author | never |
Sun, 11 Sep 2011 14:48:24 -0700 | |
changeset 10547 | ea4a2ec31ae2 |
parent 8921 | 14bfe81f2a9d |
child 11794 | 72249bf6ab83 |
permissions | -rw-r--r-- |
1 | 1 |
/* |
8921
14bfe81f2a9d
7010070: Update all 2010 Oracle-changed OpenJDK files to have the proper copyright dates - second pass
trims
parents:
8868
diff
changeset
|
2 |
* Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved. |
1 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
5547
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
4015
diff
changeset
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
4015
diff
changeset
|
20 |
* or visit www.oracle.com if you need additional information or have any |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
4015
diff
changeset
|
21 |
* questions. |
1 | 22 |
* |
23 |
*/ |
|
24 |
||
7397 | 25 |
#include "precompiled.hpp" |
26 |
#include "compiler/compileLog.hpp" |
|
27 |
#include "compiler/oopMap.hpp" |
|
28 |
#include "memory/allocation.inline.hpp" |
|
29 |
#include "opto/addnode.hpp" |
|
30 |
#include "opto/block.hpp" |
|
31 |
#include "opto/callnode.hpp" |
|
32 |
#include "opto/cfgnode.hpp" |
|
33 |
#include "opto/chaitin.hpp" |
|
34 |
#include "opto/coalesce.hpp" |
|
35 |
#include "opto/connode.hpp" |
|
36 |
#include "opto/idealGraphPrinter.hpp" |
|
37 |
#include "opto/indexSet.hpp" |
|
38 |
#include "opto/machnode.hpp" |
|
39 |
#include "opto/memnode.hpp" |
|
40 |
#include "opto/opcodes.hpp" |
|
41 |
#include "opto/rootnode.hpp" |
|
1 | 42 |
|
43 |
//============================================================================= |
|
44 |
||
45 |
#ifndef PRODUCT |
|
46 |
void LRG::dump( ) const { |
|
47 |
ttyLocker ttyl; |
|
48 |
tty->print("%d ",num_regs()); |
|
49 |
_mask.dump(); |
|
50 |
if( _msize_valid ) { |
|
51 |
if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size); |
|
52 |
else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size()); |
|
53 |
} else { |
|
54 |
tty->print(", #?(%d) ",_mask.Size()); |
|
55 |
} |
|
56 |
||
57 |
tty->print("EffDeg: "); |
|
58 |
if( _degree_valid ) tty->print( "%d ", _eff_degree ); |
|
59 |
else tty->print("? "); |
|
60 |
||
1057
44220ef9a775
6732194: Data corruption dependent on -server/-client/-Xbatch
never
parents:
670
diff
changeset
|
61 |
if( is_multidef() ) { |
1 | 62 |
tty->print("MultiDef "); |
63 |
if (_defs != NULL) { |
|
64 |
tty->print("("); |
|
65 |
for (int i = 0; i < _defs->length(); i++) { |
|
66 |
tty->print("N%d ", _defs->at(i)->_idx); |
|
67 |
} |
|
68 |
tty->print(") "); |
|
69 |
} |
|
70 |
} |
|
71 |
else if( _def == 0 ) tty->print("Dead "); |
|
72 |
else tty->print("Def: N%d ",_def->_idx); |
|
73 |
||
74 |
tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score()); |
|
75 |
// Flags |
|
76 |
if( _is_oop ) tty->print("Oop "); |
|
77 |
if( _is_float ) tty->print("Float "); |
|
78 |
if( _was_spilled1 ) tty->print("Spilled "); |
|
79 |
if( _was_spilled2 ) tty->print("Spilled2 "); |
|
80 |
if( _direct_conflict ) tty->print("Direct_conflict "); |
|
81 |
if( _fat_proj ) tty->print("Fat "); |
|
82 |
if( _was_lo ) tty->print("Lo "); |
|
83 |
if( _has_copy ) tty->print("Copy "); |
|
84 |
if( _at_risk ) tty->print("Risk "); |
|
85 |
||
86 |
if( _must_spill ) tty->print("Must_spill "); |
|
87 |
if( _is_bound ) tty->print("Bound "); |
|
88 |
if( _msize_valid ) { |
|
89 |
if( _degree_valid && lo_degree() ) tty->print("Trivial "); |
|
90 |
} |
|
91 |
||
92 |
tty->cr(); |
|
93 |
} |
|
94 |
#endif |
|
95 |
||
96 |
//------------------------------score------------------------------------------ |
|
97 |
// Compute score from cost and area. Low score is best to spill. |
|
98 |
static double raw_score( double cost, double area ) { |
|
99 |
return cost - (area*RegisterCostAreaRatio) * 1.52588e-5; |
|
100 |
} |
|
101 |
||
102 |
double LRG::score() const { |
|
103 |
// Scale _area by RegisterCostAreaRatio/64K then subtract from cost. |
|
104 |
// Bigger area lowers score, encourages spilling this live range. |
|
105 |
// Bigger cost raise score, prevents spilling this live range. |
|
106 |
// (Note: 1/65536 is the magic constant below; I dont trust the C optimizer |
|
107 |
// to turn a divide by a constant into a multiply by the reciprical). |
|
108 |
double score = raw_score( _cost, _area); |
|
109 |
||
110 |
// Account for area. Basically, LRGs covering large areas are better |
|
111 |
// to spill because more other LRGs get freed up. |
|
112 |
if( _area == 0.0 ) // No area? Then no progress to spill |
|
113 |
return 1e35; |
|
114 |
||
115 |
if( _was_spilled2 ) // If spilled once before, we are unlikely |
|
116 |
return score + 1e30; // to make progress again. |
|
117 |
||
118 |
if( _cost >= _area*3.0 ) // Tiny area relative to cost |
|
119 |
return score + 1e17; // Probably no progress to spill |
|
120 |
||
121 |
if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost |
|
122 |
return score + 1e10; // Likely no progress to spill |
|
123 |
||
124 |
return score; |
|
125 |
} |
|
126 |
||
127 |
//------------------------------LRG_List--------------------------------------- |
|
128 |
LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) { |
|
129 |
memset( _lidxs, 0, sizeof(uint)*max ); |
|
130 |
} |
|
131 |
||
132 |
void LRG_List::extend( uint nidx, uint lidx ) { |
|
133 |
_nesting.check(); |
|
134 |
if( nidx >= _max ) { |
|
135 |
uint size = 16; |
|
136 |
while( size <= nidx ) size <<=1; |
|
137 |
_lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size ); |
|
138 |
_max = size; |
|
139 |
} |
|
140 |
while( _cnt <= nidx ) |
|
141 |
_lidxs[_cnt++] = 0; |
|
142 |
_lidxs[nidx] = lidx; |
|
143 |
} |
|
144 |
||
145 |
#define NUMBUCKS 3 |
|
146 |
||
147 |
//------------------------------Chaitin---------------------------------------- |
|
148 |
PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher) |
|
149 |
: PhaseRegAlloc(unique, cfg, matcher, |
|
150 |
#ifndef PRODUCT |
|
151 |
print_chaitin_statistics |
|
152 |
#else |
|
153 |
NULL |
|
154 |
#endif |
|
155 |
), |
|
156 |
_names(unique), _uf_map(unique), |
|
157 |
_maxlrg(0), _live(0), |
|
158 |
_spilled_once(Thread::current()->resource_area()), |
|
159 |
_spilled_twice(Thread::current()->resource_area()), |
|
160 |
_lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0), |
|
161 |
_oldphi(unique) |
|
162 |
#ifndef PRODUCT |
|
163 |
, _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling")) |
|
164 |
#endif |
|
165 |
{ |
|
166 |
NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); ) |
|
2340 | 167 |
|
168 |
_high_frequency_lrg = MIN2(float(OPTO_LRG_HIGH_FREQ), _cfg._outer_loop_freq); |
|
169 |
||
1 | 170 |
uint i,j; |
171 |
// Build a list of basic blocks, sorted by frequency |
|
172 |
_blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks ); |
|
173 |
// Experiment with sorting strategies to speed compilation |
|
174 |
double cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket |
|
175 |
Block **buckets[NUMBUCKS]; // Array of buckets |
|
176 |
uint buckcnt[NUMBUCKS]; // Array of bucket counters |
|
177 |
double buckval[NUMBUCKS]; // Array of bucket value cutoffs |
|
178 |
for( i = 0; i < NUMBUCKS; i++ ) { |
|
179 |
buckets[i] = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks ); |
|
180 |
buckcnt[i] = 0; |
|
181 |
// Bump by three orders of magnitude each time |
|
182 |
cutoff *= 0.001; |
|
183 |
buckval[i] = cutoff; |
|
184 |
for( j = 0; j < _cfg._num_blocks; j++ ) { |
|
185 |
buckets[i][j] = NULL; |
|
186 |
} |
|
187 |
} |
|
188 |
// Sort blocks into buckets |
|
189 |
for( i = 0; i < _cfg._num_blocks; i++ ) { |
|
190 |
for( j = 0; j < NUMBUCKS; j++ ) { |
|
191 |
if( (j == NUMBUCKS-1) || (_cfg._blocks[i]->_freq > buckval[j]) ) { |
|
192 |
// Assign block to end of list for appropriate bucket |
|
193 |
buckets[j][buckcnt[j]++] = _cfg._blocks[i]; |
|
194 |
break; // kick out of inner loop |
|
195 |
} |
|
196 |
} |
|
197 |
} |
|
198 |
// Dump buckets into final block array |
|
199 |
uint blkcnt = 0; |
|
200 |
for( i = 0; i < NUMBUCKS; i++ ) { |
|
201 |
for( j = 0; j < buckcnt[i]; j++ ) { |
|
202 |
_blks[blkcnt++] = buckets[i][j]; |
|
203 |
} |
|
204 |
} |
|
205 |
||
206 |
assert(blkcnt == _cfg._num_blocks, "Block array not totally filled"); |
|
207 |
} |
|
208 |
||
209 |
void PhaseChaitin::Register_Allocate() { |
|
210 |
||
211 |
// Above the OLD FP (and in registers) are the incoming arguments. Stack |
|
212 |
// slots in this area are called "arg_slots". Above the NEW FP (and in |
|
213 |
// registers) is the outgoing argument area; above that is the spill/temp |
|
214 |
// area. These are all "frame_slots". Arg_slots start at the zero |
|
215 |
// stack_slots and count up to the known arg_size. Frame_slots start at |
|
216 |
// the stack_slot #arg_size and go up. After allocation I map stack |
|
217 |
// slots to actual offsets. Stack-slots in the arg_slot area are biased |
|
218 |
// by the frame_size; stack-slots in the frame_slot area are biased by 0. |
|
219 |
||
220 |
_trip_cnt = 0; |
|
221 |
_alternate = 0; |
|
222 |
_matcher._allocation_started = true; |
|
223 |
||
224 |
ResourceArea live_arena; // Arena for liveness & IFG info |
|
225 |
ResourceMark rm(&live_arena); |
|
226 |
||
227 |
// Need live-ness for the IFG; need the IFG for coalescing. If the |
|
228 |
// liveness is JUST for coalescing, then I can get some mileage by renaming |
|
229 |
// all copy-related live ranges low and then using the max copy-related |
|
230 |
// live range as a cut-off for LIVE and the IFG. In other words, I can |
|
231 |
// build a subset of LIVE and IFG just for copies. |
|
232 |
PhaseLive live(_cfg,_names,&live_arena); |
|
233 |
||
234 |
// Need IFG for coalescing and coloring |
|
235 |
PhaseIFG ifg( &live_arena ); |
|
236 |
_ifg = &ifg; |
|
237 |
||
238 |
if (C->unique() > _names.Size()) _names.extend(C->unique()-1, 0); |
|
239 |
||
240 |
// Come out of SSA world to the Named world. Assign (virtual) registers to |
|
241 |
// Nodes. Use the same register for all inputs and the output of PhiNodes |
|
242 |
// - effectively ending SSA form. This requires either coalescing live |
|
243 |
// ranges or inserting copies. For the moment, we insert "virtual copies" |
|
244 |
// - we pretend there is a copy prior to each Phi in predecessor blocks. |
|
245 |
// We will attempt to coalesce such "virtual copies" before we manifest |
|
246 |
// them for real. |
|
247 |
de_ssa(); |
|
248 |
||
2030
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
2014
diff
changeset
|
249 |
#ifdef ASSERT |
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
2014
diff
changeset
|
250 |
// Veify the graph before RA. |
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
2014
diff
changeset
|
251 |
verify(&live_arena); |
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
2014
diff
changeset
|
252 |
#endif |
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
2014
diff
changeset
|
253 |
|
1 | 254 |
{ |
255 |
NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); ) |
|
256 |
_live = NULL; // Mark live as being not available |
|
257 |
rm.reset_to_mark(); // Reclaim working storage |
|
258 |
IndexSet::reset_memory(C, &live_arena); |
|
259 |
ifg.init(_maxlrg); // Empty IFG |
|
260 |
gather_lrg_masks( false ); // Collect LRG masks |
|
261 |
live.compute( _maxlrg ); // Compute liveness |
|
262 |
_live = &live; // Mark LIVE as being available |
|
263 |
} |
|
264 |
||
265 |
// Base pointers are currently "used" by instructions which define new |
|
266 |
// derived pointers. This makes base pointers live up to the where the |
|
267 |
// derived pointer is made, but not beyond. Really, they need to be live |
|
268 |
// across any GC point where the derived value is live. So this code looks |
|
269 |
// at all the GC points, and "stretches" the live range of any base pointer |
|
270 |
// to the GC point. |
|
271 |
if( stretch_base_pointer_live_ranges(&live_arena) ) { |
|
272 |
NOT_PRODUCT( Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler); ) |
|
273 |
