   RegisterSaver_LiveIntReg(   R31 ),
       
   200   RegisterSaver_LiveIntReg(   R30 ), // r30 must be the last register
       
   201 };
       
   202 
       
   203 OopMap* RegisterSaver::push_frame_abi112_and_save_live_registers(MacroAssembler* masm,
       
   204                          int* out_frame_size_in_bytes,
       
   205                          bool generate_oop_map,
       
   206                          int return_pc_adjustment,
       
   207                          ReturnPCLocation return_pc_location) {
       
   208   // Push an abi112-frame and store all registers which may be live.
       
   209   // If requested, create an OopMap: Record volatile registers as
       
   210   // callee-save values in an OopMap so their save locations will be
       
   211   // propagated to the RegisterMap of the caller frame during
       
   212   // StackFrameStream construction (needed for deoptimization; see
       
   213   // compiledVFrame::create_stack_value).
       
   214   // If return_pc_adjustment != 0 adjust the return pc by return_pc_adjustment.
       
   215 
       
   216   int i;
       
   217   int offset;
       
   218 
       
   219   // calcualte frame size
       
   220   const int regstosave_num       = sizeof(RegisterSaver_LiveRegs) /
       
   221                                    sizeof(RegisterSaver::LiveRegType);
       
   222   const int register_save_size   = regstosave_num * reg_size;
       
   223   const int frame_size_in_bytes  = round_to(register_save_size, frame::alignment_in_bytes)
       
   224                                    + frame::abi_112_size;
       
   225   *out_frame_size_in_bytes       = frame_size_in_bytes;
       
   226   const int frame_size_in_slots  = frame_size_in_bytes / sizeof(jint);
       
   227   const int register_save_offset = frame_size_in_bytes - register_save_size;
       
   228 
       
   229   // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words.
       
   230   OopMap* map = generate_oop_map ? new OopMap(frame_size_in_slots, 0) : NULL;
       
   231 
       
   232   BLOCK_COMMENT("push_frame_abi112_and_save_live_registers {");
       
   233 
       
   234   // Save r30 in the last slot of the not yet pushed frame so that we
       
   235   // can use it as scratch reg.
       
   236   __ std(R30, -reg_size, R1_SP);
       
   237   assert(-reg_size == register_save_offset - frame_size_in_bytes + ((regstosave_num-1)*reg_size),
       
   238          "consistency check");
       
   239 
       
   240   // save the flags
       
   241   // Do the save_LR_CR by hand and adjust the return pc if requested.
       
   242   __ mfcr(R30);
       
   243   __ std(R30, _abi(cr), R1_SP);
       
   244   switch (return_pc_location) {
       
   245     case return_pc_is_lr:    __ mflr(R30);           break;
       
   246     case return_pc_is_r4:    __ mr(R30, R4);     break;
       
   247     case return_pc_is_thread_saved_exception_pc:
       
   248                                  __ ld(R30, thread_(saved_exception_pc)); break;
       
   249     default: ShouldNotReachHere();
       
   250   }
       
   251   if (return_pc_adjustment != 0)
       
   252     __ addi(R30, R30, return_pc_adjustment);
       
   253   __ std(R30, _abi(lr), R1_SP);
       
   254 
       
   255   // push a new frame
       
   256   __ push_frame(frame_size_in_bytes, R30);
       
   257 
       
   258   // save all registers (ints and floats)
       
   259   offset = register_save_offset;
       
   260   for (int i = 0; i < regstosave_num; i++) {
       
   261     int reg_num  = RegisterSaver_LiveRegs[i].reg_num;
       
   262     int reg_type = RegisterSaver_LiveRegs[i].reg_type;
       
   263 
       
   264     switch (reg_type) {
       
   265       case RegisterSaver::int_reg: {
       
   266         if (reg_num != 30) { // We spilled R30 right at the beginning.
       
   267           __ std(as_Register(reg_num), offset, R1_SP);
       
   268         }
       
   269         break;
       
   270       }
       
   271       case RegisterSaver::float_reg: {
       
   272         __ stfd(as_FloatRegister(reg_num), offset, R1_SP);
       
   273         break;
       
   274       }
       
   275       case RegisterSaver::special_reg: {
       
   276         if (reg_num == SR_CTR_SpecialRegisterEnumValue) {
       
   277           __ mfctr(R30);
       
   278           __ std(R30, offset, R1_SP);
       
   279         } else {
       
   280           Unimplemented();
       
   281         }
       
   282         break;
       
   283       }
       
   284       default:
       
   285         ShouldNotReachHere();
       
   286     }
       
   287 
       
   288     if (generate_oop_map) {
       
   289       map->set_callee_saved(VMRegImpl::stack2reg(offset>>2),
       
   290                             RegisterSaver_LiveRegs[i].vmreg);
       
   291       map->set_callee_saved(VMRegImpl::stack2reg((offset + half_reg_size)>>2),
       
   292                             RegisterSaver_LiveRegs[i].vmreg->next());
       
   293     }
       
   294     offset += reg_size;
       
   295   }
       
   296 
       
   297   BLOCK_COMMENT("} push_frame_abi112_and_save_live_registers");
       
   298 
       
   299   // And we're done.
       
   300   return map;
       
   301 }
       
   302 
       
   303 
       
   304 // Pop the current frame and restore all the registers that we
       
   305 // saved.
       
   306 void RegisterSaver::restore_live_registers_and_pop_frame(MacroAssembler* masm,
       
   307                                                          int frame_size_in_bytes,
       
   308                                                          bool restore_ctr) {
       
   309   int i;
       
   310   int offset;
       
   311   const int regstosave_num       = sizeof(RegisterSaver_LiveRegs) /
       
   312                                    sizeof(RegisterSaver::LiveRegType);
       
   313   const int register_save_size   = regstosave_num * reg_size;
       
   314   const int register_save_offset = frame_size_in_bytes - register_save_size;
       
   315 
       
   316   BLOCK_COMMENT("restore_live_registers_and_pop_frame {");
       
   317 
       
   318   // restore all registers (ints and floats)
       
   319   offset = register_save_offset;
       
   320   for (int i = 0; i < regstosave_num; i++) {
       
   321     int reg_num  = RegisterSaver_LiveRegs[i].reg_num;
       
   322     int reg_type = RegisterSaver_LiveRegs[i].reg_type;
       
   323 
       
   324     switch (reg_type) {
       
   325       case RegisterSaver::int_reg: {
       
   326         if (reg_num != 30) // R30 restored at the end, it's the tmp reg!
       
   327           __ ld(as_Register(reg_num), offset, R1_SP);
       
   328         break;
       
   329       }
       
   330       case RegisterSaver::float_reg: {
       
   331         __ lfd(as_FloatRegister(reg_num), offset, R1_SP);
       
   332         break;
       
   333       }
       
   334       case RegisterSaver::special_reg: {
       
   335         if (reg_num == SR_CTR_SpecialRegisterEnumValue) {
       
   336           if (restore_ctr) { // Nothing to do here if ctr already contains the next address.
       
   337             __ ld(R30, offset, R1_SP);
       
   338             __ mtctr(R30);
       
   339           }
       
   340         } else {
       
   341           Unimplemented();
       
   342         }
       
   343         break;
       
   344       }
       
   345       default:
       
   346         ShouldNotReachHere();
       
   347     }
       
   348     offset += reg_size;
       
   349   }
       
   350 
       
   351   // pop the frame
       
   352   __ pop_frame();
       
   353 
       
   354   // restore the flags
       
   355   __ restore_LR_CR(R30);
       
   356 
       
   357   // restore scratch register's value
       
   358   __ ld(R30, -reg_size, R1_SP);
       
   359 
       
   360   BLOCK_COMMENT("} restore_live_registers_and_pop_frame");
       
   361 }
       
   362 
       
   363 void RegisterSaver::push_frame_and_save_argument_registers(MacroAssembler* masm, Register r_temp,
       
   364                                                            int frame_size,int total_args, const VMRegPair *regs,
       
   365                                                            const VMRegPair *regs2) {
       
   366   __ push_frame(frame_size, r_temp);
       
   367   int st_off = frame_size - wordSize;
       
   368   for (int i = 0; i < total_args; i++) {
       
   369     VMReg r_1 = regs[i].first();
       
   370     VMReg r_2 = regs[i].second();
       
   371     if (!r_1->is_valid()) {
       
   372       assert(!r_2->is_valid(), "");
       
   373       continue;
       
   374     }
       
   375     if (r_1->is_Register()) {
       
   376       Register r = r_1->as_Register();
       
   377       __ std(r, st_off, R1_SP);
       
   378       st_off -= wordSize;
       
   379     } else if (r_1->is_FloatRegister()) {
       
   380       FloatRegister f = r_1->as_FloatRegister();
       
   381       __ stfd(f, st_off, R1_SP);
       
   382       st_off -= wordSize;
       
   383     }
       
   384   }
       
   385   if (regs2 != NULL) {
       
   386     for (int i = 0; i < total_args; i++) {
       
   387       VMReg r_1 = regs2[i].first();
       
   388       VMReg r_2 = regs2[i].second();
       
   389       if (!r_1->is_valid()) {
       
   390         assert(!r_2->is_valid(), "");
       
   391         continue;
       
   392       }
       
   393       if (r_1->is_Register()) {
       
   394         Register r = r_1->as_Register();
       
   395         __ std(r, st_off, R1_SP);
       
   396         st_off -= wordSize;
       
   397       } else if (r_1->is_FloatRegister()) {
       
   398         FloatRegister f = r_1->as_FloatRegister();
       
   399         __ stfd(f, st_off, R1_SP);
       
   400         st_off -= wordSize;
       
   401       }
       
   402     }
       
   403   }
       
   404 }
       
   405 
       
   406 void RegisterSaver::restore_argument_registers_and_pop_frame(MacroAssembler*masm, int frame_size,
       
   407                                                              int total_args, const VMRegPair *regs,
       
   408                                                              const VMRegPair *regs2) {
       
   409   int st_off = frame_size - wordSize;
       
   410   for (int i = 0; i < total_args; i++) {
       
   411     VMReg r_1 = regs[i].first();
       
   412     VMReg r_2 = regs[i].second();
       
   413     if (r_1->is_Register()) {
       
   414       Register r = r_1->as_Register();
       
   415       __ ld(r, st_off, R1_SP);
       
   416       st_off -= wordSize;
       
   417     } else if (r_1->is_FloatRegister()) {
       
   418       FloatRegister f = r_1->as_FloatRegister();
       
   419       __ lfd(f, st_off, R1_SP);
       
   420       st_off -= wordSize;
       
   421     }
       
   422   }
       
   423   if (regs2 != NULL)
       
   424     for (int i = 0; i < total_args; i++) {
       
   425       VMReg r_1 = regs2[i].first();
       
   426       VMReg r_2 = regs2[i].second();
       
   427       if (r_1->is_Register()) {
       
   428         Register r = r_1->as_Register();
       
   429         __ ld(r, st_off, R1_SP);
       
   430         st_off -= wordSize;
       
   431       } else if (r_1->is_FloatRegister()) {
       
   432         FloatRegister f = r_1->as_FloatRegister();
       
   433         __ lfd(f, st_off, R1_SP);
       
   434         st_off -= wordSize;
       
   435       }
       
   436     }
       
   437   __ pop_frame();
       
   438 }
       
   439 
       
   440 // Restore the registers that might be holding a result.
       
   441 void RegisterSaver::restore_result_registers(MacroAssembler* masm, int frame_size_in_bytes) {
       
   442   int i;
       
   443   int offset;
       
   444   const int regstosave_num       = sizeof(RegisterSaver_LiveRegs) /
       
   445                                    sizeof(RegisterSaver::LiveRegType);
       
   446   const int register_save_size   = regstosave_num * reg_size;
       
   447   const int register_save_offset = frame_size_in_bytes - register_save_size;
       
   448 
       
   449   // restore all result registers (ints and floats)
       
   450   offset = register_save_offset;
       
   451   for (int i = 0; i < regstosave_num; i++) {
       
   452     int reg_num  = RegisterSaver_LiveRegs[i].reg_num;
       
   453     int reg_type = RegisterSaver_LiveRegs[i].reg_type;
       
   454     switch (reg_type) {
       
   455       case RegisterSaver::int_reg: {
       
   456         if (as_Register(reg_num)==R3_RET) // int result_reg
       
   457           __ ld(as_Register(reg_num), offset, R1_SP);
       
   458         break;
       
   459       }
       
   460       case RegisterSaver::float_reg: {
       
   461         if (as_FloatRegister(reg_num)==F1_RET) // float result_reg
       
   462           __ lfd(as_FloatRegister(reg_num), offset, R1_SP);
       
   463         break;
       
   464       }
       
   465       case RegisterSaver::special_reg: {
       
   466         // Special registers don't hold a result.
       
   467         break;
       
   468       }
       
   469       default:
       
   470         ShouldNotReachHere();
       
   471     }
       
   472     offset += reg_size;
       
   473   }
       
   474 }
       
   475 
       
   476 // Is vector's size (in bytes) bigger than a size saved by default?
       
   477 bool SharedRuntime::is_wide_vector(int size) {
       
   478   ResourceMark rm;
       
   479   // Note, MaxVectorSize == 8 on PPC64.
       
   480   assert(size <= 8, err_msg_res("%d bytes vectors are not supported", size));
       
   481   return size > 8;
       
   482 }
       
   483 #ifdef COMPILER2
       
   484 static int reg2slot(VMReg r) {
       
   485   return r->reg2stack() + SharedRuntime::out_preserve_stack_slots();
       
   486 }
       
   487 
       
   488 static int reg2offset(VMReg r) {
       
   489   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
       
   490 }
       
   491 #endif
       
   492 
       
   493 // ---------------------------------------------------------------------------
       
   494 // Read the array of BasicTypes from a signature, and compute where the
       
   495 // arguments should go. Values in the VMRegPair regs array refer to 4-byte
       
   496 // quantities. Values less than VMRegImpl::stack0 are registers, those above
       
   497 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer
       
   498 // as framesizes are fixed.
       
   499 // VMRegImpl::stack0 refers to the first slot 0(sp).
       
   500 // and VMRegImpl::stack0+1 refers to the memory word 4-bytes higher. Register
       
   501 // up to RegisterImpl::number_of_registers) are the 64-bit
       
   502 // integer registers.
       
   503 
       
   504 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
       
   505 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
       
   506 // units regardless of build. Of course for i486 there is no 64 bit build
       
   507 
       
   508 // The Java calling convention is a "shifted" version of the C ABI.
       
   509 // By skipping the first C ABI register we can call non-static jni methods
       
   510 // with small numbers of arguments without having to shuffle the arguments
       
   511 // at all. Since we control the java ABI we ought to at least get some
       
   512 // advantage out of it.
       
   513 
       
   514 const VMReg java_iarg_reg[8] = {
       
   515   R3->as_VMReg(),
       
   516   R4->as_VMReg(),
       
   517   R5->as_VMReg(),
       
   518   R6->as_VMReg(),
       
   519   R7->as_VMReg(),
       
   520   R8->as_VMReg(),
       
   521   R9->as_VMReg(),
       
   522   R10->as_VMReg()
       
   523 };
       
   524 
       
   525 const VMReg java_farg_reg[13] = {
       
   526   F1->as_VMReg(),
       
   527   F2->as_VMReg(),
       
   528   F3->as_VMReg(),
       
   529   F4->as_VMReg(),
       
   530   F5->as_VMReg(),
       
   531   F6->as_VMReg(),
       
   532   F7->as_VMReg(),
       
   533   F8->as_VMReg(),
       
   534   F9->as_VMReg(),
       
   535   F10->as_VMReg(),
       
   536   F11->as_VMReg(),
       
   537   F12->as_VMReg(),
       
   538   F13->as_VMReg()
       
   539 };
       
   540 
       
   541 const int num_java_iarg_registers = sizeof(java_iarg_reg) / sizeof(java_iarg_reg[0]);
       
   542 const int num_java_farg_registers = sizeof(java_farg_reg) / sizeof(java_farg_reg[0]);
       
   543 
       
   544 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
       
   545                                            VMRegPair *regs,
       
   546                                            int total_args_passed,
       
   547                                            int is_outgoing) {
       
   548   // C2c calling conventions for compiled-compiled calls.
       
   549   // Put 8 ints/longs into registers _AND_ 13 float/doubles into
       
   550   // registers _AND_ put the rest on the stack.
       
   551 
       
   552   const int inc_stk_for_intfloat   = 1; // 1 slots for ints and floats
       
   553   const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles
       
   554 
       
   555   int i;
       
   556   VMReg reg;
       
   557   int stk = 0;
       
   558   int ireg = 0;
       
   559   int freg = 0;
       
   560 
       
   561   // We put the first 8 arguments into registers and the rest on the
       
   562   // stack, float arguments are already in their argument registers
       
   563   // due to c2c calling conventions (see calling_convention).
       
   564   for (int i = 0; i < total_args_passed; ++i) {
       
   565     switch(sig_bt[i]) {
       
   566     case T_BOOLEAN:
       
   567     case T_CHAR:
       
   568     case T_BYTE:
       
   569     case T_SHORT:
       
   570     case T_INT:
       
   571       if (ireg < num_java_iarg_registers) {
       
   572         // Put int/ptr in register
       
   573         reg = java_iarg_reg[ireg];
       
   574         ++ireg;
       
   575       } else {
       
   576         // Put int/ptr on stack.
       
   577         reg = VMRegImpl::stack2reg(stk);
       
   578         stk += inc_stk_for_intfloat;
       
   579       }
       
   580       regs[i].set1(reg);
       
   581       break;
       
   582     case T_LONG:
       
   583       assert(sig_bt[i+1] == T_VOID, "expecting half");
       
   584       if (ireg < num_java_iarg_registers) {
       
   585         // Put long in register.
       
