hotspot/src/cpu/x86/vm/vm_version_x86_32.hpp
changeset 2224 0e1a2b486485
parent 2223 95e3c21b2919
parent 2210 ce0be98b88fc
child 2225 a25c5ec5e40e
equal deleted inserted replaced
2223:95e3c21b2919 2224:0e1a2b486485
     1 /*
       
     2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    21  * have any questions.
       
    22  *
       
    23  */
       
    24 
       
    25 class VM_Version: public Abstract_VM_Version {
       
    26 public:
       
    27   // cpuid result register layouts.  These are all unions of a uint32_t
       
    28   // (in case anyone wants access to the register as a whole) and a bitfield.
       
    29 
       
    30   union StdCpuid1Eax {
       
    31     uint32_t value;
       
    32     struct {
       
    33       uint32_t stepping   : 4,
       
    34                model      : 4,
       
    35                family     : 4,
       
    36                proc_type  : 2,
       
    37                           : 2,
       
    38                ext_model  : 4,
       
    39                ext_family : 8,
       
    40                           : 4;
       
    41     } bits;
       
    42   };
       
    43 
       
    44   union StdCpuid1Ebx { // example, unused
       
    45     uint32_t value;
       
    46     struct {
       
    47       uint32_t brand_id         : 8,
       
    48                clflush_size     : 8,
       
    49                threads_per_cpu  : 8,
       
    50                apic_id          : 8;
       
    51     } bits;
       
    52   };
       
    53 
       
    54   union StdCpuid1Ecx {
       
    55     uint32_t value;
       
    56     struct {
       
    57       uint32_t sse3     : 1,
       
    58                         : 2,
       
    59                monitor  : 1,
       
    60                         : 1,
       
    61                vmx      : 1,
       
    62                         : 1,
       
    63                est      : 1,
       
    64                         : 1,
       
    65                ssse3    : 1,
       
    66                cid      : 1,
       
    67                         : 2,
       
    68                cmpxchg16: 1,
       
    69                         : 4,
       
    70                dca      : 1,
       
    71                sse4_1   : 1,
       
    72                sse4_2   : 1,
       
    73                         : 11;
       
    74     } bits;
       
    75   };
       
    76 
       
    77   union StdCpuid1Edx {
       
    78     uint32_t value;
       
    79     struct {
       
    80       uint32_t          : 4,
       
    81                tsc      : 1,
       
    82                         : 3,
       
    83                cmpxchg8 : 1,
       
    84                         : 6,
       
    85                cmov     : 1,
       
    86                         : 7,
       
    87                mmx      : 1,
       
    88                fxsr     : 1,
       
    89                sse      : 1,
       
    90                sse2     : 1,
       
    91                         : 1,
       
    92                ht       : 1,
       
    93                         : 3;
       
    94     } bits;
       
    95   };
       
    96 
       
    97   union DcpCpuid4Eax {
       
    98     uint32_t value;
       
    99     struct {
       
   100       uint32_t cache_type    : 5,
       
   101                              : 21,
       
   102                cores_per_cpu : 6;
       
   103     } bits;
       
   104   };
       
   105 
       
   106   union DcpCpuid4Ebx {
       
   107     uint32_t value;
       
   108     struct {
       
   109       uint32_t L1_line_size  : 12,
       
   110                partitions    : 10,
       
   111                associativity : 10;
       
   112     } bits;
       
   113   };
       
   114 
       
   115   union ExtCpuid1Ecx {
       
   116     uint32_t value;
       
   117     struct {
       
   118       uint32_t LahfSahf     : 1,
       
   119                CmpLegacy    : 1,
       
   120                             : 4,
       
   121                abm          : 1,
       
   122                sse4a        : 1,
       
   123                misalignsse  : 1,
       
   124                prefetchw    : 1,
       
   125                             : 22;
       
   126     } bits;
       
   127   };
       
