hotspot/src/cpu/ppc/vm/templateInterpreter_ppc.cpp
changeset 34651 07b1cc0f6040
parent 33070 54f3f085b165
child 35135 dd2ce9021031
child 35214 d86005e0b4c2
equal deleted inserted replaced
34648:b7ea5d095ef5 34651:07b1cc0f6040
     1 /*
     1 /*
     2  * Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
     2  * Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
     3  * Copyright 2013, 2015 SAP AG. All rights reserved.
     3  * Copyright (c) 2015 SAP AG. All rights reserved.
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     5  *
     5  *
     6  * This code is free software; you can redistribute it and/or modify it
     6  * This code is free software; you can redistribute it and/or modify it
     7  * under the terms of the GNU General Public License version 2 only, as
     7  * under the terms of the GNU General Public License version 2 only, as
     8  * published by the Free Software Foundation.
     8  * published by the Free Software Foundation.
    22  * questions.
    22  * questions.
    23  *
    23  *
    24  */
    24  */
    25 
    25 
    26 #include "precompiled.hpp"
    26 #include "precompiled.hpp"
    27 #ifndef CC_INTERP
       
    28 #include "asm/macroAssembler.inline.hpp"
       
    29 #include "interpreter/bytecodeHistogram.hpp"
       
    30 #include "interpreter/interpreter.hpp"
    27 #include "interpreter/interpreter.hpp"
    31 #include "interpreter/interpreterGenerator.hpp"
    28 #include "oops/constMethod.hpp"
    32 #include "interpreter/interpreterRuntime.hpp"
       
    33 #include "interpreter/interp_masm.hpp"
       
    34 #include "interpreter/templateTable.hpp"
       
    35 #include "oops/arrayOop.hpp"
       
    36 #include "oops/methodData.hpp"
       
    37 #include "oops/method.hpp"
    29 #include "oops/method.hpp"
    38 #include "oops/oop.inline.hpp"
       
    39 #include "prims/jvmtiExport.hpp"
       
    40 #include "prims/jvmtiThreadState.hpp"
       
    41 #include "runtime/arguments.hpp"
       
    42 #include "runtime/deoptimization.hpp"
       
    43 #include "runtime/frame.inline.hpp"
    30 #include "runtime/frame.inline.hpp"
    44 #include "runtime/sharedRuntime.hpp"
       
    45 #include "runtime/stubRoutines.hpp"
       
    46 #include "runtime/synchronizer.hpp"
       
    47 #include "runtime/timer.hpp"
       
    48 #include "runtime/vframeArray.hpp"
       
    49 #include "utilities/debug.hpp"
    31 #include "utilities/debug.hpp"
    50 #include "utilities/macros.hpp"
    32 #include "utilities/macros.hpp"
    51 
    33 
    52 #undef __
       
    53 #define __ _masm->
       
    54 
    34 
    55 #ifdef PRODUCT
    35 int AbstractInterpreter::BasicType_as_index(BasicType type) {
    56 #define BLOCK_COMMENT(str) /* nothing */
    36   int i = 0;
    57 #else
    37   switch (type) {
    58 #define BLOCK_COMMENT(str) __ block_comment(str)
    38     case T_BOOLEAN: i = 0; break;
    59 #endif
    39     case T_CHAR   : i = 1; break;
    60 
    40     case T_BYTE   : i = 2; break;
    61 #define BIND(label)        __ bind(label); BLOCK_COMMENT(#label ":")
    41     case T_SHORT  : i = 3; break;
    62 
    42     case T_INT    : i = 4; break;
    63 //-----------------------------------------------------------------------------
    43     case T_LONG   : i = 5; break;
    64 
    44     case T_VOID   : i = 6; break;
    65 // Actually we should never reach here since we do stack overflow checks before pushing any frame.
    45     case T_FLOAT  : i = 7; break;
    66 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
    46     case T_DOUBLE : i = 8; break;
    67   address entry = __ pc();
    47     case T_OBJECT : i = 9; break;
    68   __ unimplemented("generate_StackOverflowError_handler");
    48     case T_ARRAY  : i = 9; break;
    69   return entry;
    49     default       : ShouldNotReachHere();
    70 }
       
    71 
       
    72 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
       
    73   address entry = __ pc();
       
    74   __ empty_expression_stack();
       
    75   __ load_const_optimized(R4_ARG2, (address) name);
       
    76   // Index is in R17_tos.
       
    77   __ mr(R5_ARG3, R17_tos);
       
    78   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException));
       
    79   return entry;
       
    80 }
       
    81 
       
    82 #if 0
       
    83 // Call special ClassCastException constructor taking object to cast
       
    84 // and target class as arguments.
       
    85 address TemplateInterpreterGenerator::generate_ClassCastException_verbose_handler() {
       
    86   address entry = __ pc();
       
    87 
       
    88   // Expression stack must be empty before entering the VM if an
       
    89   // exception happened.
       
    90   __ empty_expression_stack();
       
    91 
       
    92   // Thread will be loaded to R3_ARG1.
       
    93   // Target class oop is in register R5_ARG3 by convention!
       
    94   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException_verbose), R17_tos, R5_ARG3);
       
    95   // Above call must not return here since exception pending.
       
    96   DEBUG_ONLY(__ should_not_reach_here();)
       
    97   return entry;
       
    98 }
       
    99 #endif
       
   100 
       
   101 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
       
   102   address entry = __ pc();
       
   103   // Expression stack must be empty before entering the VM if an
       
   104   // exception happened.
       
   105   __ empty_expression_stack();
       
   106 
       
   107   // Load exception object.
       
   108   // Thread will be loaded to R3_ARG1.
       
   109   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), R17_tos);
       
   110 #ifdef ASSERT
       
   111   // Above call must not return here since exception pending.
       
   112   __ should_not_reach_here();
       
   113 #endif
       
   114   return entry;
       
   115 }
       
   116 
       
   117 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
       
   118   address entry = __ pc();
       
   119   //__ untested("generate_exception_handler_common");
       
   120   Register Rexception = R17_tos;
       
   121 
       
   122   // Expression stack must be empty before entering the VM if an exception happened.
       
   123   __ empty_expression_stack();
       
   124 
       
   125   __ load_const_optimized(R4_ARG2, (address) name, R11_scratch1);
       
   126   if (pass_oop) {
       
   127     __ mr(R5_ARG3, Rexception);
       
   128     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), false);
       
   129   } else {
       
   130     __ load_const_optimized(R5_ARG3, (address) message, R11_scratch1);
       
   131     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), false);
       
   132   }
    50   }
   133 
    51   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
   134   // Throw exception.
    52   return i;
   135   __ mr(R3_ARG1, Rexception);
       
   136   __ load_const_optimized(R11_scratch1, Interpreter::throw_exception_entry(), R12_scratch2);
       
   137   __ mtctr(R11_scratch1);
       
   138   __ bctr();
       
   139 
       
   140   return entry;
       
   141 }
       
   142 
       
   143 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
       
   144   address entry = __ pc();
       
   145   __ unimplemented("generate_continuation_for");
       
   146   return entry;
       
   147 }
       
   148 
       
   149 // This entry is returned to when a call returns to the interpreter.
       
   150 // When we arrive here, we expect that the callee stack frame is already popped.
       
   151 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
       
   152   address entry = __ pc();
       
   153 
       
   154   // Move the value out of the return register back to the TOS cache of current frame.
       
   155   switch (state) {
       
   156     case ltos:
       
   157     case btos:
       
   158     case ctos:
       
   159     case stos:
       
   160     case atos:
       
   161     case itos: __ mr(R17_tos, R3_RET); break;   // RET -> TOS cache
       
   162     case ftos:
       
   163     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
       
   164     case vtos: break;                           // Nothing to do, this was a void return.
       
   165     default  : ShouldNotReachHere();
       
   166   }
       
   167 
       
   168   __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
       
   169   __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
       
   170   __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
       
   171 
       
   172   // Compiled code destroys templateTableBase, reload.
       
   173   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2);
       
   174 
       
   175   if (state == atos) {
       
   176     __ profile_return_type(R3_RET, R11_scratch1, R12_scratch2);
       
   177   }
       
   178 
       
   179   const Register cache = R11_scratch1;
       
   180   const Register size  = R12_scratch2;
       
   181   __ get_cache_and_index_at_bcp(cache, 1, index_size);
       
   182 
       
   183   // Get least significant byte of 64 bit value:
       
   184 #if defined(VM_LITTLE_ENDIAN)
       
   185   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()), cache);
       
   186 #else
       
   187   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()) + 7, cache);
       
   188 #endif
       
   189   __ sldi(size, size, Interpreter::logStackElementSize);
       
   190   __ add(R15_esp, R15_esp, size);
       
   191   __ dispatch_next(state, step);
       
   192   return entry;
       
   193 }
       
   194 
       
   195 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
       
   196   address entry = __ pc();
       
   197   // If state != vtos, we're returning from a native method, which put it's result
       
   198   // into the result register. So move the value out of the return register back
       
   199   // to the TOS cache of current frame.
       
   200 
       
   201   switch (state) {
       
   202     case ltos:
       
   203     case btos:
       
   204     case ctos:
       
   205     case stos:
       
   206     case atos:
       
   207     case itos: __ mr(R17_tos, R3_RET); break;   // GR_RET -> TOS cache
       
   208     case ftos:
       
   209     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
       
   210     case vtos: break;                           // Nothing to do, this was a void return.
       
   211     default  : ShouldNotReachHere();
       
   212   }
       
   213 
       
   214   // Load LcpoolCache @@@ should be already set!
       
   215   __ get_constant_pool_cache(R27_constPoolCache);
       
   216 
       
   217   // Handle a pending exception, fall through if none.
       
   218   __ check_and_forward_exception(R11_scratch1, R12_scratch2);
       
   219 
       
   220   // Start executing bytecodes.
       
   221   __ dispatch_next(state, step);
       
   222 
       
   223   return entry;
       
   224 }
       
   225 
       
   226 // A result handler converts the native result into java format.
       
   227 // Use the shared code between c++ and template interpreter.
       
   228 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
       
   229   return AbstractInterpreterGenerator::generate_result_handler_for(type);
       
   230 }
       
   231 
       
   232 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
       
   233   address entry = __ pc();
       
   234 
       
   235   __ push(state);
       
   236   __ call_VM(noreg, runtime_entry);
       
   237   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
       
   238 
       
   239   return entry;
       
   240 }
       
   241 
       
   242 // Helpers for commoning out cases in the various type of method entries.
       
   243 
       
   244 // Increment invocation count & check for overflow.
       
   245 //
       
   246 // Note: checking for negative value instead of overflow
       
   247 //       so we have a 'sticky' overflow test.
       
   248 //
       
   249 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
       
   250   // Note: In tiered we increment either counters in method or in MDO depending if we're profiling or not.
       