   586         reg = java_iarg_reg[ireg];
       
   587         ++ireg;
       
   588       } else {
       
   589         // Put long on stack. They must be aligned to 2 slots.
       
   590         if (stk & 0x1) ++stk;
       
   591         reg = VMRegImpl::stack2reg(stk);
       
   592         stk += inc_stk_for_longdouble;
       
   593       }
       
   594       regs[i].set2(reg);
       
   595       break;
       
   596     case T_OBJECT:
       
   597     case T_ARRAY:
       
   598     case T_ADDRESS:
       
   599       if (ireg < num_java_iarg_registers) {
       
   600         // Put ptr in register.
       
   601         reg = java_iarg_reg[ireg];
       
   602         ++ireg;
       
   603       } else {
       
   604         // Put ptr on stack. Objects must be aligned to 2 slots too,
       
   605         // because "64-bit pointers record oop-ishness on 2 aligned
       
   606         // adjacent registers." (see OopFlow::build_oop_map).
       
   607         if (stk & 0x1) ++stk;
       
   608         reg = VMRegImpl::stack2reg(stk);
       
   609         stk += inc_stk_for_longdouble;
       
   610       }
       
   611       regs[i].set2(reg);
       
   612       break;
       
   613     case T_FLOAT:
       
   614       if (freg < num_java_farg_registers) {
       
   615         // Put float in register.
       
   616         reg = java_farg_reg[freg];
       
   617         ++freg;
       
   618       } else {
       
   619         // Put float on stack.
       
   620         reg = VMRegImpl::stack2reg(stk);
       
   621         stk += inc_stk_for_intfloat;
       
   622       }
       
   623       regs[i].set1(reg);
       
   624       break;
       
   625     case T_DOUBLE:
       
   626       assert(sig_bt[i+1] == T_VOID, "expecting half");
       
   627       if (freg < num_java_farg_registers) {
       
   628         // Put double in register.
       
   629         reg = java_farg_reg[freg];
       
   630         ++freg;
       
   631       } else {
       
   632         // Put double on stack. They must be aligned to 2 slots.
       
   633         if (stk & 0x1) ++stk;
       
   634         reg = VMRegImpl::stack2reg(stk);
       
   635         stk += inc_stk_for_longdouble;
       
   636       }
       
   637       regs[i].set2(reg);
       
   638       break;
       
   639     case T_VOID:
       
   640       // Do not count halves.
       
   641       regs[i].set_bad();
       
   642       break;
       
   643     default:
       
   644       ShouldNotReachHere();
       
   645     }
       
   646   }
       
   647   return round_to(stk, 2);
       
   648 }
       
   649 
       
   650 #ifdef COMPILER2
       
   651 // Calling convention for calling C code.
       
   652 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
       
   653                                         VMRegPair *regs,
       
   654                                         VMRegPair *regs2,
       
   655                                         int total_args_passed) {
       
   656   // Calling conventions for C runtime calls and calls to JNI native methods.
       
   657   //
       
   658   // PPC64 convention: Hoist the first 8 int/ptr/long's in the first 8
       
   659   // int regs, leaving int regs undefined if the arg is flt/dbl. Hoist
       
   660   // the first 13 flt/dbl's in the first 13 fp regs but additionally
       
   661   // copy flt/dbl to the stack if they are beyond the 8th argument.
       
   662 
       
   663   const VMReg iarg_reg[8] = {
       
   664     R3->as_VMReg(),
       
   665     R4->as_VMReg(),
       
   666     R5->as_VMReg(),
       
   667     R6->as_VMReg(),
       
   668     R7->as_VMReg(),
       
   669     R8->as_VMReg(),
       
   670     R9->as_VMReg(),
       
   671     R10->as_VMReg()
       
   672   };
       
   673 
       
   674   const VMReg farg_reg[13] = {
       
   675     F1->as_VMReg(),
       
   676     F2->as_VMReg(),
       
   677     F3->as_VMReg(),
       
   678     F4->as_VMReg(),
       
   679     F5->as_VMReg(),
       
   680     F6->as_VMReg(),
       
   681     F7->as_VMReg(),
       
   682     F8->as_VMReg(),
       
   683     F9->as_VMReg(),
       
   684     F10->as_VMReg(),
       
   685     F11->as_VMReg(),
       
   686     F12->as_VMReg(),
       
   687     F13->as_VMReg()
       
   688   };
       
   689 
       
   690   const int num_iarg_registers = sizeof(iarg_reg) / sizeof(iarg_reg[0]);
       
   691   const int num_farg_registers = sizeof(farg_reg) / sizeof(farg_reg[0]);
       
   692 
       
   693   // The first 8 arguments are not passed on the stack.
       
   694   const int num_args_in_regs = 8;
       
   695 #define put_arg_in_reg(arg) ((arg) < num_args_in_regs)
       
   696 
       
   697   // Check calling conventions consistency.
       
   698   assert(num_iarg_registers == num_args_in_regs
       
   699          && num_iarg_registers == 8
       
   700          && num_farg_registers == 13,
       
   701          "consistency");
       
   702 
       
   703   // `Stk' counts stack slots. Due to alignment, 32 bit values occupy
       
   704   // 2 such slots, like 64 bit values do.
       
   705   const int inc_stk_for_intfloat   = 2; // 2 slots for ints and floats
       
   706   const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles
       
   707 
       
   708   int ill_i = 0;
       
   709   int ill_t = 0;
       
   710   int i;
       
   711   VMReg reg;
       
   712   // Leave room for C-compatible ABI_112.
       
   713   int stk = (frame::abi_112_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size;
       
   714   int arg = 0;
       
   715   int freg = 0;
       
   716 
       
   717   // Avoid passing C arguments in the wrong stack slots.
       
   718   assert((SharedRuntime::out_preserve_stack_slots() + stk) * VMRegImpl::stack_slot_size == 112,
       
   719          "passing C arguments in wrong stack slots");
       
   720 
       
   721   // We fill-out regs AND regs2 if an argument must be passed in a
       
   722   // register AND in a stack slot. If regs2 is NULL in such a
       
   723   // situation, we bail-out with a fatal error.
       
   724   for (int i = 0; i < total_args_passed; ++i, ++arg) {
       
   725     // Initialize regs2 to BAD.
       
   726     if (regs2 != NULL) regs2[i].set_bad();
       
   727 
       
   728     switch(sig_bt[i]) {
       
   729     case T_BOOLEAN:
       
   730     case T_CHAR:
       
   731     case T_BYTE:
       
   732     case T_SHORT:
       
   733     case T_INT:
       
   734       // We must cast ints to longs and use full 64 bit stack slots
       
   735       // here. We do the cast in GraphKit::gen_stub() and just guard
       
   736       // here against loosing that change.
       
   737       Unimplemented(); // TODO: PPC port
       
   738       /*
       
   739       assert(SharedRuntime::c_calling_convention_requires_ints_as_longs(),
       
   740              "argument of type int should be promoted to type long");
       
   741       */
       
   742       guarantee(i > 0 && sig_bt[i-1] == T_LONG,
       
   743                 "argument of type (bt) should have been promoted to type (T_LONG,bt) for bt in "
       
   744                 "{T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}");
       
   745       // Do not count halves.
       
   746       regs[i].set_bad();
       
   747       --arg;
       
   748       break;
       
   749     case T_LONG:
       
   750       guarantee(sig_bt[i+1] == T_VOID    ||
       
   751                 sig_bt[i+1] == T_BOOLEAN || sig_bt[i+1] == T_CHAR  ||
       
   752                 sig_bt[i+1] == T_BYTE    || sig_bt[i+1] == T_SHORT ||
       
   753                 sig_bt[i+1] == T_INT,
       
   754                 "expecting type (T_LONG,half) or type (T_LONG,bt) with bt in {T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}");
       
   755     case T_OBJECT:
       
   756     case T_ARRAY:
       
   757     case T_ADDRESS:
       
   758     case T_METADATA:
       
   759       // Oops are already boxed if required (JNI).
       
   760       if (put_arg_in_reg(arg)) {
       
   761         reg = iarg_reg[arg];
       
   762       } else {
       
   763         reg = VMRegImpl::stack2reg(stk);
       
   764         stk += inc_stk_for_longdouble;
       
   765       }
       
   766       regs[i].set2(reg);
       
   767       break;
       
   768     case T_FLOAT:
       
   769       if (put_arg_in_reg(arg)) {
       
   770         reg = farg_reg[freg];
       
   771       } else {
       
   772         // Put float on stack
       
   773 #       if defined(LINUX)
       
   774         reg = VMRegImpl::stack2reg(stk+1);
       
   775 #       elif defined(AIX)
       
   776         reg = VMRegImpl::stack2reg(stk);
       
   777 #       else
       
   778 #       error "unknown OS"
       
   779 #       endif
       
   780         stk += inc_stk_for_intfloat;
       
   781       }
       
   782 
       
   783       if (freg < num_farg_registers) {
       
   784         // There are still some float argument registers left. Put the
       
   785         // float in a register if not already done.
       
   786         if (reg != farg_reg[freg]) {
       
   787           guarantee(regs2 != NULL, "must pass float in register and stack slot");
       
   788           VMReg reg2 = farg_reg[freg];
       
   789           regs2[i].set1(reg2);
       
   790         }
       
   791         ++freg;
       
   792       }
       
   793 
       
   794       regs[i].set1(reg);
       
   795       break;
       
   796     case T_DOUBLE:
       
   797       assert(sig_bt[i+1] == T_VOID, "expecting half");
       
   798       if (put_arg_in_reg(arg)) {
       
   799         reg = farg_reg[freg];
       
   800       } else {
       
   801         // Put double on stack.
       
   802         reg = VMRegImpl::stack2reg(stk);
       
   803         stk += inc_stk_for_longdouble;
       
   804       }
       
   805 
       
   806       if (freg < num_farg_registers) {
       
   807         // There are still some float argument registers left. Put the
       
   808         // float in a register if not already done.
       
   809         if (reg != farg_reg[freg]) {
       
   810           guarantee(regs2 != NULL, "must pass float in register and stack slot");
       
   811           VMReg reg2 = farg_reg[freg];
       
   812           regs2[i].set2(reg2);
       
   813         }
       
   814         ++freg;
       
   815       }
       
   816 
       
   817       regs[i].set2(reg);
       
   818       break;
       
   819     case T_VOID:
       
   820       // Do not count halves.
       
   821       regs[i].set_bad();
       
   822       --arg;
       
   823       break;
       
   824     default:
       
   825       ShouldNotReachHere();
       
   826     }
       
   827   }
       
   828 
       
   829   return round_to(stk, 2);
       
   830 }
       
   831 #endif // COMPILER2
       
   832 
       
   833 static address gen_c2i_adapter(MacroAssembler *masm,
       
   834                             int total_args_passed,
       
   835                             int comp_args_on_stack,
       
   836                             const BasicType *sig_bt,
       
   837                             const VMRegPair *regs,
       
   838                             Label& call_interpreter,
       
   839                             const Register& ientry) {
       
   840 
       
   841   address c2i_entrypoint;
       
   842 
       
   843   const Register sender_SP = R21_sender_SP; // == R21_tmp1
       
   844   const Register code      = R22_tmp2;
       
   845   //const Register ientry  = R23_tmp3;
       
   846   const Register value_regs[] = { R24_tmp4, R25_tmp5, R26_tmp6 };
       
   847   const int num_value_regs = sizeof(value_regs) / sizeof(Register);
       
   848   int value_regs_index = 0;
       
   849 
       
   850   const Register return_pc = R27_tmp7;
       
   851   const Register tmp       = R28_tmp8;
       
   852 
       
   853   assert_different_registers(sender_SP, code, ientry, return_pc, tmp);
       
   854 
       
   855   // Adapter needs TOP_IJAVA_FRAME_ABI.
       
   856   const int adapter_size = frame::top_ijava_frame_abi_size +
       
   857                            round_to(total_args_passed * wordSize, frame::alignment_in_bytes);
       
   858 
       
   859 
       
   860   // regular (verified) c2i entry point
       
   861   c2i_entrypoint = __ pc();
       
   862 
       
   863   // Does compiled code exists? If yes, patch the caller's callsite.
       
   864   __ ld(code, method_(code));
       
   865   __ cmpdi(CCR0, code, 0);
       
   866   __ ld(ientry, method_(interpreter_entry)); // preloaded
       
   867   __ beq(CCR0, call_interpreter);
       
   868 
       
   869 
       
   870   // Patch caller's callsite, method_(code) was not NULL which means that
       
   871   // compiled code exists.
       
   872   __ mflr(return_pc);
       
   873   __ std(return_pc, _abi(lr), R1_SP);
       
   874   RegisterSaver::push_frame_and_save_argument_registers(masm, tmp, adapter_size, total_args_passed, regs);
       
   875 
       
   876   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), R19_method, return_pc);
       
   877 
       
   878   RegisterSaver::restore_argument_registers_and_pop_frame(masm, adapter_size, total_args_passed, regs);
       
   879   __ ld(return_pc, _abi(lr), R1_SP);
       
   880   __ ld(ientry, method_(interpreter_entry)); // preloaded
       
   881   __ mtlr(return_pc);
       
   882 
       
   883 
       
   884   // call the interpreter
       
   885   __ BIND(call_interpreter);
       
   886   __ mtctr(ientry);
       
   887 
       
   888   // Get a copy of the current SP for loading caller's arguments.
       
   889   __ mr(sender_SP, R1_SP);
       
   890 
       
   891   // Add space for the adapter.
       
   892   __ resize_frame(-adapter_size, R12_scratch2);
       
   893 
       
   894   int st_off = adapter_size - wordSize;
       
   895 
       
   896   // Write the args into the outgoing interpreter space.
       
   897   for (int i = 0; i < total_args_passed; i++) {
       
   898     VMReg r_1 = regs[i].first();
       
   899     VMReg r_2 = regs[i].second();
       
   900     if (!r_1->is_valid()) {
       
   901       assert(!r_2->is_valid(), "");
       
   902       continue;
       
   903     }
       
   904     if (r_1->is_stack()) {
       
   905       Register tmp_reg = value_regs[value_regs_index];
       
   906       value_regs_index = (value_regs_index + 1) % num_value_regs;
       
   907       // The calling convention produces OptoRegs that ignore the out
       
   908       // preserve area (JIT's ABI). We must account for it here.
       
   909       int ld_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
       
   910       if (!r_2->is_valid()) {
       
   911         __ lwz(tmp_reg, ld_off, sender_SP);
       
   912       } else {
       
   913         __ ld(tmp_reg, ld_off, sender_SP);
       
   914       }
       
   915       // Pretend stack targets were loaded into tmp_reg.
       
   916       r_1 = tmp_reg->as_VMReg();
       
   917     }
       
   918 
       
   919     if (r_1->is_Register()) {
       
   920       Register r = r_1->as_Register();
       
   921       if (!r_2->is_valid()) {
       
   922         __ stw(r, st_off, R1_SP);
       
   923         st_off-=wordSize;
       
   924       } else {
       
   925         // Longs are given 2 64-bit slots in the interpreter, but the
       
   926         // data is passed in only 1 slot.
       
   927         if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
       
   928           DEBUG_ONLY( __ li(tmp, 0); __ std(tmp, st_off, R1_SP); )
       
   929           st_off-=wordSize;
       
   930         }
       
   931         __ std(r, st_off, R1_SP);
       
   932         st_off-=wordSize;
       
   933       }
       
   934     } else {
       
   935       assert(r_1->is_FloatRegister(), "");
       
   936       FloatRegister f = r_1->as_FloatRegister();
       
   937       if (!r_2->is_valid()) {
       
   938         __ stfs(f, st_off, R1_SP);
       
   939         st_off-=wordSize;
       
   940       } else {
       
   941         // In 64bit, doubles are given 2 64-bit slots in the interpreter, but the
       
   942         // data is passed in only 1 slot.
       
   943         // One of these should get known junk...
       
   944         DEBUG_ONLY( __ li(tmp, 0); __ std(tmp, st_off, R1_SP); )
       
   945         st_off-=wordSize;
       
   946         __ stfd(f, st_off, R1_SP);
       
   947         st_off-=wordSize;
       
   948       }
       
   949     }
       
   950   }
       
   951 
       
   952   // Jump to the interpreter just as if interpreter was doing it.
       
   953 
       
   954   // load TOS
       
   955   __ addi(R17_tos, R1_SP, st_off);
       
   956 
       
   957   // Frame_manager expects initial_caller_sp (= SP without resize by c2i) in R21_tmp1.
       
   958   assert(sender_SP == R21_sender_SP, "passing initial caller's SP in wrong register");
       
   959   __ bctr();
       
   960 
       
   961   return c2i_entrypoint;
       
   962 }
       
   963 
       
   964 static void gen_i2c_adapter(MacroAssembler *masm,
       
   965                             int total_args_passed,
       
   966                             int comp_args_on_stack,
       
   967                             const BasicType *sig_bt,
       
   968                             const VMRegPair *regs) {
       
   969 
       
   970   // Load method's entry-point from methodOop.
       
   971   __ ld(R12_scratch2, in_bytes(Method::from_compiled_offset()), R19_method);
       
   972   __ mtctr(R12_scratch2);
       
   973 
       
   974   // We will only enter here from an interpreted frame and never from after
       
   975   // passing thru a c2i. Azul allowed this but we do not. If we lose the
       
   976   // race and use a c2i we will remain interpreted for the race loser(s).
       
   977   // This removes all sorts of headaches on the x86 side and also eliminates
       
   978   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
       
   979 
       
   980   // Note: r13 contains the senderSP on entry. We must preserve it since
       
   981   // we may do a i2c -> c2i transition if we lose a race where compiled
       
   982   // code goes non-entrant while we get args ready.
       
   983   // In addition we use r13 to locate all the interpreter args as
       
   984   // we must align the stack to 16 bytes on an i2c entry else we
       
   985   // lose alignment we expect in all compiled code and register
       
   986   // save code can segv when fxsave instructions find improperly
       
   987   // aligned stack pointer.
       