   128 
       
   129   union ExtCpuid1Edx {
       
   130     uint32_t value;
       
   131     struct {
       
   132       uint32_t           : 22,
       
   133                mmx_amd   : 1,
       
   134                mmx       : 1,
       
   135                fxsr      : 1,
       
   136                          : 4,
       
   137                long_mode : 1,
       
   138                tdnow2    : 1,
       
   139                tdnow     : 1;
       
   140     } bits;
       
   141   };
       
   142 
       
   143   union ExtCpuid5Ex {
       
   144     uint32_t value;
       
   145     struct {
       
   146       uint32_t L1_line_size : 8,
       
   147                L1_tag_lines : 8,
       
   148                L1_assoc     : 8,
       
   149                L1_size      : 8;
       
   150     } bits;
       
   151   };
       
   152 
       
   153   union ExtCpuid8Ecx {
       
   154     uint32_t value;
       
   155     struct {
       
   156       uint32_t cores_per_cpu : 8,
       
   157                              : 24;
       
   158     } bits;
       
   159   };
       
   160 
       
   161 protected:
       
   162    static int _cpu;
       
   163    static int _model;
       
   164    static int _stepping;
       
   165    static int _cpuFeatures;     // features returned by the "cpuid" instruction
       
   166                                 // 0 if this instruction is not available
       
   167    static const char* _features_str;
       
   168 
       
   169    enum {
       
   170      CPU_CX8  = (1 << 0), // next bits are from cpuid 1 (EDX)
       
   171      CPU_CMOV = (1 << 1),
       
   172      CPU_FXSR = (1 << 2),
       
   173      CPU_HT   = (1 << 3),
       
   174      CPU_MMX  = (1 << 4),
       
   175      CPU_3DNOW= (1 << 5), // 3DNow comes from cpuid 0x80000001 (EDX)
       
   176      CPU_SSE  = (1 << 6),
       
   177      CPU_SSE2 = (1 << 7),
       
   178      CPU_SSE3 = (1 << 8), // sse3  comes from cpuid 1 (ECX)
       
   179      CPU_SSSE3= (1 << 9),
       
   180      CPU_SSE4A= (1 <<10),
       
   181      CPU_SSE4_1 = (1 << 11),
       
   182      CPU_SSE4_2 = (1 << 12)
       
   183    } cpuFeatureFlags;
       
   184 
       
   185   // cpuid information block.  All info derived from executing cpuid with
       
   186   // various function numbers is stored here.  Intel and AMD info is
       
   187   // merged in this block: accessor methods disentangle it.
       
   188   //
       
   189   // The info block is laid out in subblocks of 4 dwords corresponding to
       
   190   // rax, rbx, rcx and rdx, whether or not they contain anything useful.
       
   191   struct CpuidInfo {
       
   192     // cpuid function 0
       
   193     uint32_t std_max_function;
       
   194     uint32_t std_vendor_name_0;
       
   195     uint32_t std_vendor_name_1;
       
   196     uint32_t std_vendor_name_2;
       
   197 
       
   198     // cpuid function 1
       
   199     StdCpuid1Eax std_cpuid1_rax;
       
   200     StdCpuid1Ebx std_cpuid1_rbx;
       
   201     StdCpuid1Ecx std_cpuid1_rcx;
       
   202     StdCpuid1Edx std_cpuid1_rdx;
       
   203 
       
   204     // cpuid function 4 (deterministic cache parameters)
       
   205     DcpCpuid4Eax dcp_cpuid4_rax;
       
   206     DcpCpuid4Ebx dcp_cpuid4_rbx;
       
   207     uint32_t     dcp_cpuid4_rcx; // unused currently
       
   208     uint32_t     dcp_cpuid4_rdx; // unused currently
       
   209 
       
   210     // cpuid function 0x80000000 // example, unused
       
   211     uint32_t ext_max_function;
       
   212     uint32_t ext_vendor_name_0;
       