   251   Register Rscratch1   = R11_scratch1;
       
   252   Register Rscratch2   = R12_scratch2;
       
   253   Register R3_counters = R3_ARG1;
       
   254   Label done;
       
   255 
       
   256   if (TieredCompilation) {
       
   257     const int increment = InvocationCounter::count_increment;
       
   258     const int mask = ((1 << Tier0InvokeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
       
   259     Label no_mdo;
       
   260     if (ProfileInterpreter) {
       
   261       const Register Rmdo = Rscratch1;
       
   262       // If no method data exists, go to profile_continue.
       
   263       __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
       
   264       __ cmpdi(CCR0, Rmdo, 0);
       
   265       __ beq(CCR0, no_mdo);
       
   266 
       
   267       // Increment backedge counter in the MDO.
       
   268       const int mdo_bc_offs = in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
       
   269       __ lwz(Rscratch2, mdo_bc_offs, Rmdo);
       
   270       __ addi(Rscratch2, Rscratch2, increment);
       
   271       __ stw(Rscratch2, mdo_bc_offs, Rmdo);
       
   272       __ load_const_optimized(Rscratch1, mask, R0);
       
   273       __ and_(Rscratch1, Rscratch2, Rscratch1);
       
   274       __ bne(CCR0, done);
       
   275       __ b(*overflow);
       
   276     }
       
   277 
       
   278     // Increment counter in MethodCounters*.
       
   279     const int mo_bc_offs = in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
       
   280     __ bind(no_mdo);
       
   281     __ get_method_counters(R19_method, R3_counters, done);
       
   282     __ lwz(Rscratch2, mo_bc_offs, R3_counters);
       
   283     __ addi(Rscratch2, Rscratch2, increment);
       
   284     __ stw(Rscratch2, mo_bc_offs, R3_counters);
       
   285     __ load_const_optimized(Rscratch1, mask, R0);
       
   286     __ and_(Rscratch1, Rscratch2, Rscratch1);
       
   287     __ beq(CCR0, *overflow);
       
   288 
       
   289     __ bind(done);
       
   290 
       
   291   } else {
       
   292 
       
   293     // Update standard invocation counters.
       
   294     Register Rsum_ivc_bec = R4_ARG2;
       
   295     __ get_method_counters(R19_method, R3_counters, done);
       
   296     __ increment_invocation_counter(R3_counters, Rsum_ivc_bec, R12_scratch2);
       
   297     // Increment interpreter invocation counter.
       
   298     if (ProfileInterpreter) {  // %%% Merge this into methodDataOop.
       
   299       __ lwz(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
       
   300       __ addi(R12_scratch2, R12_scratch2, 1);
       
   301       __ stw(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
       
   302     }
       
   303     // Check if we must create a method data obj.
       
   304     if (ProfileInterpreter && profile_method != NULL) {
       
   305       const Register profile_limit = Rscratch1;
       
   306       int pl_offs = __ load_const_optimized(profile_limit, &InvocationCounter::InterpreterProfileLimit, R0, true);
       
   307       __ lwz(profile_limit, pl_offs, profile_limit);
       
   308       // Test to see if we should create a method data oop.
       
   309       __ cmpw(CCR0, Rsum_ivc_bec, profile_limit);
       
   310       __ blt(CCR0, *profile_method_continue);
       
   311       // If no method data exists, go to profile_method.
       
   312       __ test_method_data_pointer(*profile_method);
       
   313     }
       
   314     // Finally check for counter overflow.
       
   315     if (overflow) {
       
   316       const Register invocation_limit = Rscratch1;
       
   317       int il_offs = __ load_const_optimized(invocation_limit, &InvocationCounter::InterpreterInvocationLimit, R0, true);
       
   318       __ lwz(invocation_limit, il_offs, invocation_limit);
       
   319       assert(4 == sizeof(InvocationCounter::InterpreterInvocationLimit), "unexpected field size");
       
   320       __ cmpw(CCR0, Rsum_ivc_bec, invocation_limit);
       
   321       __ bge(CCR0, *overflow);
       
   322     }
       
   323 
       
   324     __ bind(done);
       
   325   }
       
   326 }
       
   327 
       
   328 // Generate code to initiate compilation on invocation counter overflow.
       
   329 void TemplateInterpreterGenerator::generate_counter_overflow(Label& continue_entry) {
       
   330   // Generate code to initiate compilation on the counter overflow.
       
   331 
       
   332   // InterpreterRuntime::frequency_counter_overflow takes one arguments,
       
   333   // which indicates if the counter overflow occurs at a backwards branch (NULL bcp)
       
   334   // We pass zero in.
       
   335   // The call returns the address of the verified entry point for the method or NULL
       
   336   // if the compilation did not complete (either went background or bailed out).
       
   337   //
       
   338   // Unlike the C++ interpreter above: Check exceptions!
       
   339   // Assumption: Caller must set the flag "do_not_unlock_if_sychronized" if the monitor of a sync'ed
       
   340   // method has not yet been created. Thus, no unlocking of a non-existing monitor can occur.
       
   341 
       
   342   __ li(R4_ARG2, 0);
       
   343   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
       
   344 
       
   345   // Returns verified_entry_point or NULL.
       
   346   // We ignore it in any case.
       
   347   __ b(continue_entry);
       
   348 }
       
   349 
       
   350 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rmem_frame_size, Register Rscratch1) {
       
   351   assert_different_registers(Rmem_frame_size, Rscratch1);
       
   352   __ generate_stack_overflow_check_with_compare_and_throw(Rmem_frame_size, Rscratch1);
       
   353 }
       
   354 
       
   355 void TemplateInterpreterGenerator::unlock_method(bool check_exceptions) {
       
   356   __ unlock_object(R26_monitor, check_exceptions);
       
   357 }
       
   358 
       
   359 // Lock the current method, interpreter register window must be set up!
       
   360 void TemplateInterpreterGenerator::lock_method(Register Rflags, Register Rscratch1, Register Rscratch2, bool flags_preloaded) {
       
   361   const Register Robj_to_lock = Rscratch2;
       
   362 
       
   363   {
       
   364     if (!flags_preloaded) {
       
   365       __ lwz(Rflags, method_(access_flags));
       
   366     }
       
   367 
       
   368 #ifdef ASSERT
       
   369     // Check if methods needs synchronization.
       
   370     {
       
   371       Label Lok;
       
   372       __ testbitdi(CCR0, R0, Rflags, JVM_ACC_SYNCHRONIZED_BIT);
       
   373       __ btrue(CCR0,Lok);
       
   374       __ stop("method doesn't need synchronization");
       
   375       __ bind(Lok);
       
   376     }
       
   377 #endif // ASSERT
       
   378   }
       
   379 
       
   380   // Get synchronization object to Rscratch2.
       
   381   {
       
   382     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
       
   383     Label Lstatic;
       
   384     Label Ldone;
       
   385 
       
   386     __ testbitdi(CCR0, R0, Rflags, JVM_ACC_STATIC_BIT);
       
   387     __ btrue(CCR0, Lstatic);
       
   388 
       
   389     // Non-static case: load receiver obj from stack and we're done.
       
   390     __ ld(Robj_to_lock, R18_locals);
       
   391     __ b(Ldone);
       
   392 
       
   393     __ bind(Lstatic); // Static case: Lock the java mirror
       
   394     __ ld(Robj_to_lock, in_bytes(Method::const_offset()), R19_method);
       
   395     __ ld(Robj_to_lock, in_bytes(ConstMethod::constants_offset()), Robj_to_lock);
       
   396     __ ld(Robj_to_lock, ConstantPool::pool_holder_offset_in_bytes(), Robj_to_lock);
       
   397     __ ld(Robj_to_lock, mirror_offset, Robj_to_lock);
       
   398 
       
   399     __ bind(Ldone);
       
   400     __ verify_oop(Robj_to_lock);
       
   401   }
       
   402 
       
   403   // Got the oop to lock => execute!
       
   404   __ add_monitor_to_stack(true, Rscratch1, R0);
       
   405 
       
   406   __ std(Robj_to_lock, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
       
   407   __ lock_object(R26_monitor, Robj_to_lock);
       
   408 }
       
   409 
       
   410 // Generate a fixed interpreter frame for pure interpreter
       
   411 // and I2N native transition frames.
       
   412 //
       
   413 // Before (stack grows downwards):
       
   414 //
       
   415 //         |  ...         |
       
   416 //         |------------- |
       
   417 //         |  java arg0   |
       
   418 //         |  ...         |
       
   419 //         |  java argn   |
       
   420 //         |              |   <-   R15_esp
       
   421 //         |              |
       
   422 //         |--------------|
       
   423 //         | abi_112      |
       
   424 //         |              |   <-   R1_SP
       
   425 //         |==============|
       
   426 //
       
   427 //
       
   428 // After:
       
   429 //
       
   430 //         |  ...         |
       
   431 //         |  java arg0   |<-   R18_locals
       
   432 //         |  ...         |
       
   433 //         |  java argn   |
       
   434 //         |--------------|
       
   435 //         |              |
       
   436 //         |  java locals |
       
   437 //         |              |
       
   438 //         |--------------|
       
   439 //         |  abi_48      |
       
   440 //         |==============|
       
   441 //         |              |
       
   442 //         |   istate     |
       
   443 //         |              |
       
   444 //         |--------------|
       
   445 //         |   monitor    |<-   R26_monitor
       
   446 //         |--------------|
       
   447 //         |              |<-   R15_esp
       
   448 //         | expression   |
       
   449 //         | stack        |
       
   450 //         |              |
       
   451 //         |--------------|
       
   452 //         |              |
       
   453 //         | abi_112      |<-   R1_SP
       
   454 //         |==============|
       
   455 //
       
   456 // The top most frame needs an abi space of 112 bytes. This space is needed,
       
   457 // since we call to c. The c function may spill their arguments to the caller
       
   458 // frame. When we call to java, we don't need these spill slots. In order to save
       
   459 // space on the stack, we resize the caller. However, java local reside in
       
   460 // the caller frame and the frame has to be increased. The frame_size for the
       
   461 // current frame was calculated based on max_stack as size for the expression
       
   462 // stack. At the call, just a part of the expression stack might be used.
       
   463 // We don't want to waste this space and cut the frame back accordingly.
       
   464 // The resulting amount for resizing is calculated as follows:
       
   465 // resize =   (number_of_locals - number_of_arguments) * slot_size
       
   466 //          + (R1_SP - R15_esp) + 48
       
   467 //
       
   468 // The size for the callee frame is calculated:
       
   469 // framesize = 112 + max_stack + monitor + state_size
       
   470 //
       
   471 // maxstack:   Max number of slots on the expression stack, loaded from the method.
       