// Since some live range stretched, I need to recompute live |
|
274 |
_live = NULL; |
|
275 |
rm.reset_to_mark(); // Reclaim working storage |
|
276 |
IndexSet::reset_memory(C, &live_arena); |
|
277 |
ifg.init(_maxlrg); |
|
278 |
gather_lrg_masks( false ); |
|
279 |
live.compute( _maxlrg ); |
|
280 |
_live = &live; |
|
281 |
} |
|
282 |
// Create the interference graph using virtual copies |
|
283 |
build_ifg_virtual( ); // Include stack slots this time |
|
284 |
||
285 |
// Aggressive (but pessimistic) copy coalescing. |
|
286 |
// This pass works on virtual copies. Any virtual copies which are not |
|
287 |
// coalesced get manifested as actual copies |
|
288 |
{ |
|
289 |
// The IFG is/was triangular. I am 'squaring it up' so Union can run |
|
290 |
// faster. Union requires a 'for all' operation which is slow on the |
|
291 |
// triangular adjacency matrix (quick reminder: the IFG is 'sparse' - |
|
292 |
// meaning I can visit all the Nodes neighbors less than a Node in time |
|
293 |
// O(# of neighbors), but I have to visit all the Nodes greater than a |
|
294 |
// given Node and search them for an instance, i.e., time O(#MaxLRG)). |
|
295 |
_ifg->SquareUp(); |
|
296 |
||
297 |
PhaseAggressiveCoalesce coalesce( *this ); |
|
298 |
coalesce.coalesce_driver( ); |
|
299 |
// Insert un-coalesced copies. Visit all Phis. Where inputs to a Phi do |
|
300 |
// not match the Phi itself, insert a copy. |
|
301 |
coalesce.insert_copies(_matcher); |
|
302 |
} |
|
303 |
||
304 |
// After aggressive coalesce, attempt a first cut at coloring. |
|
305 |
// To color, we need the IFG and for that we need LIVE. |
|
306 |
{ |
|
307 |
NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); ) |
|
308 |
_live = NULL; |
|
309 |
rm.reset_to_mark(); // Reclaim working storage |
|
310 |
IndexSet::reset_memory(C, &live_arena); |
|
311 |
ifg.init(_maxlrg); |
|
312 |
gather_lrg_masks( true ); |
|
313 |
live.compute( _maxlrg ); |
|
314 |
_live = &live; |
|
315 |
} |
|
316 |
||
317 |
// Build physical interference graph |
|
318 |
uint must_spill = 0; |
|
319 |
must_spill = build_ifg_physical( &live_arena ); |
|
320 |
// If we have a guaranteed spill, might as well spill now |
|
321 |
if( must_spill ) { |
|
322 |
if( !_maxlrg ) return; |
|
323 |
// Bail out if unique gets too large (ie - unique > MaxNodeLimit) |
|
324 |
C->check_node_count(10*must_spill, "out of nodes before split"); |
|
325 |
if (C->failing()) return; |
|
326 |
_maxlrg = Split( _maxlrg ); // Split spilling LRG everywhere |
|
327 |
// Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor) |
|
328 |
// or we failed to split |
|
329 |
C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split"); |
|
330 |
if (C->failing()) return; |
|
331 |
||
332 |
NOT_PRODUCT( C->verify_graph_edges(); ) |
|
333 |
||
334 |
compact(); // Compact LRGs; return new lower max lrg |
|
335 |
||
336 |
{ |
|
337 |
NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); ) |
|
338 |
_live = NULL; |
|
339 |
rm.reset_to_mark(); // Reclaim working storage |
|
340 |
IndexSet::reset_memory(C, &live_arena); |
|
341 |
ifg.init(_maxlrg); // Build a new interference graph |
|
342 |
gather_lrg_masks( true ); // Collect intersect mask |
|
343 |
live.compute( _maxlrg ); // Compute LIVE |
|
344 |
_live = &live; |
|
345 |
} |
|
346 |
build_ifg_physical( &live_arena ); |
|
347 |
_ifg->SquareUp(); |
|
348 |
_ifg->Compute_Effective_Degree(); |
|
349 |
// Only do conservative coalescing if requested |
|
350 |
if( OptoCoalesce ) { |
|
351 |
// Conservative (and pessimistic) copy coalescing of those spills |
|
352 |
PhaseConservativeCoalesce coalesce( *this ); |
|
353 |
// If max live ranges greater than cutoff, don't color the stack. |
|
354 |
// This cutoff can be larger than below since it is only done once. |
|
355 |
coalesce.coalesce_driver( ); |
|
356 |
} |
|
357 |
compress_uf_map_for_nodes(); |
|
358 |
||
359 |
#ifdef ASSERT |
|
2030
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
2014
diff
changeset
|
360 |
verify(&live_arena, true); |
1 | 361 |
#endif |
362 |
} else { |
|
363 |
ifg.SquareUp(); |
|
364 |
ifg.Compute_Effective_Degree(); |
|
365 |
#ifdef ASSERT |
|
366 |
set_was_low(); |
|
367 |
#endif |
|
368 |
} |
|
369 |
||
370 |
// Prepare for Simplify & Select |
|
371 |
cache_lrg_info(); // Count degree of LRGs |
|
372 |
||
373 |
// Simplify the InterFerence Graph by removing LRGs of low degree. |
|
374 |
// LRGs of low degree are trivially colorable. |
|
375 |
Simplify(); |
|
376 |
||
377 |
// Select colors by re-inserting LRGs back into the IFG in reverse order. |
|
378 |
// Return whether or not something spills. |
|
379 |
uint spills = Select( ); |
|
380 |
||
381 |
// If we spill, split and recycle the entire thing |
|
382 |
while( spills ) { |
|
383 |
if( _trip_cnt++ > 24 ) { |
|
384 |
DEBUG_ONLY( dump_for_spill_split_recycle(); ) |
|
385 |
if( _trip_cnt > 27 ) { |
|
386 |
C->record_method_not_compilable("failed spill-split-recycle sanity check"); |
|
387 |
return; |
|
388 |
} |
|
389 |
} |
|
390 |
||
391 |
if( !_maxlrg ) return; |
|
392 |
_maxlrg = Split( _maxlrg ); // Split spilling LRG everywhere |
|
393 |
// Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor) |
|
394 |
C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after split"); |
|
395 |
if (C->failing()) return; |
|
396 |
||
397 |
compact(); // Compact LRGs; return new lower max lrg |
|
398 |
||
399 |
// Nuke the live-ness and interference graph and LiveRanGe info |
|
400 |
{ |
|
401 |
NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); ) |
|
402 |
_live = NULL; |
|
403 |
rm.reset_to_mark(); // Reclaim working storage |
|
404 |
IndexSet::reset_memory(C, &live_arena); |
|
405 |
ifg.init(_maxlrg); |
|
406 |
||
407 |
// Create LiveRanGe array. |
|
408 |
// Intersect register masks for all USEs and DEFs |
|
409 |
gather_lrg_masks( true ); |
|
410 |
live.compute( _maxlrg ); |
|
411 |
_live = &live; |
|
412 |
} |
|
413 |
must_spill = build_ifg_physical( &live_arena ); |
|
414 |
_ifg->SquareUp(); |
|
415 |
_ifg->Compute_Effective_Degree(); |
|
416 |
||
417 |
// Only do conservative coalescing if requested |
|
418 |
if( OptoCoalesce ) { |
|
419 |
// Conservative (and pessimistic) copy coalescing |
|
420 |
PhaseConservativeCoalesce coalesce( *this ); |
|
421 |
// Check for few live ranges determines how aggressive coalesce is. |
|
422 |
coalesce.coalesce_driver( ); |
|
423 |
} |
|
424 |
compress_uf_map_for_nodes(); |
|
425 |
#ifdef ASSERT |
|
2030
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
2014
diff
changeset
|
426 |
verify(&live_arena, true); |
1 | 427 |
#endif |
428 |
cache_lrg_info(); // Count degree of LRGs |
|
429 |
||
430 |
// Simplify the InterFerence Graph by removing LRGs of low degree. |
|
431 |
// LRGs of low degree are trivially colorable. |
|
432 |
Simplify(); |
|
433 |
||
434 |
// Select colors by re-inserting LRGs back into the IFG in reverse order. |
|
435 |
// Return whether or not something spills. |
|
436 |
spills = Select( ); |
|
437 |
} |
|
438 |
||
439 |
// Count number of Simplify-Select trips per coloring success. |
|
440 |
_allocator_attempts += _trip_cnt + 1; |
|
441 |
_allocator_successes += 1; |
|
442 |
||
443 |
// Peephole remove copies |
|
444 |
post_allocate_copy_removal(); |
|
445 |
||
2030
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
2014
diff
changeset
|
446 |
#ifdef ASSERT |
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
2014
diff
changeset
|
447 |
// Veify the graph after RA. |
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
2014
diff
changeset
|
448 |
verify(&live_arena); |
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
2014
diff
changeset
|
449 |
#endif |
39d55e4534b4
6791852: assert(b->_nodes[insidx] == n,"got insidx set incorrectly")
kvn
parents:
2014
diff
changeset
|
450 |
|
1 | 451 |
// max_reg is past the largest *register* used. |
452 |
// Convert that to a frame_slot number. |
|
453 |
if( _max_reg <= _matcher._new_SP ) |
|
454 |
_framesize = C->out_preserve_stack_slots(); |
|
455 |
else _framesize = _max_reg -_matcher._new_SP; |
|
456 |
assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough"); |
|
457 |
||
458 |
// This frame must preserve the required fp alignment |
|
1499
2222fea0e7be
6761594: framesize rounding code rounds using wrong units leading to slightly oversized frames
never
parents:
1057
diff
changeset
|
459 |
_framesize = round_to(_framesize, Matcher::stack_alignment_in_slots()); |
1 | 460 |
assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" ); |
461 |
#ifndef PRODUCT |
|
462 |
_total_framesize += _framesize; |
|
463 |
if( (int)_framesize > _max_framesize ) |
|
464 |
_max_framesize = _framesize; |
|
465 |
#endif |
|
466 |
||
467 |
// Convert CISC spills |
|
468 |
fixup_spills(); |
|
469 |
||
470 |
// Log regalloc results |
|
471 |
CompileLog* log = Compile::current()->log(); |
|
472 |
if (log != NULL) { |
|
473 |
log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing()); |
|
474 |
} |
|
475 |
||
476 |
if (C->failing()) return; |
|
477 |
||
478 |
NOT_PRODUCT( C->verify_graph_edges(); ) |
|
479 |
||
480 |
// Move important info out of the live_arena to longer lasting storage. |
|
481 |
alloc_node_regs(_names.Size()); |
|
482 |
for( uint i=0; i < _names.Size(); i++ ) { |
|
483 |
if( _names[i] ) { // Live range associated with Node? |
|
484 |
LRG &lrg = lrgs( _names[i] ); |
|
485 |
if( lrg.num_regs() == 1 ) { |
|
486 |
_node_regs[i].set1( lrg.reg() ); |
|
487 |
} else { // Must be a register-pair |
|
488 |
if( !lrg._fat_proj ) { // Must be aligned adjacent register pair |
|
489 |
// Live ranges record the highest register in their mask. |
|
490 |
// We want the low register for the AD file writer's convenience. |
|
491 |
_node_regs[i].set2( OptoReg::add(lrg.reg(),-1) ); |
|
492 |
} else { // Misaligned; extract 2 bits |
|
493 |
OptoReg::Name hi = lrg.reg(); // Get hi register |
|
494 |
lrg.Remove(hi); // Yank from mask |
|
495 |
int lo = lrg.mask().find_first_elem(); // Find lo |
|
496 |
_node_regs[i].set_pair( hi, lo ); |
|
497 |
} |
|
498 |
} |
|
499 |
if( lrg._is_oop ) _node_oops.set(i); |
|
500 |
} else { |
|
501 |
_node_regs[i].set_bad(); |
|
502 |
} |
|
503 |
} |
|
504 |
||
505 |
// Done! |
|
506 |
_live = NULL; |
|
507 |
_ifg = NULL; |
|
508 |
C->set_indexSet_arena(NULL); // ResourceArea is at end of scope |
|
509 |
} |
|
510 |
||
511 |
//------------------------------de_ssa----------------------------------------- |
|
512 |
void PhaseChaitin::de_ssa() { |
|
513 |
// Set initial Names for all Nodes. Most Nodes get the virtual register |
|
514 |
// number. A few get the ZERO live range number. These do not |
|
515 |
// get allocated, but instead rely on correct scheduling to ensure that |
|
516 |
// only one instance is simultaneously live at a time. |
|
517 |
uint lr_counter = 1; |
|
518 |
for( uint i = 0; i < _cfg._num_blocks; i++ ) { |
|
519 |
Block *b = _cfg._blocks[i]; |
|
520 |
uint cnt = b->_nodes.size(); |
|
521 |
||
522 |
// Handle all the normal Nodes in the block |
|
523 |
for( uint j = 0; j < cnt; j++ ) { |
|
524 |
Node *n = b->_nodes[j]; |
|
525 |
// Pre-color to the zero live range, or pick virtual register |
|
526 |
const RegMask &rm = n->out_RegMask(); |
|
527 |
_names.map( n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0 ); |
|
528 |
} |
|
529 |
} |
|
530 |
// Reset the Union-Find mapping to be identity |
|
531 |
reset_uf_map(lr_counter); |
|
532 |
} |
|
533 |
||
534 |
||
535 |
//------------------------------gather_lrg_masks------------------------------- |
|
536 |
// Gather LiveRanGe information, including register masks. Modification of |
|
537 |
// cisc spillable in_RegMasks should not be done before AggressiveCoalesce. |
|
538 |
void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) { |
|
539 |
||
540 |
// Nail down the frame pointer live range |
|
541 |
uint fp_lrg = n2lidx(_cfg._root->in(1)->in(TypeFunc::FramePtr)); |
|
542 |
lrgs(fp_lrg)._cost += 1e12; // Cost is infinite |
|
543 |
||
544 |