   213     uint32_t ext_vendor_name_1;
       
   214     uint32_t ext_vendor_name_2;
       
   215 
       
   216     // cpuid function 0x80000001
       
   217     uint32_t     ext_cpuid1_rax; // reserved
       
   218     uint32_t     ext_cpuid1_rbx; // reserved
       
   219     ExtCpuid1Ecx ext_cpuid1_rcx;
       
   220     ExtCpuid1Edx ext_cpuid1_rdx;
       
   221 
       
   222     // cpuid functions 0x80000002 thru 0x80000004: example, unused
       
   223     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
       
   224     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
       
   225     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
       
   226 
       
   227     // cpuid function 0x80000005 //AMD L1, Intel reserved
       
   228     uint32_t     ext_cpuid5_rax; // unused currently
       
   229     uint32_t     ext_cpuid5_rbx; // reserved
       
   230     ExtCpuid5Ex  ext_cpuid5_rcx; // L1 data cache info (AMD)
       
   231     ExtCpuid5Ex  ext_cpuid5_rdx; // L1 instruction cache info (AMD)
       
   232 
       
   233     // cpuid function 0x80000008
       
   234     uint32_t     ext_cpuid8_rax; // unused currently
       
   235     uint32_t     ext_cpuid8_rbx; // reserved
       
   236     ExtCpuid8Ecx ext_cpuid8_rcx;
       
   237     uint32_t     ext_cpuid8_rdx; // reserved
       
   238   };
       
   239 
       
   240   // The actual cpuid info block
       
   241   static CpuidInfo _cpuid_info;
       
   242 
       
   243   // Extractors and predicates
       
   244   static uint32_t extended_cpu_family() {
       
   245     uint32_t result = _cpuid_info.std_cpuid1_rax.bits.family;
       
   246     result += _cpuid_info.std_cpuid1_rax.bits.ext_family;
       
   247     return result;
       
   248   }
       
   249   static uint32_t extended_cpu_model() {
       
   250     uint32_t result = _cpuid_info.std_cpuid1_rax.bits.model;
       
   251     result |= _cpuid_info.std_cpuid1_rax.bits.ext_model << 4;
       
   252     return result;
       
   253   }
       
   254   static uint32_t cpu_stepping() {
       
   255     uint32_t result = _cpuid_info.std_cpuid1_rax.bits.stepping;
       
   256     return result;
       
   257   }
       
   258   static uint logical_processor_count() {
       
   259     uint result = threads_per_core();
       
   260     return result;
       
   261   }
       
   262   static uint32_t feature_flags() {
       
   263     uint32_t result = 0;
       
   264     if (_cpuid_info.std_cpuid1_rdx.bits.cmpxchg8 != 0)
       
   265       result |= CPU_CX8;
       
   266     if (_cpuid_info.std_cpuid1_rdx.bits.cmov != 0)
       
   267       result |= CPU_CMOV;
       
   268     if (_cpuid_info.std_cpuid1_rdx.bits.fxsr != 0 || is_amd() &&
       
   269         _cpuid_info.ext_cpuid1_rdx.bits.fxsr != 0)
       
   270       result |= CPU_FXSR;
       
   271     // HT flag is set for multi-core processors also.
       
   272     if (threads_per_core() > 1)
       
   273       result |= CPU_HT;
       
   274     if (_cpuid_info.std_cpuid1_rdx.bits.mmx != 0 || is_amd() &&
       
   275         _cpuid_info.ext_cpuid1_rdx.bits.mmx != 0)
       
   276       result |= CPU_MMX;
       
   277     if (is_amd() && _cpuid_info.ext_cpuid1_rdx.bits.tdnow != 0)
       
   278       result |= CPU_3DNOW;
       
   279     if (_cpuid_info.std_cpuid1_rdx.bits.sse != 0)
       
   280       result |= CPU_SSE;
       
