2
|
1 |
/*
|
|
2 |
* Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation. Sun designates this
|
|
8 |
* particular file as subject to the "Classpath" exception as provided
|
|
9 |
* by Sun in the LICENSE file that accompanied this code.
|
|
10 |
*
|
|
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
15 |
* accompanied this code).
|
|
16 |
*
|
|
17 |
* You should have received a copy of the GNU General Public License version
|
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
20 |
*
|
|
21 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
22 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
23 |
* have any questions.
|
|
24 |
*/
|
|
25 |
|
|
26 |
package java.lang;
|
|
27 |
import java.lang.ref.*;
|
|
28 |
import java.util.concurrent.atomic.AtomicInteger;
|
|
29 |
|
|
30 |
/**
|
|
31 |
* This class provides thread-local variables. These variables differ from
|
|
32 |
* their normal counterparts in that each thread that accesses one (via its
|
|
33 |
* <tt>get</tt> or <tt>set</tt> method) has its own, independently initialized
|
|
34 |
* copy of the variable. <tt>ThreadLocal</tt> instances are typically private
|
|
35 |
* static fields in classes that wish to associate state with a thread (e.g.,
|
|
36 |
* a user ID or Transaction ID).
|
|
37 |
*
|
|
38 |
* <p>For example, the class below generates unique identifiers local to each
|
|
39 |
* thread.
|
|
40 |
* A thread's id is assigned the first time it invokes <tt>ThreadId.get()</tt>
|
|
41 |
* and remains unchanged on subsequent calls.
|
|
42 |
* <pre>
|
|
43 |
* import java.util.concurrent.atomic.AtomicInteger;
|
|
44 |
*
|
|
45 |
* public class ThreadId {
|
|
46 |
* // Atomic integer containing the next thread ID to be assigned
|
|
47 |
* private static final AtomicInteger nextId = new AtomicInteger(0);
|
|
48 |
*
|
|
49 |
* // Thread local variable containing each thread's ID
|
|
50 |
* private static final ThreadLocal<Integer> threadId =
|
|
51 |
* new ThreadLocal<Integer>() {
|
|
52 |
* @Override protected Integer initialValue() {
|
|
53 |
* return nextId.getAndIncrement();
|
|
54 |
* }
|
|
55 |
* };
|
|
56 |
*
|
|
57 |
* // Returns the current thread's unique ID, assigning it if necessary
|
|
58 |
* public static int get() {
|
|
59 |
* return threadId.get();
|
|
60 |
* }
|
|
61 |
* }
|
|
62 |
* </pre>
|
|
63 |
* <p>Each thread holds an implicit reference to its copy of a thread-local
|
|
64 |
* variable as long as the thread is alive and the <tt>ThreadLocal</tt>
|
|
65 |
* instance is accessible; after a thread goes away, all of its copies of
|
|
66 |
* thread-local instances are subject to garbage collection (unless other
|
|
67 |
* references to these copies exist).
|
|
68 |
*
|
|
69 |
* @author Josh Bloch and Doug Lea
|
|
70 |
* @since 1.2
|
|
71 |
*/
|
|
72 |
public class ThreadLocal<T> {
|
|
73 |
/**
|
|
74 |
* ThreadLocals rely on per-thread linear-probe hash maps attached
|
|
75 |
* to each thread (Thread.threadLocals and
|
|
76 |
* inheritableThreadLocals). The ThreadLocal objects act as keys,
|
|
77 |
* searched via threadLocalHashCode. This is a custom hash code
|
|
78 |
* (useful only within ThreadLocalMaps) that eliminates collisions
|
|
79 |
* in the common case where consecutively constructed ThreadLocals
|
|
80 |
* are used by the same threads, while remaining well-behaved in
|
|
81 |
* less common cases.
|
|
82 |
*/
|
|
83 |
private final int threadLocalHashCode = nextHashCode();
|
|
84 |
|
|
85 |
/**
|
|
86 |
* The next hash code to be given out. Updated atomically. Starts at
|
|
87 |
* zero.
|
|
88 |
*/
|
|
89 |
private static AtomicInteger nextHashCode =
|
|
90 |
new AtomicInteger();
|
|
91 |
|
|
92 |
/**
|
|
93 |
* The difference between successively generated hash codes - turns
|
|
94 |
* implicit sequential thread-local IDs into near-optimally spread
|
|
95 |
* multiplicative hash values for power-of-two-sized tables.