// For all blocks |
|
545 |
for( uint i = 0; i < _cfg._num_blocks; i++ ) { |
|
546 |
Block *b = _cfg._blocks[i]; |
|
547 |
||
548 |
// For all instructions |
|
549 |
for( uint j = 1; j < b->_nodes.size(); j++ ) { |
|
550 |
Node *n = b->_nodes[j]; |
|
551 |
uint input_edge_start =1; // Skip control most nodes |
|
552 |
if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base(); |
|
553 |
uint idx = n->is_Copy(); |
|
554 |
||
555 |
// Get virtual register number, same as LiveRanGe index |
|
556 |
uint vreg = n2lidx(n); |
|
557 |
LRG &lrg = lrgs(vreg); |
|
558 |
if( vreg ) { // No vreg means un-allocable (e.g. memory) |
|
559 |
||
560 |
// Collect has-copy bit |
|
561 |
if( idx ) { |
|
562 |
lrg._has_copy = 1; |
|
563 |
uint clidx = n2lidx(n->in(idx)); |
|
564 |
LRG ©_src = lrgs(clidx); |
|
565 |
copy_src._has_copy = 1; |
|
566 |
} |
|
567 |
||
568 |
// Check for float-vs-int live range (used in register-pressure |
|
569 |
// calculations) |
|
570 |
const Type *n_type = n->bottom_type(); |
|
571 |
if( n_type->is_floatingpoint() ) |
|
572 |
lrg._is_float = 1; |
|
573 |
||
574 |
// Check for twice prior spilling. Once prior spilling might have |
|
575 |
// spilled 'soft', 2nd prior spill should have spilled 'hard' and |
|
576 |
// further spilling is unlikely to make progress. |
|
577 |
if( _spilled_once.test(n->_idx) ) { |
|
578 |
lrg._was_spilled1 = 1; |
|
579 |
if( _spilled_twice.test(n->_idx) ) |
|
580 |
lrg._was_spilled2 = 1; |
|
581 |
} |
|
582 |
||
583 |
#ifndef PRODUCT |
|
584 |
if (trace_spilling() && lrg._def != NULL) { |
|
585 |
// collect defs for MultiDef printing |
|
586 |
if (lrg._defs == NULL) { |
|
6180 | 587 |
lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(_ifg->_arena, 2, 0, NULL); |
1 | 588 |
lrg._defs->append(lrg._def); |
589 |
} |
|
590 |
lrg._defs->append(n); |
|
591 |
} |
|
592 |
#endif |
|
593 |
||
594 |
// Check for a single def LRG; these can spill nicely |
|
595 |
// via rematerialization. Flag as NULL for no def found |
|
596 |
// yet, or 'n' for single def or -1 for many defs. |
|
597 |
lrg._def = lrg._def ? NodeSentinel : n; |
|
598 |
||
599 |
// Limit result register mask to acceptable registers |
|
600 |
const RegMask &rm = n->out_RegMask(); |
|
601 |
lrg.AND( rm ); |
|
602 |
// Check for bound register masks |
|
603 |
const RegMask &lrgmask = lrg.mask(); |
|
604 |
if( lrgmask.is_bound1() || lrgmask.is_bound2() ) |
|
605 |
lrg._is_bound = 1; |
|
606 |
||
607 |
// Check for maximum frequency value |
|
608 |
if( lrg._maxfreq < b->_freq ) |
|
609 |
lrg._maxfreq = b->_freq; |
|
610 |
||
611 |
int ireg = n->ideal_reg(); |
|
612 |
assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP, |
|
613 |
"oops must be in Op_RegP's" ); |
|
614 |
// Check for oop-iness, or long/double |
|
615 |
// Check for multi-kill projection |
|
616 |
switch( ireg ) { |
|
617 |
case MachProjNode::fat_proj: |
|
618 |
// Fat projections have size equal to number of registers killed |
|
619 |
lrg.set_num_regs(rm.Size()); |
|
620 |
lrg.set_reg_pressure(lrg.num_regs()); |
|
621 |
lrg._fat_proj = 1; |
|
622 |
lrg._is_bound = 1; |
|
623 |
break; |
|
624 |
case Op_RegP: |
|
625 |
#ifdef _LP64 |
|
626 |
lrg.set_num_regs(2); // Size is 2 stack words |
|
627 |
#else |
|
628 |
lrg.set_num_regs(1); // Size is 1 stack word |
|
629 |
#endif |
|
630 |
// Register pressure is tracked relative to the maximum values |
|
631 |
// suggested for that platform, INTPRESSURE and FLOATPRESSURE, |
|
632 |
// and relative to other types which compete for the same regs. |
|
633 |
// |
|
634 |
// The following table contains suggested values based on the |
|
635 |
// architectures as defined in each .ad file. |
|
636 |
// INTPRESSURE and FLOATPRESSURE may be tuned differently for |
|
637 |
// compile-speed or performance. |
|
638 |
// Note1: |
|
639 |
// SPARC and SPARCV9 reg_pressures are at 2 instead of 1 |
|
640 |
// since .ad registers are defined as high and low halves. |
|
641 |
// These reg_pressure values remain compatible with the code |
|
642 |
// in is_high_pressure() which relates get_invalid_mask_size(), |
|
643 |
// Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE. |
|
644 |
// Note2: |
|
645 |
// SPARC -d32 has 24 registers available for integral values, |
|
646 |
// but only 10 of these are safe for 64-bit longs. |
|
647 |
// Using set_reg_pressure(2) for both int and long means |
|
648 |
// the allocator will believe it can fit 26 longs into |
|
649 |
// registers. Using 2 for longs and 1 for ints means the |
|
650 |
// allocator will attempt to put 52 integers into registers. |
|
651 |
// The settings below limit this problem to methods with |
|
652 |
// many long values which are being run on 32-bit SPARC. |
|
653 |
// |
|
654 |
// ------------------- reg_pressure -------------------- |
|
655 |
// Each entry is reg_pressure_per_value,number_of_regs |
|
656 |
// RegL RegI RegFlags RegF RegD INTPRESSURE FLOATPRESSURE |
|
657 |
// IA32 2 1 1 1 1 6 6 |
|
658 |
// IA64 1 1 1 1 1 50 41 |
|
659 |
// SPARC 2 2 2 2 2 48 (24) 52 (26) |
|
660 |
// SPARCV9 2 2 2 2 2 48 (24) 52 (26) |
|
661 |
// AMD64 1 1 1 1 1 14 15 |
|
662 |
// ----------------------------------------------------- |
|
663 |
#if defined(SPARC) |
|
664 |
lrg.set_reg_pressure(2); // use for v9 as well |
|
665 |
#else |
|
666 |
lrg.set_reg_pressure(1); // normally one value per register |
|
667 |
#endif |
|
668 |
if( n_type->isa_oop_ptr() ) { |
|
669 |
lrg._is_oop = 1; |
|
670 |
} |
|
671 |
break; |
|
672 |
case Op_RegL: // Check for long or double |
|
673 |
case Op_RegD: |
|
674 |
lrg.set_num_regs(2); |
|
675 |
// Define platform specific register pressure |
|
8868
1bae515b806b
7029017: Additional architecture support for c2 compiler
roland
parents:
7441
diff
changeset
|
676 |
#if defined(SPARC) || defined(ARM) |
1 | 677 |
lrg.set_reg_pressure(2); |
678 |
#elif defined(IA32) |
|
679 |
if( ireg == Op_RegL ) { |
|
680 |
lrg.set_reg_pressure(2); |
|
681 |
} else { |
|
682 |
lrg.set_reg_pressure(1); |
|
683 |
} |
|
684 |
#else |
|
685 |
lrg.set_reg_pressure(1); // normally one value per register |
|
686 |
#endif |
|
687 |
// If this def of a double forces a mis-aligned double, |
|
688 |
// flag as '_fat_proj' - really flag as allowing misalignment |
|
689 |
// AND changes how we count interferences. A mis-aligned |
|
690 |
// double can interfere with TWO aligned pairs, or effectively |
|
691 |
// FOUR registers! |
|
692 |
if( rm.is_misaligned_Pair() ) { |
|
693 |
lrg._fat_proj = 1; |
|
694 |
lrg._is_bound = 1; |
|
695 |
} |
|
696 |
break; |
|
697 |
case Op_RegF: |
|
698 |
case Op_RegI: |
|
360
21d113ecbf6a
6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
coleenp
parents:
1
diff
changeset
|
699 |
case Op_RegN: |
1 | 700 |
case Op_RegFlags: |
701 |
case 0: // not an ideal register |
|
702 |
lrg.set_num_regs(1); |
|
703 |
#ifdef SPARC |
|
704 |
lrg.set_reg_pressure(2); |
|
705 |
#else |
|
706 |
lrg.set_reg_pressure(1); |
|
707 |
#endif |
|
708 |
break; |
|
709 |
default: |
|
710 |
ShouldNotReachHere(); |
|
711 |
} |
|
712 |
} |
|
713 |
||
714 |
// Now do the same for inputs |
|
715 |
uint cnt = n->req(); |
|
716 |
// Setup for CISC SPILLING |
|
717 |
uint inp = (uint)AdlcVMDeps::Not_cisc_spillable; |
|
718 |
if( UseCISCSpill && after_aggressive ) { |
|
719 |
inp = n->cisc_operand(); |
|
720 |
if( inp != (uint)AdlcVMDeps::Not_cisc_spillable ) |
|
721 |
// Convert operand number to edge index number |
|
722 |
inp = n->as_Mach()->operand_index(inp); |
|
723 |
} |
|
724 |
// Prepare register mask for each input |
|
725 |
for( uint k = input_edge_start; k < cnt; k++ ) { |
|
726 |
uint vreg = n2lidx(n->in(k)); |
|
727 |
if( !vreg ) continue; |
|
728 |
||
729 |
// If this instruction is CISC Spillable, add the flags |
|
730 |
// bit to its appropriate input |
|
731 |
if( UseCISCSpill && after_aggressive && inp == k ) { |
|
732 |
#ifndef PRODUCT |
|
733 |
if( TraceCISCSpill ) { |
|
734 |
tty->print(" use_cisc_RegMask: "); |
|
735 |
n->dump(); |
|
736 |
} |
|
737 |
#endif |
|
738 |
n->as_Mach()->use_cisc_RegMask(); |
|
739 |
} |
|
740 |
||
741 |
LRG &lrg = lrgs(vreg); |
|
742 |
// // Testing for floating point code shape |
|
743 |
// Node *test = n->in(k); |
|
744 |
// if( test->is_Mach() ) { |
|
745 |
// MachNode *m = test->as_Mach(); |
|
746 |
// int op = m->ideal_Opcode(); |
|
747 |
// if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) { |
|
748 |
// int zzz = 1; |
|
749 |
// } |
|
750 |
// } |
|
751 |
||
752 |
// Limit result register mask to acceptable registers. |
|
753 |
// Do not limit registers from uncommon uses before |
|
754 |
// AggressiveCoalesce. This effectively pre-virtual-splits |
|
755 |
// around uncommon uses of common defs. |
|
756 |
const RegMask &rm = n->in_RegMask(k); |
|
757 |
if( !after_aggressive && |
|
758 |
_cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) { |
|
759 |
// Since we are BEFORE aggressive coalesce, leave the register |
|
760 |
// mask untrimmed by the call. This encourages more coalescing. |
|
761 |
// Later, AFTER aggressive, this live range will have to spill |
|
762 |
// but the spiller handles slow-path calls very nicely. |
|
763 |
} else { |
|
764 |
lrg.AND( rm ); |
|
765 |
} |
|
766 |
// Check for bound register masks |
|
767 |
const RegMask &lrgmask = lrg.mask(); |
|
768 |
if( lrgmask.is_bound1() || lrgmask.is_bound2() ) |
|
769 |
lrg._is_bound = 1; |
|
770 |
// If this use of a double forces a mis-aligned double, |
|
771 |
// flag as '_fat_proj' - really flag as allowing misalignment |
|
772 |
// AND changes how we count interferences. A mis-aligned |
|
773 |
// double can interfere with TWO aligned pairs, or effectively |
|
774 |
// FOUR registers! |
|
775 |
if( lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_Pair() ) { |
|
776 |
lrg._fat_proj = 1; |
|
777 |
lrg._is_bound = 1; |
|
778 |
} |
|
779 |
// if the LRG is an unaligned pair, we will have to spill |
|
780 |
// so clear the LRG's register mask if it is not already spilled |
|
781 |
if ( !n->is_SpillCopy() && |
|
1057
44220ef9a775
6732194: Data corruption dependent on -server/-client/-Xbatch
never
parents:
670
diff
changeset
|
782 |
(lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) && |
1 | 783 |
lrgmask.is_misaligned_Pair()) { |
784 |
lrg.Clear(); |
|
785 |
} |
|
786 |
||
787 |
// Check for maximum frequency value |
|
788 |
if( lrg._maxfreq < b->_freq ) |
|
789 |
lrg._maxfreq = b->_freq; |
|
790 |
||
791 |
} // End for all allocated inputs |
|
792 |
} // end for all instructions |
|
793 |
} // end for all blocks |
|
794 |
||
795 |
// Final per-liverange setup |
|
796 |
for( uint i2=0; i2<_maxlrg; i2++ ) { |
|
797 |
LRG &lrg = lrgs(i2); |
|
798 |
if( lrg.num_regs() == 2 && !lrg._fat_proj ) |
|
799 |
lrg.ClearToPairs(); |
|
800 |
lrg.compute_set_mask_size(); |
|
801 |
if( lrg.not_free() ) { // Handle case where we lose from the start |
|
802 |
lrg.set_reg(OptoReg::Name(LRG::SPILL_REG)); |
|
803 |
lrg._direct_conflict = 1; |
|
804 |
} |
|
805 |
lrg.set_degree(0); // no neighbors in IFG yet |
|
806 |
} |
|
807 |
} |
|
808 |
||
809 |
//------------------------------set_was_low------------------------------------ |
|
810 |
// Set the was-lo-degree bit. Conservative coalescing should not change the |
|
811 |
// colorability of the graph. If any live range was of low-degree before |
|
812 |
// coalescing, it should Simplify. This call sets the was-lo-degree bit. |
|
813 |
// The bit is checked in Simplify. |
|
814 |
void PhaseChaitin::set_was_low() { |
|
815 |
#ifdef ASSERT |
|
816 |
for( uint i = 1; i < _maxlrg; i++ ) { |
|
817 |
int size = lrgs(i).num_regs(); |
|
818 |
uint old_was_lo = lrgs(i)._was_lo; |
|
819 |
lrgs(i)._was_lo = 0; |
|
820 |
if( lrgs(i).lo_degree() ) { |
|
821 |
lrgs(i)._was_lo = 1; // Trivially of low degree |
|
822 |
} else { // Else check the Brigg's assertion |
|
823 |
// Brigg's observation is that the lo-degree neighbors of a |
|
824 |
// hi-degree live range will not interfere with the color choices |