   281     if (_cpuid_info.std_cpuid1_rdx.bits.sse2 != 0)
       
   282       result |= CPU_SSE2;
       
   283     if (_cpuid_info.std_cpuid1_rcx.bits.sse3 != 0)
       
   284       result |= CPU_SSE3;
       
   285     if (_cpuid_info.std_cpuid1_rcx.bits.ssse3 != 0)
       
   286       result |= CPU_SSSE3;
       
   287     if (is_amd() && _cpuid_info.ext_cpuid1_rcx.bits.sse4a != 0)
       
   288       result |= CPU_SSE4A;
       
   289     if (_cpuid_info.std_cpuid1_rcx.bits.sse4_1 != 0)
       
   290       result |= CPU_SSE4_1;
       
   291     if (_cpuid_info.std_cpuid1_rcx.bits.sse4_2 != 0)
       
   292       result |= CPU_SSE4_2;
       
   293     return result;
       
   294   }
       
   295 
       
   296   static void get_processor_features();
       
   297 
       
   298 public:
       
   299   // Offsets for cpuid asm stub
       
   300   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
       
   301   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_rax); }
       
   302   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_rax); }
       
   303   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_rax); }
       
   304   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_rax); }
       
   305   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_rax); }
       
   306 
       
   307   // Initialization
       
   308   static void initialize();
       
   309 
       
   310   // Asserts
       
   311   static void assert_is_initialized() {
       
   312     assert(_cpuid_info.std_cpuid1_rax.bits.family != 0, "VM_Version not initialized");
       
   313   }
       
   314 
       
   315   //
       
   316   // Processor family:
       
   317   //       3   -  386
       
   318   //       4   -  486
       
   319   //       5   -  Pentium
       
   320   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
       
   321   //              Pentium M, Core Solo, Core Duo, Core2 Duo
       
   322   //    family 6 model:   9,        13,       14,        15
       
   323   //    0x0f   -  Pentium 4, Opteron
       
   324   //
       
   325   // Note: The cpu family should be used to select between
       
   326   //       instruction sequences which are valid on all Intel
       
   327   //       processors.  Use the feature test functions below to
       
   328   //       determine whether a particular instruction is supported.
       
   329   //
       
   330   static int  cpu_family()        { return _cpu;}
       
   331   static bool is_P6()             { return cpu_family() >= 6; }
       
   332 
       
   333   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
       
   334   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
       
   335 
       
   336   static uint cores_per_cpu()  {
       
   337     uint result = 1;
       
   338     if (is_intel()) {
       
   339       result = (_cpuid_info.dcp_cpuid4_rax.bits.cores_per_cpu + 1);
       
   340     } else if (is_amd()) {
       
   341       result = (_cpuid_info.ext_cpuid8_rcx.bits.cores_per_cpu + 1);
       
   342     }
       
   343     return result;
       
   344   }
       
   345 
       
   346   static uint threads_per_core()  {
       
   347     uint result = 1;
       
   348     if (_cpuid_info.std_cpuid1_rdx.bits.ht != 0) {
       
   349       result = _cpuid_info.std_cpuid1_rbx.bits.threads_per_cpu /
       
   350                cores_per_cpu();
       
   351     }
       
   352     return result;
       
   353   }
       
   354 
       
   355   static intx L1_data_cache_line_size()  {
       
   356     intx result = 0;
       
   357     if (is_intel()) {
       
   358       result = (_cpuid_info.dcp_cpuid4_rbx.bits.L1_line_size + 1);
       
   359     } else if (is_amd()) {
       
   360       result = _cpuid_info.ext_cpuid5_rcx.bits.L1_line_size;
       
   361     }
       
   362     if (result < 32) // not defined ?
       