   472 // monitor:    We statically reserve room for one monitor object.
       
   473 // state_size: We save the current state of the interpreter to this area.
       
   474 //
       
   475 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call, Register Rsize_of_parameters, Register Rsize_of_locals) {
       
   476   Register parent_frame_resize = R6_ARG4, // Frame will grow by this number of bytes.
       
   477            top_frame_size      = R7_ARG5,
       
   478            Rconst_method       = R8_ARG6;
       
   479 
       
   480   assert_different_registers(Rsize_of_parameters, Rsize_of_locals, parent_frame_resize, top_frame_size);
       
   481 
       
   482   __ ld(Rconst_method, method_(const));
       
   483   __ lhz(Rsize_of_parameters /* number of params */,
       
   484          in_bytes(ConstMethod::size_of_parameters_offset()), Rconst_method);
       
   485   if (native_call) {
       
   486     // If we're calling a native method, we reserve space for the worst-case signature
       
   487     // handler varargs vector, which is max(Argument::n_register_parameters, parameter_count+2).
       
   488     // We add two slots to the parameter_count, one for the jni
       
   489     // environment and one for a possible native mirror.
       
   490     Label skip_native_calculate_max_stack;
       
   491     __ addi(top_frame_size, Rsize_of_parameters, 2);
       
   492     __ cmpwi(CCR0, top_frame_size, Argument::n_register_parameters);
       
   493     __ bge(CCR0, skip_native_calculate_max_stack);
       
   494     __ li(top_frame_size, Argument::n_register_parameters);
       
   495     __ bind(skip_native_calculate_max_stack);
       
   496     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
       
   497     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
       
   498     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
       
   499     assert(Rsize_of_locals == noreg, "Rsize_of_locals not initialized"); // Only relevant value is Rsize_of_parameters.
       
   500   } else {
       
   501     __ lhz(Rsize_of_locals /* number of params */, in_bytes(ConstMethod::size_of_locals_offset()), Rconst_method);
       
   502     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
       
   503     __ sldi(Rsize_of_locals, Rsize_of_locals, Interpreter::logStackElementSize);
       
   504     __ lhz(top_frame_size, in_bytes(ConstMethod::max_stack_offset()), Rconst_method);
       
   505     __ sub(R11_scratch1, Rsize_of_locals, Rsize_of_parameters); // >=0
       
   506     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
       
   507     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
       
   508     __ add(parent_frame_resize, parent_frame_resize, R11_scratch1);
       
   509   }
       
   510 
       
   511   // Compute top frame size.
       
   512   __ addi(top_frame_size, top_frame_size, frame::abi_reg_args_size + frame::ijava_state_size);
       
   513 
       
   514   // Cut back area between esp and max_stack.
       
   515   __ addi(parent_frame_resize, parent_frame_resize, frame::abi_minframe_size - Interpreter::stackElementSize);
       
   516 
       
   517   __ round_to(top_frame_size, frame::alignment_in_bytes);
       
   518   __ round_to(parent_frame_resize, frame::alignment_in_bytes);
       
   519   // parent_frame_resize = (locals-parameters) - (ESP-SP-ABI48) Rounded to frame alignment size.
       
   520   // Enlarge by locals-parameters (not in case of native_call), shrink by ESP-SP-ABI48.
       
   521 
       
   522   {
       
   523     // --------------------------------------------------------------------------
       
   524     // Stack overflow check
       
   525 
       
   526     Label cont;
       
   527     __ add(R11_scratch1, parent_frame_resize, top_frame_size);
       
   528     generate_stack_overflow_check(R11_scratch1, R12_scratch2);
       
   529   }
       
   530 
       
   531   // Set up interpreter state registers.
       
   532 
       
   533   __ add(R18_locals, R15_esp, Rsize_of_parameters);
       
   534   __ ld(R27_constPoolCache, in_bytes(ConstMethod::constants_offset()), Rconst_method);
       
   535   __ ld(R27_constPoolCache, ConstantPool::cache_offset_in_bytes(), R27_constPoolCache);
       
   536 
       
   537   // Set method data pointer.
       
   538   if (ProfileInterpreter) {
       
   539     Label zero_continue;
       
   540     __ ld(R28_mdx, method_(method_data));
       
   541     __ cmpdi(CCR0, R28_mdx, 0);
       
   542     __ beq(CCR0, zero_continue);
       
   543     __ addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
       
   544     __ bind(zero_continue);
       
   545   }
       
   546 
       
   547   if (native_call) {
       
   548     __ li(R14_bcp, 0); // Must initialize.
       
   549   } else {
       
   550     __ add(R14_bcp, in_bytes(ConstMethod::codes_offset()), Rconst_method);
       
   551   }
       
   552 
       
   553   // Resize parent frame.
       
   554   __ mflr(R12_scratch2);
       
   555   __ neg(parent_frame_resize, parent_frame_resize);
       
   556   __ resize_frame(parent_frame_resize, R11_scratch1);
       
   557   __ std(R12_scratch2, _abi(lr), R1_SP);
       
   558 
       
   559   __ addi(R26_monitor, R1_SP, - frame::ijava_state_size);
       
   560   __ addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
       
   561 
       
   562   // Store values.
       
   563   // R15_esp, R14_bcp, R26_monitor, R28_mdx are saved at java calls
       
   564   // in InterpreterMacroAssembler::call_from_interpreter.
       
   565   __ std(R19_method, _ijava_state_neg(method), R1_SP);
       
   566   __ std(R21_sender_SP, _ijava_state_neg(sender_sp), R1_SP);
       
   567   __ std(R27_constPoolCache, _ijava_state_neg(cpoolCache), R1_SP);
       
   568   __ std(R18_locals, _ijava_state_neg(locals), R1_SP);
       
   569 
       
   570   // Note: esp, bcp, monitor, mdx live in registers. Hence, the correct version can only
       
   571   // be found in the frame after save_interpreter_state is done. This is always true
       
   572   // for non-top frames. But when a signal occurs, dumping the top frame can go wrong,
       
   573   // because e.g. frame::interpreter_frame_bcp() will not access the correct value
       
   574   // (Enhanced Stack Trace).
       
   575   // The signal handler does not save the interpreter state into the frame.
       
   576   __ li(R0, 0);
       
   577 #ifdef ASSERT
       
   578   // Fill remaining slots with constants.
       
   579   __ load_const_optimized(R11_scratch1, 0x5afe);
       
   580   __ load_const_optimized(R12_scratch2, 0xdead);
       
   581 #endif
       
   582   // We have to initialize some frame slots for native calls (accessed by GC).
       
   583   if (native_call) {
       
   584     __ std(R26_monitor, _ijava_state_neg(monitors), R1_SP);
       
   585     __ std(R14_bcp, _ijava_state_neg(bcp), R1_SP);
       
   586     if (ProfileInterpreter) { __ std(R28_mdx, _ijava_state_neg(mdx), R1_SP); }
       
   587   }
       
   588 #ifdef ASSERT
       
   589   else {
       
   590     __ std(R12_scratch2, _ijava_state_neg(monitors), R1_SP);
       
   591     __ std(R12_scratch2, _ijava_state_neg(bcp), R1_SP);
       
   592     __ std(R12_scratch2, _ijava_state_neg(mdx), R1_SP);
       
   593   }
       
   594   __ std(R11_scratch1, _ijava_state_neg(ijava_reserved), R1_SP);
       
   595   __ std(R12_scratch2, _ijava_state_neg(esp), R1_SP);
       
   596   __ std(R12_scratch2, _ijava_state_neg(lresult), R1_SP);
       
   597   __ std(R12_scratch2, _ijava_state_neg(fresult), R1_SP);
       
   598 #endif
       
   599   __ subf(R12_scratch2, top_frame_size, R1_SP);
       
   600   __ std(R0, _ijava_state_neg(oop_tmp), R1_SP);
       
   601   __ std(R12_scratch2, _ijava_state_neg(top_frame_sp), R1_SP);
       
   602 
       
   603   // Push top frame.
       
   604   __ push_frame(top_frame_size, R11_scratch1);
       
   605 }
       
   606 
       
   607 // End of helpers
       
   608 
       
   609 
       
   610 // Support abs and sqrt like in compiler.
       
   611 // For others we can use a normal (native) entry.
       
   612 
       
   613 inline bool math_entry_available(AbstractInterpreter::MethodKind kind) {
       
   614   if (!InlineIntrinsics) return false;
       
   615 
       
   616   return ((kind==Interpreter::java_lang_math_sqrt && VM_Version::has_fsqrt()) ||
       
   617           (kind==Interpreter::java_lang_math_abs));
       
   618 }
       
   619 
       
   620 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
       
   621   if (!math_entry_available(kind)) {
       
   622     NOT_PRODUCT(__ should_not_reach_here();)
       
   623     return NULL;
       
   624   }
       
   625 
       
   626   address entry = __ pc();
       
   627 
       
   628   __ lfd(F1_RET, Interpreter::stackElementSize, R15_esp);
       
   629 
       
   630   // Pop c2i arguments (if any) off when we return.
       
   631 #ifdef ASSERT
       
   632   __ ld(R9_ARG7, 0, R1_SP);
       
   633   __ ld(R10_ARG8, 0, R21_sender_SP);
       
   634   __ cmpd(CCR0, R9_ARG7, R10_ARG8);
       
   635   __ asm_assert_eq("backlink", 0x545);
       
   636 #endif // ASSERT
       
   637   __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
       
   638 
       
   639   if (kind == Interpreter::java_lang_math_sqrt) {
       
   640     __ fsqrt(F1_RET, F1_RET);
       
   641   } else if (kind == Interpreter::java_lang_math_abs) {
       
   642     __ fabs(F1_RET, F1_RET);
       
   643   } else {
       
   644     ShouldNotReachHere();
       
   645   }
       
   646 
       
   647   // And we're done.
       
   648   __ blr();
       
   649 
       
   650   __ flush();
       
   651 
       
   652   return entry;
       
   653 }
       
   654 
       
   655 // Interpreter stub for calling a native method. (asm interpreter)
       
   656 // This sets up a somewhat different looking stack for calling the
       
   657 // native method than the typical interpreter frame setup.
       
   658 //
       
   659 // On entry:
       
   660 //   R19_method    - method
       
   661 //   R16_thread    - JavaThread*
       
   662 //   R15_esp       - intptr_t* sender tos
       
   663 //
       
   664 //   abstract stack (grows up)
       
   665 //     [  IJava (caller of JNI callee)  ]  <-- ASP
       
   666 //        ...
       
   667 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
       
   668 
       
   669   address entry = __ pc();
       
   670 
       
   671   const bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
       
   672 
       
   673   // -----------------------------------------------------------------------------
       
   674   // Allocate a new frame that represents the native callee (i2n frame).
       