   988 
       
   989   const Register ld_ptr = R17_tos;
       
   990   const Register value_regs[] = { R22_tmp2, R23_tmp3, R24_tmp4, R25_tmp5, R26_tmp6 };
       
   991   const int num_value_regs = sizeof(value_regs) / sizeof(Register);
       
   992   int value_regs_index = 0;
       
   993 
       
   994   int ld_offset = total_args_passed*wordSize;
       
   995 
       
   996   // Cut-out for having no stack args. Since up to 2 int/oop args are passed
       
   997   // in registers, we will occasionally have no stack args.
       
   998   int comp_words_on_stack = 0;
       
   999   if (comp_args_on_stack) {
       
  1000     // Sig words on the stack are greater-than VMRegImpl::stack0. Those in
       
  1001     // registers are below. By subtracting stack0, we either get a negative
       
  1002     // number (all values in registers) or the maximum stack slot accessed.
       
  1003 
       
  1004     // Convert 4-byte c2 stack slots to words.
       
  1005     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
       
  1006     // Round up to miminum stack alignment, in wordSize.
       
  1007     comp_words_on_stack = round_to(comp_words_on_stack, 2);
       
  1008     __ resize_frame(-comp_words_on_stack * wordSize, R11_scratch1);
       
  1009   }
       
  1010 
       
  1011   // Now generate the shuffle code.  Pick up all register args and move the
       
  1012   // rest through register value=Z_R12.
       
  1013   BLOCK_COMMENT("Shuffle arguments");
       
  1014   for (int i = 0; i < total_args_passed; i++) {
       
  1015     if (sig_bt[i] == T_VOID) {
       
  1016       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
       
  1017       continue;
       
  1018     }
       
  1019 
       
  1020     // Pick up 0, 1 or 2 words from ld_ptr.
       
  1021     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
       
  1022             "scrambled load targets?");
       
  1023     VMReg r_1 = regs[i].first();
       
  1024     VMReg r_2 = regs[i].second();
       
  1025     if (!r_1->is_valid()) {
       
  1026       assert(!r_2->is_valid(), "");
       
  1027       continue;
       
  1028     }
       
  1029     if (r_1->is_FloatRegister()) {
       
  1030       if (!r_2->is_valid()) {
       
  1031         __ lfs(r_1->as_FloatRegister(), ld_offset, ld_ptr);
       
  1032         ld_offset-=wordSize;
       
  1033       } else {
       
  1034         // Skip the unused interpreter slot.
       
  1035         __ lfd(r_1->as_FloatRegister(), ld_offset-wordSize, ld_ptr);
       
  1036         ld_offset-=2*wordSize;
       
  1037       }
       
  1038     } else {
       
  1039       Register r;
       
  1040       if (r_1->is_stack()) {
       
  1041         // Must do a memory to memory move thru "value".
       
  1042         r = value_regs[value_regs_index];
       
  1043         value_regs_index = (value_regs_index + 1) % num_value_regs;
       
  1044       } else {
       
  1045         r = r_1->as_Register();
       
  1046       }
       
  1047       if (!r_2->is_valid()) {
       
  1048         // Not sure we need to do this but it shouldn't hurt.
       
  1049         if (sig_bt[i] == T_OBJECT || sig_bt[i] == T_ADDRESS || sig_bt[i] == T_ARRAY) {
       
  1050           __ ld(r, ld_offset, ld_ptr);
       
  1051           ld_offset-=wordSize;
       
  1052         } else {
       
  1053           __ lwz(r, ld_offset, ld_ptr);
       
  1054           ld_offset-=wordSize;
       
  1055         }
       
  1056       } else {
       
  1057         // In 64bit, longs are given 2 64-bit slots in the interpreter, but the
       
  1058         // data is passed in only 1 slot.
       
  1059         if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
       
  1060           ld_offset-=wordSize;
       
  1061         }
       
  1062         __ ld(r, ld_offset, ld_ptr);
       
  1063         ld_offset-=wordSize;
       
  1064       }
       
  1065 
       
  1066       if (r_1->is_stack()) {
       
  1067         // Now store value where the compiler expects it
       
  1068         int st_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots())*VMRegImpl::stack_slot_size;
       
  1069 
       
  1070         if (sig_bt[i] == T_INT   || sig_bt[i] == T_FLOAT ||sig_bt[i] == T_BOOLEAN ||
       
  1071             sig_bt[i] == T_SHORT || sig_bt[i] == T_CHAR  || sig_bt[i] == T_BYTE) {
       
  1072           __ stw(r, st_off, R1_SP);
       
  1073         } else {
       
  1074           __ std(r, st_off, R1_SP);
       
  1075         }
       
  1076       }
       
  1077     }
       
  1078   }
       
  1079 
       
  1080   BLOCK_COMMENT("Store method oop");
       
  1081   // Store method oop into thread->callee_target.
       
  1082   // We might end up in handle_wrong_method if the callee is
       
  1083   // deoptimized as we race thru here. If that happens we don't want
       
  1084   // to take a safepoint because the caller frame will look
       
  1085   // interpreted and arguments are now "compiled" so it is much better
       
  1086   // to make this transition invisible to the stack walking
       
  1087   // code. Unfortunately if we try and find the callee by normal means
       
  1088   // a safepoint is possible. So we stash the desired callee in the
       
  1089   // thread and the vm will find there should this case occur.
       
  1090   __ std(R19_method, thread_(callee_target));
       
  1091 
       
  1092   // Jump to the compiled code just as if compiled code was doing it.
       
  1093   __ bctr();
       
  1094 }
       
  1095 
       
  1096 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
       
  1097                                                             int total_args_passed,
       
  1098                                                             int comp_args_on_stack,
       
  1099                                                             const BasicType *sig_bt,
       
  1100                                                             const VMRegPair *regs,
       
  1101                                                             AdapterFingerPrint* fingerprint) {
       
  1102   address i2c_entry;
       
  1103   address c2i_unverified_entry;
       
  1104   address c2i_entry;
       
  1105 
       
  1106 
       
  1107   // entry: i2c
       
  1108 
       
  1109   __ align(CodeEntryAlignment);
       
  1110   i2c_entry = __ pc();
       
  1111   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
       
  1112 
       
  1113 
       
  1114   // entry: c2i unverified
       
  1115 
       
  1116   __ align(CodeEntryAlignment);
       
  1117   BLOCK_COMMENT("c2i unverified entry");
       
  1118   c2i_unverified_entry = __ pc();
       
  1119 
       
  1120   // inline_cache contains a compiledICHolder
       
  1121   const Register ic             = R19_method;
       
  1122   const Register ic_klass       = R11_scratch1;
       
  1123   const Register receiver_klass = R12_scratch2;
       
  1124   const Register code           = R21_tmp1;
       
  1125   const Register ientry         = R23_tmp3;
       
  1126 
       
  1127   assert_different_registers(ic, ic_klass, receiver_klass, R3_ARG1, code, ientry);
       
  1128   assert(R11_scratch1 == R11, "need prologue scratch register");
       
  1129 
       
  1130   Label call_interpreter;
       
  1131 
       
  1132   assert(!MacroAssembler::needs_explicit_null_check(oopDesc::klass_offset_in_bytes()),
       
  1133          "klass offset should reach into any page");
       
  1134   // Check for NULL argument if we don't have implicit null checks.
       
  1135   if (!ImplicitNullChecks NOT_LINUX(|| true) /*!os::zero_page_read_protected()*/) {
       
  1136     if (TrapBasedNullChecks) {
       
  1137       __ trap_null_check(R3_ARG1);
       
  1138     } else {
       
  1139       Label valid;
       
  1140       __ cmpdi(CCR0, R3_ARG1, 0);
       
  1141       __ bne_predict_taken(CCR0, valid);
       
  1142       // We have a null argument, branch to ic_miss_stub.
       
  1143       __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
       
  1144                            relocInfo::runtime_call_type);
       
  1145       __ BIND(valid);
       
  1146     }
       
  1147   }
       
  1148   // Assume argument is not NULL, load klass from receiver.
       
  1149   __ load_klass(receiver_klass, R3_ARG1);
       
  1150 
       
  1151   __ ld(ic_klass, CompiledICHolder::holder_klass_offset(), ic);
       
  1152 
       
  1153   if (TrapBasedICMissChecks) {
       
  1154     __ trap_ic_miss_check(receiver_klass, ic_klass);
       
  1155   } else {
       
  1156     Label valid;
       
  1157     __ cmpd(CCR0, receiver_klass, ic_klass);
       
  1158     __ beq_predict_taken(CCR0, valid);
       
  1159     // We have an unexpected klass, branch to ic_miss_stub.
       
  1160     __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
       
  1161                          relocInfo::runtime_call_type);
       
  1162     __ BIND(valid);
       
  1163   }
       
  1164 
       
  1165   // Argument is valid and klass is as expected, continue.
       
  1166 
       
  1167   // Extract method from inline cache, verified entry point needs it.
       
  1168   __ ld(R19_method, CompiledICHolder::holder_method_offset(), ic);
       
  1169   assert(R19_method == ic, "the inline cache register is dead here");
       
  1170 
       
  1171   __ ld(code, method_(code));
       
  1172   __ cmpdi(CCR0, code, 0);
       
  1173   __ ld(ientry, method_(interpreter_entry)); // preloaded
       
  1174   __ beq_predict_taken(CCR0, call_interpreter);
       
  1175 
       
  1176   // Branch to ic_miss_stub.
       
  1177   __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
       
  1178                        relocInfo::runtime_call_type);
       
  1179 
       
  1180   // entry: c2i
       
  1181 
       
  1182   c2i_entry = gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, call_interpreter, ientry);
       
  1183 
       
  1184   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
       
  1185 }
       
  1186 
       
  1187 #ifdef COMPILER2
       
  1188 // An oop arg. Must pass a handle not the oop itself.
       
  1189 static void object_move(MacroAssembler* masm,
       
  1190                         int frame_size_in_slots,
       
  1191                         OopMap* oop_map, int oop_handle_offset,
       
  1192                         bool is_receiver, int* receiver_offset,
       
  1193                         VMRegPair src, VMRegPair dst,
       
  1194                         Register r_caller_sp, Register r_temp_1, Register r_temp_2) {
       
  1195   assert(!is_receiver || (is_receiver && (*receiver_offset == -1)),
       
  1196          "receiver has already been moved");
       
  1197 
       
  1198   // We must pass a handle. First figure out the location we use as a handle.
       
  1199 
       
  1200   if (src.first()->is_stack()) {
       
  1201     // stack to stack or reg
       
  1202 
       
  1203     const Register r_handle = dst.first()->is_stack() ? r_temp_1 : dst.first()->as_Register();
       
  1204     Label skip;
       
  1205     const int oop_slot_in_callers_frame = reg2slot(src.first());
       
  1206 
       
  1207     guarantee(!is_receiver, "expecting receiver in register");
       
  1208     oop_map->set_oop(VMRegImpl::stack2reg(oop_slot_in_callers_frame + frame_size_in_slots));
       
  1209 
       
  1210     __ addi(r_handle, r_caller_sp, reg2offset(src.first()));
       
  1211     __ ld(  r_temp_2, reg2offset(src.first()), r_caller_sp);
       
  1212     __ cmpdi(CCR0, r_temp_2, 0);
       
  1213     __ bne(CCR0, skip);
       
  1214     // Use a NULL handle if oop is NULL.
       
  1215     __ li(r_handle, 0);
       
  1216     __ bind(skip);
       
  1217 
       
  1218     if (dst.first()->is_stack()) {
       
  1219       // stack to stack
       
  1220       __ std(r_handle, reg2offset(dst.first()), R1_SP);
       
  1221     } else {
       
  1222       // stack to reg
       
  1223       // Nothing to do, r_handle is already the dst register.
       
  1224     }
       
  1225   } else {
       
  1226     // reg to stack or reg
       
  1227     const Register r_oop      = src.first()->as_Register();
       
  1228     const Register r_handle   = dst.first()->is_stack() ? r_temp_1 : dst.first()->as_Register();
       
  1229     const int oop_slot        = (r_oop->encoding()-R3_ARG1->encoding()) * VMRegImpl::slots_per_word
       
  1230                                 + oop_handle_offset; // in slots
       
  1231     const int oop_offset = oop_slot * VMRegImpl::stack_slot_size;
       
  1232     Label skip;
       
  1233 
       
  1234     if (is_receiver) {
       
  1235       *receiver_offset = oop_offset;
       
  1236     }
       
  1237     oop_map->set_oop(VMRegImpl::stack2reg(oop_slot));
       
  1238 
       
  1239     __ std( r_oop,    oop_offset, R1_SP);
       
  1240     __ addi(r_handle, R1_SP, oop_offset);
       
  1241 
       
  1242     __ cmpdi(CCR0, r_oop, 0);
       
  1243     __ bne(CCR0, skip);
       
  1244     // Use a NULL handle if oop is NULL.
       
  1245     __ li(r_handle, 0);
       
  1246     __ bind(skip);
       
  1247 
       
  1248     if (dst.first()->is_stack()) {
       
  1249       // reg to stack
       
  1250       __ std(r_handle, reg2offset(dst.first()), R1_SP);
       
  1251     } else {
       
  1252       // reg to reg
       
  1253       // Nothing to do, r_handle is already the dst register.
       
  1254     }
       
  1255   }
       
  1256 }
       
  1257 
       
  1258 static void int_move(MacroAssembler*masm,
       
  1259                      VMRegPair src, VMRegPair dst,
       
  1260                      Register r_caller_sp, Register r_temp) {
       
  1261   assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be long-int");
       
  1262   assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be long");
       
  1263 
       
  1264   if (src.first()->is_stack()) {
       
  1265     if (dst.first()->is_stack()) {
       
  1266       // stack to stack
       
  1267       __ lwa(r_temp, reg2offset(src.first()), r_caller_sp);
       
  1268       __ std(r_temp, reg2offset(dst.first()), R1_SP);
       
  1269     } else {
       
  1270       // stack to reg
       
  1271       __ lwa(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
       
  1272     }
       
  1273   } else if (dst.first()->is_stack()) {
       
  1274     // reg to stack
       
  1275     __ extsw(r_temp, src.first()->as_Register());
       
  1276     __ std(r_temp, reg2offset(dst.first()), R1_SP);
       
  1277   } else {
       
  1278     // reg to reg
       
  1279     __ extsw(dst.first()->as_Register(), src.first()->as_Register());
       
  1280   }
       
  1281 }
       
  1282 
       
  1283 static void long_move(MacroAssembler*masm,
       
  1284                       VMRegPair src, VMRegPair dst,
       
  1285                       Register r_caller_sp, Register r_temp) {
       
  1286   assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be long");
       
  1287   assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be long");
       
  1288 
       
  1289   if (src.first()->is_stack()) {
       
  1290     if (dst.first()->is_stack()) {
       
  1291       // stack to stack
       
  1292       __ ld( r_temp, reg2offset(src.first()), r_caller_sp);
       
  1293       __ std(r_temp, reg2offset(dst.first()), R1_SP);
       
  1294     } else {
       
  1295       // stack to reg
       
  1296       __ ld(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
       
  1297     }
       
  1298   } else if (dst.first()->is_stack()) {
       
  1299     // reg to stack
       
  1300     __ std(src.first()->as_Register(), reg2offset(dst.first()), R1_SP);
       
  1301   } else {
       
  1302     // reg to reg
       
  1303     if (dst.first()->as_Register() != src.first()->as_Register())
       
  1304       __ mr(dst.first()->as_Register(), src.first()->as_Register());
       
  1305   }
       
  1306 }
       
  1307 
       
  1308 static void float_move(MacroAssembler*masm,
       
  1309                        VMRegPair src, VMRegPair dst,
       
  1310                        Register r_caller_sp, Register r_temp) {
       
  1311   assert(src.first()->is_valid() && !src.second()->is_valid(), "incoming must be float");
       
  1312   assert(dst.first()->is_valid() && !dst.second()->is_valid(), "outgoing must be float");
       
  1313 
       
  1314   if (src.first()->is_stack()) {
       
  1315     if (dst.first()->is_stack()) {
       
  1316       // stack to stack
       
  1317       __ lwz(r_temp, reg2offset(src.first()), r_caller_sp);
       
  1318       __ stw(r_temp, reg2offset(dst.first()), R1_SP);
       
  1319     } else {
       
  1320       // stack to reg
       
  1321       __ lfs(dst.first()->as_FloatRegister(), reg2offset(src.first()), r_caller_sp);
       
  1322     }
       
  1323   } else if (dst.first()->is_stack()) {
       
  1324     // reg to stack
       
  1325     __ stfs(src.first()->as_FloatRegister(), reg2offset(dst.first()), R1_SP);
       
  1326   } else {
       
  1327     // reg to reg
       
  1328     if (dst.first()->as_FloatRegister() != src.first()->as_FloatRegister())
       
  1329       __ fmr(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
       
  1330   }
       
  1331 }
       
  1332 
       
  1333 static void double_move(MacroAssembler*masm,
       
  1334                         VMRegPair src, VMRegPair dst,
       
  1335                         Register r_caller_sp, Register r_temp) {
       
  1336   assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be double");
       
  1337   assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be double");
       
  1338 
       
  1339   if (src.first()->is_stack()) {
       
  1340     if (dst.first()->is_stack()) {
       
  1341       // stack to stack
       
  1342       __ ld( r_temp, reg2offset(src.first()), r_caller_sp);
       
  1343       __ std(r_temp, reg2offset(dst.first()), R1_SP);
       
  1344     } else {
       
  1345       // stack to reg
       
  1346       __ lfd(dst.first()->as_FloatRegister(), reg2offset(src.first()), r_caller_sp);
       
  1347     }
       
  1348   } else if (dst.first()->is_stack()) {
       
  1349     // reg to stack
       
  1350     __ stfd(src.first()->as_FloatRegister(), reg2offset(dst.first()), R1_SP);
       
  1351   } else {
       
  1352     // reg to reg
       
  1353     if (dst.first()->as_FloatRegister() != src.first()->as_FloatRegister())
       
  1354       __ fmr(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
       
  1355   }
       
  1356 }
       
  1357 
       
  1358 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
       
  1359   switch (ret_type) {
       
  1360     case T_BOOLEAN:
       
  1361     case T_CHAR:
       
  1362     case T_BYTE:
       
  1363     case T_SHORT:
       
  1364     case T_INT:
       
  1365       __ stw (R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
       
  1366       break;
       
  1367     case T_ARRAY:
       
  1368     case T_OBJECT:
       
  1369     case T_LONG:
       
  1370       __ std (R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
       
  1371       break;
       
  1372     case T_FLOAT:
       
  1373       __ stfs(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
       
  1374       break;
       
  1375     case T_DOUBLE:
       
  1376       __ stfd(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
       
  1377       break;
       
  1378     case T_VOID:
       
  1379       break;
       
  1380     default:
       
  1381       ShouldNotReachHere();
       
  1382       break;
       
  1383   }
       
  1384 }
       
  1385 
       
  1386 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
       
  1387   switch (ret_type) {
       
  1388     case T_BOOLEAN:
       
  1389     case T_CHAR:
       
  1390     case T_BYTE:
       
  1391     case T_SHORT:
       
  1392     case T_INT:
       
  1393       __ lwz(R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
       
  1394       break;
       
  1395     case T_ARRAY:
       
  1396     case T_OBJECT:
       
  1397     case T_LONG:
       
  1398       __ ld (R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
       
  1399       break;
       
  1400     case T_FLOAT:
       
  1401       __ lfs(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
       
  1402       break;
       
  1403     case T_DOUBLE:
       
  1404       __ lfd(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
       
  1405       break;
       
  1406     case T_VOID:
       
  1407       break;
       
  1408     default:
       
  1409       ShouldNotReachHere();
       
  1410       break;
       
  1411   }
       
  1412 }
       
  1413 
       
  1414 static void save_or_restore_arguments(MacroAssembler* masm,
       
  1415                                       const int stack_slots,
       
  1416                                       const int total_in_args,
       
  1417                                       const int arg_save_area,
       
  1418                                       OopMap* map,
       
  1419                                       VMRegPair* in_regs,
       
  1420                                       BasicType* in_sig_bt) {
       
  1421   // If map is non-NULL then the code should store the values,
       
  1422   // otherwise it should load them.
       