   363       result = 32;   // 32 bytes by default on x86
       
   364     return result;
       
   365   }
       
   366 
       
   367   //
       
   368   // Feature identification
       
   369   //
       
   370   static bool supports_cpuid()    { return _cpuFeatures  != 0; }
       
   371   static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
       
   372   static bool supports_cmov()     { return (_cpuFeatures & CPU_CMOV) != 0; }
       
   373   static bool supports_fxsr()     { return (_cpuFeatures & CPU_FXSR) != 0; }
       
   374   static bool supports_ht()       { return (_cpuFeatures & CPU_HT) != 0; }
       
   375   static bool supports_mmx()      { return (_cpuFeatures & CPU_MMX) != 0; }
       
   376   static bool supports_sse()      { return (_cpuFeatures & CPU_SSE) != 0; }
       
   377   static bool supports_sse2()     { return (_cpuFeatures & CPU_SSE2) != 0; }
       
   378   static bool supports_sse3()     { return (_cpuFeatures & CPU_SSE3) != 0; }
       
   379   static bool supports_ssse3()    { return (_cpuFeatures & CPU_SSSE3)!= 0; }
       
   380   static bool supports_sse4_1()   { return (_cpuFeatures & CPU_SSE4_1) != 0; }
       
   381   static bool supports_sse4_2()   { return (_cpuFeatures & CPU_SSE4_2) != 0; }
       
   382   //
       
   383   // AMD features
       
   384   //
       
   385   static bool supports_3dnow()    { return (_cpuFeatures & CPU_3DNOW) != 0; }
       
   386   static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_rdx.bits.mmx_amd != 0; }
       
   387   static bool supports_3dnow2()   { return is_amd() && _cpuid_info.ext_cpuid1_rdx.bits.tdnow2 != 0; }
       
   388   static bool supports_sse4a()    { return (_cpuFeatures & CPU_SSE4A) != 0; }
       
   389 
       
   390   static bool supports_compare_and_exchange() { return true; }
       
   391 
       
   392   static const char* cpu_features()           { return _features_str; }
       
   393 
       
   394   static intx allocate_prefetch_distance() {
       
   395     // This method should be called before allocate_prefetch_style().
       
   396     //
       
   397     // Hardware prefetching (distance/size in bytes):
       
   398     // Pentium 3 -  64 /  32
       
   399     // Pentium 4 - 256 / 128
       
   400     // Athlon    -  64 /  32 ????
       
   401     // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
       
   402     // Core      - 128 /  64
       
   403     //
       
   404     // Software prefetching (distance in bytes / instruction with best score):
       
   405     // Pentium 3 - 128 / prefetchnta
       
   406     // Pentium 4 - 512 / prefetchnta
       
   407     // Athlon    - 128 / prefetchnta
       
   408     // Opteron   - 256 / prefetchnta
       
   409     // Core      - 256 / prefetchnta
       
   410     // It will be used only when AllocatePrefetchStyle > 0
       
   411 
       
   412     intx count = AllocatePrefetchDistance;
       
   413     if (count < 0) {   // default ?
       
   414       if (is_amd()) {  // AMD
       
   415         if (supports_sse2())
       
   416           count = 256; // Opteron
       
   417         else
       
   418           count = 128; // Athlon
       
   419       } else {         // Intel
       
   420         if (supports_sse2())
       
   421           if (cpu_family() == 6) {
       
   422             count = 256; // Pentium M, Core, Core2
       
   423           } else {
       
   424             count = 512; // Pentium 4
       
   425           }
       
   426         else
       
   427           count = 128; // Pentium 3 (and all other old CPUs)
       
   428       }
       
   429     }
       
   430     return count;
       
   431   }
       
   432   static intx allocate_prefetch_style() {
       
   433     assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
       
   434     // Return 0 if AllocatePrefetchDistance was not defined or
       
   435     // prefetch instruction is not supported.
       
   436     return (AllocatePrefetchDistance > 0 &&
       
   437             (supports_3dnow() || supports_sse())) ? AllocatePrefetchStyle : 0;
       
   438   }
       
   439 };