|
825 |
// of said hi-degree live range. The Simplify reverse-stack-coloring |
|
826 |
// order takes care of the details. Hence you do not have to count |
|
827 |
// low-degree neighbors when determining if this guy colors. |
|
828 |
int briggs_degree = 0; |
|
829 |
IndexSet *s = _ifg->neighbors(i); |
|
830 |
IndexSetIterator elements(s); |
|
831 |
uint lidx; |
|
832 |
while((lidx = elements.next()) != 0) { |
|
833 |
if( !lrgs(lidx).lo_degree() ) |
|
834 |
briggs_degree += MAX2(size,lrgs(lidx).num_regs()); |
|
835 |
} |
|
836 |
if( briggs_degree < lrgs(i).degrees_of_freedom() ) |
|
837 |
lrgs(i)._was_lo = 1; // Low degree via the briggs assertion |
|
838 |
} |
|
839 |
assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease"); |
|
840 |
} |
|
841 |
#endif |
|
842 |
} |
|
843 |
||
844 |
#define REGISTER_CONSTRAINED 16 |
|
845 |
||
846 |
//------------------------------cache_lrg_info--------------------------------- |
|
847 |
// Compute cost/area ratio, in case we spill. Build the lo-degree list. |
|
848 |
void PhaseChaitin::cache_lrg_info( ) { |
|
849 |
||
850 |
for( uint i = 1; i < _maxlrg; i++ ) { |
|
851 |
LRG &lrg = lrgs(i); |
|
852 |
||
853 |
// Check for being of low degree: means we can be trivially colored. |
|
854 |
// Low degree, dead or must-spill guys just get to simplify right away |
|
855 |
if( lrg.lo_degree() || |
|
856 |
!lrg.alive() || |
|
857 |
lrg._must_spill ) { |
|
858 |
// Split low degree list into those guys that must get a |
|
859 |
// register and those that can go to register or stack. |
|
860 |
// The idea is LRGs that can go register or stack color first when |
|
861 |
// they have a good chance of getting a register. The register-only |
|
862 |
// lo-degree live ranges always get a register. |
|
863 |
OptoReg::Name hi_reg = lrg.mask().find_last_elem(); |
|
864 |
if( OptoReg::is_stack(hi_reg)) { // Can go to stack? |
|
865 |
lrg._next = _lo_stk_degree; |
|
866 |
_lo_stk_degree = i; |
|
867 |
} else { |
|
868 |
lrg._next = _lo_degree; |
|
869 |
_lo_degree = i; |
|
870 |
} |
|
871 |
} else { // Else high degree |
|
872 |
lrgs(_hi_degree)._prev = i; |
|
873 |
lrg._next = _hi_degree; |
|
874 |
lrg._prev = 0; |
|
875 |
_hi_degree = i; |
|
876 |
} |
|
877 |
} |
|
878 |
} |
|
879 |
||
880 |
//------------------------------Pre-Simplify----------------------------------- |
|
881 |
// Simplify the IFG by removing LRGs of low degree that have NO copies |
|
882 |
void PhaseChaitin::Pre_Simplify( ) { |
|
883 |
||
884 |
// Warm up the lo-degree no-copy list |
|
885 |
int lo_no_copy = 0; |
|
886 |
for( uint i = 1; i < _maxlrg; i++ ) { |
|
887 |
if( (lrgs(i).lo_degree() && !lrgs(i)._has_copy) || |
|
888 |
!lrgs(i).alive() || |
|
889 |
lrgs(i)._must_spill ) { |
|
890 |
lrgs(i)._next = lo_no_copy; |
|
891 |
lo_no_copy = i; |
|
892 |
} |
|
893 |
} |
|
894 |
||
895 |
while( lo_no_copy ) { |
|
896 |
uint lo = lo_no_copy; |
|
897 |
lo_no_copy = lrgs(lo)._next; |
|
898 |
int size = lrgs(lo).num_regs(); |
|
899 |
||
900 |
// Put the simplified guy on the simplified list. |
|
901 |
lrgs(lo)._next = _simplified; |
|
902 |
_simplified = lo; |
|
903 |
||
904 |
// Yank this guy from the IFG. |
|
905 |
IndexSet *adj = _ifg->remove_node( lo ); |
|
906 |
||
907 |
// If any neighbors' degrees fall below their number of |
|
908 |
// allowed registers, then put that neighbor on the low degree |
|
909 |
// list. Note that 'degree' can only fall and 'numregs' is |
|
910 |
// unchanged by this action. Thus the two are equal at most once, |
|
911 |
// so LRGs hit the lo-degree worklists at most once. |
|
912 |
IndexSetIterator elements(adj); |
|
913 |
uint neighbor; |
|
914 |
while ((neighbor = elements.next()) != 0) { |
|
915 |
LRG *n = &lrgs(neighbor); |
|
916 |
assert( _ifg->effective_degree(neighbor) == n->degree(), "" ); |
|
917 |
||
918 |
// Check for just becoming of-low-degree |
|
919 |
if( n->just_lo_degree() && !n->_has_copy ) { |
|
920 |
assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice"); |
|
921 |
// Put on lo-degree list |
|
922 |
n->_next = lo_no_copy; |
|
923 |
lo_no_copy = neighbor; |
|
924 |
} |
|
925 |
} |
|
926 |
} // End of while lo-degree no_copy worklist not empty |
|
927 |
||
928 |
// No more lo-degree no-copy live ranges to simplify |
|
929 |
} |
|
930 |
||
931 |
//------------------------------Simplify--------------------------------------- |
|
932 |
// Simplify the IFG by removing LRGs of low degree. |
|
933 |
void PhaseChaitin::Simplify( ) { |
|
934 |
||
935 |
while( 1 ) { // Repeat till simplified it all |
|
936 |
// May want to explore simplifying lo_degree before _lo_stk_degree. |
|
937 |
// This might result in more spills coloring into registers during |
|
938 |
// Select(). |
|
939 |
while( _lo_degree || _lo_stk_degree ) { |
|
940 |
// If possible, pull from lo_stk first |
|
941 |
uint lo; |
|
942 |
if( _lo_degree ) { |
|
943 |
lo = _lo_degree; |
|
944 |
_lo_degree = lrgs(lo)._next; |
|
945 |
} else { |
|
946 |
lo = _lo_stk_degree; |
|
947 |
_lo_stk_degree = lrgs(lo)._next; |
|
948 |
} |
|
949 |
||
950 |
// Put the simplified guy on the simplified list. |
|
951 |
lrgs(lo)._next = _simplified; |
|
952 |
_simplified = lo; |
|
953 |
// If this guy is "at risk" then mark his current neighbors |
|
954 |
if( lrgs(lo)._at_risk ) { |
|
955 |
IndexSetIterator elements(_ifg->neighbors(lo)); |
|
956 |
uint datum; |
|
957 |
while ((datum = elements.next()) != 0) { |
|
958 |
lrgs(datum)._risk_bias = lo; |
|
959 |
} |
|
960 |
} |
|
961 |
||
962 |
// Yank this guy from the IFG. |
|
963 |
IndexSet *adj = _ifg->remove_node( lo ); |
|
964 |
||
965 |
// If any neighbors' degrees fall below their number of |
|
966 |
// allowed registers, then put that neighbor on the low degree |
|
967 |
// list. Note that 'degree' can only fall and 'numregs' is |
|
968 |
// unchanged by this action. Thus the two are equal at most once, |
|
969 |
// so LRGs hit the lo-degree worklist at most once. |
|
970 |
IndexSetIterator elements(adj); |
|
971 |
uint neighbor; |
|
972 |
while ((neighbor = elements.next()) != 0) { |
|
973 |
LRG *n = &lrgs(neighbor); |
|
974 |
#ifdef ASSERT |
|
2014
5510e7394f2d
6782232: assert("CreateEx must be first instruction in block" )
kvn
parents:
1499
diff
changeset
|
975 |
if( VerifyOpto || VerifyRegisterAllocator ) { |
1 | 976 |
assert( _ifg->effective_degree(neighbor) == n->degree(), "" ); |
977 |
} |
|
978 |
#endif |
|
979 |
||
980 |
// Check for just becoming of-low-degree just counting registers. |
|
981 |
// _must_spill live ranges are already on the low degree list. |
|
982 |
if( n->just_lo_degree() && !n->_must_spill ) { |
|
983 |
assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice"); |
|
984 |
// Pull from hi-degree list |
|
985 |
uint prev = n->_prev; |
|
986 |
uint next = n->_next; |
|
987 |
if( prev ) lrgs(prev)._next = next; |
|
988 |
else _hi_degree = next; |
|
989 |
lrgs(next)._prev = prev; |
|
990 |
n->_next = _lo_degree; |
|
991 |
_lo_degree = neighbor; |
|
992 |
} |
|
993 |
} |
|
994 |
} // End of while lo-degree/lo_stk_degree worklist not empty |
|
995 |
||
996 |
// Check for got everything: is hi-degree list empty? |
|
997 |
if( !_hi_degree ) break; |
|
998 |
||
999 |
// Time to pick a potential spill guy |
|
1000 |
uint lo_score = _hi_degree; |
|
1001 |
double score = lrgs(lo_score).score(); |
|
1002 |
double area = lrgs(lo_score)._area; |
|
4011
3329fe39ad1a
6875959: CTW fails hotspot/src/share/vm/opto/reg_split.cpp:1087
kvn
parents:
2573
diff
changeset
|
1003 |
double cost = lrgs(lo_score)._cost; |
3329fe39ad1a
6875959: CTW fails hotspot/src/share/vm/opto/reg_split.cpp:1087
kvn
parents:
2573
diff
changeset
|
1004 |
bool bound = lrgs(lo_score)._is_bound; |
1 | 1005 |
|
1006 |
// Find cheapest guy |
|
1007 |
debug_only( int lo_no_simplify=0; ); |
|
4015
fee7000abec2
6889656: assert(lo_lrg->lo_degree() || !lo_no_simplify,"Live range was lo-degree before coalesce
kvn
parents:
4011
diff
changeset
|
1008 |
for( uint i = _hi_degree; i; i = lrgs(i)._next ) { |
1 | 1009 |
assert( !(*_ifg->_yanked)[i], "" ); |
1010 |
// It's just vaguely possible to move hi-degree to lo-degree without |
|
1011 |
// going through a just-lo-degree stage: If you remove a double from |
|
1012 |
// a float live range it's degree will drop by 2 and you can skip the |
|
1013 |
// just-lo-degree stage. It's very rare (shows up after 5000+ methods |
|
1014 |
// in -Xcomp of Java2Demo). So just choose this guy to simplify next. |
|
1015 |
if( lrgs(i).lo_degree() ) { |
|
1016 |
lo_score = i; |
|
1017 |
break; |
|
1018 |
} |
|
1019 |
debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; ); |
|
1020 |
double iscore = lrgs(i).score(); |
|
1021 |
double iarea = lrgs(i)._area; |
|
4011
3329fe39ad1a
6875959: CTW fails hotspot/src/share/vm/opto/reg_split.cpp:1087
kvn
parents:
2573
diff
changeset
|
1022 |
double icost = lrgs(i)._cost; |
3329fe39ad1a
6875959: CTW fails hotspot/src/share/vm/opto/reg_split.cpp:1087
kvn
parents:
2573
diff
changeset
|
1023 |
bool ibound = lrgs(i)._is_bound; |
1 | 1024 |
|
1025 |
// Compare cost/area of i vs cost/area of lo_score. Smaller cost/area |
|
1026 |
// wins. Ties happen because all live ranges in question have spilled |
|
1027 |
// a few times before and the spill-score adds a huge number which |
|
1028 |
// washes out the low order bits. We are choosing the lesser of 2 |
|
1029 |
// evils; in this case pick largest area to spill. |
|
4011
3329fe39ad1a
6875959: CTW fails hotspot/src/share/vm/opto/reg_split.cpp:1087
kvn
parents:
2573
diff
changeset
|
1030 |
// Ties also happen when live ranges are defined and used only inside |
3329fe39ad1a
6875959: CTW fails hotspot/src/share/vm/opto/reg_split.cpp:1087
kvn
parents:
2573
diff
changeset
|
1031 |
// one block. In which case their area is 0 and score set to max. |
3329fe39ad1a
6875959: CTW fails hotspot/src/share/vm/opto/reg_split.cpp:1087
kvn
parents:
2573
diff
changeset
|
1032 |
// In such case choose bound live range over unbound to free registers |
3329fe39ad1a
6875959: CTW fails hotspot/src/share/vm/opto/reg_split.cpp:1087
kvn
parents:
2573
diff
changeset
|
1033 |
// or with smaller cost to spill. |
1 | 1034 |
if( iscore < score || |
4011
3329fe39ad1a
6875959: CTW fails hotspot/src/share/vm/opto/reg_split.cpp:1087
kvn
parents:
2573
diff
changeset
|
1035 |
(iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) || |
3329fe39ad1a
6875959: CTW fails hotspot/src/share/vm/opto/reg_split.cpp:1087
kvn
parents:
2573
diff
changeset
|
1036 |
(iscore == score && iarea == area && |
3329fe39ad1a
6875959: CTW fails hotspot/src/share/vm/opto/reg_split.cpp:1087
kvn
parents:
2573
diff
changeset
|
1037 |
( (ibound && !bound) || ibound == bound && (icost < cost) )) ) { |
1 | 1038 |
lo_score = i; |
1039 |
score = iscore; |
|
1040 |
area = iarea; |
|
4011
3329fe39ad1a
6875959: CTW fails hotspot/src/share/vm/opto/reg_split.cpp:1087
kvn
parents:
2573
diff
changeset
|
1041 |
cost = icost; |
3329fe39ad1a
6875959: CTW fails hotspot/src/share/vm/opto/reg_split.cpp:1087
kvn
parents:
2573
diff
changeset
|
1042 |
bound = ibound; |
1 | 1043 |
} |
1044 |
} |
|
1045 |
LRG *lo_lrg = &lrgs(lo_score); |
|
1046 |
// The live range we choose for spilling is either hi-degree, or very |
|
1047 |
// rarely it can be low-degree. If we choose a hi-degree live range |
|
1048 |
// there better not be any lo-degree choices. |
|
1049 |
assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" ); |
|
1050 |
||
1051 |
// Pull from hi-degree list |
|
1052 |
uint prev = lo_lrg->_prev; |
|
1053 |
uint next = lo_lrg->_next; |
|
1054 |
if( prev ) lrgs(prev)._next = next; |
|
1055 |
else _hi_degree = next; |
|
1056 |
lrgs(next)._prev = prev; |
|
1057 |
// Jam him on the lo-degree list, despite his high degree. |
|
1058 |
// Maybe he'll get a color, and maybe he'll spill. |
|
1059 |
// Only Select() will know. |
|
1060 |
lrgs(lo_score)._at_risk = true; |
|
1061 |
_lo_degree = lo_score; |
|
1062 |
lo_lrg->_next = 0; |
|
1063 |
||
1064 |