  1423   int slot = arg_save_area;
       
  1424   // Save down double word first.
       
  1425   for (int i = 0; i < total_in_args; i++) {
       
  1426     if (in_regs[i].first()->is_FloatRegister() && in_sig_bt[i] == T_DOUBLE) {
       
  1427       int offset = slot * VMRegImpl::stack_slot_size;
       
  1428       slot += VMRegImpl::slots_per_word;
       
  1429       assert(slot <= stack_slots, "overflow (after DOUBLE stack slot)");
       
  1430       if (map != NULL) {
       
  1431         __ stfd(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
       
  1432       } else {
       
  1433         __ lfd(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
       
  1434       }
       
  1435     } else if (in_regs[i].first()->is_Register() &&
       
  1436         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
       
  1437       int offset = slot * VMRegImpl::stack_slot_size;
       
  1438       if (map != NULL) {
       
  1439         __ std(in_regs[i].first()->as_Register(), offset, R1_SP);
       
  1440         if (in_sig_bt[i] == T_ARRAY) {
       
  1441           map->set_oop(VMRegImpl::stack2reg(slot));
       
  1442         }
       
  1443       } else {
       
  1444         __ ld(in_regs[i].first()->as_Register(), offset, R1_SP);
       
  1445       }
       
  1446       slot += VMRegImpl::slots_per_word;
       
  1447       assert(slot <= stack_slots, "overflow (after LONG/ARRAY stack slot)");
       
  1448     }
       
  1449   }
       
  1450   // Save or restore single word registers.
       
  1451   for (int i = 0; i < total_in_args; i++) {
       
  1452     // PPC64: pass ints as longs: must only deal with floats here.
       
  1453     if (in_regs[i].first()->is_FloatRegister()) {
       
  1454       if (in_sig_bt[i] == T_FLOAT) {
       
  1455         int offset = slot * VMRegImpl::stack_slot_size;
       
  1456         slot++;
       
  1457         assert(slot <= stack_slots, "overflow (after FLOAT stack slot)");
       
  1458         if (map != NULL) {
       
  1459           __ stfs(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
       
  1460         } else {
       
  1461           __ lfs(in_regs[i].first()->as_FloatRegister(), offset, R1_SP);
       
  1462         }
       
  1463       }
       
  1464     } else if (in_regs[i].first()->is_stack()) {
       
  1465       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
       
  1466         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
       
  1467         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
       
  1468       }
       
  1469     }
       
  1470   }
       
  1471 }
       
  1472 
       
  1473 // Check GC_locker::needs_gc and enter the runtime if it's true. This
       
  1474 // keeps a new JNI critical region from starting until a GC has been
       
  1475 // forced. Save down any oops in registers and describe them in an
       
  1476 // OopMap.
       
  1477 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
       
  1478                                                const int stack_slots,
       
  1479                                                const int total_in_args,
       
  1480                                                const int arg_save_area,
       
  1481                                                OopMapSet* oop_maps,
       
  1482                                                VMRegPair* in_regs,
       
  1483                                                BasicType* in_sig_bt,
       
  1484                                                Register tmp_reg ) {
       
  1485   __ block_comment("check GC_locker::needs_gc");
       
  1486   Label cont;
       
  1487   __ lbz(tmp_reg, (RegisterOrConstant)(intptr_t)GC_locker::needs_gc_address());
       
  1488   __ cmplwi(CCR0, tmp_reg, 0);
       
  1489   __ beq(CCR0, cont);
       
  1490 
       
  1491   // Save down any values that are live in registers and call into the
       
  1492   // runtime to halt for a GC.
       
  1493   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
       
  1494   save_or_restore_arguments(masm, stack_slots, total_in_args,
       
  1495                             arg_save_area, map, in_regs, in_sig_bt);
       
  1496 
       
  1497   __ mr(R3_ARG1, R16_thread);
       
  1498   __ set_last_Java_frame(R1_SP, noreg);
       
  1499 
       
  1500   __ block_comment("block_for_jni_critical");
       
  1501   address entry_point = CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical);
       
  1502   __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, entry_point), relocInfo::runtime_call_type);
       
  1503   address start           = __ pc() - __ offset(),
       
  1504           calls_return_pc = __ last_calls_return_pc();
       
  1505   oop_maps->add_gc_map(calls_return_pc - start, map);
       
  1506 
       
  1507   __ reset_last_Java_frame();
       
  1508 
       
  1509   // Reload all the register arguments.
       
  1510   save_or_restore_arguments(masm, stack_slots, total_in_args,
       
  1511                             arg_save_area, NULL, in_regs, in_sig_bt);
       
  1512 
       
  1513   __ BIND(cont);
       
  1514 
       
  1515 #ifdef ASSERT
       
  1516   if (StressCriticalJNINatives) {
       
  1517     // Stress register saving.
       
  1518     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
       
  1519     save_or_restore_arguments(masm, stack_slots, total_in_args,
       
  1520                               arg_save_area, map, in_regs, in_sig_bt);
       
  1521     // Destroy argument registers.
       
  1522     for (int i = 0; i < total_in_args; i++) {
       
  1523       if (in_regs[i].first()->is_Register()) {
       
  1524         const Register reg = in_regs[i].first()->as_Register();
       
  1525         __ neg(reg, reg);
       
  1526       } else if (in_regs[i].first()->is_FloatRegister()) {
       
  1527         __ fneg(in_regs[i].first()->as_FloatRegister(), in_regs[i].first()->as_FloatRegister());
       
  1528       }
       
  1529     }
       
  1530 
       
  1531     save_or_restore_arguments(masm, stack_slots, total_in_args,
       
  1532                               arg_save_area, NULL, in_regs, in_sig_bt);
       
  1533   }
       
  1534 #endif
       
  1535 }
       
  1536 
       
  1537 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst, Register r_caller_sp, Register r_temp) {
       
  1538   if (src.first()->is_stack()) {
       
  1539     if (dst.first()->is_stack()) {
       
  1540       // stack to stack
       
  1541       __ ld(r_temp, reg2offset(src.first()), r_caller_sp);
       
  1542       __ std(r_temp, reg2offset(dst.first()), R1_SP);
       
  1543     } else {
       
  1544       // stack to reg
       
  1545       __ ld(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
       
  1546     }
       
  1547   } else if (dst.first()->is_stack()) {
       
  1548     // reg to stack
       
  1549     __ std(src.first()->as_Register(), reg2offset(dst.first()), R1_SP);
       
  1550   } else {
       
  1551     if (dst.first() != src.first()) {
       
  1552       __ mr(dst.first()->as_Register(), src.first()->as_Register());
       
  1553     }
       
  1554   }
       
  1555 }
       
  1556 
       
  1557 // Unpack an array argument into a pointer to the body and the length
       
  1558 // if the array is non-null, otherwise pass 0 for both.
       
  1559 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type,
       
  1560                                   VMRegPair body_arg, VMRegPair length_arg, Register r_caller_sp,
       
  1561                                   Register tmp_reg, Register tmp2_reg) {
       
  1562   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
       
  1563          "possible collision");
       
  1564   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
       
  1565          "possible collision");
       
  1566 
       
  1567   // Pass the length, ptr pair.
       
  1568   Label set_out_args;
       
  1569   VMRegPair tmp, tmp2;
       
  1570   tmp.set_ptr(tmp_reg->as_VMReg());
       
  1571   tmp2.set_ptr(tmp2_reg->as_VMReg());
       
  1572   if (reg.first()->is_stack()) {
       
  1573     // Load the arg up from the stack.
       
  1574     move_ptr(masm, reg, tmp, r_caller_sp, /*unused*/ R0);
       
  1575     reg = tmp;
       
  1576   }
       
  1577   __ li(tmp2_reg, 0); // Pass zeros if Array=null.
       
  1578   if (tmp_reg != reg.first()->as_Register()) __ li(tmp_reg, 0);
       
  1579   __ cmpdi(CCR0, reg.first()->as_Register(), 0);
       
  1580   __ beq(CCR0, set_out_args);
       
  1581   __ lwa(tmp2_reg, arrayOopDesc::length_offset_in_bytes(), reg.first()->as_Register());
       
  1582   __ addi(tmp_reg, reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type));
       
  1583   __ bind(set_out_args);
       
  1584   move_ptr(masm, tmp, body_arg, r_caller_sp, /*unused*/ R0);
       
  1585   move_ptr(masm, tmp2, length_arg, r_caller_sp, /*unused*/ R0); // Same as move32_64 on PPC64.
       
  1586 }
       
  1587 
       
  1588 static void verify_oop_args(MacroAssembler* masm,
       
  1589                             methodHandle method,
       
  1590                             const BasicType* sig_bt,
       
  1591                             const VMRegPair* regs) {
       
  1592   Register temp_reg = R19_method;  // not part of any compiled calling seq
       
  1593   if (VerifyOops) {
       
  1594     for (int i = 0; i < method->size_of_parameters(); i++) {
       
  1595       if (sig_bt[i] == T_OBJECT ||
       
  1596           sig_bt[i] == T_ARRAY) {
       
  1597         VMReg r = regs[i].first();
       
  1598         assert(r->is_valid(), "bad oop arg");
       
  1599         if (r->is_stack()) {
       
  1600           __ ld(temp_reg, reg2offset(r), R1_SP);
       
  1601           __ verify_oop(temp_reg);
       
  1602         } else {
       
  1603           __ verify_oop(r->as_Register());
       
  1604         }
       
  1605       }
       
  1606     }
       
  1607   }
       
  1608 }
       
  1609 
       
  1610 static void gen_special_dispatch(MacroAssembler* masm,
       
  1611                                  methodHandle method,
       
  1612                                  const BasicType* sig_bt,
       
  1613                                  const VMRegPair* regs) {
       
  1614   verify_oop_args(masm, method, sig_bt, regs);
       
  1615   vmIntrinsics::ID iid = method->intrinsic_id();
       
  1616 
       
  1617   // Now write the args into the outgoing interpreter space
       
  1618   bool     has_receiver   = false;
       
  1619   Register receiver_reg   = noreg;
       
  1620   int      member_arg_pos = -1;
       
  1621   Register member_reg     = noreg;
       
  1622   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
       
  1623   if (ref_kind != 0) {
       
  1624     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
       
  1625     member_reg = R19_method;  // known to be free at this point
       
  1626     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
       
  1627   } else if (iid == vmIntrinsics::_invokeBasic) {
       
  1628     has_receiver = true;
       
  1629   } else {
       
  1630     fatal(err_msg_res("unexpected intrinsic id %d", iid));
       
  1631   }
       
  1632 
       
  1633   if (member_reg != noreg) {
       
  1634     // Load the member_arg into register, if necessary.
       
  1635     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
       
  1636     VMReg r = regs[member_arg_pos].first();
       
  1637     if (r->is_stack()) {
       
  1638       __ ld(member_reg, reg2offset(r), R1_SP);
       
  1639     } else {
       
  1640       // no data motion is needed
       
  1641       member_reg = r->as_Register();
       
  1642     }
       
  1643   }
       
  1644 
       
  1645   if (has_receiver) {
       
  1646     // Make sure the receiver is loaded into a register.
       
  1647     assert(method->size_of_parameters() > 0, "oob");
       
  1648     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
       
  1649     VMReg r = regs[0].first();
       
  1650     assert(r->is_valid(), "bad receiver arg");
       
  1651     if (r->is_stack()) {
       
  1652       // Porting note:  This assumes that compiled calling conventions always
       
  1653       // pass the receiver oop in a register.  If this is not true on some
       
  1654       // platform, pick a temp and load the receiver from stack.
       
  1655       fatal("receiver always in a register");
       
  1656       receiver_reg = R11_scratch1;  // TODO (hs24): is R11_scratch1 really free at this point?
       
  1657       __ ld(receiver_reg, reg2offset(r), R1_SP);
       
  1658     } else {
       
  1659       // no data motion is needed
       
  1660       receiver_reg = r->as_Register();
       
  1661     }
       
  1662   }
       
  1663 
       
  1664   // Figure out which address we are really jumping to:
       
  1665   MethodHandles::generate_method_handle_dispatch(masm, iid,
       
  1666                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
       
  1667 }
       
  1668 
       
  1669 #endif // COMPILER2
       
  1670 
       
  1671 // ---------------------------------------------------------------------------
       
  1672 // Generate a native wrapper for a given method. The method takes arguments
       
  1673 // in the Java compiled code convention, marshals them to the native
       
  1674 // convention (handlizes oops, etc), transitions to native, makes the call,
       
  1675 // returns to java state (possibly blocking), unhandlizes any result and
       
  1676 // returns.
       
  1677 //
       
  1678 // Critical native functions are a shorthand for the use of
       
  1679 // GetPrimtiveArrayCritical and disallow the use of any other JNI
       
  1680 // functions.  The wrapper is expected to unpack the arguments before
       
  1681 // passing them to the callee and perform checks before and after the
       
  1682 // native call to ensure that they GC_locker
       
  1683 // lock_critical/unlock_critical semantics are followed.  Some other
       
  1684 // parts of JNI setup are skipped like the tear down of the JNI handle
       
  1685 // block and the check for pending exceptions it's impossible for them
       
  1686 // to be thrown.
       
  1687 //
       
  1688 // They are roughly structured like this:
       
  1689 //   if (GC_locker::needs_gc())
       
  1690 //     SharedRuntime::block_for_jni_critical();
       
  1691 //   tranistion to thread_in_native
       
  1692 //   unpack arrray arguments and call native entry point
       
  1693 //   check for safepoint in progress
       
  1694 //   check if any thread suspend flags are set
       
  1695 //     call into JVM and possible unlock the JNI critical
       
  1696 //     if a GC was suppressed while in the critical native.
       
  1697 //   transition back to thread_in_Java
       
  1698 //   return to caller
       
  1699 //
       
  1700 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
       
  1701                                                 methodHandle method,
       
  1702                                                 int compile_id,
       
  1703                                                 BasicType *in_sig_bt,
       
  1704                                                 VMRegPair *in_regs,
       
  1705                                                 BasicType ret_type) {
       
  1706 #ifdef COMPILER2
       
  1707   if (method->is_method_handle_intrinsic()) {
       
  1708     vmIntrinsics::ID iid = method->intrinsic_id();
       
  1709     intptr_t start = (intptr_t)__ pc();
       
  1710     int vep_offset = ((intptr_t)__ pc()) - start;
       
  1711     gen_special_dispatch(masm,
       
  1712                          method,
       
  1713                          in_sig_bt,
       
  1714                          in_regs);
       
  1715     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
       
  1716     __ flush();
       
  1717     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
       
  1718     return nmethod::new_native_nmethod(method,
       
  1719                                        compile_id,
       
  1720                                        masm->code(),
       
  1721                                        vep_offset,
       
  1722                                        frame_complete,
       
  1723                                        stack_slots / VMRegImpl::slots_per_word,
       
  1724                                        in_ByteSize(-1),
       
  1725                                        in_ByteSize(-1),
       
  1726                                        (OopMapSet*)NULL);
       
  1727   }
       
  1728 
       
  1729   bool is_critical_native = true;
       
  1730   address native_func = method->critical_native_function();
       
  1731   if (native_func == NULL) {
       
  1732     native_func = method->native_function();
       
  1733     is_critical_native = false;
       
  1734   }
       
  1735   assert(native_func != NULL, "must have function");
       
  1736 
       
  1737   // First, create signature for outgoing C call
       
  1738   // --------------------------------------------------------------------------
       
  1739 
       
  1740   int total_in_args = method->size_of_parameters();
       
  1741   // We have received a description of where all the java args are located
       
  1742   // on entry to the wrapper. We need to convert these args to where
       
  1743   // the jni function will expect them. To figure out where they go
       
  1744   // we convert the java signature to a C signature by inserting
       
  1745   // the hidden arguments as arg[0] and possibly arg[1] (static method)
       
  1746   //
       
  1747   // Additionally, on ppc64 we must convert integers to longs in the C
       
  1748   // signature. We do this in advance in order to have no trouble with
       
  1749   // indexes into the bt-arrays.
       
