hotspot/src/share/vm/memory/defNewGeneration.inline.hpp
changeset 360 21d113ecbf6a
parent 1 489c9b5090e2
child 670 ddf3e9583f2f
equal deleted inserted replaced
357:f4edb0d9f109 360:21d113ecbf6a
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    21  * have any questions.
    22  *
    22  *
    23  */
    23  */
    24 
    24 
    25 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
    25 // Methods of protected closure types
    26   return eden();
    26 
       
    27 template <class T>
       
    28 inline void DefNewGeneration::KeepAliveClosure::do_oop_work(T* p) {
       
    29 #ifdef ASSERT
       
    30   {
       
    31     // We never expect to see a null reference being processed
       
    32     // as a weak reference.
       
    33     assert (!oopDesc::is_null(*p), "expected non-null ref");
       
    34     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
       
    35     assert (obj->is_oop(), "expected an oop while scanning weak refs");
       
    36   }
       
    37 #endif // ASSERT
       
    38 
       
    39   _cl->do_oop_nv(p);
       
    40 
       
    41   // Card marking is trickier for weak refs.
       
    42   // This oop is a 'next' field which was filled in while we
       
    43   // were discovering weak references. While we might not need
       
    44   // to take a special action to keep this reference alive, we
       
    45   // will need to dirty a card as the field was modified.
       
    46   //
       
    47   // Alternatively, we could create a method which iterates through
       
    48   // each generation, allowing them in turn to examine the modified
       
    49   // field.
       
    50   //
       
    51   // We could check that p is also in an older generation, but
       
    52   // dirty cards in the youngest gen are never scanned, so the
       
    53   // extra check probably isn't worthwhile.
       
    54   if (Universe::heap()->is_in_reserved(p)) {
       
    55     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
       
    56     _rs->inline_write_ref_field_gc(p, obj);
       
    57   }
    27 }
    58 }
    28 
    59 
    29 HeapWord* DefNewGeneration::allocate(size_t word_size,
    60 template <class T>
    30                                      bool is_tlab) {
    61 inline void DefNewGeneration::FastKeepAliveClosure::do_oop_work(T* p) {
    31   // This is the slow-path allocation for the DefNewGeneration.
    62 #ifdef ASSERT
    32   // Most allocations are fast-path in compiled code.
    63   {
    33   // We try to allocate from the eden.  If that works, we are happy.
    64     // We never expect to see a null reference being processed
    34   // Note that since DefNewGeneration supports lock-free allocation, we
    65     // as a weak reference.
    35   // have to use it here, as well.
    66     assert (!oopDesc::is_null(*p), "expected non-null ref");
    36   HeapWord* result = eden()->par_allocate(word_size);
    67     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
    37   if (result != NULL) {
    68     assert (obj->is_oop(), "expected an oop while scanning weak refs");
    38     return result;
       
    39   }
    69   }
    40   do {
    70 #endif // ASSERT
    41     HeapWord* old_limit = eden()->soft_end();
       
    42     if (old_limit < eden()->end()) {
       
    43       // Tell the next generation we reached a limit.
       
    44       HeapWord* new_limit =
       
    45         next_gen()->allocation_limit_reached(eden(), eden()->top(), word_size);
       
    46       if (new_limit != NULL) {
       
    47         Atomic::cmpxchg_ptr(new_limit, eden()->soft_end_addr(), old_limit);
       
    48       } else {
       
    49         assert(eden()->soft_end() == eden()->end(),
       
    50                "invalid state after allocation_limit_reached returned null");
       
    51       }
       
    52     } else {
       
    53       // The allocation failed and the soft limit is equal to the hard limit,
       
    54       // there are no reasons to do an attempt to allocate
       
    55       assert(old_limit == eden()->end(), "sanity check");
       
    56       break;
       
    57     }
       
    58     // Try to allocate until succeeded or the soft limit can't be adjusted
       
    59     result = eden()->par_allocate(word_size);
       
    60   } while (result == NULL);
       
    61 
    71 
    62   // If the eden is full and the last collection bailed out, we are running
    72   _cl->do_oop_nv(p);
    63   // out of heap space, and we try to allocate the from-space, too.
    73 
    64   // allocate_from_space can't be inlined because that would introduce a
    74   // Optimized for Defnew generation if it's the youngest generation:
    65   // circular dependency at compile time.
    75   // we set a younger_gen card if we have an older->youngest
    66   if (result == NULL) {
    76   // generation pointer.
    67     result = allocate_from_space(word_size);
    77   oop obj = oopDesc::load_decode_heap_oop_not_null(p);
       
    78   if (((HeapWord*)obj < _boundary) && Universe::heap()->is_in_reserved(p)) {
       
    79     _rs->inline_write_ref_field_gc(p, obj);
    68   }
    80   }
    69   return result;
       
    70 }
    81 }
    71 
       
    72 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
       
    73                                          bool is_tlab) {
       
    74   return eden()->par_allocate(word_size);
       
    75 }
       
    76 
       
    77 void DefNewGeneration::gc_prologue(bool full) {
       
    78   // Ensure that _end and _soft_end are the same in eden space.
       
    79   eden()->set_soft_end(eden()->end());
       
    80 }
       
    81 
       
    82 size_t DefNewGeneration::tlab_capacity() const {
       
    83   return eden()->capacity();
       
    84 }
       
    85 
       
    86 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
       
    87   return unsafe_max_alloc_nogc();
       
    88 }