} // End of while not simplified everything |
|
1065 |
||
1066 |
} |
|
1067 |
||
1068 |
//------------------------------bias_color------------------------------------- |
|
1069 |
// Choose a color using the biasing heuristic |
|
1070 |
OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) { |
|
1071 |
||
1072 |
// Check for "at_risk" LRG's |
|
1073 |
uint risk_lrg = Find(lrg._risk_bias); |
|
1074 |
if( risk_lrg != 0 ) { |
|
1075 |
// Walk the colored neighbors of the "at_risk" candidate |
|
1076 |
// Choose a color which is both legal and already taken by a neighbor |
|
1077 |
// of the "at_risk" candidate in order to improve the chances of the |
|
1078 |
// "at_risk" candidate of coloring |
|
1079 |
IndexSetIterator elements(_ifg->neighbors(risk_lrg)); |
|
1080 |
uint datum; |
|
1081 |
while ((datum = elements.next()) != 0) { |
|
1082 |
OptoReg::Name reg = lrgs(datum).reg(); |
|
1083 |
// If this LRG's register is legal for us, choose it |
|
1084 |
if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE && |
|
1085 |
lrg.mask().Member(OptoReg::add(reg,-chunk)) && |
|
1086 |
(lrg.num_regs()==1 || // either size 1 |
|
1087 |
(reg&1) == 1) ) // or aligned (adjacent reg is available since we already cleared-to-pairs) |
|
1088 |
return reg; |
|
1089 |
} |
|
1090 |
} |
|
1091 |
||
1092 |
uint copy_lrg = Find(lrg._copy_bias); |
|
1093 |
if( copy_lrg != 0 ) { |
|
1094 |
// If he has a color, |
|
1095 |
if( !(*(_ifg->_yanked))[copy_lrg] ) { |
|
1096 |
OptoReg::Name reg = lrgs(copy_lrg).reg(); |
|
1097 |
// And it is legal for you, |
|
1098 |
if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE && |
|
1099 |
lrg.mask().Member(OptoReg::add(reg,-chunk)) && |
|
1100 |
(lrg.num_regs()==1 || // either size 1 |
|
1101 |
(reg&1) == 1) ) // or aligned (adjacent reg is available since we already cleared-to-pairs) |
|
1102 |
return reg; |
|
1103 |
} else if( chunk == 0 ) { |
|
1104 |
// Choose a color which is legal for him |
|
1105 |
RegMask tempmask = lrg.mask(); |
|
1106 |
tempmask.AND(lrgs(copy_lrg).mask()); |
|
1107 |
OptoReg::Name reg; |
|
1108 |
if( lrg.num_regs() == 1 ) { |
|
1109 |
reg = tempmask.find_first_elem(); |
|
1110 |
} else { |
|
1111 |
tempmask.ClearToPairs(); |
|
1112 |
reg = tempmask.find_first_pair(); |
|
1113 |
} |
|
1114 |
if( OptoReg::is_valid(reg) ) |
|
1115 |
return reg; |
|
1116 |
} |
|
1117 |
} |
|
1118 |
||
1119 |
// If no bias info exists, just go with the register selection ordering |
|
1120 |
if( lrg.num_regs() == 2 ) { |
|
1121 |
// Find an aligned pair |
|
1122 |
return OptoReg::add(lrg.mask().find_first_pair(),chunk); |
|
1123 |
} |
|
1124 |
||
1125 |
// CNC - Fun hack. Alternate 1st and 2nd selection. Enables post-allocate |
|
1126 |
// copy removal to remove many more copies, by preventing a just-assigned |
|
1127 |
// register from being repeatedly assigned. |
|
1128 |
OptoReg::Name reg = lrg.mask().find_first_elem(); |
|
1129 |
if( (++_alternate & 1) && OptoReg::is_valid(reg) ) { |
|
1130 |
// This 'Remove; find; Insert' idiom is an expensive way to find the |
|
1131 |
// SECOND element in the mask. |
|
1132 |
lrg.Remove(reg); |
|
1133 |
OptoReg::Name reg2 = lrg.mask().find_first_elem(); |
|
1134 |
lrg.Insert(reg); |
|
1135 |
if( OptoReg::is_reg(reg2)) |
|
1136 |
reg = reg2; |
|
1137 |
} |
|
1138 |
return OptoReg::add( reg, chunk ); |
|
1139 |
} |
|
1140 |
||
1141 |
//------------------------------choose_color----------------------------------- |
|
1142 |
// Choose a color in the current chunk |
|
1143 |
OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) { |
|
1144 |
assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)"); |
|
1145 |
assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)"); |
|
1146 |
||
1147 |
if( lrg.num_regs() == 1 || // Common Case |
|
1148 |
!lrg._fat_proj ) // Aligned+adjacent pairs ok |
|
1149 |
// Use a heuristic to "bias" the color choice |
|
1150 |
return bias_color(lrg, chunk); |
|
1151 |
||
1152 |
assert( lrg.num_regs() >= 2, "dead live ranges do not color" ); |
|
1153 |
||
1154 |
// Fat-proj case or misaligned double argument. |
|
1155 |
assert(lrg.compute_mask_size() == lrg.num_regs() || |
|
1156 |
lrg.num_regs() == 2,"fat projs exactly color" ); |
|
1157 |
assert( !chunk, "always color in 1st chunk" ); |
|
1158 |
// Return the highest element in the set. |
|
1159 |
return lrg.mask().find_last_elem(); |
|
1160 |
} |
|
1161 |
||
1162 |
//------------------------------Select----------------------------------------- |
|
1163 |
// Select colors by re-inserting LRGs back into the IFG. LRGs are re-inserted |
|
1164 |
// in reverse order of removal. As long as nothing of hi-degree was yanked, |
|
1165 |
// everything going back is guaranteed a color. Select that color. If some |
|
1166 |
// hi-degree LRG cannot get a color then we record that we must spill. |
|
1167 |
uint PhaseChaitin::Select( ) { |
|
1168 |
uint spill_reg = LRG::SPILL_REG; |
|
1169 |
_max_reg = OptoReg::Name(0); // Past max register used |
|
1170 |
while( _simplified ) { |
|
1171 |
// Pull next LRG from the simplified list - in reverse order of removal |
|
1172 |
uint lidx = _simplified; |
|
1173 |
LRG *lrg = &lrgs(lidx); |
|
1174 |
_simplified = lrg->_next; |
|
1175 |
||
1176 |
||
1177 |
#ifndef PRODUCT |
|
1178 |
if (trace_spilling()) { |
|
1179 |
ttyLocker ttyl; |
|
1180 |
tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(), |
|
1181 |
lrg->degrees_of_freedom()); |
|
1182 |
lrg->dump(); |
|
1183 |
} |
|
1184 |
#endif |
|
1185 |
||
1186 |
// Re-insert into the IFG |
|
1187 |
_ifg->re_insert(lidx); |
|
1188 |
if( !lrg->alive() ) continue; |
|
1189 |
// capture allstackedness flag before mask is hacked |
|
1190 |
const int is_allstack = lrg->mask().is_AllStack(); |
|
1191 |
||
1192 |
// Yeah, yeah, yeah, I know, I know. I can refactor this |
|
1193 |
// to avoid the GOTO, although the refactored code will not |
|
1194 |
// be much clearer. We arrive here IFF we have a stack-based |
|
1195 |
// live range that cannot color in the current chunk, and it |
|
1196 |
// has to move into the next free stack chunk. |
|
1197 |
int chunk = 0; // Current chunk is first chunk |
|
1198 |
retry_next_chunk: |
|
1199 |
||
1200 |
// Remove neighbor colors |
|
1201 |
IndexSet *s = _ifg->neighbors(lidx); |
|
1202 |
||
1203 |
debug_only(RegMask orig_mask = lrg->mask();) |
|
1204 |
IndexSetIterator elements(s); |
|
1205 |
uint neighbor; |
|
1206 |
while ((neighbor = elements.next()) != 0) { |
|
1207 |
// Note that neighbor might be a spill_reg. In this case, exclusion |
|
1208 |
// of its color will be a no-op, since the spill_reg chunk is in outer |
|
1209 |
// space. Also, if neighbor is in a different chunk, this exclusion |
|
1210 |
// will be a no-op. (Later on, if lrg runs out of possible colors in |
|
1211 |
// its chunk, a new chunk of color may be tried, in which case |
|
1212 |
// examination of neighbors is started again, at retry_next_chunk.) |
|
1213 |
LRG &nlrg = lrgs(neighbor); |
|
1214 |
OptoReg::Name nreg = nlrg.reg(); |
|
1215 |
// Only subtract masks in the same chunk |
|
1216 |
if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) { |
|
1217 |
#ifndef PRODUCT |
|
1218 |
uint size = lrg->mask().Size(); |
|
1219 |
RegMask rm = lrg->mask(); |
|
1220 |
#endif |
|
1221 |
lrg->SUBTRACT(nlrg.mask()); |
|
1222 |
#ifndef PRODUCT |
|
1223 |
if (trace_spilling() && lrg->mask().Size() != size) { |
|
1224 |
ttyLocker ttyl; |
|
1225 |
tty->print("L%d ", lidx); |
|
1226 |
rm.dump(); |
|
1227 |
tty->print(" intersected L%d ", neighbor); |
|
1228 |
nlrg.mask().dump(); |
|
1229 |
tty->print(" removed "); |
|
1230 |
rm.SUBTRACT(lrg->mask()); |
|
1231 |
rm.dump(); |
|
1232 |
tty->print(" leaving "); |
|
1233 |
lrg->mask().dump(); |
|
1234 |
tty->cr(); |
|
1235 |
} |
|
1236 |
#endif |
|
1237 |
} |
|
1238 |
} |
|
1239 |
//assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness"); |
|
1240 |
// Aligned pairs need aligned masks |
|
1241 |
if( lrg->num_regs() == 2 && !lrg->_fat_proj ) |
|
1242 |
lrg->ClearToPairs(); |
|
1243 |
||
1244 |
// Check if a color is available and if so pick the color |
|
1245 |
OptoReg::Name reg = choose_color( *lrg, chunk ); |
|
1246 |
#ifdef SPARC |
|
1247 |
debug_only(lrg->compute_set_mask_size()); |
|
1248 |
assert(lrg->num_regs() != 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned"); |
|
1249 |
#endif |
|
1250 |
||
1251 |
//--------------- |
|
1252 |
// If we fail to color and the AllStack flag is set, trigger |
|
1253 |
// a chunk-rollover event |
|
1254 |
if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) { |
|
1255 |
// Bump register mask up to next stack chunk |
|
1256 |
chunk += RegMask::CHUNK_SIZE; |
|
1257 |
lrg->Set_All(); |
|
1258 |
||
1259 |
goto retry_next_chunk; |
|
1260 |
} |
|
1261 |
||
1262 |
//--------------- |
|
1263 |
// Did we get a color? |
|
1264 |
else if( OptoReg::is_valid(reg)) { |
|
1265 |
#ifndef PRODUCT |
|
1266 |
RegMask avail_rm = lrg->mask(); |
|
1267 |
#endif |
|
1268 |
||
1269 |
// Record selected register |
|
1270 |
lrg->set_reg(reg); |
|
1271 |
||
1272 |
if( reg >= _max_reg ) // Compute max register limit |
|
1273 |
_max_reg = OptoReg::add(reg,1); |
|
1274 |
// Fold reg back into normal space |
|
1275 |
reg = OptoReg::add(reg,-chunk); |
|
1276 |
||
1277 |
// If the live range is not bound, then we actually had some choices |
|
1278 |
// to make. In this case, the mask has more bits in it than the colors |
|
2131 | 1279 |
// chosen. Restrict the mask to just what was picked. |
1 | 1280 |
if( lrg->num_regs() == 1 ) { // Size 1 live range |
1281 |
lrg->Clear(); // Clear the mask |
|
1282 |
lrg->Insert(reg); // Set regmask to match selected reg |
|
1283 |
lrg->set_mask_size(1); |
|
1284 |
} else if( !lrg->_fat_proj ) { |
|
1285 |
// For pairs, also insert the low bit of the pair |
|
1286 |
assert( lrg->num_regs() == 2, "unbound fatproj???" ); |
|
1287 |
lrg->Clear(); // Clear the mask |
|
1288 |
lrg->Insert(reg); // Set regmask to match selected reg |
|
1289 |
lrg->Insert(OptoReg::add(reg,-1)); |
|
1290 |
lrg->set_mask_size(2); |
|
1291 |
} else { // Else fatproj |
|
1292 |
// mask must be equal to fatproj bits, by definition |
|
1293 |
} |
|
1294 |
#ifndef PRODUCT |
|
1295 |
if (trace_spilling()) { |
|
1296 |
ttyLocker ttyl; |
|
1297 |
tty->print("L%d selected ", lidx); |
|
1298 |
lrg->mask().dump(); |
|
1299 |
tty->print(" from "); |
|
1300 |
avail_rm.dump(); |
|
1301 |
tty->cr(); |
|
1302 |
} |
|
1303 |
#endif |
|
1304 |
// Note that reg is the highest-numbered register in the newly-bound mask. |
|
1305 |
} // end color available case |
|
1306 |
||
1307 |
//--------------- |
|
1308 |
// Live range is live and no colors available |
|
1309 |
else { |
|
1310 |
assert( lrg->alive(), "" ); |
|
1057
44220ef9a775
6732194: Data corruption dependent on -server/-client/-Xbatch
never
parents:
670
diff
changeset
|
1311 |
assert( !lrg->_fat_proj || lrg->is_multidef() || |
1 | 1312 |
lrg->_def->outcnt() > 0, "fat_proj cannot spill"); |
1313 |
assert( !orig_mask.is_AllStack(), "All Stack does not spill" ); |
|
1314 |
||
1315 |
// Assign the special spillreg register |
|
1316 |
lrg->set_reg(OptoReg::Name(spill_reg++)); |
|
1317 |
// Do not empty the regmask; leave mask_size lying around |
|
1318 |
// for use during Spilling |
|
1319 |
#ifndef PRODUCT |
|
1320 |
if( trace_spilling() ) { |
|
1321 |
ttyLocker ttyl; |
|
1322 |
tty->print("L%d spilling with neighbors: ", lidx); |
|
1323 |
s->dump(); |
|
1324 |
debug_only(tty->print(" original mask: ")); |
|
1325 |
debug_only(orig_mask.dump()); |
|
1326 |
dump_lrg(lidx); |
|
1327 |
} |
|
1328 |
#endif |
|
1329 |
} // end spill case |
|
1330 |
||
1331 |
} |
|
1332 |
||
1333 |
return spill_reg-LRG::SPILL_REG; // Return number of spills |
|
1334 |
} |
|
1335 |
||
1336 |
||
1337 |
//------------------------------copy_was_spilled------------------------------- |
|
1338 |
// Copy 'was_spilled'-edness from the source Node to the dst Node. |
|
1339 |
void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) { |