   675   // This is not a full-blown interpreter frame, but in particular, the
       
   676   // following registers are valid after this:
       
   677   // - R19_method
       
   678   // - R18_local (points to start of argumuments to native function)
       
   679   //
       
   680   //   abstract stack (grows up)
       
   681   //     [  IJava (caller of JNI callee)  ]  <-- ASP
       
   682   //        ...
       
   683 
       
   684   const Register signature_handler_fd = R11_scratch1;
       
   685   const Register pending_exception    = R0;
       
   686   const Register result_handler_addr  = R31;
       
   687   const Register native_method_fd     = R11_scratch1;
       
   688   const Register access_flags         = R22_tmp2;
       
   689   const Register active_handles       = R11_scratch1; // R26_monitor saved to state.
       
   690   const Register sync_state           = R12_scratch2;
       
   691   const Register sync_state_addr      = sync_state;   // Address is dead after use.
       
   692   const Register suspend_flags        = R11_scratch1;
       
   693 
       
   694   //=============================================================================
       
   695   // Allocate new frame and initialize interpreter state.
       
   696 
       
   697   Label exception_return;
       
   698   Label exception_return_sync_check;
       
   699   Label stack_overflow_return;
       
   700 
       
   701   // Generate new interpreter state and jump to stack_overflow_return in case of
       
   702   // a stack overflow.
       
   703   //generate_compute_interpreter_state(stack_overflow_return);
       
   704 
       
   705   Register size_of_parameters = R22_tmp2;
       
   706 
       
   707   generate_fixed_frame(true, size_of_parameters, noreg /* unused */);
       
   708 
       
   709   //=============================================================================
       
   710   // Increment invocation counter. On overflow, entry to JNI method
       
   711   // will be compiled.
       
   712   Label invocation_counter_overflow, continue_after_compile;
       
   713   if (inc_counter) {
       
   714     if (synchronized) {
       
   715       // Since at this point in the method invocation the exception handler
       
   716       // would try to exit the monitor of synchronized methods which hasn't
       
   717       // been entered yet, we set the thread local variable
       
   718       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
       
   719       // runtime, exception handling i.e. unlock_if_synchronized_method will
       
   720       // check this thread local flag.
       
   721       // This flag has two effects, one is to force an unwind in the topmost
       
   722       // interpreter frame and not perform an unlock while doing so.
       
   723       __ li(R0, 1);
       
   724       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
       
   725     }
       
   726     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
       
   727 
       
   728     BIND(continue_after_compile);
       
   729     // Reset the _do_not_unlock_if_synchronized flag.
       
   730     if (synchronized) {
       
   731       __ li(R0, 0);
       
   732       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
       
   733     }
       
   734   }
       
   735 
       
   736   // access_flags = method->access_flags();
       
   737   // Load access flags.
       
   738   assert(access_flags->is_nonvolatile(),
       
   739          "access_flags must be in a non-volatile register");
       
   740   // Type check.
       
   741   assert(4 == sizeof(AccessFlags), "unexpected field size");
       
   742   __ lwz(access_flags, method_(access_flags));
       
   743 
       
   744   // We don't want to reload R19_method and access_flags after calls
       
   745   // to some helper functions.
       
   746   assert(R19_method->is_nonvolatile(),
       
   747          "R19_method must be a non-volatile register");
       
   748 
       
   749   // Check for synchronized methods. Must happen AFTER invocation counter
       
   750   // check, so method is not locked if counter overflows.
       
   751 
       
   752   if (synchronized) {
       
   753     lock_method(access_flags, R11_scratch1, R12_scratch2, true);
       
   754 
       
   755     // Update monitor in state.
       
   756     __ ld(R11_scratch1, 0, R1_SP);
       
   757     __ std(R26_monitor, _ijava_state_neg(monitors), R11_scratch1);
       
   758   }
       
   759 
       
   760   // jvmti/jvmpi support
       
   761   __ notify_method_entry();
       
   762 
       
   763   //=============================================================================
       
   764   // Get and call the signature handler.
       
   765 
       
   766   __ ld(signature_handler_fd, method_(signature_handler));
       
   767   Label call_signature_handler;
       
   768 
       
   769   __ cmpdi(CCR0, signature_handler_fd, 0);
       
   770   __ bne(CCR0, call_signature_handler);
       
   771 
       
   772   // Method has never been called. Either generate a specialized
       
   773   // handler or point to the slow one.
       
   774   //
       
   775   // Pass parameter 'false' to avoid exception check in call_VM.
       
   776   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false);
       
   777 
       
   778   // Check for an exception while looking up the target method. If we
       
   779   // incurred one, bail.
       
   780   __ ld(pending_exception, thread_(pending_exception));
       
   781   __ cmpdi(CCR0, pending_exception, 0);
       
   782   __ bne(CCR0, exception_return_sync_check); // Has pending exception.
       
   783 
       
   784   // Reload signature handler, it may have been created/assigned in the meanwhile.
       
   785   __ ld(signature_handler_fd, method_(signature_handler));
       
   786   __ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below).
       
   787 
       
   788   BIND(call_signature_handler);
       
   789 
       
   790   // Before we call the signature handler we push a new frame to
       
   791   // protect the interpreter frame volatile registers when we return
       
   792   // from jni but before we can get back to Java.
       
   793 
       
   794   // First set the frame anchor while the SP/FP registers are
       
   795   // convenient and the slow signature handler can use this same frame
       
   796   // anchor.
       
   797 
       
   798   // We have a TOP_IJAVA_FRAME here, which belongs to us.
       
   799   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
       
   800 
       
   801   // Now the interpreter frame (and its call chain) have been
       
   802   // invalidated and flushed. We are now protected against eager
       
   803   // being enabled in native code. Even if it goes eager the
       
   804   // registers will be reloaded as clean and we will invalidate after
       
   805   // the call so no spurious flush should be possible.
       
   806 
       
   807   // Call signature handler and pass locals address.
       
   808   //
       
   809   // Our signature handlers copy required arguments to the C stack
       
   810   // (outgoing C args), R3_ARG1 to R10_ARG8, and FARG1 to FARG13.
       
   811   __ mr(R3_ARG1, R18_locals);
       
   812 #if !defined(ABI_ELFv2)
       
   813   __ ld(signature_handler_fd, 0, signature_handler_fd);
       
   814 #endif
       
   815 
       
   816   __ call_stub(signature_handler_fd);
       
   817 
       
   818   // Remove the register parameter varargs slots we allocated in
       
   819   // compute_interpreter_state. SP+16 ends up pointing to the ABI
       
   820   // outgoing argument area.
       
   821   //
       
   822   // Not needed on PPC64.
       
   823   //__ add(SP, SP, Argument::n_register_parameters*BytesPerWord);
       
   824 
       
   825   assert(result_handler_addr->is_nonvolatile(), "result_handler_addr must be in a non-volatile register");
       
   826   // Save across call to native method.
       
   827   __ mr(result_handler_addr, R3_RET);
       
   828 
       
   829   __ isync(); // Acquire signature handler before trying to fetch the native entry point and klass mirror.
       
   830 
       
   831   // Set up fixed parameters and call the native method.
       
   832   // If the method is static, get mirror into R4_ARG2.
       
   833   {
       
   834     Label method_is_not_static;
       
   835     // Access_flags is non-volatile and still, no need to restore it.
       
   836 
       
   837     // Restore access flags.
       
   838     __ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT);
       
   839     __ bfalse(CCR0, method_is_not_static);
       
   840 
       
   841     // constants = method->constants();
       
   842     __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
       
   843     __ ld(R11_scratch1, in_bytes(ConstMethod::constants_offset()), R11_scratch1);
       
   844     // pool_holder = method->constants()->pool_holder();
       
   845     __ ld(R11_scratch1/*pool_holder*/, ConstantPool::pool_holder_offset_in_bytes(),
       
   846           R11_scratch1/*constants*/);
       
   847 
       
   848     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
       
   849 
       
   850     // mirror = pool_holder->klass_part()->java_mirror();
       
   851     __ ld(R0/*mirror*/, mirror_offset, R11_scratch1/*pool_holder*/);
       
   852     // state->_native_mirror = mirror;
       
   853 
       
   854     __ ld(R11_scratch1, 0, R1_SP);
       
   855     __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1);
       
   856     // R4_ARG2 = &state->_oop_temp;
       
   857     __ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp));
       
   858     BIND(method_is_not_static);
       
   859   }
       
   860 
       
   861   // At this point, arguments have been copied off the stack into
       
   862   // their JNI positions. Oops are boxed in-place on the stack, with
       
   863   // handles copied to arguments. The result handler address is in a
       
   864   // register.
       
   865 
       
   866   // Pass JNIEnv address as first parameter.
       
   867   __ addir(R3_ARG1, thread_(jni_environment));
       
   868 
       
   869   // Load the native_method entry before we change the thread state.
       
   870   __ ld(native_method_fd, method_(native_function));
       
   871 
       
   872   //=============================================================================
       
   873   // Transition from _thread_in_Java to _thread_in_native. As soon as
       
   874   // we make this change the safepoint code needs to be certain that
       
   875   // the last Java frame we established is good. The pc in that frame
       
   876   // just needs to be near here not an actual return address.
       
   877 
       
   878   // We use release_store_fence to update values like the thread state, where
       
   879   // we don't want the current thread to continue until all our prior memory
       
   880   // accesses (including the new thread state) are visible to other threads.
       
   881   __ li(R0, _thread_in_native);
       
   882   __ release();
       
   883 
       
   884   // TODO PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
       
   885   __ stw(R0, thread_(thread_state));
       
   886 
       
   887   if (UseMembar) {
       
   888     __ fence();
       
   889   }
       
   890 
       
   891   //=============================================================================
       
   892   // Call the native method. Argument registers must not have been
       
   893   // overwritten since "__ call_stub(signature_handler);" (except for
       
   894   // ARG1 and ARG2 for static methods).
       
   895   __ call_c(native_method_fd);
       
   896 
       
   897   __ li(R0, 0);
       
   898   __ ld(R11_scratch1, 0, R1_SP);
       
   899   __ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
       
   900   __ stfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
       
   901   __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // reset
       
   902 
       
   903   // Note: C++ interpreter needs the following here:
       
   904   // The frame_manager_lr field, which we use for setting the last
       
   905   // java frame, gets overwritten by the signature handler. Restore
       
   906   // it now.
       
   907   //__ get_PC_trash_LR(R11_scratch1);
       
   908   //__ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
       
   909 
       
   910   // Because of GC R19_method may no longer be valid.
       
   911 
       
   912   // Block, if necessary, before resuming in _thread_in_Java state.
       
   913   // In order for GC to work, don't clear the last_Java_sp until after
       
   914   // blocking.
       