  1750   // So convert the signature and registers now, and adjust the total number
       
  1751   // of in-arguments accordingly.
       
  1752   int i2l_argcnt = convert_ints_to_longints_argcnt(total_in_args, in_sig_bt); // PPC64: pass ints as longs.
       
  1753 
       
  1754   // Calculate the total number of C arguments and create arrays for the
       
  1755   // signature and the outgoing registers.
       
  1756   // On ppc64, we have two arrays for the outgoing registers, because
       
  1757   // some floating-point arguments must be passed in registers _and_
       
  1758   // in stack locations.
       
  1759   bool method_is_static = method->is_static();
       
  1760   int  total_c_args     = i2l_argcnt;
       
  1761 
       
  1762   if (!is_critical_native) {
       
  1763     int n_hidden_args = method_is_static ? 2 : 1;
       
  1764     total_c_args += n_hidden_args;
       
  1765   } else {
       
  1766     // No JNIEnv*, no this*, but unpacked arrays (base+length).
       
  1767     for (int i = 0; i < total_in_args; i++) {
       
  1768       if (in_sig_bt[i] == T_ARRAY) {
       
  1769         total_c_args += 2; // PPC64: T_LONG, T_INT, T_ADDRESS (see convert_ints_to_longints and c_calling_convention)
       
  1770       }
       
  1771     }
       
  1772   }
       
  1773 
       
  1774   BasicType *out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
       
  1775   VMRegPair *out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
       
  1776   VMRegPair *out_regs2  = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
       
  1777   BasicType* in_elem_bt = NULL;
       
  1778 
       
  1779   // Create the signature for the C call:
       
  1780   //   1) add the JNIEnv*
       
  1781   //   2) add the class if the method is static
       
  1782   //   3) copy the rest of the incoming signature (shifted by the number of
       
  1783   //      hidden arguments).
       
  1784 
       
  1785   int argc = 0;
       
  1786   if (!is_critical_native) {
       
  1787     convert_ints_to_longints(i2l_argcnt, total_in_args, in_sig_bt, in_regs); // PPC64: pass ints as longs.
       
  1788 
       
  1789     out_sig_bt[argc++] = T_ADDRESS;
       
  1790     if (method->is_static()) {
       
  1791       out_sig_bt[argc++] = T_OBJECT;
       
  1792     }
       
  1793 
       
  1794     for (int i = 0; i < total_in_args ; i++ ) {
       
  1795       out_sig_bt[argc++] = in_sig_bt[i];
       
  1796     }
       
  1797   } else {
       
  1798     Thread* THREAD = Thread::current();
       
  1799     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
       
  1800     SignatureStream ss(method->signature());
       
  1801     int o = 0;
       
  1802     for (int i = 0; i < total_in_args ; i++, o++) {
       
  1803       if (in_sig_bt[i] == T_ARRAY) {
       
  1804         // Arrays are passed as int, elem* pair
       
  1805         Symbol* atype = ss.as_symbol(CHECK_NULL);
       
  1806         const char* at = atype->as_C_string();
       
  1807         if (strlen(at) == 2) {
       
  1808           assert(at[0] == '[', "must be");
       
  1809           switch (at[1]) {
       
  1810             case 'B': in_elem_bt[o] = T_BYTE; break;
       
  1811             case 'C': in_elem_bt[o] = T_CHAR; break;
       
  1812             case 'D': in_elem_bt[o] = T_DOUBLE; break;
       
  1813             case 'F': in_elem_bt[o] = T_FLOAT; break;
       
  1814             case 'I': in_elem_bt[o] = T_INT; break;
       
  1815             case 'J': in_elem_bt[o] = T_LONG; break;
       
  1816             case 'S': in_elem_bt[o] = T_SHORT; break;
       
  1817             case 'Z': in_elem_bt[o] = T_BOOLEAN; break;
       
  1818             default: ShouldNotReachHere();
       
  1819           }
       
  1820         }
       
  1821       } else {
       
  1822         in_elem_bt[o] = T_VOID;
       
  1823         switch(in_sig_bt[i]) { // PPC64: pass ints as longs.
       
  1824           case T_BOOLEAN:
       
  1825           case T_CHAR:
       
  1826           case T_BYTE:
       
  1827           case T_SHORT:
       
  1828           case T_INT: in_elem_bt[++o] = T_VOID; break;
       
  1829           default: break;
       
  1830         }
       
  1831       }
       
  1832       if (in_sig_bt[i] != T_VOID) {
       
  1833         assert(in_sig_bt[i] == ss.type(), "must match");
       
  1834         ss.next();
       
  1835       }
       
  1836     }
       
  1837     assert(i2l_argcnt==o, "must match");
       
  1838 
       
  1839     convert_ints_to_longints(i2l_argcnt, total_in_args, in_sig_bt, in_regs); // PPC64: pass ints as longs.
       
  1840 
       
  1841     for (int i = 0; i < total_in_args ; i++ ) {
       
  1842       if (in_sig_bt[i] == T_ARRAY) {
       
  1843         // Arrays are passed as int, elem* pair.
       
  1844         out_sig_bt[argc++] = T_LONG; // PPC64: pass ints as longs.
       
  1845         out_sig_bt[argc++] = T_INT;
       
  1846         out_sig_bt[argc++] = T_ADDRESS;
       
  1847       } else {
       
  1848         out_sig_bt[argc++] = in_sig_bt[i];
       
  1849       }
       
  1850     }
       
  1851   }
       
  1852 
       
  1853 
       
  1854   // Compute the wrapper's frame size.
       
  1855   // --------------------------------------------------------------------------
       
  1856 
       
  1857   // Now figure out where the args must be stored and how much stack space
       
  1858   // they require.
       
  1859   //
       
  1860   // Compute framesize for the wrapper. We need to handlize all oops in
       
  1861   // incoming registers.
       
  1862   //
       
  1863   // Calculate the total number of stack slots we will need:
       
  1864   //   1) abi requirements
       
  1865   //   2) outgoing arguments
       
  1866   //   3) space for inbound oop handle area
       
  1867   //   4) space for handlizing a klass if static method
       
  1868   //   5) space for a lock if synchronized method
       
  1869   //   6) workspace for saving return values, int <-> float reg moves, etc.
       
  1870   //   7) alignment
       
  1871   //
       
  1872   // Layout of the native wrapper frame:
       
  1873   // (stack grows upwards, memory grows downwards)
       
  1874   //
       
  1875   // NW     [ABI_112]                  <-- 1) R1_SP
       
  1876   //        [outgoing arguments]       <-- 2) R1_SP + out_arg_slot_offset
       
  1877   //        [oopHandle area]           <-- 3) R1_SP + oop_handle_offset (save area for critical natives)
       
  1878   //        klass                      <-- 4) R1_SP + klass_offset
       
  1879   //        lock                       <-- 5) R1_SP + lock_offset
       
  1880   //        [workspace]                <-- 6) R1_SP + workspace_offset
       
  1881   //        [alignment] (optional)     <-- 7)
       
  1882   // caller [JIT_TOP_ABI_48]           <-- r_callers_sp
       
  1883   //
       
  1884   // - *_slot_offset Indicates offset from SP in number of stack slots.
       
  1885   // - *_offset      Indicates offset from SP in bytes.
       
  1886 
       
  1887   int stack_slots = c_calling_convention(out_sig_bt, out_regs, out_regs2, total_c_args) // 1+2)
       
  1888                   + SharedRuntime::out_preserve_stack_slots(); // See c_calling_convention.
       
  1889 
       
  1890   // Now the space for the inbound oop handle area.
       
  1891   int total_save_slots = num_java_iarg_registers * VMRegImpl::slots_per_word;
       
  1892   if (is_critical_native) {
       
  1893     // Critical natives may have to call out so they need a save area
       
  1894     // for register arguments.
       
  1895     int double_slots = 0;
       
  1896     int single_slots = 0;
       
  1897     for (int i = 0; i < total_in_args; i++) {
       
  1898       if (in_regs[i].first()->is_Register()) {
       
  1899         const Register reg = in_regs[i].first()->as_Register();
       
  1900         switch (in_sig_bt[i]) {
       
  1901           case T_BOOLEAN:
       
  1902           case T_BYTE:
       
  1903           case T_SHORT:
       
  1904           case T_CHAR:
       
  1905           case T_INT:  /*single_slots++;*/ break; // PPC64: pass ints as longs.
       
  1906           case T_ARRAY:
       
  1907           case T_LONG: double_slots++; break;
       
  1908           default:  ShouldNotReachHere();
       
  1909         }
       
  1910       } else if (in_regs[i].first()->is_FloatRegister()) {
       
  1911         switch (in_sig_bt[i]) {
       
  1912           case T_FLOAT:  single_slots++; break;
       
  1913           case T_DOUBLE: double_slots++; break;
       
  1914           default:  ShouldNotReachHere();
       
  1915         }
       
  1916       }
       
  1917     }
       
  1918     total_save_slots = double_slots * 2 + round_to(single_slots, 2); // round to even
       
  1919   }
       
  1920 
       
  1921   int oop_handle_slot_offset = stack_slots;
       
  1922   stack_slots += total_save_slots;                                                // 3)
       
  1923 
       
  1924   int klass_slot_offset = 0;
       
  1925   int klass_offset      = -1;
       
  1926   if (method_is_static && !is_critical_native) {                                  // 4)
       
  1927     klass_slot_offset  = stack_slots;
       
  1928     klass_offset       = klass_slot_offset * VMRegImpl::stack_slot_size;
       
  1929     stack_slots       += VMRegImpl::slots_per_word;
       
  1930   }
       
  1931 
       
  1932   int lock_slot_offset = 0;
       
  1933   int lock_offset      = -1;
       
  1934   if (method->is_synchronized()) {                                                // 5)
       
  1935     lock_slot_offset   = stack_slots;
       
  1936     lock_offset        = lock_slot_offset * VMRegImpl::stack_slot_size;
       
  1937     stack_slots       += VMRegImpl::slots_per_word;
       
  1938   }
       
  1939 
       
  1940   int workspace_slot_offset = stack_slots;                                        // 6)
       
  1941   stack_slots         += 2;
       
  1942 
       
  1943   // Now compute actual number of stack words we need.
       
  1944   // Rounding to make stack properly aligned.
       
  1945   stack_slots = round_to(stack_slots,                                             // 7)
       
  1946                          frame::alignment_in_bytes / VMRegImpl::stack_slot_size);
       
  1947   int frame_size_in_bytes = stack_slots * VMRegImpl::stack_slot_size;
       
  1948 
       
  1949 
       
  1950   // Now we can start generating code.
       
  1951   // --------------------------------------------------------------------------
       
  1952 
       
  1953   intptr_t start_pc = (intptr_t)__ pc();
       
  1954   intptr_t vep_start_pc;
       
  1955   intptr_t frame_done_pc;
       
  1956   intptr_t oopmap_pc;
       
  1957 
       
  1958   Label    ic_miss;
       
  1959   Label    handle_pending_exception;
       
  1960 
       
  1961   Register r_callers_sp = R21;
       
  1962   Register r_temp_1     = R22;
       
  1963   Register r_temp_2     = R23;
       
  1964   Register r_temp_3     = R24;
       
  1965   Register r_temp_4     = R25;
       
  1966   Register r_temp_5     = R26;
       
  1967   Register r_temp_6     = R27;
       
  1968   Register r_return_pc  = R28;
       
  1969 
       
  1970   Register r_carg1_jnienv        = noreg;
       
  1971   Register r_carg2_classorobject = noreg;
       
  1972   if (!is_critical_native) {
       
  1973     r_carg1_jnienv        = out_regs[0].first()->as_Register();
       
  1974     r_carg2_classorobject = out_regs[1].first()->as_Register();
       
  1975   }
       
  1976 
       
  1977 
       
  1978   // Generate the Unverified Entry Point (UEP).
       
  1979   // --------------------------------------------------------------------------
       
  1980   assert(start_pc == (intptr_t)__ pc(), "uep must be at start");
       
  1981 
       
  1982   // Check ic: object class == cached class?
       
  1983   if (!method_is_static) {
       
  1984   Register ic = as_Register(Matcher::inline_cache_reg_encode());
       
  1985   Register receiver_klass = r_temp_1;
       
  1986 
       
  1987   __ cmpdi(CCR0, R3_ARG1, 0);
       
  1988   __ beq(CCR0, ic_miss);
       
  1989   __ verify_oop(R3_ARG1);
       
  1990   __ load_klass(receiver_klass, R3_ARG1);
       
  1991 
       
  1992   __ cmpd(CCR0, receiver_klass, ic);
       
  1993   __ bne(CCR0, ic_miss);
       
  1994   }
       
  1995 
       
  1996 
       
  1997   // Generate the Verified Entry Point (VEP).
       
  1998   // --------------------------------------------------------------------------
       
  1999   vep_start_pc = (intptr_t)__ pc();
       
  2000 
       
  2001   __ save_LR_CR(r_temp_1);
       
  2002   __ generate_stack_overflow_check(frame_size_in_bytes); // Check before creating frame.
       
  2003   __ mr(r_callers_sp, R1_SP);                       // Remember frame pointer.
       
  2004   __ push_frame(frame_size_in_bytes, r_temp_1);          // Push the c2n adapter's frame.
       
  2005   frame_done_pc = (intptr_t)__ pc();
       
  2006 
       
  2007   // Native nmethod wrappers never take possesion of the oop arguments.
       
  2008   // So the caller will gc the arguments.
       
  2009   // The only thing we need an oopMap for is if the call is static.
       
  2010   //
       
  2011   // An OopMap for lock (and class if static), and one for the VM call itself.
       
  2012   OopMapSet *oop_maps = new OopMapSet();
       
  2013   OopMap    *oop_map  = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
       
  2014 
       
  2015   if (is_critical_native) {
       
  2016     check_needs_gc_for_critical_native(masm, stack_slots, total_in_args, oop_handle_slot_offset, oop_maps, in_regs, in_sig_bt, r_temp_1);
       
  2017   }
       
  2018 
       
  2019   // Move arguments from register/stack to register/stack.
       
  2020   // --------------------------------------------------------------------------
       
  2021   //
       
  2022   // We immediately shuffle the arguments so that for any vm call we have
       
  2023   // to make from here on out (sync slow path, jvmti, etc.) we will have
       
  2024   // captured the oops from our caller and have a valid oopMap for them.
       
  2025   //
       
  2026   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
       
  2027   // (derived from JavaThread* which is in R16_thread) and, if static,
       
  2028   // the class mirror instead of a receiver. This pretty much guarantees that
       
  2029   // register layout will not match. We ignore these extra arguments during
       
  2030   // the shuffle. The shuffle is described by the two calling convention
       
  2031   // vectors we have in our possession. We simply walk the java vector to
       
  2032   // get the source locations and the c vector to get the destinations.
       
  2033 
       
  2034   // Record sp-based slot for receiver on stack for non-static methods.
       
  2035   int receiver_offset = -1;
       
  2036 
       
  2037   // We move the arguments backward because the floating point registers
       
  2038   // destination will always be to a register with a greater or equal
       
  2039   // register number or the stack.
       
  2040   //   in  is the index of the incoming Java arguments
       
  2041   //   out is the index of the outgoing C arguments
       
  2042 
       
  2043 #ifdef ASSERT
       
  2044   bool reg_destroyed[RegisterImpl::number_of_registers];
       
  2045   bool freg_destroyed[FloatRegisterImpl::number_of_registers];
       
  2046   for (int r = 0 ; r < RegisterImpl::number_of_registers ; r++) {
       
  2047     reg_destroyed[r] = false;
       
  2048   }
       
  2049   for (int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++) {
       
  2050     freg_destroyed[f] = false;
       
  2051   }
       
  2052 #endif // ASSERT
       
  2053 
       
  2054   for (int in = total_in_args - 1, out = total_c_args - 1; in >= 0 ; in--, out--) {
       
  2055 
       
  2056 #ifdef ASSERT
       
  2057     if (in_regs[in].first()->is_Register()) {
       
  2058       assert(!reg_destroyed[in_regs[in].first()->as_Register()->encoding()], "ack!");
       
  2059     } else if (in_regs[in].first()->is_FloatRegister()) {
       
  2060       assert(!freg_destroyed[in_regs[in].first()->as_FloatRegister()->encoding()], "ack!");
       
  2061     }
       
  2062     if (out_regs[out].first()->is_Register()) {
       
  2063       reg_destroyed[out_regs[out].first()->as_Register()->encoding()] = true;
       
  2064     } else if (out_regs[out].first()->is_FloatRegister()) {
       
  2065       freg_destroyed[out_regs[out].first()->as_FloatRegister()->encoding()] = true;
       
  2066     }
       
  2067     if (out_regs2[out].first()->is_Register()) {
       
  2068       reg_destroyed[out_regs2[out].first()->as_Register()->encoding()] = true;
       
  2069     } else if (out_regs2[out].first()->is_FloatRegister()) {
       
  2070       freg_destroyed[out_regs2[out].first()->as_FloatRegister()->encoding()] = true;
       
  2071     }
       
  2072 #endif // ASSERT
       
  2073 
       
  2074     switch (in_sig_bt[in]) {
       
  2075       case T_BOOLEAN:
       
  2076       case T_CHAR:
       
  2077       case T_BYTE:
       
  2078       case T_SHORT:
       
  2079       case T_INT:
       
  2080         guarantee(in > 0 && in_sig_bt[in-1] == T_LONG,
       
  2081                   "expecting type (T_LONG,bt) for bt in {T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}");
       
  2082         break;
       
  2083       case T_LONG:
       
  2084         if (in_sig_bt[in+1] == T_VOID) {
       
  2085           long_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
       
  2086         } else {
       
  2087           guarantee(in_sig_bt[in+1] == T_BOOLEAN || in_sig_bt[in+1] == T_CHAR  ||
       
  2088                     in_sig_bt[in+1] == T_BYTE    || in_sig_bt[in+1] == T_SHORT ||
       
  2089                     in_sig_bt[in+1] == T_INT,
       
  2090                  "expecting type (T_LONG,bt) for bt in {T_BOOLEAN, T_CHAR, T_BYTE, T_SHORT, T_INT}");
       
  2091           int_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
       
  2092         }
       
  2093         break;
       
  2094       case T_ARRAY:
       
  2095         if (is_critical_native) {
       
  2096           int body_arg = out;
       
  2097           out -= 2; // Point to length arg. PPC64: pass ints as longs.
       