|
1340 |
if( _spilled_once.test(src->_idx) ) { |
|
1341 |
_spilled_once.set(dst->_idx); |
|
1342 |
lrgs(Find(dst))._was_spilled1 = 1; |
|
1343 |
if( _spilled_twice.test(src->_idx) ) { |
|
1344 |
_spilled_twice.set(dst->_idx); |
|
1345 |
lrgs(Find(dst))._was_spilled2 = 1; |
|
1346 |
} |
|
1347 |
} |
|
1348 |
} |
|
1349 |
||
1350 |
//------------------------------set_was_spilled-------------------------------- |
|
1351 |
// Set the 'spilled_once' or 'spilled_twice' flag on a node. |
|
1352 |
void PhaseChaitin::set_was_spilled( Node *n ) { |
|
1353 |
if( _spilled_once.test_set(n->_idx) ) |
|
1354 |
_spilled_twice.set(n->_idx); |
|
1355 |
} |
|
1356 |
||
1357 |
//------------------------------fixup_spills----------------------------------- |
|
1358 |
// Convert Ideal spill instructions into proper FramePtr + offset Loads and |
|
1359 |
// Stores. Use-def chains are NOT preserved, but Node->LRG->reg maps are. |
|
1360 |
void PhaseChaitin::fixup_spills() { |
|
1361 |
// This function does only cisc spill work. |
|
1362 |
if( !UseCISCSpill ) return; |
|
1363 |
||
1364 |
NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); ) |
|
1365 |
||
1366 |
// Grab the Frame Pointer |
|
1367 |
Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr); |
|
1368 |
||
1369 |
// For all blocks |
|
1370 |
for( uint i = 0; i < _cfg._num_blocks; i++ ) { |
|
1371 |
Block *b = _cfg._blocks[i]; |
|
1372 |
||
1373 |
// For all instructions in block |
|
1374 |
uint last_inst = b->end_idx(); |
|
1375 |
for( uint j = 1; j <= last_inst; j++ ) { |
|
1376 |
Node *n = b->_nodes[j]; |
|
1377 |
||
1378 |
// Dead instruction??? |
|
1379 |
assert( n->outcnt() != 0 ||// Nothing dead after post alloc |
|
1380 |
C->top() == n || // Or the random TOP node |
|
1381 |
n->is_Proj(), // Or a fat-proj kill node |
|
1382 |
"No dead instructions after post-alloc" ); |
|
1383 |
||
1384 |
int inp = n->cisc_operand(); |
|
1385 |
if( inp != AdlcVMDeps::Not_cisc_spillable ) { |
|
1386 |
// Convert operand number to edge index number |
|
1387 |
MachNode *mach = n->as_Mach(); |
|
1388 |
inp = mach->operand_index(inp); |
|
1389 |
Node *src = n->in(inp); // Value to load or store |
|
1390 |
LRG &lrg_cisc = lrgs( Find_const(src) ); |
|
1391 |
OptoReg::Name src_reg = lrg_cisc.reg(); |
|
1392 |
// Doubles record the HIGH register of an adjacent pair. |
|
1393 |
src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs()); |
|
1394 |
if( OptoReg::is_stack(src_reg) ) { // If input is on stack |
|
1395 |
// This is a CISC Spill, get stack offset and construct new node |
|
1396 |
#ifndef PRODUCT |
|
1397 |
if( TraceCISCSpill ) { |
|
1398 |
tty->print(" reg-instr: "); |
|
1399 |
n->dump(); |
|
1400 |
} |
|
1401 |
#endif |
|
1402 |
int stk_offset = reg2offset(src_reg); |
|
1403 |
// Bailout if we might exceed node limit when spilling this instruction |
|
1404 |
C->check_node_count(0, "out of nodes fixing spills"); |
|
1405 |
if (C->failing()) return; |
|
1406 |
// Transform node |
|
1407 |
MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach(); |
|
1408 |
cisc->set_req(inp,fp); // Base register is frame pointer |
|
1409 |
if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) { |
|
1410 |
assert( cisc->oper_input_base() == 2, "Only adding one edge"); |
|
1411 |
cisc->ins_req(1,src); // Requires a memory edge |
|
1412 |
} |
|
1413 |
b->_nodes.map(j,cisc); // Insert into basic block |
|
594
9f4474e5dbaf
6705887: Compressed Oops: generate x64 addressing and implicit null checks with narrow oops
kvn
parents:
360
diff
changeset
|
1414 |
n->subsume_by(cisc); // Correct graph |
1 | 1415 |
// |
1416 |
++_used_cisc_instructions; |
|
1417 |
#ifndef PRODUCT |
|
1418 |
if( TraceCISCSpill ) { |
|
1419 |
tty->print(" cisc-instr: "); |
|
1420 |
cisc->dump(); |
|
1421 |
} |
|
1422 |
#endif |
|
1423 |
} else { |
|
1424 |
#ifndef PRODUCT |
|
1425 |
if( TraceCISCSpill ) { |
|
1426 |
tty->print(" using reg-instr: "); |
|
1427 |
n->dump(); |
|
1428 |
} |
|
1429 |
#endif |
|
1430 |
++_unused_cisc_instructions; // input can be on stack |
|
1431 |
} |
|
1432 |
} |
|
1433 |
||
1434 |
} // End of for all instructions |
|
1435 |
||
1436 |
} // End of for all blocks |
|
1437 |
} |
|
1438 |
||
1439 |
//------------------------------find_base_for_derived-------------------------- |
|
1440 |
// Helper to stretch above; recursively discover the base Node for a |
|
1441 |
// given derived Node. Easy for AddP-related machine nodes, but needs |
|
1442 |
// to be recursive for derived Phis. |
|
1443 |
Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) { |
|
1444 |
// See if already computed; if so return it |
|
1445 |
if( derived_base_map[derived->_idx] ) |
|
1446 |
return derived_base_map[derived->_idx]; |
|
1447 |
||
1448 |
// See if this happens to be a base. |
|
1449 |
// NOTE: we use TypePtr instead of TypeOopPtr because we can have |
|
1450 |
// pointers derived from NULL! These are always along paths that |
|
1451 |
// can't happen at run-time but the optimizer cannot deduce it so |
|
1452 |
// we have to handle it gracefully. |
|
2573
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1453 |
assert(!derived->bottom_type()->isa_narrowoop() || |
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1454 |
derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity"); |
1 | 1455 |
const TypePtr *tj = derived->bottom_type()->isa_ptr(); |
1456 |
// If its an OOP with a non-zero offset, then it is derived. |
|
2573
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1457 |
if( tj == NULL || tj->_offset == 0 ) { |
1 | 1458 |
derived_base_map[derived->_idx] = derived; |
1459 |
return derived; |
|
1460 |
} |
|
1461 |
// Derived is NULL+offset? Base is NULL! |
|
1462 |
if( derived->is_Con() ) { |
|
2573
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1463 |
Node *base = _matcher.mach_null(); |
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1464 |
assert(base != NULL, "sanity"); |
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1465 |
if (base->in(0) == NULL) { |
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1466 |
// Initialize it once and make it shared: |
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1467 |
// set control to _root and place it into Start block |
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1468 |
// (where top() node is placed). |
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1469 |
base->init_req(0, _cfg._root); |
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1470 |
Block *startb = _cfg._bbs[C->top()->_idx]; |
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1471 |
startb->_nodes.insert(startb->find_node(C->top()), base ); |
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1472 |
_cfg._bbs.map( base->_idx, startb ); |
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1473 |
assert (n2lidx(base) == 0, "should not have LRG yet"); |
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1474 |
} |
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1475 |
if (n2lidx(base) == 0) { |
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1476 |
new_lrg(base, maxlrg++); |
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1477 |
} |
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1478 |
assert(base->in(0) == _cfg._root && |
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1479 |
_cfg._bbs[base->_idx] == _cfg._bbs[C->top()->_idx], "base NULL should be shared"); |
1 | 1480 |
derived_base_map[derived->_idx] = base; |
1481 |
return base; |
|
1482 |
} |
|
1483 |
||
1484 |
// Check for AddP-related opcodes |
|
1485 |
if( !derived->is_Phi() ) { |
|
1486 |
assert( derived->as_Mach()->ideal_Opcode() == Op_AddP, "" ); |
|
1487 |
Node *base = derived->in(AddPNode::Base); |
|
1488 |
derived_base_map[derived->_idx] = base; |
|
1489 |
return base; |
|
1490 |
} |
|
1491 |
||
1492 |
// Recursively find bases for Phis. |
|
1493 |
// First check to see if we can avoid a base Phi here. |
|
1494 |
Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg); |
|
1495 |
uint i; |
|
1496 |
for( i = 2; i < derived->req(); i++ ) |
|
1497 |
if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg)) |
|
1498 |
break; |
|
1499 |
// Went to the end without finding any different bases? |
|
1500 |
if( i == derived->req() ) { // No need for a base Phi here |
|
1501 |
derived_base_map[derived->_idx] = base; |
|
1502 |
return base; |
|
1503 |
} |
|
1504 |
||
1505 |
// Now we see we need a base-Phi here to merge the bases |
|
2573
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1506 |
const Type *t = base->bottom_type(); |
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1507 |
base = new (C, derived->req()) PhiNode( derived->in(0), t ); |
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1508 |
for( i = 1; i < derived->req(); i++ ) { |
1 | 1509 |
base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg)); |
2573
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1510 |
t = t->meet(base->in(i)->bottom_type()); |
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1511 |
} |
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1512 |
base->as_Phi()->set_type(t); |
1 | 1513 |
|
1514 |
// Search the current block for an existing base-Phi |
|
1515 |
Block *b = _cfg._bbs[derived->_idx]; |
|
1516 |
for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi |
|
1517 |
Node *phi = b->_nodes[i]; |
|
1518 |
if( !phi->is_Phi() ) { // Found end of Phis with no match? |
|
1519 |
b->_nodes.insert( i, base ); // Must insert created Phi here as base |
|
1520 |
_cfg._bbs.map( base->_idx, b ); |
|
1521 |
new_lrg(base,maxlrg++); |
|
1522 |
break; |
|
1523 |
} |
|
1524 |
// See if Phi matches. |
|
1525 |
uint j; |
|
1526 |
for( j = 1; j < base->req(); j++ ) |
|
1527 |
if( phi->in(j) != base->in(j) && |
|
1528 |
!(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs |
|
1529 |
break; |
|
1530 |
if( j == base->req() ) { // All inputs match? |
|
1531 |
base = phi; // Then use existing 'phi' and drop 'base' |
|
1532 |
break; |
|
1533 |
} |
|
1534 |
} |
|
1535 |
||
1536 |
||
1537 |
// Cache info for later passes |
|
1538 |
derived_base_map[derived->_idx] = base; |
|
1539 |
return base; |
|
1540 |
} |
|
1541 |
||
1542 |
||
1543 |
//------------------------------stretch_base_pointer_live_ranges--------------- |
|
1544 |
// At each Safepoint, insert extra debug edges for each pair of derived value/ |
|
1545 |
// base pointer that is live across the Safepoint for oopmap building. The |
|
1546 |
// edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the |
|
1547 |
// required edge set. |
|
1548 |
bool PhaseChaitin::stretch_base_pointer_live_ranges( ResourceArea *a ) { |
|
1549 |
int must_recompute_live = false; |
|
1550 |
uint maxlrg = _maxlrg; |
|
1551 |
Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique()); |
|
1552 |
memset( derived_base_map, 0, sizeof(Node*)*C->unique() ); |
|
1553 |
||
1554 |
// For all blocks in RPO do... |
|
1555 |
for( uint i=0; i<_cfg._num_blocks; i++ ) { |
|
1556 |
Block *b = _cfg._blocks[i]; |
|
1557 |
// Note use of deep-copy constructor. I cannot hammer the original |
|
1558 |
// liveout bits, because they are needed by the following coalesce pass. |
|
1559 |
IndexSet liveout(_live->live(b)); |
|
1560 |
||
1561 |
for( uint j = b->end_idx() + 1; j > 1; j-- ) { |
|
1562 |
Node *n = b->_nodes[j-1]; |
|
1563 |
||
1564 |
// Pre-split compares of loop-phis. Loop-phis form a cycle we would |
|
1565 |
// like to see in the same register. Compare uses the loop-phi and so |
|
1566 |
// extends its live range BUT cannot be part of the cycle. If this |
|
1567 |
// extended live range overlaps with the update of the loop-phi value |
|
1568 |
// we need both alive at the same time -- which requires at least 1 |
|
1569 |
// copy. But because Intel has only 2-address registers we end up with |
|
1570 |
// at least 2 copies, one before the loop-phi update instruction and |
|
1571 |
// one after. Instead we split the input to the compare just after the |