   915 
       
   916   //=============================================================================
       
   917   // Switch thread to "native transition" state before reading the
       
   918   // synchronization state. This additional state is necessary
       
   919   // because reading and testing the synchronization state is not
       
   920   // atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
       
   921   // in _thread_in_native state, loads _not_synchronized and is
       
   922   // preempted. VM thread changes sync state to synchronizing and
       
   923   // suspends threads for GC. Thread A is resumed to finish this
       
   924   // native method, but doesn't block here since it didn't see any
       
   925   // synchronization in progress, and escapes.
       
   926 
       
   927   // We use release_store_fence to update values like the thread state, where
       
   928   // we don't want the current thread to continue until all our prior memory
       
   929   // accesses (including the new thread state) are visible to other threads.
       
   930   __ li(R0/*thread_state*/, _thread_in_native_trans);
       
   931   __ release();
       
   932   __ stw(R0/*thread_state*/, thread_(thread_state));
       
   933   if (UseMembar) {
       
   934     __ fence();
       
   935   }
       
   936   // Write serialization page so that the VM thread can do a pseudo remote
       
   937   // membar. We use the current thread pointer to calculate a thread
       
   938   // specific offset to write to within the page. This minimizes bus
       
   939   // traffic due to cache line collision.
       
   940   else {
       
   941     __ serialize_memory(R16_thread, R11_scratch1, R12_scratch2);
       
   942   }
       
   943 
       
   944   // Now before we return to java we must look for a current safepoint
       
   945   // (a new safepoint can not start since we entered native_trans).
       
   946   // We must check here because a current safepoint could be modifying
       
   947   // the callers registers right this moment.
       
   948 
       
   949   // Acquire isn't strictly necessary here because of the fence, but
       
   950   // sync_state is declared to be volatile, so we do it anyway
       
   951   // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path).
       
   952   int sync_state_offs = __ load_const_optimized(sync_state_addr, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
       
   953 
       
   954   // TODO PPC port assert(4 == SafepointSynchronize::sz_state(), "unexpected field size");
       
   955   __ lwz(sync_state, sync_state_offs, sync_state_addr);
       
   956 
       
   957   // TODO PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
       
   958   __ lwz(suspend_flags, thread_(suspend_flags));
       
   959 
       
   960   Label sync_check_done;
       
   961   Label do_safepoint;
       
   962   // No synchronization in progress nor yet synchronized.
       
   963   __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
       
   964   // Not suspended.
       
   965   __ cmpwi(CCR1, suspend_flags, 0);
       
   966 
       
   967   __ bne(CCR0, do_safepoint);
       
   968   __ beq(CCR1, sync_check_done);
       
   969   __ bind(do_safepoint);
       
   970   __ isync();
       
   971   // Block. We do the call directly and leave the current
       
   972   // last_Java_frame setup undisturbed. We must save any possible
       
   973   // native result across the call. No oop is present.
       
   974 
       
   975   __ mr(R3_ARG1, R16_thread);
       
   976 #if defined(ABI_ELFv2)
       
   977   __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
       
   978             relocInfo::none);
       
   979 #else
       
   980   __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, JavaThread::check_special_condition_for_native_trans),
       
   981             relocInfo::none);
       
   982 #endif
       
   983 
       
   984   __ bind(sync_check_done);
       
   985 
       
   986   //=============================================================================
       
   987   // <<<<<< Back in Interpreter Frame >>>>>
       
   988 
       
   989   // We are in thread_in_native_trans here and back in the normal
       
   990   // interpreter frame. We don't have to do anything special about
       
   991   // safepoints and we can switch to Java mode anytime we are ready.
       
   992 
       
   993   // Note: frame::interpreter_frame_result has a dependency on how the
       
   994   // method result is saved across the call to post_method_exit. For
       
   995   // native methods it assumes that the non-FPU/non-void result is
       
   996   // saved in _native_lresult and a FPU result in _native_fresult. If
       
   997   // this changes then the interpreter_frame_result implementation
       
   998   // will need to be updated too.
       
   999 
       
  1000   // On PPC64, we have stored the result directly after the native call.
       
  1001 
       
  1002   //=============================================================================
       
  1003   // Back in Java
       
  1004 
       
  1005   // We use release_store_fence to update values like the thread state, where
       
  1006   // we don't want the current thread to continue until all our prior memory
       
  1007   // accesses (including the new thread state) are visible to other threads.
       
  1008   __ li(R0/*thread_state*/, _thread_in_Java);
       
  1009   __ release();
       
  1010   __ stw(R0/*thread_state*/, thread_(thread_state));
       
  1011   if (UseMembar) {
       
  1012     __ fence();
       
  1013   }
       
  1014 
       
  1015   __ reset_last_Java_frame();
       
  1016 
       
  1017   // Jvmdi/jvmpi support. Whether we've got an exception pending or
       
  1018   // not, and whether unlocking throws an exception or not, we notify
       
  1019   // on native method exit. If we do have an exception, we'll end up
       
  1020   // in the caller's context to handle it, so if we don't do the
       
  1021   // notify here, we'll drop it on the floor.
       
  1022   __ notify_method_exit(true/*native method*/,
       
  1023                         ilgl /*illegal state (not used for native methods)*/,
       
  1024                         InterpreterMacroAssembler::NotifyJVMTI,
       
  1025                         false /*check_exceptions*/);
       
  1026 
       
  1027   //=============================================================================
       
  1028   // Handle exceptions
       
  1029 
       
  1030   if (synchronized) {
       
  1031     // Don't check for exceptions since we're still in the i2n frame. Do that
       
  1032     // manually afterwards.
       
  1033     unlock_method(false);
       
  1034   }
       
  1035 
       
  1036   // Reset active handles after returning from native.
       
  1037   // thread->active_handles()->clear();
       
  1038   __ ld(active_handles, thread_(active_handles));
       
  1039   // TODO PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
       
  1040   __ li(R0, 0);
       
  1041   __ stw(R0, JNIHandleBlock::top_offset_in_bytes(), active_handles);
       
  1042 
       
  1043   Label exception_return_sync_check_already_unlocked;
       
  1044   __ ld(R0/*pending_exception*/, thread_(pending_exception));
       
  1045   __ cmpdi(CCR0, R0/*pending_exception*/, 0);
       
  1046   __ bne(CCR0, exception_return_sync_check_already_unlocked);
       
  1047 
       
  1048   //-----------------------------------------------------------------------------
       
  1049   // No exception pending.
       
  1050 
       
  1051   // Move native method result back into proper registers and return.
       
  1052   // Invoke result handler (may unbox/promote).
       
  1053   __ ld(R11_scratch1, 0, R1_SP);
       
  1054   __ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
       
  1055   __ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
       
  1056   __ call_stub(result_handler_addr);
       
  1057 
       
  1058   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
       
  1059 
       
  1060   // Must use the return pc which was loaded from the caller's frame
       
  1061   // as the VM uses return-pc-patching for deoptimization.
       
  1062   __ mtlr(R0);
       
  1063   __ blr();
       
  1064 
       
  1065   //-----------------------------------------------------------------------------
       
  1066   // An exception is pending. We call into the runtime only if the
       
  1067   // caller was not interpreted. If it was interpreted the
       
  1068   // interpreter will do the correct thing. If it isn't interpreted
       
  1069   // (call stub/compiled code) we will change our return and continue.
       
  1070 
       
  1071   BIND(exception_return_sync_check);
       
  1072 
       
  1073   if (synchronized) {
       
  1074     // Don't check for exceptions since we're still in the i2n frame. Do that
       
  1075     // manually afterwards.
       
  1076     unlock_method(false);
       
  1077   }
       
  1078   BIND(exception_return_sync_check_already_unlocked);
       
  1079 
       
  1080   const Register return_pc = R31;
       
  1081 
       
  1082   __ ld(return_pc, 0, R1_SP);
       
  1083   __ ld(return_pc, _abi(lr), return_pc);
       
  1084 
       
  1085   // Get the address of the exception handler.
       
  1086   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
       
  1087                   R16_thread,
       
  1088                   return_pc /* return pc */);
       
  1089   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2);
       
  1090 
       
  1091   // Load the PC of the the exception handler into LR.
       
  1092   __ mtlr(R3_RET);
       
  1093 
       
  1094   // Load exception into R3_ARG1 and clear pending exception in thread.
       
  1095   __ ld(R3_ARG1/*exception*/, thread_(pending_exception));
       
  1096   __ li(R4_ARG2, 0);
       
  1097   __ std(R4_ARG2, thread_(pending_exception));
       
  1098 
       
  1099   // Load the original return pc into R4_ARG2.
       
  1100   __ mr(R4_ARG2/*issuing_pc*/, return_pc);
       
  1101 
       
  1102   // Return to exception handler.
       
  1103   __ blr();
       
  1104 
       
  1105   //=============================================================================
       
  1106   // Counter overflow.
       
  1107 
       
  1108   if (inc_counter) {
       
  1109     // Handle invocation counter overflow.
       
  1110     __ bind(invocation_counter_overflow);
       
  1111 
       
  1112     generate_counter_overflow(continue_after_compile);
       
  1113   }
       
  1114 
       
  1115   return entry;
       
  1116 }
       
  1117 
       
  1118 // Generic interpreted method entry to (asm) interpreter.
       
  1119 //
       
  1120 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
       
  1121   bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
       
  1122   address entry = __ pc();
       
  1123   // Generate the code to allocate the interpreter stack frame.
       
  1124   Register Rsize_of_parameters = R4_ARG2, // Written by generate_fixed_frame.
       
  1125            Rsize_of_locals     = R5_ARG3; // Written by generate_fixed_frame.
       
  1126 
       
  1127   generate_fixed_frame(false, Rsize_of_parameters, Rsize_of_locals);
       
  1128 
       
  1129   // --------------------------------------------------------------------------
       
  1130   // Zero out non-parameter locals.
       
  1131   // Note: *Always* zero out non-parameter locals as Sparc does. It's not
       
  1132   // worth to ask the flag, just do it.
       
  1133   Register Rslot_addr = R6_ARG4,
       
  1134            Rnum       = R7_ARG5;
       
  1135   Label Lno_locals, Lzero_loop;
       
  1136 
       
  1137   // Set up the zeroing loop.
       
  1138   __ subf(Rnum, Rsize_of_parameters, Rsize_of_locals);
       
  1139   __ subf(Rslot_addr, Rsize_of_parameters, R18_locals);
       
  1140   __ srdi_(Rnum, Rnum, Interpreter::logStackElementSize);
       
  1141   __ beq(CCR0, Lno_locals);
       
  1142   __ li(R0, 0);
       
  1143   __ mtctr(Rnum);
       
  1144 
       
  1145   // The zero locals loop.
       