  2098           unpack_array_argument(masm, in_regs[in], in_elem_bt[in], out_regs[body_arg], out_regs[out],
       
  2099                                 r_callers_sp, r_temp_1, r_temp_2);
       
  2100           break;
       
  2101         }
       
  2102       case T_OBJECT:
       
  2103         assert(!is_critical_native, "no oop arguments");
       
  2104         object_move(masm, stack_slots,
       
  2105                     oop_map, oop_handle_slot_offset,
       
  2106                     ((in == 0) && (!method_is_static)), &receiver_offset,
       
  2107                     in_regs[in], out_regs[out],
       
  2108                     r_callers_sp, r_temp_1, r_temp_2);
       
  2109         break;
       
  2110       case T_VOID:
       
  2111         break;
       
  2112       case T_FLOAT:
       
  2113         float_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
       
  2114         if (out_regs2[out].first()->is_valid()) {
       
  2115           float_move(masm, in_regs[in], out_regs2[out], r_callers_sp, r_temp_1);
       
  2116         }
       
  2117         break;
       
  2118       case T_DOUBLE:
       
  2119         double_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
       
  2120         if (out_regs2[out].first()->is_valid()) {
       
  2121           double_move(masm, in_regs[in], out_regs2[out], r_callers_sp, r_temp_1);
       
  2122         }
       
  2123         break;
       
  2124       case T_ADDRESS:
       
  2125         fatal("found type (T_ADDRESS) in java args");
       
  2126         break;
       
  2127       default:
       
  2128         ShouldNotReachHere();
       
  2129         break;
       
  2130     }
       
  2131   }
       
  2132 
       
  2133   // Pre-load a static method's oop into ARG2.
       
  2134   // Used both by locking code and the normal JNI call code.
       
  2135   if (method_is_static && !is_critical_native) {
       
  2136     __ set_oop_constant(JNIHandles::make_local(method->method_holder()->java_mirror()),
       
  2137                         r_carg2_classorobject);
       
  2138 
       
  2139     // Now handlize the static class mirror in carg2. It's known not-null.
       
  2140     __ std(r_carg2_classorobject, klass_offset, R1_SP);
       
  2141     oop_map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
       
  2142     __ addi(r_carg2_classorobject, R1_SP, klass_offset);
       
  2143   }
       
  2144 
       
  2145   // Get JNIEnv* which is first argument to native.
       
  2146   if (!is_critical_native) {
       
  2147     __ addi(r_carg1_jnienv, R16_thread, in_bytes(JavaThread::jni_environment_offset()));
       
  2148   }
       
  2149 
       
  2150   // NOTE:
       
  2151   //
       
  2152   // We have all of the arguments setup at this point.
       
  2153   // We MUST NOT touch any outgoing regs from this point on.
       
  2154   // So if we must call out we must push a new frame.
       
  2155 
       
  2156   // Get current pc for oopmap, and load it patchable relative to global toc.
       
  2157   oopmap_pc = (intptr_t) __ pc();
       
  2158   __ calculate_address_from_global_toc(r_return_pc, (address)oopmap_pc, true, true, true, true);
       
  2159 
       
  2160   // We use the same pc/oopMap repeatedly when we call out.
       
  2161   oop_maps->add_gc_map(oopmap_pc - start_pc, oop_map);
       
  2162 
       
  2163   // r_return_pc now has the pc loaded that we will use when we finally call
       
  2164   // to native.
       
  2165 
       
  2166   // Make sure that thread is non-volatile; it crosses a bunch of VM calls below.
       
  2167   assert(R16_thread->is_nonvolatile(), "thread must be in non-volatile register");
       
  2168 
       
  2169 
       
  2170 # if 0
       
  2171   // DTrace method entry
       
  2172 # endif
       
  2173 
       
  2174   // Lock a synchronized method.
       
  2175   // --------------------------------------------------------------------------
       
  2176 
       
  2177   if (method->is_synchronized()) {
       
  2178     assert(!is_critical_native, "unhandled");
       
  2179     ConditionRegister r_flag = CCR1;
       
  2180     Register          r_oop  = r_temp_4;
       
  2181     const Register    r_box  = r_temp_5;
       
  2182     Label             done, locked;
       
  2183 
       
  2184     // Load the oop for the object or class. r_carg2_classorobject contains
       
  2185     // either the handlized oop from the incoming arguments or the handlized
       
  2186     // class mirror (if the method is static).
       
  2187     __ ld(r_oop, 0, r_carg2_classorobject);
       
  2188 
       
  2189     // Get the lock box slot's address.
       
  2190     __ addi(r_box, R1_SP, lock_offset);
       
  2191 
       
  2192 #   ifdef ASSERT
       
  2193     if (UseBiasedLocking) {
       
  2194       // Making the box point to itself will make it clear it went unused
       
  2195       // but also be obviously invalid.
       
  2196       __ std(r_box, 0, r_box);
       
  2197     }
       
  2198 #   endif // ASSERT
       
  2199 
       
  2200     // Try fastpath for locking.
       
  2201     // fast_lock kills r_temp_1, r_temp_2, r_temp_3.
       
  2202     __ compiler_fast_lock_object(r_flag, r_oop, r_box, r_temp_1, r_temp_2, r_temp_3);
       
  2203     __ beq(r_flag, locked);
       
  2204 
       
  2205     // None of the above fast optimizations worked so we have to get into the
       
  2206     // slow case of monitor enter. Inline a special case of call_VM that
       
  2207     // disallows any pending_exception.
       
  2208 
       
  2209     // Save argument registers and leave room for C-compatible ABI_112.
       
  2210     int frame_size = frame::abi_112_size +
       
  2211                      round_to(total_c_args * wordSize, frame::alignment_in_bytes);
       
  2212     __ mr(R11_scratch1, R1_SP);
       
  2213     RegisterSaver::push_frame_and_save_argument_registers(masm, R12_scratch2, frame_size, total_c_args, out_regs, out_regs2);
       
  2214 
       
  2215     // Do the call.
       
  2216     __ set_last_Java_frame(R11_scratch1, r_return_pc);
       
  2217     assert(r_return_pc->is_nonvolatile(), "expecting return pc to be in non-volatile register");
       
  2218     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), r_oop, r_box, R16_thread);
       
  2219     __ reset_last_Java_frame();
       
  2220 
       
  2221     RegisterSaver::restore_argument_registers_and_pop_frame(masm, frame_size, total_c_args, out_regs, out_regs2);
       
  2222 
       
  2223     __ asm_assert_mem8_is_zero(thread_(pending_exception),
       
  2224        "no pending exception allowed on exit from SharedRuntime::complete_monitor_locking_C", 0);
       
  2225 
       
  2226     __ bind(locked);
       
  2227   }
       
  2228 
       
  2229 
       
  2230   // Publish thread state
       
  2231   // --------------------------------------------------------------------------
       
  2232 
       
  2233   // Use that pc we placed in r_return_pc a while back as the current frame anchor.
       
  2234   __ set_last_Java_frame(R1_SP, r_return_pc);
       
  2235 
       
  2236   // Transition from _thread_in_Java to _thread_in_native.
       
  2237   __ li(R0, _thread_in_native);
       
  2238   __ release();
       
  2239   // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
       
  2240   __ stw(R0, thread_(thread_state));
       
  2241   if (UseMembar) {
       
  2242     __ fence();
       
  2243   }
       
  2244 
       
  2245 
       
  2246   // The JNI call
       
  2247   // --------------------------------------------------------------------------
       
  2248 
       
  2249   FunctionDescriptor* fd_native_method = (FunctionDescriptor*) native_func;
       
  2250   __ call_c(fd_native_method, relocInfo::runtime_call_type);
       
  2251 
       
  2252 
       
  2253   // Now, we are back from the native code.
       
  2254 
       
  2255 
       
  2256   // Unpack the native result.
       
  2257   // --------------------------------------------------------------------------
       
  2258 
       
  2259   // For int-types, we do any needed sign-extension required.
       
  2260   // Care must be taken that the return values (R3_RET and F1_RET)
       
  2261   // will survive any VM calls for blocking or unlocking.
       
  2262   // An OOP result (handle) is done specially in the slow-path code.
       
  2263 
       
  2264   switch (ret_type) {
       
  2265     case T_VOID:    break;        // Nothing to do!
       
  2266     case T_FLOAT:   break;        // Got it where we want it (unless slow-path).
       
  2267     case T_DOUBLE:  break;        // Got it where we want it (unless slow-path).
       
  2268     case T_LONG:    break;        // Got it where we want it (unless slow-path).
       
  2269     case T_OBJECT:  break;        // Really a handle.
       
  2270                                   // Cannot de-handlize until after reclaiming jvm_lock.
       
  2271     case T_ARRAY:   break;
       
  2272 
       
  2273     case T_BOOLEAN: {             // 0 -> false(0); !0 -> true(1)
       
  2274       Label skip_modify;
       
  2275       __ cmpwi(CCR0, R3_RET, 0);
       
  2276       __ beq(CCR0, skip_modify);
       
  2277       __ li(R3_RET, 1);
       
  2278       __ bind(skip_modify);
       
  2279       break;
       
  2280       }
       
  2281     case T_BYTE: {                // sign extension
       
  2282       __ extsb(R3_RET, R3_RET);
       
  2283       break;
       
  2284       }
       
  2285     case T_CHAR: {                // unsigned result
       
  2286       __ andi(R3_RET, R3_RET, 0xffff);
       
  2287       break;
       
  2288       }
       
  2289     case T_SHORT: {               // sign extension
       
  2290       __ extsh(R3_RET, R3_RET);
       
  2291       break;
       
  2292       }
       
  2293     case T_INT:                   // nothing to do
       
  2294       break;
       
  2295     default:
       
  2296       ShouldNotReachHere();
       
  2297       break;
       
  2298   }
       
  2299 
       
  2300 
       
  2301   // Publish thread state
       
  2302   // --------------------------------------------------------------------------
       
  2303 
       
  2304   // Switch thread to "native transition" state before reading the
       
  2305   // synchronization state. This additional state is necessary because reading
       
  2306   // and testing the synchronization state is not atomic w.r.t. GC, as this
       
  2307   // scenario demonstrates:
       
  2308   //   - Java thread A, in _thread_in_native state, loads _not_synchronized
       
  2309   //     and is preempted.
       
  2310   //   - VM thread changes sync state to synchronizing and suspends threads
       
  2311   //     for GC.
       
  2312   //   - Thread A is resumed to finish this native method, but doesn't block
       
  2313   //     here since it didn't see any synchronization in progress, and escapes.
       
  2314 
       
  2315   // Transition from _thread_in_native to _thread_in_native_trans.
       
  2316   __ li(R0, _thread_in_native_trans);
       
  2317   __ release();
       
  2318   // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
       
  2319   __ stw(R0, thread_(thread_state));
       
  2320 
       
  2321 
       
  2322   // Must we block?
       
  2323   // --------------------------------------------------------------------------
       
  2324 
       
  2325   // Block, if necessary, before resuming in _thread_in_Java state.
       
  2326   // In order for GC to work, don't clear the last_Java_sp until after blocking.
       
  2327   Label after_transition;
       
  2328   {
       
  2329     Label no_block, sync;
       
  2330 
       
  2331     if (os::is_MP()) {
       
  2332       if (UseMembar) {
       
  2333         // Force this write out before the read below.
       
  2334         __ fence();
       
  2335       } else {
       
  2336         // Write serialization page so VM thread can do a pseudo remote membar.
       
  2337         // We use the current thread pointer to calculate a thread specific
       
  2338         // offset to write to within the page. This minimizes bus traffic
       
  2339         // due to cache line collision.
       
  2340         __ serialize_memory(R16_thread, r_temp_4, r_temp_5);
       
  2341       }
       
  2342     }
       
  2343 
       
  2344     Register sync_state_addr = r_temp_4;
       
  2345     Register sync_state      = r_temp_5;
       
  2346     Register suspend_flags   = r_temp_6;
       
  2347 
       
  2348     __ load_const(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/ sync_state);
       
  2349 
       
  2350     // TODO: PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size");
       
  2351     __ lwz(sync_state, 0, sync_state_addr);
       
  2352 
       
  2353     // TODO: PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
       
  2354     __ lwz(suspend_flags, thread_(suspend_flags));
       
  2355 
       
  2356     __ acquire();
       
  2357 
       
  2358     Label do_safepoint;
       
  2359     // No synchronization in progress nor yet synchronized.
       
  2360     __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
       
  2361     // Not suspended.
       
  2362     __ cmpwi(CCR1, suspend_flags, 0);
       
  2363 
       
  2364     __ bne(CCR0, sync);
       
  2365     __ beq(CCR1, no_block);
       
  2366 
       
  2367     // Block. Save any potential method result value before the operation and
       
  2368     // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
       
  2369     // lets us share the oopMap we used when we went native rather than create
       
  2370     // a distinct one for this pc.
       
  2371     __ bind(sync);
       
  2372 
       
  2373     address entry_point = is_critical_native
       
  2374       ? CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)
       
  2375       : CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans);
       
  2376     save_native_result(masm, ret_type, workspace_slot_offset);
       
  2377     __ call_VM_leaf(entry_point, R16_thread);
       
  2378     restore_native_result(masm, ret_type, workspace_slot_offset);
       
  2379 
       
  2380     if (is_critical_native) {
       
  2381       __ b(after_transition); // No thread state transition here.
       
  2382     }
       
  2383     __ bind(no_block);
       
  2384   }
       
  2385 
       
  2386   // Publish thread state.
       
  2387   // --------------------------------------------------------------------------
       
  2388 
       
  2389   // Thread state is thread_in_native_trans. Any safepoint blocking has
       
  2390   // already happened so we can now change state to _thread_in_Java.
       
  2391 
       
  2392   // Transition from _thread_in_native_trans to _thread_in_Java.
       
  2393   __ li(R0, _thread_in_Java);
       
  2394   __ release();
       
  2395   // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
       
  2396   __ stw(R0, thread_(thread_state));
       
  2397   if (UseMembar) {
       
  2398     __ fence();
       
  2399   }
       
  2400   __ bind(after_transition);
       
  2401 
       
  2402   // Reguard any pages if necessary.
       
  2403   // --------------------------------------------------------------------------
       
  2404 
       
  2405   Label no_reguard;
       
  2406   __ lwz(r_temp_1, thread_(stack_guard_state));
       
  2407   __ cmpwi(CCR0, r_temp_1, JavaThread::stack_guard_yellow_disabled);
       
  2408   __ bne(CCR0, no_reguard);
       
  2409 
       
  2410   save_native_result(masm, ret_type, workspace_slot_offset);
       
  2411   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
       
  2412   restore_native_result(masm, ret_type, workspace_slot_offset);
       
  2413 
       
  2414   __ bind(no_reguard);
       
  2415 
       
  2416 
       
  2417   // Unlock
       
  2418   // --------------------------------------------------------------------------
       
  2419 
       
  2420   if (method->is_synchronized()) {
       
  2421 
       
  2422     ConditionRegister r_flag   = CCR1;
       
  2423     const Register r_oop       = r_temp_4;
       
  2424     const Register r_box       = r_temp_5;
       
  2425     const Register r_exception = r_temp_6;
       
  2426     Label done;
       
  2427 
       
  2428     // Get oop and address of lock object box.
       
  2429     if (method_is_static) {
       
  2430       assert(klass_offset != -1, "");
       
  2431       __ ld(r_oop, klass_offset, R1_SP);
       
  2432     } else {
       
  2433       assert(receiver_offset != -1, "");
       
  2434       __ ld(r_oop, receiver_offset, R1_SP);
       
  2435     }
       
  2436     __ addi(r_box, R1_SP, lock_offset);
       
  2437 
       
  2438     // Try fastpath for unlocking.
       
  2439     __ compiler_fast_unlock_object(r_flag, r_oop, r_box, r_temp_1, r_temp_2, r_temp_3);
       
  2440     __ beq(r_flag, done);
       
  2441 
       
  2442     // Save and restore any potential method result value around the unlocking operation.
       
  2443     save_native_result(masm, ret_type, workspace_slot_offset);
       
  2444 
       
  2445     // Must save pending exception around the slow-path VM call. Since it's a
       
  2446     // leaf call, the pending exception (if any) can be kept in a register.
       
  2447     __ ld(r_exception, thread_(pending_exception));
       
  2448     assert(r_exception->is_nonvolatile(), "exception register must be non-volatile");
       
  2449     __ li(R0, 0);
       
  2450     __ std(R0, thread_(pending_exception));
       
  2451 
       
  2452     // Slow case of monitor enter.
       