|
1572 |
// phi. |
|
1573 |
if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) { |
|
1574 |
Node *phi = n->in(1); |
|
1575 |
if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) { |
|
1576 |
Block *phi_block = _cfg._bbs[phi->_idx]; |
|
1577 |
if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) { |
|
1578 |
const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI]; |
|
1579 |
Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask ); |
|
1580 |
insert_proj( phi_block, 1, spill, maxlrg++ ); |
|
1581 |
n->set_req(1,spill); |
|
1582 |
must_recompute_live = true; |
|
1583 |
} |
|
1584 |
} |
|
1585 |
} |
|
1586 |
||
1587 |
// Get value being defined |
|
1588 |
uint lidx = n2lidx(n); |
|
1589 |
if( lidx && lidx < _maxlrg /* Ignore the occasional brand-new live range */) { |
|
1590 |
// Remove from live-out set |
|
1591 |
liveout.remove(lidx); |
|
1592 |
||
1593 |
// Copies do not define a new value and so do not interfere. |
|
1594 |
// Remove the copies source from the liveout set before interfering. |
|
1595 |
uint idx = n->is_Copy(); |
|
1596 |
if( idx ) liveout.remove( n2lidx(n->in(idx)) ); |
|
1597 |
} |
|
1598 |
||
1599 |
// Found a safepoint? |
|
1600 |
JVMState *jvms = n->jvms(); |
|
1601 |
if( jvms ) { |
|
1602 |
// Now scan for a live derived pointer |
|
1603 |
IndexSetIterator elements(&liveout); |
|
1604 |
uint neighbor; |
|
1605 |
while ((neighbor = elements.next()) != 0) { |
|
1606 |
// Find reaching DEF for base and derived values |
|
1607 |
// This works because we are still in SSA during this call. |
|
1608 |
Node *derived = lrgs(neighbor)._def; |
|
1609 |
const TypePtr *tj = derived->bottom_type()->isa_ptr(); |
|
2573
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1610 |
assert(!derived->bottom_type()->isa_narrowoop() || |
b5002ef26155
6709742: find_base_for_derived's use of Ideal NULL is unsafe causing crashes during register allocation
kvn
parents:
2340
diff
changeset
|
1611 |
derived->bottom_type()->make_ptr()->is_ptr()->_offset == 0, "sanity"); |
1 | 1612 |
// If its an OOP with a non-zero offset, then it is derived. |
1613 |
if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) { |
|
1614 |
Node *base = find_base_for_derived( derived_base_map, derived, maxlrg ); |
|
1615 |
assert( base->_idx < _names.Size(), "" ); |
|
1616 |
// Add reaching DEFs of derived pointer and base pointer as a |
|
1617 |
// pair of inputs |
|
1618 |
n->add_req( derived ); |
|
1619 |
n->add_req( base ); |
|
1620 |
||
1621 |
// See if the base pointer is already live to this point. |
|
1622 |
// Since I'm working on the SSA form, live-ness amounts to |
|
1623 |
// reaching def's. So if I find the base's live range then |
|
1624 |
// I know the base's def reaches here. |
|
1625 |
if( (n2lidx(base) >= _maxlrg ||// (Brand new base (hence not live) or |
|
1626 |
!liveout.member( n2lidx(base) ) ) && // not live) AND |
|
1627 |
(n2lidx(base) > 0) && // not a constant |
|
1628 |
_cfg._bbs[base->_idx] != b ) { // base not def'd in blk) |
|
1629 |
// Base pointer is not currently live. Since I stretched |
|
1630 |
// the base pointer to here and it crosses basic-block |
|
1631 |
// boundaries, the global live info is now incorrect. |
|
1632 |
// Recompute live. |
|
1633 |
must_recompute_live = true; |
|
1634 |
} // End of if base pointer is not live to debug info |
|
1635 |
} |
|
1636 |
} // End of scan all live data for derived ptrs crossing GC point |
|
1637 |
} // End of if found a GC point |
|
1638 |
||
1639 |
// Make all inputs live |
|
1640 |
if( !n->is_Phi() ) { // Phi function uses come from prior block |
|
1641 |
for( uint k = 1; k < n->req(); k++ ) { |
|
1642 |
uint lidx = n2lidx(n->in(k)); |
|
1643 |
if( lidx < _maxlrg ) |
|
1644 |
liveout.insert( lidx ); |
|
1645 |
} |
|
1646 |
} |
|
1647 |
||
1648 |
} // End of forall instructions in block |
|
1649 |
liveout.clear(); // Free the memory used by liveout. |
|
1650 |
||
1651 |
} // End of forall blocks |
|
1652 |
_maxlrg = maxlrg; |
|
1653 |
||
1654 |
// If I created a new live range I need to recompute live |
|
1655 |
if( maxlrg != _ifg->_maxlrg ) |
|
1656 |
must_recompute_live = true; |
|
1657 |
||
1658 |
return must_recompute_live != 0; |
|
1659 |
} |
|
1660 |
||
1661 |
||
1662 |
//------------------------------add_reference---------------------------------- |
|
1663 |
// Extend the node to LRG mapping |
|
1664 |
void PhaseChaitin::add_reference( const Node *node, const Node *old_node ) { |
|
1665 |
_names.extend( node->_idx, n2lidx(old_node) ); |
|
1666 |
} |
|
1667 |
||
1668 |
//------------------------------dump------------------------------------------- |
|
1669 |
#ifndef PRODUCT |
|
1670 |
void PhaseChaitin::dump( const Node *n ) const { |
|
1671 |
uint r = (n->_idx < _names.Size() ) ? Find_const(n) : 0; |
|
1672 |
tty->print("L%d",r); |
|
1673 |
if( r && n->Opcode() != Op_Phi ) { |
|
1674 |
if( _node_regs ) { // Got a post-allocation copy of allocation? |
|
1675 |
tty->print("["); |
|
1676 |
OptoReg::Name second = get_reg_second(n); |
|
1677 |
if( OptoReg::is_valid(second) ) { |
|
1678 |
if( OptoReg::is_reg(second) ) |
|
1679 |
tty->print("%s:",Matcher::regName[second]); |
|
1680 |
else |
|
1681 |
tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second)); |
|
1682 |
} |
|
1683 |
OptoReg::Name first = get_reg_first(n); |
|
1684 |
if( OptoReg::is_reg(first) ) |
|
1685 |
tty->print("%s]",Matcher::regName[first]); |
|
1686 |
else |
|
1687 |
tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first)); |
|
1688 |
} else |
|
1689 |
n->out_RegMask().dump(); |
|
1690 |
} |
|
1691 |
tty->print("/N%d\t",n->_idx); |
|
1692 |
tty->print("%s === ", n->Name()); |
|
1693 |
uint k; |
|
1694 |
for( k = 0; k < n->req(); k++) { |
|
1695 |
Node *m = n->in(k); |
|
1696 |
if( !m ) tty->print("_ "); |
|
1697 |
else { |
|
1698 |
uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0; |
|
1699 |
tty->print("L%d",r); |
|
1700 |
// Data MultiNode's can have projections with no real registers. |
|
1701 |
// Don't die while dumping them. |
|
1702 |
int op = n->Opcode(); |
|
1703 |
if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) { |
|
1704 |
if( _node_regs ) { |
|
1705 |
tty->print("["); |
|
1706 |
OptoReg::Name second = get_reg_second(n->in(k)); |
|
1707 |
if( OptoReg::is_valid(second) ) { |
|
1708 |
if( OptoReg::is_reg(second) ) |
|
1709 |
tty->print("%s:",Matcher::regName[second]); |
|
1710 |
else |
|
1711 |
tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), |
|
1712 |
reg2offset_unchecked(second)); |
|
1713 |
} |
|
1714 |
OptoReg::Name first = get_reg_first(n->in(k)); |
|
1715 |
if( OptoReg::is_reg(first) ) |
|
1716 |
tty->print("%s]",Matcher::regName[first]); |
|
1717 |
else |
|
1718 |
tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), |
|
1719 |
reg2offset_unchecked(first)); |
|
1720 |
} else |
|
1721 |
n->in_RegMask(k).dump(); |
|
1722 |
} |
|
1723 |
tty->print("/N%d ",m->_idx); |
|
1724 |
} |
|
1725 |
} |
|
1726 |
if( k < n->len() && n->in(k) ) tty->print("| "); |
|
1727 |
for( ; k < n->len(); k++ ) { |
|
1728 |
Node *m = n->in(k); |
|
1729 |
if( !m ) break; |
|
1730 |
uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0; |
|
1731 |
tty->print("L%d",r); |
|
1732 |
tty->print("/N%d ",m->_idx); |
|
1733 |
} |
|
1734 |
if( n->is_Mach() ) n->as_Mach()->dump_spec(tty); |
|
1735 |
else n->dump_spec(tty); |
|
1736 |
if( _spilled_once.test(n->_idx ) ) { |
|
1737 |
tty->print(" Spill_1"); |
|
1738 |
if( _spilled_twice.test(n->_idx ) ) |
|
1739 |
tty->print(" Spill_2"); |
|
1740 |
} |
|
1741 |
tty->print("\n"); |
|
1742 |
} |
|
1743 |
||
1744 |
void PhaseChaitin::dump( const Block * b ) const { |
|
1745 |
b->dump_head( &_cfg._bbs ); |
|
1746 |
||
1747 |
// For all instructions |
|
1748 |
for( uint j = 0; j < b->_nodes.size(); j++ ) |
|
1749 |
dump(b->_nodes[j]); |
|
1750 |
// Print live-out info at end of block |
|
1751 |
if( _live ) { |
|
1752 |
tty->print("Liveout: "); |
|
1753 |
IndexSet *live = _live->live(b); |
|
1754 |
IndexSetIterator elements(live); |
|
1755 |
tty->print("{"); |
|
1756 |
uint i; |
|
1757 |
while ((i = elements.next()) != 0) { |
|
1758 |
tty->print("L%d ", Find_const(i)); |
|
1759 |
} |
|
1760 |
tty->print_cr("}"); |
|
1761 |
} |
|
1762 |
tty->print("\n"); |
|
1763 |
} |
|
1764 |
||
1765 |
void PhaseChaitin::dump() const { |
|
1766 |
tty->print( "--- Chaitin -- argsize: %d framesize: %d ---\n", |
|
1767 |
_matcher._new_SP, _framesize ); |
|
1768 |
||
1769 |
// For all blocks |
|
1770 |
for( uint i = 0; i < _cfg._num_blocks; i++ ) |
|
1771 |
dump(_cfg._blocks[i]); |
|
1772 |
// End of per-block dump |
|
1773 |
tty->print("\n"); |
|
1774 |
||
1775 |
if (!_ifg) { |
|
1776 |
tty->print("(No IFG.)\n"); |
|
1777 |
return; |
|
1778 |
} |
|
1779 |
||
1780 |
// Dump LRG array |
|
1781 |
tty->print("--- Live RanGe Array ---\n"); |
|
1782 |
for(uint i2 = 1; i2 < _maxlrg; i2++ ) { |
|
1783 |
tty->print("L%d: ",i2); |
|
1784 |
if( i2 < _ifg->_maxlrg ) lrgs(i2).dump( ); |
|
7441
47ea904dba6a
7004940: CTW: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG
never
parents:
7397
diff
changeset
|
1785 |
else tty->print_cr("new LRG"); |
1 | 1786 |
} |
1787 |
tty->print_cr(""); |
|
1788 |
||
1789 |
// Dump lo-degree list |
|
1790 |
tty->print("Lo degree: "); |
|
1791 |
for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next ) |
|
1792 |
tty->print("L%d ",i3); |
|
1793 |
tty->print_cr(""); |
|
1794 |
||
1795 |
// Dump lo-stk-degree list |
|
1796 |
tty->print("Lo stk degree: "); |
|
1797 |
for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next ) |
|
1798 |
tty->print("L%d ",i4); |
|
1799 |
tty->print_cr(""); |
|
1800 |
||
1801 |
// Dump lo-degree list |
|
1802 |
tty->print("Hi degree: "); |
|
1803 |
for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next ) |
|
1804 |
tty->print("L%d ",i5); |
|
1805 |
tty->print_cr(""); |
|
1806 |
} |
|
1807 |
||
1808 |
//------------------------------dump_degree_lists------------------------------ |
|
1809 |
void PhaseChaitin::dump_degree_lists() const { |
|
1810 |
// Dump lo-degree list |
|
1811 |
tty->print("Lo degree: "); |
|
1812 |
for( uint i = _lo_degree; i; i = lrgs(i)._next ) |
|
1813 |
tty->print("L%d ",i); |
|
1814 |
tty->print_cr(""); |
|
1815 |
||
1816 |
// Dump lo-stk-degree list |
|
1817 |
tty->print("Lo stk degree: "); |
|
1818 |
for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next ) |
|
1819 |
tty->print("L%d ",i2); |
|
1820 |
tty->print_cr(""); |
|
1821 |
||
1822 |
// Dump lo-degree list |
|
1823 |
tty->print("Hi degree: "); |
|
1824 |
for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next ) |
|
1825 |
tty->print("L%d ",i3); |
|
1826 |
tty->print_cr(""); |
|
1827 |
} |
|
1828 |
||
1829 |
//------------------------------dump_simplified-------------------------------- |
|
1830 |
void PhaseChaitin::dump_simplified() const { |
|
1831 |
tty->print("Simplified: "); |
|
1832 |
for( uint i = _simplified; i; i = lrgs(i)._next ) |
|
1833 |
tty->print("L%d ",i); |
|
1834 |
tty->print_cr(""); |
|
1835 |
} |
|
1836 |
||
1837 |
static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) { |
|
1838 |
if ((int)reg < 0) |
|
1839 |
sprintf(buf, "<OptoReg::%d>", (int)reg); |
|
1840 |
else if (OptoReg::is_reg(reg)) |
|
1841 |
strcpy(buf, Matcher::regName[reg]); |
|
1842 |
else |
|
1843 |
sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer), |
|
1844 |
pc->reg2offset(reg)); |
|
1845 |
return buf+strlen(buf); |
|
1846 |
} |
|
1847 |
||
1848 |
//------------------------------dump_register---------------------------------- |
|
1849 |
// Dump a register name into a buffer. Be intelligent if we get called |
|
1850 |
// before allocation is complete. |
|
1851 |
char *PhaseChaitin::dump_register( const Node *n, char *buf ) const { |
|
1852 |
if( !this ) { // Not got anything? |
|
1853 |
sprintf(buf,"N%d",n->_idx); // Then use Node index |
|
1854 |
} else if( _node_regs ) { |
|
1855 |
// Post allocation, use direct mappings, no LRG info available |
|