|
|
96 |
*/
|
|
97 |
private static final int HASH_INCREMENT = 0x61c88647;
|
|
98 |
|
|
99 |
/**
|
|
100 |
* Returns the next hash code.
|
|
101 |
*/
|
|
102 |
private static int nextHashCode() {
|
|
103 |
return nextHashCode.getAndAdd(HASH_INCREMENT);
|
|
104 |
}
|
|
105 |
|
|
106 |
/**
|
|
107 |
* Returns the current thread's "initial value" for this
|
|
108 |
* thread-local variable. This method will be invoked the first
|
|
109 |
* time a thread accesses the variable with the {@link #get}
|
|
110 |
* method, unless the thread previously invoked the {@link #set}
|
|
111 |
* method, in which case the <tt>initialValue</tt> method will not
|
|
112 |
* be invoked for the thread. Normally, this method is invoked at
|
|
113 |
* most once per thread, but it may be invoked again in case of
|
|
114 |
* subsequent invocations of {@link #remove} followed by {@link #get}.
|
|
115 |
*
|
|
116 |
* <p>This implementation simply returns <tt>null</tt>; if the
|
|
117 |
* programmer desires thread-local variables to have an initial
|
|
118 |
* value other than <tt>null</tt>, <tt>ThreadLocal</tt> must be
|
|
119 |
* subclassed, and this method overridden. Typically, an
|
|
120 |
* anonymous inner class will be used.
|
|
121 |
*
|
|
122 |
* @return the initial value for this thread-local
|
|
123 |
*/
|
|
124 |
protected T initialValue() {
|
|
125 |
return null;
|
|
126 |
}
|
|
127 |
|
|
128 |
/**
|
|
129 |
* Creates a thread local variable.
|
|
130 |
*/
|
|
131 |
public ThreadLocal() {
|
|
132 |
}
|
|
133 |
|
|
134 |
/**
|
|
135 |
* Returns the value in the current thread's copy of this
|
|
136 |
* thread-local variable. If the variable has no value for the
|
|
137 |
* current thread, it is first initialized to the value returned
|
|
138 |
* by an invocation of the {@link #initialValue} method.
|
|
139 |
*
|
|
140 |
* @return the current thread's value of this thread-local
|
|
141 |
*/
|
|
142 |
public T get() {
|
|
143 |
Thread t = Thread.currentThread();
|
|
144 |
ThreadLocalMap map = getMap(t);
|
|
145 |
if (map != null) {
|
|
146 |
ThreadLocalMap.Entry e = map.getEntry(this);
|
|
147 |
if (e != null)
|
|
148 |
return (T)e.value;
|
|
149 |
}
|
|
150 |
return setInitialValue();
|
|
151 |
}
|
|
152 |
|
|
153 |
/**
|
|
154 |
* Variant of set() to establish initialValue. Used instead
|
|
155 |
* of set() in case user has overridden the set() method.
|
|
156 |
*
|
|
157 |
* @return the initial value
|
|
158 |
*/
|
|
159 |
private T setInitialValue() {
|
|
160 |
T value = initialValue();
|
|
161 |
Thread t = Thread.currentThread();
|
|
162 |
ThreadLocalMap map = getMap(t);
|
|
163 |
if (map != null)
|
|
164 |
map.set(this, value);
|
|
165 |
else
|
|
166 |
createMap(t, value);
|
|
167 |
return value;
|
|
168 |
}
|
|
169 |
|
|
170 |
/**
|
|
171 |
* Sets the current thread's copy of this thread-local variable
|
|
172 |
* to the specified value. Most subclasses will have no need to
|
|
173 |
* override this method, relying solely on the {@link #initialValue}
|
|
174 |
* method to set the values of thread-locals.
|
|
175 |
*
|
|
176 |
* @param value the value to be stored in the current thread's copy of
|
|
177 |
* this thread-local.