  2453     // Inline a special case of call_VM that disallows any pending_exception.
       
  2454     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), r_oop, r_box);
       
  2455 
       
  2456     __ asm_assert_mem8_is_zero(thread_(pending_exception),
       
  2457        "no pending exception allowed on exit from SharedRuntime::complete_monitor_unlocking_C", 0);
       
  2458 
       
  2459     restore_native_result(masm, ret_type, workspace_slot_offset);
       
  2460 
       
  2461     // Check_forward_pending_exception jump to forward_exception if any pending
       
  2462     // exception is set. The forward_exception routine expects to see the
       
  2463     // exception in pending_exception and not in a register. Kind of clumsy,
       
  2464     // since all folks who branch to forward_exception must have tested
       
  2465     // pending_exception first and hence have it in a register already.
       
  2466     __ std(r_exception, thread_(pending_exception));
       
  2467 
       
  2468     __ bind(done);
       
  2469   }
       
  2470 
       
  2471 # if 0
       
  2472   // DTrace method exit
       
  2473 # endif
       
  2474 
       
  2475   // Clear "last Java frame" SP and PC.
       
  2476   // --------------------------------------------------------------------------
       
  2477 
       
  2478   __ reset_last_Java_frame();
       
  2479 
       
  2480   // Unpack oop result.
       
  2481   // --------------------------------------------------------------------------
       
  2482 
       
  2483   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
       
  2484     Label skip_unboxing;
       
  2485     __ cmpdi(CCR0, R3_RET, 0);
       
  2486     __ beq(CCR0, skip_unboxing);
       
  2487     __ ld(R3_RET, 0, R3_RET);
       
  2488     __ bind(skip_unboxing);
       
  2489     __ verify_oop(R3_RET);
       
  2490   }
       
  2491 
       
  2492 
       
  2493   // Reset handle block.
       
  2494   // --------------------------------------------------------------------------
       
  2495   if (!is_critical_native) {
       
  2496   __ ld(r_temp_1, thread_(active_handles));
       
  2497   // TODO: PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
       
  2498   __ li(r_temp_2, 0);
       
  2499   __ stw(r_temp_2, JNIHandleBlock::top_offset_in_bytes(), r_temp_1);
       
  2500 
       
  2501 
       
  2502   // Check for pending exceptions.
       
  2503   // --------------------------------------------------------------------------
       
  2504   __ ld(r_temp_2, thread_(pending_exception));
       
  2505   __ cmpdi(CCR0, r_temp_2, 0);
       
  2506   __ bne(CCR0, handle_pending_exception);
       
  2507   }
       
  2508 
       
  2509   // Return
       
  2510   // --------------------------------------------------------------------------
       
  2511 
       
  2512   __ pop_frame();
       
  2513   __ restore_LR_CR(R11);
       
  2514   __ blr();
       
  2515 
       
  2516 
       
  2517   // Handler for pending exceptions (out-of-line).
       
  2518   // --------------------------------------------------------------------------
       
  2519 
       
  2520   // Since this is a native call, we know the proper exception handler
       
  2521   // is the empty function. We just pop this frame and then jump to
       
  2522   // forward_exception_entry.
       
  2523   if (!is_critical_native) {
       
  2524   __ align(InteriorEntryAlignment);
       
  2525   __ bind(handle_pending_exception);
       
  2526 
       
  2527   __ pop_frame();
       
  2528   __ restore_LR_CR(R11);
       
  2529   __ b64_patchable((address)StubRoutines::forward_exception_entry(),
       
  2530                        relocInfo::runtime_call_type);
       
  2531   }
       
  2532 
       
  2533   // Handler for a cache miss (out-of-line).
       
  2534   // --------------------------------------------------------------------------
       
  2535 
       
  2536   if (!method_is_static) {
       
  2537   __ align(InteriorEntryAlignment);
       
  2538   __ bind(ic_miss);
       
  2539 
       
  2540   __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
       
  2541                        relocInfo::runtime_call_type);
       
  2542   }
       
  2543 
       
  2544   // Done.
       
  2545   // --------------------------------------------------------------------------
       
  2546 
       
  2547   __ flush();
       
  2548 
       
  2549   nmethod *nm = nmethod::new_native_nmethod(method,
       
  2550                                             compile_id,
       
  2551                                             masm->code(),
       
  2552                                             vep_start_pc-start_pc,
       
  2553                                             frame_done_pc-start_pc,
       
  2554                                             stack_slots / VMRegImpl::slots_per_word,
       
  2555                                             (method_is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
       
  2556                                             in_ByteSize(lock_offset),
       
  2557                                             oop_maps);
       
  2558 
       
  2559   if (is_critical_native) {
       
  2560     nm->set_lazy_critical_native(true);
       
  2561   }
       
  2562 
       
  2563   return nm;
       
  2564 #else
       
  2565   ShouldNotReachHere();
       
  2566   return NULL;
       
  2567 #endif // COMPILER2
       
  2568 }
       
  2569 
       
  2570 // This function returns the adjust size (in number of words) to a c2i adapter
       
  2571 // activation for use during deoptimization.
       
  2572 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
       
  2573   return round_to((callee_locals - callee_parameters) * Interpreter::stackElementWords, frame::alignment_in_bytes);
       
  2574 }
       
  2575 
       
  2576 uint SharedRuntime::out_preserve_stack_slots() {
       
  2577 #ifdef COMPILER2
       
  2578   return frame::jit_out_preserve_size / VMRegImpl::stack_slot_size;
       
  2579 #else
       
  2580   return 0;
       
  2581 #endif
       
  2582 }
       
  2583 
       
  2584 #ifdef COMPILER2
       
  2585 // Frame generation for deopt and uncommon trap blobs.
       
  2586 static void push_skeleton_frame(MacroAssembler* masm, bool deopt,
       
  2587                                 /* Read */
       
  2588                                 Register unroll_block_reg,
       
  2589                                 /* Update */
       
  2590                                 Register frame_sizes_reg,
       
  2591                                 Register number_of_frames_reg,
       
  2592                                 Register pcs_reg,
       
  2593                                 /* Invalidate */
       
  2594                                 Register frame_size_reg,
       
  2595                                 Register pc_reg) {
       
  2596 
       
  2597   __ ld(pc_reg, 0, pcs_reg);
       
  2598   __ ld(frame_size_reg, 0, frame_sizes_reg);
       
  2599   __ std(pc_reg, _abi(lr), R1_SP);
       
  2600   __ push_frame(frame_size_reg, R0/*tmp*/);
       
  2601   __ std(R1_SP, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
       
  2602   __ addi(number_of_frames_reg, number_of_frames_reg, -1);
       
  2603   __ addi(frame_sizes_reg, frame_sizes_reg, wordSize);
       
  2604   __ addi(pcs_reg, pcs_reg, wordSize);
       
  2605 }
       
  2606 
       
  2607 // Loop through the UnrollBlock info and create new frames.
       
  2608 static void push_skeleton_frames(MacroAssembler* masm, bool deopt,
       
  2609                                  /* read */
       
  2610                                  Register unroll_block_reg,
       
  2611                                  /* invalidate */
       
  2612                                  Register frame_sizes_reg,
       
  2613                                  Register number_of_frames_reg,
       
  2614                                  Register pcs_reg,
       
  2615                                  Register frame_size_reg,
       
  2616                                  Register pc_reg) {
       
  2617   Label loop;
       
  2618 
       
  2619  // _number_of_frames is of type int (deoptimization.hpp)
       
  2620   __ lwa(number_of_frames_reg,
       
  2621              Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes(),
       
  2622              unroll_block_reg);
       
  2623   __ ld(pcs_reg,
       
  2624             Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes(),
       
  2625             unroll_block_reg);
       
  2626   __ ld(frame_sizes_reg,
       
  2627             Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes(),
       
  2628             unroll_block_reg);
       
  2629 
       
  2630   // stack: (caller_of_deoptee, ...).
       
  2631 
       
  2632   // At this point we either have an interpreter frame or a compiled
       
  2633   // frame on top of stack. If it is a compiled frame we push a new c2i
       
  2634   // adapter here
       
  2635 
       
  2636   // Memorize top-frame stack-pointer.
       
  2637   __ mr(frame_size_reg/*old_sp*/, R1_SP);
       
  2638 
       
  2639   // Resize interpreter top frame OR C2I adapter.
       
  2640 
       
  2641   // At this moment, the top frame (which is the caller of the deoptee) is
       
  2642   // an interpreter frame or a newly pushed C2I adapter or an entry frame.
       
  2643   // The top frame has a TOP_IJAVA_FRAME_ABI and the frame contains the
       
  2644   // outgoing arguments.
       
  2645   //
       
  2646   // In order to push the interpreter frame for the deoptee, we need to
       
  2647   // resize the top frame such that we are able to place the deoptee's
       
  2648   // locals in the frame.
       
  2649   // Additionally, we have to turn the top frame's TOP_IJAVA_FRAME_ABI
       
  2650   // into a valid PARENT_IJAVA_FRAME_ABI.
       
  2651 
       
  2652   __ lwa(R11_scratch1,
       
  2653              Deoptimization::UnrollBlock::caller_adjustment_offset_in_bytes(),
       
  2654              unroll_block_reg);
       
  2655   __ neg(R11_scratch1, R11_scratch1);
       
  2656 
       
  2657   // R11_scratch1 contains size of locals for frame resizing.
       
  2658   // R12_scratch2 contains top frame's lr.
       
  2659 
       
  2660   // Resize frame by complete frame size prevents TOC from being
       
  2661   // overwritten by locals. A more stack space saving way would be
       
  2662   // to copy the TOC to its location in the new abi.
       
  2663   __ addi(R11_scratch1, R11_scratch1, - frame::parent_ijava_frame_abi_size);
       
  2664 
       
  2665   // now, resize the frame
       
  2666   __ resize_frame(R11_scratch1, pc_reg/*tmp*/);
       
  2667 
       
  2668   // In the case where we have resized a c2i frame above, the optional
       
  2669   // alignment below the locals has size 32 (why?).
       
  2670   __ std(R12_scratch2, _abi(lr), R1_SP);
       
  2671 
       
  2672   // Initialize initial_caller_sp.
       
  2673   __ std(frame_size_reg/*old_sp*/, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
       
  2674 
       
  2675 #ifdef ASSERT
       
  2676   // Make sure that there is at least one entry in the array.
       
  2677   __ cmpdi(CCR0, number_of_frames_reg, 0);
       
  2678   __ asm_assert_ne("array_size must be > 0", 0x205);
       
  2679 #endif
       
  2680 
       
  2681   // Now push the new interpreter frames.
       
  2682   //
       
  2683   __ bind(loop);
       
  2684   // Allocate a new frame, fill in the pc.
       
  2685   push_skeleton_frame(masm, deopt,
       
  2686                       unroll_block_reg,
       
  2687                       frame_sizes_reg,
       
  2688                       number_of_frames_reg,
       
  2689                       pcs_reg,
       
  2690                       frame_size_reg,
       
  2691                       pc_reg);
       
  2692   __ cmpdi(CCR0, number_of_frames_reg, 0);
       
  2693   __ bne(CCR0, loop);
       
  2694 
       
  2695   // Get the return address pointing into the frame manager.
       
  2696   __ ld(R0, 0, pcs_reg);
       
  2697   // Store it in the top interpreter frame.
       
  2698   __ std(R0, _abi(lr), R1_SP);
       
  2699   // Initialize frame_manager_lr of interpreter top frame.
       
  2700   __ std(R0, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
       
  2701 }
       
  2702 #endif
       
  2703 
       
  2704 void SharedRuntime::generate_deopt_blob() {
       
  2705   // Allocate space for the code
       
  2706   ResourceMark rm;
       
  2707   // Setup code generation tools
       
  2708   CodeBuffer buffer("deopt_blob", 2048, 1024);
       
  2709   InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer);
       
  2710   Label exec_mode_initialized;
       
  2711   int frame_size_in_words;
       
  2712   OopMap* map = NULL;
       
  2713   OopMapSet *oop_maps = new OopMapSet();
       
  2714 
       
  2715   // size of ABI112 plus spill slots for R3_RET and F1_RET.
       
  2716   const int frame_size_in_bytes = frame::abi_112_spill_size;
       
  2717   const int frame_size_in_slots = frame_size_in_bytes / sizeof(jint);
       
  2718   int first_frame_size_in_bytes = 0; // frame size of "unpack frame" for call to fetch_unroll_info.
       
  2719 
       
  2720   const Register exec_mode_reg = R21_tmp1;
       
  2721 
       
  2722   const address start = __ pc();
       
  2723 
       
  2724 #ifdef COMPILER2
       
  2725   // --------------------------------------------------------------------------
       
  2726   // Prolog for non exception case!
       
  2727 
       
  2728   // We have been called from the deopt handler of the deoptee.
       
  2729   //
       
  2730   // deoptee:
       
  2731   //                      ...
       
  2732   //                      call X
       
  2733   //                      ...
       
  2734   //  deopt_handler:      call_deopt_stub
       
  2735   //  cur. return pc  --> ...
       
  2736   //
       
  2737   // So currently SR_LR points behind the call in the deopt handler.
       
  2738   // We adjust it such that it points to the start of the deopt handler.
       
  2739   // The return_pc has been stored in the frame of the deoptee and
       
  2740   // will replace the address of the deopt_handler in the call
       
  2741   // to Deoptimization::fetch_unroll_info below.
       
  2742   // We can't grab a free register here, because all registers may
       
  2743   // contain live values, so let the RegisterSaver do the adjustment
       
  2744   // of the return pc.
       
  2745   const int return_pc_adjustment_no_exception = -size_deopt_handler();
       
  2746 
       
  2747   // Push the "unpack frame"
       
  2748   // Save everything in sight.
       
  2749   map = RegisterSaver::push_frame_abi112_and_save_live_registers(masm,
       
  2750                                                                  &first_frame_size_in_bytes,
       
  2751                                                                  /*generate_oop_map=*/ true,
       
  2752                                                                  return_pc_adjustment_no_exception,
       
  2753                                                                  RegisterSaver::return_pc_is_lr);
       
  2754   assert(map != NULL, "OopMap must have been created");
       
  2755 
       
  2756   __ li(exec_mode_reg, Deoptimization::Unpack_deopt);
       
  2757   // Save exec mode for unpack_frames.
       
  2758   __ b(exec_mode_initialized);
       
  2759 
       
  2760   // --------------------------------------------------------------------------
       
  2761   // Prolog for exception case
       
  2762 
       
  2763   // An exception is pending.
       
  2764   // We have been called with a return (interpreter) or a jump (exception blob).
       
  2765   //
       
  2766   // - R3_ARG1: exception oop
       
  2767   // - R4_ARG2: exception pc
       
  2768 
       
  2769   int exception_offset = __ pc() - start;
       
  2770 
       
  2771   BLOCK_COMMENT("Prolog for exception case");
       
  2772 
       
  2773   // The RegisterSaves doesn't need to adjust the return pc for this situation.
       
  2774   const int return_pc_adjustment_exception = 0;
       
  2775 
       
  2776   // Push the "unpack frame".
       
  2777   // Save everything in sight.
       
  2778   assert(R4 == R4_ARG2, "exception pc must be in r4");
       
  2779   RegisterSaver::push_frame_abi112_and_save_live_registers(masm,
       
  2780                                                            &first_frame_size_in_bytes,
       
  2781                                                            /*generate_oop_map=*/ false,
       
  2782                                                            return_pc_adjustment_exception,
       
  2783                                                            RegisterSaver::return_pc_is_r4);
       
  2784 
       
  2785   // Deopt during an exception. Save exec mode for unpack_frames.
       
  2786   __ li(exec_mode_reg, Deoptimization::Unpack_exception);
       
  2787 
       
  2788   // Store exception oop and pc in thread (location known to GC).
       
  2789   // This is needed since the call to "fetch_unroll_info()" may safepoint.
       
  2790   __ std(R3_ARG1, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
       
  2791   __ std(R4_ARG2, in_bytes(JavaThread::exception_pc_offset()),  R16_thread);
       
  2792 
       
  2793   // fall through
       
  2794 
       
  2795   // --------------------------------------------------------------------------
       
  2796   __ BIND(exec_mode_initialized);
       
  2797 
       
  2798   {
       
  2799   const Register unroll_block_reg = R22_tmp2;
       
  2800 
       
  2801   // We need to set `last_Java_frame' because `fetch_unroll_info' will
       
  2802   // call `last_Java_frame()'. The value of the pc in the frame is not
       
  2803   // particularly important. It just needs to identify this blob.
       
  2804   __ set_last_Java_frame(R1_SP, noreg);
       
  2805 
       
  2806   // With EscapeAnalysis turned on, this call may safepoint!
       
  2807   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), R16_thread);
       
  2808   address calls_return_pc = __ last_calls_return_pc();
       
  2809   // Set an oopmap for the call site that describes all our saved registers.
       
  2810   oop_maps->add_gc_map(calls_return_pc - start, map);
       
  2811 
       
  2812   __ reset_last_Java_frame();
       
  2813   // Save the return value.
       
  2814   __ mr(unroll_block_reg, R3_RET);
       
  2815 
       
  2816   // Restore only the result registers that have been saved
       
  2817   // by save_volatile_registers(...).
       
  2818   RegisterSaver::restore_result_registers(masm, first_frame_size_in_bytes);
       
  2819 
       
  2820   // In excp_deopt_mode, restore and clear exception oop which we
       
  2821   // stored in the thread during exception entry above. The exception
       
  2822   // oop will be the return value of this stub.
       