  1146   __ bind(Lzero_loop);
       
  1147   __ std(R0, 0, Rslot_addr);
       
  1148   __ addi(Rslot_addr, Rslot_addr, -Interpreter::stackElementSize);
       
  1149   __ bdnz(Lzero_loop);
       
  1150 
       
  1151   __ bind(Lno_locals);
       
  1152 
       
  1153   // --------------------------------------------------------------------------
       
  1154   // Counter increment and overflow check.
       
  1155   Label invocation_counter_overflow,
       
  1156         profile_method,
       
  1157         profile_method_continue;
       
  1158   if (inc_counter || ProfileInterpreter) {
       
  1159 
       
  1160     Register Rdo_not_unlock_if_synchronized_addr = R11_scratch1;
       
  1161     if (synchronized) {
       
  1162       // Since at this point in the method invocation the exception handler
       
  1163       // would try to exit the monitor of synchronized methods which hasn't
       
  1164       // been entered yet, we set the thread local variable
       
  1165       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
       
  1166       // runtime, exception handling i.e. unlock_if_synchronized_method will
       
  1167       // check this thread local flag.
       
  1168       // This flag has two effects, one is to force an unwind in the topmost
       
  1169       // interpreter frame and not perform an unlock while doing so.
       
  1170       __ li(R0, 1);
       
  1171       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
       
  1172     }
       
  1173 
       
  1174     // Argument and return type profiling.
       
  1175     __ profile_parameters_type(R3_ARG1, R4_ARG2, R5_ARG3, R6_ARG4);
       
  1176 
       
  1177     // Increment invocation counter and check for overflow.
       
  1178     if (inc_counter) {
       
  1179       generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
       
  1180     }
       
  1181 
       
  1182     __ bind(profile_method_continue);
       
  1183 
       
  1184     // Reset the _do_not_unlock_if_synchronized flag.
       
  1185     if (synchronized) {
       
  1186       __ li(R0, 0);
       
  1187       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
       
  1188     }
       
  1189   }
       
  1190 
       
  1191   // --------------------------------------------------------------------------
       
  1192   // Locking of synchronized methods. Must happen AFTER invocation_counter
       
  1193   // check and stack overflow check, so method is not locked if overflows.
       
  1194   if (synchronized) {
       
  1195     lock_method(R3_ARG1, R4_ARG2, R5_ARG3);
       
  1196   }
       
  1197 #ifdef ASSERT
       
  1198   else {
       
  1199     Label Lok;
       
  1200     __ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method);
       
  1201     __ andi_(R0, R0, JVM_ACC_SYNCHRONIZED);
       
  1202     __ asm_assert_eq("method needs synchronization", 0x8521);
       
  1203     __ bind(Lok);
       
  1204   }
       
  1205 #endif // ASSERT
       
  1206 
       
  1207   __ verify_thread();
       
  1208 
       
  1209   // --------------------------------------------------------------------------
       
  1210   // JVMTI support
       
  1211   __ notify_method_entry();
       
  1212 
       
  1213   // --------------------------------------------------------------------------
       
  1214   // Start executing instructions.
       
  1215   __ dispatch_next(vtos);
       
  1216 
       
  1217   // --------------------------------------------------------------------------
       
  1218   // Out of line counter overflow and MDO creation code.
       
  1219   if (ProfileInterpreter) {
       
  1220     // We have decided to profile this method in the interpreter.
       
  1221     __ bind(profile_method);
       
  1222     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
       
  1223     __ set_method_data_pointer_for_bcp();
       
  1224     __ b(profile_method_continue);
       
  1225   }
       
  1226 
       
  1227   if (inc_counter) {
       
  1228     // Handle invocation counter overflow.
       
  1229     __ bind(invocation_counter_overflow);
       
  1230     generate_counter_overflow(profile_method_continue);
       
  1231   }
       
  1232   return entry;
       
  1233 }
       
  1234 
       
  1235 // CRC32 Intrinsics.
       
  1236 //
       
  1237 // Contract on scratch and work registers.
       
  1238 // =======================================
       
  1239 //
       
  1240 // On ppc, the register set {R2..R12} is available in the interpreter as scratch/work registers.
       
  1241 // You should, however, keep in mind that {R3_ARG1..R10_ARG8} is the C-ABI argument register set.
       
  1242 // You can't rely on these registers across calls.
       
  1243 //
       
  1244 // The generators for CRC32_update and for CRC32_updateBytes use the
       
  1245 // scratch/work register set internally, passing the work registers
       
  1246 // as arguments to the MacroAssembler emitters as required.
       
  1247 //
       
  1248 // R3_ARG1..R6_ARG4 are preset to hold the incoming java arguments.
       
  1249 // Their contents is not constant but may change according to the requirements
       
  1250 // of the emitted code.
       
  1251 //
       
  1252 // All other registers from the scratch/work register set are used "internally"
       
  1253 // and contain garbage (i.e. unpredictable values) once blr() is reached.
       
  1254 // Basically, only R3_RET contains a defined value which is the function result.
       
  1255 //
       
  1256 /**
       
  1257  * Method entry for static native methods:
       
  1258  *   int java.util.zip.CRC32.update(int crc, int b)
       
  1259  */
       
  1260 address InterpreterGenerator::generate_CRC32_update_entry() {
       
  1261   if (UseCRC32Intrinsics) {
       
  1262     address start = __ pc();  // Remember stub start address (is rtn value).
       
  1263     Label slow_path;
       
  1264 
       
  1265     // Safepoint check
       
  1266     const Register sync_state = R11_scratch1;
       
  1267     int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
       
  1268     __ lwz(sync_state, sync_state_offs, sync_state);
       
  1269     __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
       
  1270     __ bne(CCR0, slow_path);
       
  1271 
       
  1272     // We don't generate local frame and don't align stack because
       
  1273     // we not even call stub code (we generate the code inline)
       
  1274     // and there is no safepoint on this path.
       
  1275 
       
  1276     // Load java parameters.
       
  1277     // R15_esp is callers operand stack pointer, i.e. it points to the parameters.
       
  1278     const Register argP    = R15_esp;
       
  1279     const Register crc     = R3_ARG1;  // crc value
       
  1280     const Register data    = R4_ARG2;  // address of java byte value (kernel_crc32 needs address)
       
  1281     const Register dataLen = R5_ARG3;  // source data len (1 byte). Not used because calling the single-byte emitter.
       
  1282     const Register table   = R6_ARG4;  // address of crc32 table
       
  1283     const Register tmp     = dataLen;  // Reuse unused len register to show we don't actually need a separate tmp here.
       
  1284 
       
  1285     BLOCK_COMMENT("CRC32_update {");
       
  1286 
       
  1287     // Arguments are reversed on java expression stack
       
  1288 #ifdef VM_LITTLE_ENDIAN
       
  1289     __ addi(data, argP, 0+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
       
  1290                                        // Being passed as an int, the single byte is at offset +0.
       
  1291 #else
       
  1292     __ addi(data, argP, 3+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
       
  1293                                        // Being passed from java as an int, the single byte is at offset +3.
       
  1294 #endif
       
  1295     __ lwz(crc,  2*wordSize, argP);    // Current crc state, zero extend to 64 bit to have a clean register.
       
  1296 
       
  1297     StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
       
  1298     __ kernel_crc32_singleByte(crc, data, dataLen, table, tmp);
       
  1299 
       
  1300     // Restore caller sp for c2i case and return.
       
  1301     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
       
  1302     __ blr();
       
  1303 
       
  1304     // Generate a vanilla native entry as the slow path.
       
  1305     BLOCK_COMMENT("} CRC32_update");
       
  1306     BIND(slow_path);
       
  1307     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
       
  1308     return start;
       
  1309   }
       
  1310 
       
  1311   return NULL;
       
  1312 }
       
  1313 
       
  1314 // CRC32 Intrinsics.
       
  1315 /**
       
  1316  * Method entry for static native methods:
       
  1317  *   int java.util.zip.CRC32.updateBytes(     int crc, byte[] b,  int off, int len)
       
  1318  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len)
       
  1319  */
       
  1320 address InterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
       
  1321   if (UseCRC32Intrinsics) {
       
  1322     address start = __ pc();  // Remember stub start address (is rtn value).
       
  1323     Label slow_path;
       
  1324 
       
  1325     // Safepoint check
       
  1326     const Register sync_state = R11_scratch1;
       
  1327     int sync_state_offs = __ load_const_optimized(sync_state, SafepointSynchronize::address_of_state(), /*temp*/R0, true);
       
  1328     __ lwz(sync_state, sync_state_offs, sync_state);
       
  1329     __ cmpwi(CCR0, sync_state, SafepointSynchronize::_not_synchronized);
       
  1330     __ bne(CCR0, slow_path);
       
  1331 
       
  1332     // We don't generate local frame and don't align stack because
       
  1333     // we not even call stub code (we generate the code inline)
       
  1334     // and there is no safepoint on this path.
       
  1335 
       
  1336     // Load parameters.
       
  1337     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
       
  1338     const Register argP    = R15_esp;
       
  1339     const Register crc     = R3_ARG1;  // crc value
       
  1340     const Register data    = R4_ARG2;  // address of java byte array
       
  1341     const Register dataLen = R5_ARG3;  // source data len
       
  1342     const Register table   = R6_ARG4;  // address of crc32 table
       
  1343 
       
  1344     const Register t0      = R9;       // scratch registers for crc calculation
       
  1345     const Register t1      = R10;
       
  1346     const Register t2      = R11;
       
  1347     const Register t3      = R12;
       
  1348 
       
  1349     const Register tc0     = R2;       // registers to hold pre-calculated column addresses
       
  1350     const Register tc1     = R7;
       
  1351     const Register tc2     = R8;
       
  1352     const Register tc3     = table;    // table address is reconstructed at the end of kernel_crc32_* emitters
       
  1353 
       
  1354     const Register tmp     = t0;       // Only used very locally to calculate byte buffer address.
       
  1355 
       
  1356     // Arguments are reversed on java expression stack.
       
  1357     // Calculate address of start element.
       
  1358     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct".
       
  1359       BLOCK_COMMENT("CRC32_updateByteBuffer {");
       
  1360       // crc     @ (SP + 5W) (32bit)
       
  1361       // buf     @ (SP + 3W) (64bit ptr to long array)
       
  1362       // off     @ (SP + 2W) (32bit)
       
  1363       // dataLen @ (SP + 1W) (32bit)
       
  1364       // data = buf + off
       
  1365       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
       
  1366       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
       
  1367       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
       
  1368       __ lwz( crc,     5*wordSize, argP);  // current crc state
       
  1369       __ add( data, data, tmp);            // Add byte buffer offset.
       
  1370     } else {                                                         // Used for "updateBytes update".
       