1856 |
print_reg( get_reg_first(n), this, buf ); |
|
1857 |
} else { |
|
1858 |
uint lidx = Find_const(n); // Grab LRG number |
|
1859 |
if( !_ifg ) { |
|
1860 |
sprintf(buf,"L%d",lidx); // No register binding yet |
|
1861 |
} else if( !lidx ) { // Special, not allocated value |
|
1862 |
strcpy(buf,"Special"); |
|
1863 |
} else if( (lrgs(lidx).num_regs() == 1) |
|
1864 |
? !lrgs(lidx).mask().is_bound1() |
|
1865 |
: !lrgs(lidx).mask().is_bound2() ) { |
|
1866 |
sprintf(buf,"L%d",lidx); // No register binding yet |
|
1867 |
} else { // Hah! We have a bound machine register |
|
1868 |
print_reg( lrgs(lidx).reg(), this, buf ); |
|
1869 |
} |
|
1870 |
} |
|
1871 |
return buf+strlen(buf); |
|
1872 |
} |
|
1873 |
||
1874 |
//----------------------dump_for_spill_split_recycle-------------------------- |
|
1875 |
void PhaseChaitin::dump_for_spill_split_recycle() const { |
|
1876 |
if( WizardMode && (PrintCompilation || PrintOpto) ) { |
|
1877 |
// Display which live ranges need to be split and the allocator's state |
|
1878 |
tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt); |
|
1879 |
for( uint bidx = 1; bidx < _maxlrg; bidx++ ) { |
|
1880 |
if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) { |
|
1881 |
tty->print("L%d: ", bidx); |
|
1882 |
lrgs(bidx).dump(); |
|
1883 |
} |
|
1884 |
} |
|
1885 |
tty->cr(); |
|
1886 |
dump(); |
|
1887 |
} |
|
1888 |
} |
|
1889 |
||
1890 |
//------------------------------dump_frame------------------------------------ |
|
1891 |
void PhaseChaitin::dump_frame() const { |
|
1892 |
const char *fp = OptoReg::regname(OptoReg::c_frame_pointer); |
|
1893 |
const TypeTuple *domain = C->tf()->domain(); |
|
1894 |
const int argcnt = domain->cnt() - TypeFunc::Parms; |
|
1895 |
||
1896 |
// Incoming arguments in registers dump |
|
1897 |
for( int k = 0; k < argcnt; k++ ) { |
|
1898 |
OptoReg::Name parmreg = _matcher._parm_regs[k].first(); |
|
1899 |
if( OptoReg::is_reg(parmreg)) { |
|
1900 |
const char *reg_name = OptoReg::regname(parmreg); |
|
1901 |
tty->print("#r%3.3d %s", parmreg, reg_name); |
|
1902 |
parmreg = _matcher._parm_regs[k].second(); |
|
1903 |
if( OptoReg::is_reg(parmreg)) { |
|
1904 |
tty->print(":%s", OptoReg::regname(parmreg)); |
|
1905 |
} |
|
1906 |
tty->print(" : parm %d: ", k); |
|
1907 |
domain->field_at(k + TypeFunc::Parms)->dump(); |
|
1908 |
tty->print_cr(""); |
|
1909 |
} |
|
1910 |
} |
|
1911 |
||
1912 |
// Check for un-owned padding above incoming args |
|
1913 |
OptoReg::Name reg = _matcher._new_SP; |
|
1914 |
if( reg > _matcher._in_arg_limit ) { |
|
1915 |
reg = OptoReg::add(reg, -1); |
|
1916 |
tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg)); |
|
1917 |
} |
|
1918 |
||
1919 |
// Incoming argument area dump |
|
1920 |
OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots()); |
|
1921 |
while( reg > begin_in_arg ) { |
|
1922 |
reg = OptoReg::add(reg, -1); |
|
1923 |
tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg)); |
|
1924 |
int j; |
|
1925 |
for( j = 0; j < argcnt; j++) { |
|
1926 |
if( _matcher._parm_regs[j].first() == reg || |
|
1927 |
_matcher._parm_regs[j].second() == reg ) { |
|
1928 |
tty->print("parm %d: ",j); |
|
1929 |
domain->field_at(j + TypeFunc::Parms)->dump(); |
|
1930 |
tty->print_cr(""); |
|
1931 |
break; |
|
1932 |
} |
|
1933 |
} |
|
1934 |
if( j >= argcnt ) |
|
1935 |
tty->print_cr("HOLE, owned by SELF"); |
|
1936 |
} |
|
1937 |
||
1938 |
// Old outgoing preserve area |
|
1939 |
while( reg > _matcher._old_SP ) { |
|
1940 |
reg = OptoReg::add(reg, -1); |
|
1941 |
tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg)); |
|
1942 |
} |
|
1943 |
||
1944 |
// Old SP |
|
1945 |
tty->print_cr("# -- Old %s -- Framesize: %d --",fp, |
|
1946 |
reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize); |
|
1947 |
||
1948 |
// Preserve area dump |
|
1949 |
reg = OptoReg::add(reg, -1); |
|
1950 |
while( OptoReg::is_stack(reg)) { |
|
1951 |
tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg)); |
|
1952 |
if( _matcher.return_addr() == reg ) |
|
1953 |
tty->print_cr("return address"); |
|
1954 |
else if( _matcher.return_addr() == OptoReg::add(reg,1) && |
|
1955 |
VerifyStackAtCalls ) |
|
1956 |
tty->print_cr("0xBADB100D +VerifyStackAtCalls"); |
|
1957 |
else if ((int)OptoReg::reg2stack(reg) < C->fixed_slots()) |
|
1958 |
tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg)); |
|
1959 |
else |
|
1960 |
tty->print_cr("pad2, in_preserve"); |
|
1961 |
reg = OptoReg::add(reg, -1); |
|
1962 |
} |
|
1963 |
||
1964 |
// Spill area dump |
|
1965 |
reg = OptoReg::add(_matcher._new_SP, _framesize ); |
|
1966 |
while( reg > _matcher._out_arg_limit ) { |
|
1967 |
reg = OptoReg::add(reg, -1); |
|
1968 |
tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg)); |
|
1969 |
} |
|
1970 |
||
1971 |
// Outgoing argument area dump |
|
1972 |
while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) { |
|
1973 |
reg = OptoReg::add(reg, -1); |
|
1974 |
tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg)); |
|
1975 |
} |
|
1976 |
||
1977 |
// Outgoing new preserve area |
|
1978 |
while( reg > _matcher._new_SP ) { |
|
1979 |
reg = OptoReg::add(reg, -1); |
|
1980 |
tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg)); |
|
1981 |
} |
|
1982 |
tty->print_cr("#"); |
|
1983 |
} |
|
1984 |
||
1985 |
//------------------------------dump_bb---------------------------------------- |
|
1986 |
void PhaseChaitin::dump_bb( uint pre_order ) const { |
|
1987 |
tty->print_cr("---dump of B%d---",pre_order); |
|
1988 |
for( uint i = 0; i < _cfg._num_blocks; i++ ) { |
|
1989 |
Block *b = _cfg._blocks[i]; |
|
1990 |
if( b->_pre_order == pre_order ) |
|
1991 |
dump(b); |
|
1992 |
} |
|
1993 |
} |
|
1994 |
||
1995 |
//------------------------------dump_lrg--------------------------------------- |
|
7441
47ea904dba6a
7004940: CTW: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG
never
parents:
7397
diff
changeset
|
1996 |
void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const { |
1 | 1997 |
tty->print_cr("---dump of L%d---",lidx); |
1998 |
||
1999 |
if( _ifg ) { |
|
2000 |
if( lidx >= _maxlrg ) { |
|
2001 |
tty->print("Attempt to print live range index beyond max live range.\n"); |
|
2002 |
return; |
|
2003 |
} |
|
2004 |
tty->print("L%d: ",lidx); |
|
7441
47ea904dba6a
7004940: CTW: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG
never
parents:
7397
diff
changeset
|
2005 |
if( lidx < _ifg->_maxlrg ) lrgs(lidx).dump( ); |
47ea904dba6a
7004940: CTW: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG
never
parents:
7397
diff
changeset
|
2006 |
else tty->print_cr("new LRG"); |
1 | 2007 |
} |
7441
47ea904dba6a
7004940: CTW: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG
never
parents:
7397
diff
changeset
|
2008 |
if( _ifg && lidx < _ifg->_maxlrg) { |
47ea904dba6a
7004940: CTW: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG
never
parents:
7397
diff
changeset
|
2009 |
tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx)); |
1 | 2010 |
_ifg->neighbors(lidx)->dump(); |
2011 |
tty->cr(); |
|
2012 |
} |
|
2013 |
// For all blocks |
|
2014 |
for( uint i = 0; i < _cfg._num_blocks; i++ ) { |
|
2015 |
Block *b = _cfg._blocks[i]; |
|
2016 |
int dump_once = 0; |
|
2017 |
||
2018 |
// For all instructions |
|
2019 |
for( uint j = 0; j < b->_nodes.size(); j++ ) { |
|
2020 |
Node *n = b->_nodes[j]; |
|
2021 |
if( Find_const(n) == lidx ) { |
|
2022 |
if( !dump_once++ ) { |
|
2023 |
tty->cr(); |
|
2024 |
b->dump_head( &_cfg._bbs ); |
|
2025 |
} |
|
2026 |
dump(n); |
|
2027 |
continue; |
|
2028 |
} |
|
7441
47ea904dba6a
7004940: CTW: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG
never
parents:
7397
diff
changeset
|
2029 |
if (!defs_only) { |
47ea904dba6a
7004940: CTW: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG
never
parents:
7397
diff
changeset
|
2030 |
uint cnt = n->req(); |
47ea904dba6a
7004940: CTW: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG
never
parents:
7397
diff
changeset
|
2031 |
for( uint k = 1; k < cnt; k++ ) { |
47ea904dba6a
7004940: CTW: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG
never
parents:
7397
diff
changeset
|
2032 |
Node *m = n->in(k); |
47ea904dba6a
7004940: CTW: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG
never
parents:
7397
diff
changeset
|
2033 |
if (!m) continue; // be robust in the dumper |
47ea904dba6a
7004940: CTW: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG
never
parents:
7397
diff
changeset
|
2034 |
if( Find_const(m) == lidx ) { |
47ea904dba6a
7004940: CTW: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG
never
parents:
7397
diff
changeset
|
2035 |
if( !dump_once++ ) { |
47ea904dba6a
7004940: CTW: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG
never
parents:
7397
diff
changeset
|
2036 |
tty->cr(); |
47ea904dba6a
7004940: CTW: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG
never
parents:
7397
diff
changeset
|
2037 |
b->dump_head( &_cfg._bbs ); |
47ea904dba6a
7004940: CTW: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG
never
parents:
7397
diff
changeset
|
2038 |
} |
47ea904dba6a
7004940: CTW: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG
never
parents:
7397
diff
changeset
|
2039 |
dump(n); |
1 | 2040 |
} |
2041 |
} |
|
2042 |
} |
|
2043 |
} |
|
2044 |
} // End of per-block dump |
|
2045 |
tty->cr(); |
|
2046 |
} |
|
2047 |
#endif // not PRODUCT |
|
2048 |
||
2049 |
//------------------------------print_chaitin_statistics------------------------------- |
|
2050 |
int PhaseChaitin::_final_loads = 0; |
|
2051 |
int PhaseChaitin::_final_stores = 0; |
|
2052 |
int PhaseChaitin::_final_memoves= 0; |
|
2053 |
int PhaseChaitin::_final_copies = 0; |
|
2054 |
double PhaseChaitin::_final_load_cost = 0; |
|
2055 |
double PhaseChaitin::_final_store_cost = 0; |
|
2056 |
double PhaseChaitin::_final_memove_cost= 0; |
|
2057 |
double PhaseChaitin::_final_copy_cost = 0; |
|
2058 |
int PhaseChaitin::_conserv_coalesce = 0; |
|
2059 |
int PhaseChaitin::_conserv_coalesce_pair = 0; |
|
2060 |
int PhaseChaitin::_conserv_coalesce_trie = 0; |
|
2061 |
int PhaseChaitin::_conserv_coalesce_quad = 0; |
|
2062 |
int PhaseChaitin::_post_alloc = 0; |
|
2063 |
int PhaseChaitin::_lost_opp_pp_coalesce = 0; |
|
2064 |
int PhaseChaitin::_lost_opp_cflow_coalesce = 0; |
|
2065 |
int PhaseChaitin::_used_cisc_instructions = 0; |
|
2066 |
int PhaseChaitin::_unused_cisc_instructions = 0; |
|
2067 |
int PhaseChaitin::_allocator_attempts = 0; |
|
2068 |
int PhaseChaitin::_allocator_successes = 0; |
|
2069 |
||
2070 |
#ifndef PRODUCT |
|
2071 |
uint PhaseChaitin::_high_pressure = 0; |
|
2072 |
uint PhaseChaitin::_low_pressure = 0; |
|
2073 |
||
2074 |
void PhaseChaitin::print_chaitin_statistics() { |
|
2075 |
tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies); |
|
2076 |
tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost); |
|
2077 |
tty->print_cr("Adjusted spill cost = %7.0f.", |
|
2078 |
_final_load_cost*4.0 + _final_store_cost * 2.0 + |
|
2079 |
_final_copy_cost*1.0 + _final_memove_cost*12.0); |
|
2080 |
tty->print("Conservatively coalesced %d copies, %d pairs", |
|
2081 |
_conserv_coalesce, _conserv_coalesce_pair); |
|
2082 |
if( _conserv_coalesce_trie || _conserv_coalesce_quad ) |
|
2083 |
tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad); |
|
2084 |
tty->print_cr(", %d post alloc.", _post_alloc); |
|
2085 |
if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce ) |
|
2086 |
tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.", |
|
2087 |
_lost_opp_pp_coalesce, _lost_opp_cflow_coalesce ); |
|
2088 |
if( _used_cisc_instructions || _unused_cisc_instructions ) |
|
2089 |
tty->print_cr("Used cisc instruction %d, remained in register %d", |
|
2090 |
_used_cisc_instructions, _unused_cisc_instructions); |
|
2091 |
if( _allocator_successes != 0 ) |
|
2092 |
tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes); |
|
2093 |
tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure); |
|
2094 |
} |
|
2095 |
#endif // not PRODUCT |