  2823   Label skip_restore_excp;
       
  2824   __ cmpdi(CCR0, exec_mode_reg, Deoptimization::Unpack_exception);
       
  2825   __ bne(CCR0, skip_restore_excp);
       
  2826   __ ld(R3_RET, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
       
  2827   __ ld(R4_ARG2, in_bytes(JavaThread::exception_pc_offset()), R16_thread);
       
  2828   __ li(R0, 0);
       
  2829   __ std(R0, in_bytes(JavaThread::exception_pc_offset()),  R16_thread);
       
  2830   __ std(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
       
  2831   __ BIND(skip_restore_excp);
       
  2832 
       
  2833   // reload narrro_oop_base
       
  2834   if (UseCompressedOops && Universe::narrow_oop_base() != 0) {
       
  2835     __ load_const_optimized(R30, Universe::narrow_oop_base());
       
  2836   }
       
  2837 
       
  2838   __ pop_frame();
       
  2839 
       
  2840   // stack: (deoptee, optional i2c, caller of deoptee, ...).
       
  2841 
       
  2842   // pop the deoptee's frame
       
  2843   __ pop_frame();
       
  2844 
       
  2845   // stack: (caller_of_deoptee, ...).
       
  2846 
       
  2847   // Loop through the `UnrollBlock' info and create interpreter frames.
       
  2848   push_skeleton_frames(masm, true/*deopt*/,
       
  2849                        unroll_block_reg,
       
  2850                        R23_tmp3,
       
  2851                        R24_tmp4,
       
  2852                        R25_tmp5,
       
  2853                        R26_tmp6,
       
  2854                        R27_tmp7);
       
  2855 
       
  2856   // stack: (skeletal interpreter frame, ..., optional skeletal
       
  2857   // interpreter frame, optional c2i, caller of deoptee, ...).
       
  2858   }
       
  2859 
       
  2860   // push an `unpack_frame' taking care of float / int return values.
       
  2861   __ push_frame(frame_size_in_bytes, R0/*tmp*/);
       
  2862 
       
  2863   // stack: (unpack frame, skeletal interpreter frame, ..., optional
       
  2864   // skeletal interpreter frame, optional c2i, caller of deoptee,
       
  2865   // ...).
       
  2866 
       
  2867   // Spill live volatile registers since we'll do a call.
       
  2868   __ std( R3_RET,  _abi_112_spill(spill_ret),  R1_SP);
       
  2869   __ stfd(F1_RET, _abi_112_spill(spill_fret), R1_SP);
       
  2870 
       
  2871   // Let the unpacker layout information in the skeletal frames just
       
  2872   // allocated.
       
  2873   __ get_PC_trash_LR(R3_RET);
       
  2874   __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R3_RET);
       
  2875   // This is a call to a LEAF method, so no oop map is required.
       
  2876   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames),
       
  2877                   R16_thread/*thread*/, exec_mode_reg/*exec_mode*/);
       
  2878   __ reset_last_Java_frame();
       
  2879 
       
  2880   // Restore the volatiles saved above.
       
  2881   __ ld( R3_RET, _abi_112_spill(spill_ret),  R1_SP);
       
  2882   __ lfd(F1_RET, _abi_112_spill(spill_fret), R1_SP);
       
  2883 
       
  2884   // Pop the unpack frame.
       
  2885   __ pop_frame();
       
  2886   __ restore_LR_CR(R0);
       
  2887 
       
  2888   // stack: (top interpreter frame, ..., optional interpreter frame,
       
  2889   // optional c2i, caller of deoptee, ...).
       
  2890 
       
  2891   // Initialize R14_state.
       
  2892   __ ld(R14_state, 0, R1_SP);
       
  2893   __ addi(R14_state, R14_state,
       
  2894               -frame::interpreter_frame_cinterpreterstate_size_in_bytes());
       
  2895   // Also inititialize R15_prev_state.
       
  2896   __ restore_prev_state();
       
  2897 
       
  2898   // Return to the interpreter entry point.
       
  2899   __ blr();
       
  2900   __ flush();
       
  2901 #else // COMPILER2
       
  2902   __ unimplemented("deopt blob needed only with compiler");
       
  2903   int exception_offset = __ pc() - start;
       
  2904 #endif // COMPILER2
       
  2905 
       
  2906   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, 0, first_frame_size_in_bytes / wordSize);
       
  2907 }
       
  2908 
       
  2909 #ifdef COMPILER2
       
  2910 void SharedRuntime::generate_uncommon_trap_blob() {
       
  2911   // Allocate space for the code.
       
  2912   ResourceMark rm;
       
  2913   // Setup code generation tools.
       
  2914   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
       
  2915   InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer);
       
  2916   address start = __ pc();
       
  2917 
       
  2918   Register unroll_block_reg = R21_tmp1;
       
  2919   Register klass_index_reg  = R22_tmp2;
       
  2920   Register unc_trap_reg     = R23_tmp3;
       
  2921 
       
  2922   OopMapSet* oop_maps = new OopMapSet();
       
  2923   int frame_size_in_bytes = frame::abi_112_size;
       
  2924   OopMap* map = new OopMap(frame_size_in_bytes / sizeof(jint), 0);
       
  2925 
       
  2926   // stack: (deoptee, optional i2c, caller_of_deoptee, ...).
       
  2927 
       
  2928   // Push a dummy `unpack_frame' and call
       
  2929   // `Deoptimization::uncommon_trap' to pack the compiled frame into a
       
  2930   // vframe array and return the `UnrollBlock' information.
       
  2931 
       
  2932   // Save LR to compiled frame.
       
  2933   __ save_LR_CR(R11_scratch1);
       
  2934 
       
  2935   // Push an "uncommon_trap" frame.
       
  2936   __ push_frame_abi112(0, R11_scratch1);
       
  2937 
       
  2938   // stack: (unpack frame, deoptee, optional i2c, caller_of_deoptee, ...).
       
  2939 
       
  2940   // Set the `unpack_frame' as last_Java_frame.
       
  2941   // `Deoptimization::uncommon_trap' expects it and considers its
       
  2942   // sender frame as the deoptee frame.
       
  2943   // Remember the offset of the instruction whose address will be
       
  2944   // moved to R11_scratch1.
       
  2945   address gc_map_pc = __ get_PC_trash_LR(R11_scratch1);
       
  2946 
       
  2947   __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1);
       
  2948 
       
  2949   __ mr(klass_index_reg, R3);
       
  2950   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap),
       
  2951                   R16_thread, klass_index_reg);
       
  2952 
       
  2953   // Set an oopmap for the call site.
       
  2954   oop_maps->add_gc_map(gc_map_pc - start, map);
       
  2955 
       
  2956   __ reset_last_Java_frame();
       
  2957 
       
  2958   // Pop the `unpack frame'.
       
  2959   __ pop_frame();
       
  2960 
       
  2961   // stack: (deoptee, optional i2c, caller_of_deoptee, ...).
       
  2962 
       
  2963   // Save the return value.
       
  2964   __ mr(unroll_block_reg, R3_RET);
       
  2965 
       
  2966   // Pop the uncommon_trap frame.
       
  2967   __ pop_frame();
       
  2968 
       
  2969   // stack: (caller_of_deoptee, ...).
       
  2970 
       
  2971   // Allocate new interpreter frame(s) and possibly a c2i adapter
       
  2972   // frame.
       
  2973   push_skeleton_frames(masm, false/*deopt*/,
       
  2974                        unroll_block_reg,
       
  2975                        R22_tmp2,
       
  2976                        R23_tmp3,
       
  2977                        R24_tmp4,
       
  2978                        R25_tmp5,
       
  2979                        R26_tmp6);
       
  2980 
       
  2981   // stack: (skeletal interpreter frame, ..., optional skeletal
       
  2982   // interpreter frame, optional c2i, caller of deoptee, ...).
       
  2983 
       
  2984   // Push a dummy `unpack_frame' taking care of float return values.
       
  2985   // Call `Deoptimization::unpack_frames' to layout information in the
       
  2986   // interpreter frames just created.
       
  2987 
       
  2988   // Push a simple "unpack frame" here.
       
  2989   __ push_frame_abi112(0, R11_scratch1);
       
  2990 
       
  2991   // stack: (unpack frame, skeletal interpreter frame, ..., optional
       
  2992   // skeletal interpreter frame, optional c2i, caller of deoptee,
       
  2993   // ...).
       
  2994 
       
  2995   // Set the "unpack_frame" as last_Java_frame.
       
  2996   __ get_PC_trash_LR(R11_scratch1);
       
  2997   __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R11_scratch1);
       
  2998 
       
  2999   // Indicate it is the uncommon trap case.
       
  3000   __ li(unc_trap_reg, Deoptimization::Unpack_uncommon_trap);
       
  3001   // Let the unpacker layout information in the skeletal frames just
       
  3002   // allocated.
       
  3003   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames),
       
  3004                   R16_thread, unc_trap_reg);
       
  3005 
       
  3006   __ reset_last_Java_frame();
       
  3007   // Pop the `unpack frame'.
       
  3008   __ pop_frame();
       
  3009   // Restore LR from top interpreter frame.
       
  3010   __ restore_LR_CR(R11_scratch1);
       
  3011 
       
  3012   // stack: (top interpreter frame, ..., optional interpreter frame,
       
  3013   // optional c2i, caller of deoptee, ...).
       
  3014 
       
  3015   // Initialize R14_state, ...
       
  3016   __ ld(R11_scratch1, 0, R1_SP);
       
  3017   __ addi(R14_state, R11_scratch1,
       
  3018               -frame::interpreter_frame_cinterpreterstate_size_in_bytes());
       
  3019   // also initialize R15_prev_state.
       
  3020   __ restore_prev_state();
       
  3021   // Return to the interpreter entry point.
       
  3022   __ blr();
       
  3023 
       
  3024   masm->flush();
       
  3025 
       
  3026   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, frame_size_in_bytes/wordSize);
       
  3027 }
       
  3028 #endif // COMPILER2
       
  3029 
       
  3030 // Generate a special Compile2Runtime blob that saves all registers, and setup oopmap.
       
  3031 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
       
  3032   assert(StubRoutines::forward_exception_entry() != NULL,
       
  3033          "must be generated before");
       
  3034 
       
  3035   ResourceMark rm;
       
  3036   OopMapSet *oop_maps = new OopMapSet();
       
  3037   OopMap* map;
       
  3038 
       
  3039   // Allocate space for the code. Setup code generation tools.
       
  3040   CodeBuffer buffer("handler_blob", 2048, 1024);
       
  3041   MacroAssembler* masm = new MacroAssembler(&buffer);
       
  3042 
       
  3043   address start = __ pc();
       
  3044   int frame_size_in_bytes = 0;
       
  3045 
       
  3046   RegisterSaver::ReturnPCLocation return_pc_location;
       
  3047   bool cause_return = (poll_type == POLL_AT_RETURN);
       
  3048   if (cause_return) {
       
  3049     // Nothing to do here. The frame has already been popped in MachEpilogNode.
       
  3050     // Register LR already contains the return pc.
       
  3051     return_pc_location = RegisterSaver::return_pc_is_lr;
       
  3052   } else {
       
  3053     // Use thread()->saved_exception_pc() as return pc.
       
  3054     return_pc_location = RegisterSaver::return_pc_is_thread_saved_exception_pc;
       
  3055   }
       
  3056 
       
  3057   // Save registers, fpu state, and flags.
       
  3058   map = RegisterSaver::push_frame_abi112_and_save_live_registers(masm,
       
  3059                                                                  &frame_size_in_bytes,
       
  3060                                                                  /*generate_oop_map=*/ true,
       
  3061                                                                  /*return_pc_adjustment=*/0,
       
  3062                                                                  return_pc_location);
       
  3063 
       
  3064   // The following is basically a call_VM. However, we need the precise
       
  3065   // address of the call in order to generate an oopmap. Hence, we do all the
       
  3066   // work outselves.
       
  3067   __ set_last_Java_frame(/*sp=*/R1_SP, /*pc=*/noreg);
       
  3068 
       
  3069   // The return address must always be correct so that the frame constructor
       
  3070   // never sees an invalid pc.
       
  3071 
       
  3072   // Do the call
       
  3073   __ call_VM_leaf(call_ptr, R16_thread);
       
  3074   address calls_return_pc = __ last_calls_return_pc();
       
  3075 
       
  3076   // Set an oopmap for the call site. This oopmap will map all
       
  3077   // oop-registers and debug-info registers as callee-saved. This
       
  3078   // will allow deoptimization at this safepoint to find all possible
       
  3079   // debug-info recordings, as well as let GC find all oops.
       
  3080   oop_maps->add_gc_map(calls_return_pc - start, map);
       
  3081 
       
  3082   Label noException;
       
  3083 
       
  3084   // Clear the last Java frame.
       
  3085   __ reset_last_Java_frame();
       
  3086 
       
  3087   BLOCK_COMMENT("  Check pending exception.");
       
  3088   const Register pending_exception = R0;
       
  3089   __ ld(pending_exception, thread_(pending_exception));
       
  3090   __ cmpdi(CCR0, pending_exception, 0);
       
  3091   __ beq(CCR0, noException);
       
  3092 
       
  3093   // Exception pending
       
  3094   RegisterSaver::restore_live_registers_and_pop_frame(masm,
       
  3095                                                       frame_size_in_bytes,
       
  3096                                                       /*restore_ctr=*/true);
       
  3097 
       
  3098 
       
  3099   BLOCK_COMMENT("  Jump to forward_exception_entry.");
       
  3100   // Jump to forward_exception_entry, with the issuing PC in LR
       
  3101   // so it looks like the original nmethod called forward_exception_entry.
       
  3102   __ b64_patchable(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
       
  3103 
       
  3104   // No exception case.
       
  3105   __ BIND(noException);
       
  3106 
       
  3107 
       
  3108   // Normal exit, restore registers and exit.
       
  3109   RegisterSaver::restore_live_registers_and_pop_frame(masm,
       
  3110                                                       frame_size_in_bytes,
       
  3111                                                       /*restore_ctr=*/true);
       
  3112 
       
  3113   __ blr();
       
  3114 
       
  3115   // Make sure all code is generated
       
  3116   masm->flush();
       
  3117 
       
  3118   // Fill-out other meta info
       
  3119   // CodeBlob frame size is in words.
       
  3120   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_bytes / wordSize);
       
  3121 }
       
  3122 
       
  3123 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss)
       
  3124 //
       
  3125 // Generate a stub that calls into the vm to find out the proper destination
       
  3126 // of a java call. All the argument registers are live at this point
       
  3127 // but since this is generic code we don't know what they are and the caller
       
  3128 // must do any gc of the args.
       
  3129 //
       
  3130 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
       
  3131 
       
  3132   // allocate space for the code
       
  3133   ResourceMark rm;
       
  3134 
       
  3135   CodeBuffer buffer(name, 1000, 512);
       
  3136   MacroAssembler* masm = new MacroAssembler(&buffer);
       
  3137 
       
  3138   int frame_size_in_bytes;
       
  3139 
       
  3140   OopMapSet *oop_maps = new OopMapSet();
       
  3141   OopMap* map = NULL;
       
  3142 
       
  3143   address start = __ pc();
       
  3144 
       
  3145   map = RegisterSaver::push_frame_abi112_and_save_live_registers(masm,
       
  3146                                                                  &frame_size_in_bytes,
       
  3147                                                                  /*generate_oop_map*/ true,
       
  3148                                                                  /*return_pc_adjustment*/ 0,
       
  3149                                                                  RegisterSaver::return_pc_is_lr);
       
  3150 
       
  3151   // Use noreg as last_Java_pc, the return pc will be reconstructed
       
  3152   // from the physical frame.
       
  3153   __ set_last_Java_frame(/*sp*/R1_SP, noreg);
       
  3154 
       
  3155   int frame_complete = __ offset();
       
  3156 
       
  3157   // Pass R19_method as 2nd (optional) argument, used by
       
  3158   // counter_overflow_stub.
       
  3159   __ call_VM_leaf(destination, R16_thread, R19_method);
       
  3160   address calls_return_pc = __ last_calls_return_pc();
       
  3161   // Set an oopmap for the call site.
       
  3162   // We need this not only for callee-saved registers, but also for volatile
       
  3163   // registers that the compiler might be keeping live across a safepoint.
       
  3164   // Create the oopmap for the call's return pc.
       
  3165   oop_maps->add_gc_map(calls_return_pc - start, map);
       
  3166 
       
  3167   // R3_RET contains the address we are going to jump to assuming no exception got installed.
       
  3168 
       
  3169   // clear last_Java_sp
       
  3170   __ reset_last_Java_frame();
       
  3171 
       
  3172   // Check for pending exceptions.
       
  3173   BLOCK_COMMENT("Check for pending exceptions.");
       
  3174   Label pending;
       
  3175   __ ld(R11_scratch1, thread_(pending_exception));
       
  3176   __ cmpdi(CCR0, R11_scratch1, 0);
       
  3177   __ bne(CCR0, pending);
       
  3178 
       
  3179   __ mtctr(R3_RET); // Ctr will not be touched by restore_live_registers_and_pop_frame.
       
  3180 
       
  3181   RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr*/ false);
       
  3182 
       
  3183   // Get the returned methodOop.
       
  3184   __ get_vm_result_2(R19_method);
       
  3185 
       
  3186   __ bctr();
       
  3187 
       
  3188 
       
  3189   // Pending exception after the safepoint.
       
  3190   __ BIND(pending);
       
  3191 
       
  3192   RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr*/ true);
       
  3193 
       
  3194   // exception pending => remove activation and forward to exception handler
       
  3195 
       
  3196   __ li(R11_scratch1, 0);
       
  3197   __ ld(R3_ARG1, thread_(pending_exception));
       
  3198   __ std(R11_scratch1, in_bytes(JavaThread::vm_result_offset()), R16_thread);
       
  3199   __ b64_patchable(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
       
  3200 
       
  3201   // -------------
       
  3202   // Make sure all code is generated.
       
  3203   masm->flush();
       
  3204 
       
  3205   // return the blob
       
  3206   // frame_size_words or bytes??
       
  3207   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_bytes/wordSize,
       
  3208                                        oop_maps, true);
       
  3209 }