  1371       BLOCK_COMMENT("CRC32_updateBytes {");
       
  1372       // crc     @ (SP + 4W) (32bit)
       
  1373       // buf     @ (SP + 3W) (64bit ptr to byte array)
       
  1374       // off     @ (SP + 2W) (32bit)
       
  1375       // dataLen @ (SP + 1W) (32bit)
       
  1376       // data = buf + off + base_offset
       
  1377       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
       
  1378       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
       
  1379       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
       
  1380       __ add( data, data, tmp);            // add byte buffer offset
       
  1381       __ lwz( crc,     4*wordSize, argP);  // current crc state
       
  1382       __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
       
  1383     }
       
  1384 
       
  1385     StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
       
  1386 
       
  1387     // Performance measurements show the 1word and 2word variants to be almost equivalent,
       
  1388     // with very light advantages for the 1word variant. We chose the 1word variant for
       
  1389     // code compactness.
       
  1390     __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, tc0, tc1, tc2, tc3);
       
  1391 
       
  1392     // Restore caller sp for c2i case and return.
       
  1393     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
       
  1394     __ blr();
       
  1395 
       
  1396     // Generate a vanilla native entry as the slow path.
       
  1397     BLOCK_COMMENT("} CRC32_updateBytes(Buffer)");
       
  1398     BIND(slow_path);
       
  1399     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
       
  1400     return start;
       
  1401   }
       
  1402 
       
  1403   return NULL;
       
  1404 }
    53 }
  1405 
    54 
  1406 // These should never be compiled since the interpreter will prefer
    55 // These should never be compiled since the interpreter will prefer
  1407 // the compiled version to the intrinsic version.
    56 // the compiled version to the intrinsic version.
  1408 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
    57 bool AbstractInterpreter::can_be_compiled(methodHandle m) {
  1409   return !math_entry_available(method_kind(m));
    58   return !TemplateInterpreter::math_entry_available(method_kind(m));
  1410 }
    59 }
  1411 
    60 
  1412 // How much stack a method activation needs in stack slots.
    61 // How much stack a method activation needs in stack slots.
  1413 // We must calc this exactly like in generate_fixed_frame.
    62 // We must calc this exactly like in generate_fixed_frame.
  1414 // Note: This returns the conservative size assuming maximum alignment.
    63 // Note: This returns the conservative size assuming maximum alignment.
  1503   if (!is_bottom_frame) {
   152   if (!is_bottom_frame) {
  1504     interpreter_frame->interpreter_frame_set_sender_sp(sender_sp);
   153     interpreter_frame->interpreter_frame_set_sender_sp(sender_sp);
  1505   }
   154   }
  1506 }
   155 }
  1507 
   156 
  1508 // =============================================================================
   157 // Support abs and sqrt like in compiler.
  1509 // Exceptions
   158 // For others we can use a normal (native) entry.
  1510 
   159 
  1511 void TemplateInterpreterGenerator::generate_throw_exception() {
   160 bool TemplateInterpreter::math_entry_available(AbstractInterpreter::MethodKind kind) {
  1512   Register Rexception    = R17_tos,
   161   if (!InlineIntrinsics) return false;
  1513            Rcontinuation = R3_RET;
       
  1514 
   162 
  1515   // --------------------------------------------------------------------------
   163   return ((kind==Interpreter::java_lang_math_sqrt && VM_Version::has_fsqrt()) ||
  1516   // Entry point if an method returns with a pending exception (rethrow).
   164           (kind==Interpreter::java_lang_math_abs));
  1517   Interpreter::_rethrow_exception_entry = __ pc();
       
  1518   {
       
  1519     __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
       
  1520     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
       
  1521     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
       
  1522 
       
  1523     // Compiled code destroys templateTableBase, reload.
       
  1524     __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
       
  1525   }
       
  1526 
       
  1527   // Entry point if a interpreted method throws an exception (throw).
       
  1528   Interpreter::_throw_exception_entry = __ pc();
       
  1529   {
       
  1530     __ mr(Rexception, R3_RET);
       
  1531 
       
  1532     __ verify_thread();
       
  1533     __ verify_oop(Rexception);
       
  1534 
       
  1535     // Expression stack must be empty before entering the VM in case of an exception.
       
  1536     __ empty_expression_stack();
       
  1537     // Find exception handler address and preserve exception oop.
       
  1538     // Call C routine to find handler and jump to it.
       
  1539     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Rexception);
       
  1540     __ mtctr(Rcontinuation);
       
  1541     // Push exception for exception handler bytecodes.
       
  1542     __ push_ptr(Rexception);
       
  1543 
       
  1544     // Jump to exception handler (may be remove activation entry!).
       
  1545     __ bctr();
       
  1546   }
       
  1547 
       
  1548   // If the exception is not handled in the current frame the frame is
       
  1549   // removed and the exception is rethrown (i.e. exception
       
  1550   // continuation is _rethrow_exception).
       
  1551   //
       
  1552   // Note: At this point the bci is still the bxi for the instruction
       
  1553   // which caused the exception and the expression stack is
       
  1554   // empty. Thus, for any VM calls at this point, GC will find a legal
       
  1555   // oop map (with empty expression stack).
       
  1556 
       
  1557   // In current activation
       
  1558   // tos: exception
       
  1559   // bcp: exception bcp
       
  1560 
       
  1561   // --------------------------------------------------------------------------
       
  1562   // JVMTI PopFrame support
       
  1563 
       
  1564   Interpreter::_remove_activation_preserving_args_entry = __ pc();
       
  1565   {
       
  1566     // Set the popframe_processing bit in popframe_condition indicating that we are
       
  1567     // currently handling popframe, so that call_VMs that may happen later do not
       
  1568     // trigger new popframe handling cycles.
       
  1569     __ lwz(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
       
  1570     __ ori(R11_scratch1, R11_scratch1, JavaThread::popframe_processing_bit);
       
  1571     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
       
  1572 
       
  1573     // Empty the expression stack, as in normal exception handling.
       
  1574     __ empty_expression_stack();
       
  1575     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
       
  1576 
       
  1577     // Check to see whether we are returning to a deoptimized frame.
       
  1578     // (The PopFrame call ensures that the caller of the popped frame is
       
  1579     // either interpreted or compiled and deoptimizes it if compiled.)
       
  1580     // Note that we don't compare the return PC against the
       
  1581     // deoptimization blob's unpack entry because of the presence of
       
  1582     // adapter frames in C2.
       
  1583     Label Lcaller_not_deoptimized;
       
  1584     Register return_pc = R3_ARG1;
       
  1585     __ ld(return_pc, 0, R1_SP);
       
  1586     __ ld(return_pc, _abi(lr), return_pc);
       
  1587     __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), return_pc);
       
  1588     __ cmpdi(CCR0, R3_RET, 0);
       
  1589     __ bne(CCR0, Lcaller_not_deoptimized);
       
  1590 
       
  1591     // The deoptimized case.
       
  1592     // In this case, we can't call dispatch_next() after the frame is
       
  1593     // popped, but instead must save the incoming arguments and restore
       
  1594     // them after deoptimization has occurred.
       
  1595     __ ld(R4_ARG2, in_bytes(Method::const_offset()), R19_method);
       
  1596     __ lhz(R4_ARG2 /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), R4_ARG2);
       
  1597     __ slwi(R4_ARG2, R4_ARG2, Interpreter::logStackElementSize);
       
  1598     __ addi(R5_ARG3, R18_locals, Interpreter::stackElementSize);
       
  1599     __ subf(R5_ARG3, R4_ARG2, R5_ARG3);
       
  1600     // Save these arguments.
       
  1601     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R16_thread, R4_ARG2, R5_ARG3);
       
  1602 
       
  1603     // Inform deoptimization that it is responsible for restoring these arguments.
       
  1604     __ load_const_optimized(R11_scratch1, JavaThread::popframe_force_deopt_reexecution_bit);
       
  1605     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
       
  1606 
       
  1607     // Return from the current method into the deoptimization blob. Will eventually
       
  1608     // end up in the deopt interpeter entry, deoptimization prepared everything that
       
  1609     // we will reexecute the call that called us.
       
  1610     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*reload return_pc*/ return_pc, R11_scratch1, R12_scratch2);
       
  1611     __ mtlr(return_pc);
       
  1612     __ blr();
       
  1613 
       
  1614     // The non-deoptimized case.
       
  1615     __ bind(Lcaller_not_deoptimized);
       
  1616 
       
  1617     // Clear the popframe condition flag.
       
  1618     __ li(R0, 0);
       
  1619     __ stw(R0, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
       
  1620 
       
  1621     // Get out of the current method and re-execute the call that called us.
       
  1622     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
       
  1623     __ restore_interpreter_state(R11_scratch1);
       
  1624     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
       
  1625     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
       
  1626     if (ProfileInterpreter) {
       
  1627       __ set_method_data_pointer_for_bcp();
       
  1628       __ ld(R11_scratch1, 0, R1_SP);
       
  1629       __ std(R28_mdx, _ijava_state_neg(mdx), R11_scratch1);
       
  1630     }
       
  1631 #if INCLUDE_JVMTI
       
  1632     Label L_done;
       
  1633 
       
  1634     __ lbz(R11_scratch1, 0, R14_bcp);
       
  1635     __ cmpwi(CCR0, R11_scratch1, Bytecodes::_invokestatic);
       
  1636     __ bne(CCR0, L_done);
       
  1637 
       
  1638     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
       
  1639     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
       
  1640     __ ld(R4_ARG2, 0, R18_locals);
       
  1641     __ MacroAssembler::call_VM(R4_ARG2, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R4_ARG2, R19_method, R14_bcp, false);
       
  1642     __ restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
       
  1643     __ cmpdi(CCR0, R4_ARG2, 0);
       
  1644     __ beq(CCR0, L_done);
       
  1645     __ std(R4_ARG2, wordSize, R15_esp);
       
  1646     __ bind(L_done);
       
  1647 #endif // INCLUDE_JVMTI
       
  1648     __ dispatch_next(vtos);
       
  1649   }
       
  1650   // end of JVMTI PopFrame support
       
  1651 
       
  1652   // --------------------------------------------------------------------------
       
  1653   // Remove activation exception entry.
       
  1654   // This is jumped to if an interpreted method can't handle an exception itself
       
  1655   // (we come from the throw/rethrow exception entry above). We're going to call
       
  1656   // into the VM to find the exception handler in the caller, pop the current
       
  1657   // frame and return the handler we calculated.
       
  1658   Interpreter::_remove_activation_entry = __ pc();
       
  1659   {
       
  1660     __ pop_ptr(Rexception);
       
  1661     __ verify_thread();
       
  1662     __ verify_oop(Rexception);
       
  1663     __ std(Rexception, in_bytes(JavaThread::vm_result_offset()), R16_thread);
       
  1664 
       
  1665     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, true);
       
  1666     __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI, false);
       
  1667 
       
  1668     __ get_vm_result(Rexception);
       
  1669 
       
  1670     // We are done with this activation frame; find out where to go next.
       
  1671     // The continuation point will be an exception handler, which expects
       
  1672     // the following registers set up:
       
  1673     //
       
  1674     // RET:  exception oop
       
  1675     // ARG2: Issuing PC (see generate_exception_blob()), only used if the caller is compiled.
       
  1676 
       
  1677     Register return_pc = R31; // Needs to survive the runtime call.
       
  1678     __ ld(return_pc, 0, R1_SP);
       
  1679     __ ld(return_pc, _abi(lr), return_pc);
       
  1680     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc);
       
  1681 
       
  1682     // Remove the current activation.
       
  1683     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
       
  1684 
       
  1685     __ mr(R4_ARG2, return_pc);
       
  1686     __ mtlr(R3_RET);
       
  1687     __ mr(R3_RET, Rexception);
       
  1688     __ blr();
       
  1689   }
       
  1690 }
   165 }
  1691 
   166 
  1692 // JVMTI ForceEarlyReturn support.
       
  1693 // Returns "in the middle" of a method with a "fake" return value.
       
  1694 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
       
  1695 
   167 
  1696   Register Rscratch1 = R11_scratch1,
       
  1697            Rscratch2 = R12_scratch2;
       
  1698 
       
  1699   address entry = __ pc();
       
  1700   __ empty_expression_stack();
       
  1701 
       
  1702   __ load_earlyret_value(state, Rscratch1);
       
  1703 
       
  1704   __ ld(Rscratch1, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
       
  1705   // Clear the earlyret state.
       
  1706   __ li(R0, 0);
       
  1707   __ stw(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rscratch1);
       
  1708 
       
  1709   __ remove_activation(state, false, false);
       
  1710   // Copied from TemplateTable::_return.
       
  1711   // Restoration of lr done by remove_activation.
       
  1712   switch (state) {
       
  1713     case ltos:
       
  1714     case btos:
       
  1715     case ctos:
       
  1716     case stos:
       
  1717     case atos:
       
  1718     case itos: __ mr(R3_RET, R17_tos); break;
       
  1719     case ftos:
       
  1720     case dtos: __ fmr(F1_RET, F15_ftos); break;
       
  1721     case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
       
  1722                // to get visible before the reference to the object gets stored anywhere.
       
  1723                __ membar(Assembler::StoreStore); break;
       
  1724     default  : ShouldNotReachHere();
       
  1725   }
       
  1726   __ blr();
       
  1727 
       
  1728   return entry;
       
  1729 } // end of ForceEarlyReturn support
       
  1730 
       
  1731 //-----------------------------------------------------------------------------
       
  1732 // Helper for vtos entry point generation
       
  1733 
       
  1734 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
       
  1735                                                          address& bep,
       
  1736                                                          address& cep,
       
  1737                                                          address& sep,
       
  1738                                                          address& aep,
       
  1739                                                          address& iep,
       
  1740                                                          address& lep,
       
  1741                                                          address& fep,
       
  1742                                                          address& dep,
       
  1743                                                          address& vep) {
       
  1744   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
       
  1745   Label L;
       
  1746 
       
  1747   aep = __ pc();  __ push_ptr();  __ b(L);
       
  1748   fep = __ pc();  __ push_f();    __ b(L);
       
  1749   dep = __ pc();  __ push_d();    __ b(L);
       
  1750   lep = __ pc();  __ push_l();    __ b(L);
       
  1751   __ align(32, 12, 24); // align L
       
  1752   bep = cep = sep =
       
  1753   iep = __ pc();  __ push_i();
       
  1754   vep = __ pc();
       
  1755   __ bind(L);
       
  1756   generate_and_dispatch(t);
       
  1757 }
       
  1758 
       
  1759 //-----------------------------------------------------------------------------
       
  1760 // Generation of individual instructions
       
  1761 
       
  1762 // helpers for generate_and_dispatch
       
  1763 
       
  1764 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
       
  1765   : TemplateInterpreterGenerator(code) {
       
  1766   generate_all(); // Down here so it can be "virtual".
       
  1767 }
       
  1768 
       
  1769 //-----------------------------------------------------------------------------
       
  1770 
       
  1771 // Non-product code
       
  1772 #ifndef PRODUCT
       
  1773 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
       
  1774   //__ flush_bundle();
       
  1775   address entry = __ pc();
       
  1776 
       
  1777   const char *bname = NULL;
       
  1778   uint tsize = 0;
       
  1779   switch(state) {
       
  1780   case ftos:
       
  1781     bname = "trace_code_ftos {";
       
  1782     tsize = 2;
       
  1783     break;
       
  1784   case btos:
       
  1785     bname = "trace_code_btos {";
       
  1786     tsize = 2;
       
  1787     break;
       
  1788   case ctos:
       
  1789     bname = "trace_code_ctos {";
       
  1790     tsize = 2;
       
  1791     break;
       
  1792   case stos:
       
  1793     bname = "trace_code_stos {";
       
  1794     tsize = 2;
       
  1795     break;
       
  1796   case itos:
       
  1797     bname = "trace_code_itos {";
       
  1798     tsize = 2;
       
  1799     break;
       
  1800   case ltos:
       
  1801     bname = "trace_code_ltos {";
       
  1802     tsize = 3;
       
  1803     break;
       
  1804   case atos:
       
  1805     bname = "trace_code_atos {";
       
  1806     tsize = 2;
       
  1807     break;
       
  1808   case vtos:
       
  1809     // Note: In case of vtos, the topmost of stack value could be a int or doubl
       
  1810     // In case of a double (2 slots) we won't see the 2nd stack value.
       
  1811     // Maybe we simply should print the topmost 3 stack slots to cope with the problem.
       
  1812     bname = "trace_code_vtos {";
       
  1813     tsize = 2;
       
  1814 
       
  1815     break;
       
  1816   case dtos:
       
  1817     bname = "trace_code_dtos {";
       
  1818     tsize = 3;
       
  1819     break;
       
  1820   default:
       
  1821     ShouldNotReachHere();
       
  1822   }
       
  1823   BLOCK_COMMENT(bname);
       
  1824 
       
  1825   // Support short-cut for TraceBytecodesAt.
       
  1826   // Don't call into the VM if we don't want to trace to speed up things.
       
  1827   Label Lskip_vm_call;
       
  1828   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
       
  1829     int offs1 = __ load_const_optimized(R11_scratch1, (address) &TraceBytecodesAt, R0, true);
       
  1830     int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
       
  1831     __ ld(R11_scratch1, offs1, R11_scratch1);
       
  1832     __ lwa(R12_scratch2, offs2, R12_scratch2);
       
  1833     __ cmpd(CCR0, R12_scratch2, R11_scratch1);
       
  1834     __ blt(CCR0, Lskip_vm_call);
       
  1835   }
       
  1836 
       
  1837   __ push(state);
       
  1838   // Load 2 topmost expression stack values.
       
  1839   __ ld(R6_ARG4, tsize*Interpreter::stackElementSize, R15_esp);
       
  1840   __ ld(R5_ARG3, Interpreter::stackElementSize, R15_esp);
       
  1841   __ mflr(R31);
       
  1842   __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), /* unused */ R4_ARG2, R5_ARG3, R6_ARG4, false);
       
  1843   __ mtlr(R31);
       
  1844   __ pop(state);
       
  1845 
       
  1846   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
       
  1847     __ bind(Lskip_vm_call);
       
  1848   }
       
  1849   __ blr();
       
  1850   BLOCK_COMMENT("} trace_code");
       
  1851   return entry;
       
  1852 }
       
  1853 
       
  1854 void TemplateInterpreterGenerator::count_bytecode() {
       
  1855   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeCounter::_counter_value, R12_scratch2, true);
       
  1856   __ lwz(R12_scratch2, offs, R11_scratch1);
       
  1857   __ addi(R12_scratch2, R12_scratch2, 1);
       
  1858   __ stw(R12_scratch2, offs, R11_scratch1);
       
  1859 }
       
  1860 
       
  1861 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
       
  1862   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeHistogram::_counters[t->bytecode()], R12_scratch2, true);
       
  1863   __ lwz(R12_scratch2, offs, R11_scratch1);
       
  1864   __ addi(R12_scratch2, R12_scratch2, 1);
       
  1865   __ stw(R12_scratch2, offs, R11_scratch1);
       
  1866 }
       
  1867 
       
  1868 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
       
  1869   const Register addr = R11_scratch1,
       
  1870                  tmp  = R12_scratch2;
       
  1871   // Get index, shift out old bytecode, bring in new bytecode, and store it.
       
  1872   // _index = (_index >> log2_number_of_codes) |
       
  1873   //          (bytecode << log2_number_of_codes);
       
  1874   int offs1 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_index, tmp, true);
       
  1875   __ lwz(tmp, offs1, addr);
       
  1876   __ srwi(tmp, tmp, BytecodePairHistogram::log2_number_of_codes);
       
  1877   __ ori(tmp, tmp, ((int) t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
       
  1878   __ stw(tmp, offs1, addr);
       
  1879 
       
  1880   // Bump bucket contents.
       
  1881   // _counters[_index] ++;
       
  1882   int offs2 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_counters, R0, true);
       
  1883   __ sldi(tmp, tmp, LogBytesPerInt);
       
  1884   __ add(addr, tmp, addr);
       
  1885   __ lwz(tmp, offs2, addr);
       
  1886   __ addi(tmp, tmp, 1);
       
  1887   __ stw(tmp, offs2, addr);
       
  1888 }
       
  1889 
       
  1890 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
       
  1891   // Call a little run-time stub to avoid blow-up for each bytecode.
       
  1892   // The run-time runtime saves the right registers, depending on
       
  1893   // the tosca in-state for the given template.
       
  1894 
       
  1895   assert(Interpreter::trace_code(t->tos_in()) != NULL,
       
  1896          "entry must have been generated");
       
  1897 
       
  1898   // Note: we destroy LR here.
       
  1899   __ bl(Interpreter::trace_code(t->tos_in()));
       
  1900 }
       
  1901 
       
  1902 void TemplateInterpreterGenerator::stop_interpreter_at() {
       
  1903   Label L;
       
  1904   int offs1 = __ load_const_optimized(R11_scratch1, (address) &StopInterpreterAt, R0, true);
       
  1905   int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
       
  1906   __ ld(R11_scratch1, offs1, R11_scratch1);
       
  1907   __ lwa(R12_scratch2, offs2, R12_scratch2);
       
  1908   __ cmpd(CCR0, R12_scratch2, R11_scratch1);
       
  1909   __ bne(CCR0, L);
       
  1910   __ illtrap();
       
  1911   __ bind(L);
       
  1912 }
       
  1913 
       
  1914 #endif // !PRODUCT
       
  1915 #endif // !CC_INTERP