|
|
178 |
*/
|
|
179 |
public void set(T value) {
|
|
180 |
Thread t = Thread.currentThread();
|
|
181 |
ThreadLocalMap map = getMap(t);
|
|
182 |
if (map != null)
|
|
183 |
map.set(this, value);
|
|
184 |
else
|
|
185 |
createMap(t, value);
|
|
186 |
}
|
|
187 |
|
|
188 |
/**
|
|
189 |
* Removes the current thread's value for this thread-local
|
|
190 |
* variable. If this thread-local variable is subsequently
|
|
191 |
* {@linkplain #get read} by the current thread, its value will be
|
|
192 |
* reinitialized by invoking its {@link #initialValue} method,
|
|
193 |
* unless its value is {@linkplain #set set} by the current thread
|
|
194 |
* in the interim. This may result in multiple invocations of the
|
|
195 |
* <tt>initialValue</tt> method in the current thread.
|
|
196 |
*
|
|
197 |
* @since 1.5
|
|
198 |
*/
|
|
199 |
public void remove() {
|
|
200 |
ThreadLocalMap m = getMap(Thread.currentThread());
|
|
201 |
if (m != null)
|
|
202 |
m.remove(this);
|
|
203 |
}
|
|
204 |
|
|
205 |
/**
|
|
206 |
* Get the map associated with a ThreadLocal. Overridden in
|
|
207 |
* InheritableThreadLocal.
|
|
208 |
*
|
|
209 |
* @param t the current thread
|
|
210 |
* @return the map
|
|
211 |
*/
|
|
212 |
ThreadLocalMap getMap(Thread t) {
|
|
213 |
return t.threadLocals;
|
|
214 |
}
|
|
215 |
|
|
216 |
/**
|
|
217 |
* Create the map associated with a ThreadLocal. Overridden in
|
|
218 |
* InheritableThreadLocal.
|
|
219 |
*
|
|
220 |
* @param t the current thread
|
|
221 |
* @param firstValue value for the initial entry of the map
|
|
222 |
* @param map the map to store.
|
|
223 |
*/
|
|
224 |
void createMap(Thread t, T firstValue) {
|
|
225 |
t.threadLocals = new ThreadLocalMap(this, firstValue);
|
|
226 |
}
|
|
227 |
|
|
228 |
/**
|
|
229 |
* Factory method to create map of inherited thread locals.
|
|
230 |
* Designed to be called only from Thread constructor.
|
|
231 |
*
|
|
232 |
* @param parentMap the map associated with parent thread
|
|
233 |
* @return a map containing the parent's inheritable bindings
|
|
234 |
*/
|
|
235 |
static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
|
|
236 |
return new ThreadLocalMap(parentMap);
|
|
237 |
}
|
|
238 |
|
|
239 |
/**
|
|
240 |
* Method childValue is visibly defined in subclass
|
|
241 |
* InheritableThreadLocal, but is internally defined here for the
|
|
242 |
* sake of providing createInheritedMap factory method without
|
|
243 |
* needing to subclass the map class in InheritableThreadLocal.
|
|
244 |
* This technique is preferable to the alternative of embedding
|
|
245 |
* instanceof tests in methods.
|
|
246 |
*/
|
|
247 |
T childValue(T parentValue) {
|
|
248 |
throw new UnsupportedOperationException();
|
|
249 |
}
|
|
250 |
|
|
251 |
/**
|
|
252 |
* ThreadLocalMap is a customized hash map suitable only for
|
|
253 |
* maintaining thread local values. No operations are exported
|
|
254 |
* outside of the ThreadLocal class. The class is package private to
|
|
255 |
* allow declaration of fields in class Thread. To help deal with
|
|
256 |
* very large and long-lived usages, the hash table entries use
|
|
257 |
* WeakReferences for keys. However, since reference queues are not
|
|
258 |
* used, stale entries are guaranteed to be removed only when
|
|
259 |
* the table starts running out of space.
|
|
260 |
*/
|
|
261 |
static class ThreadLocalMap {
|
|
262 |
|
|
263 |
/**
|
|
264 |
* The entries in this hash map extend WeakReference, using
|
|
265 |
* its main ref field as the key (which is always a
|
|
266 |
* ThreadLocal object). Note that null keys (i.e. entry.get()
|
|
267 |
* == null) mean that the key is no longer referenced, so the
|
|
268 |
* entry can be expunged from table. Such entries are referred to
|
|
269 |
* as "stale entries" in the code that follows.
|
|
270 |
*/
|
|
271 |
static class Entry extends WeakReference<ThreadLocal> {
|
|
272 |
/** The value associated with this ThreadLocal. */
|
|
273 |
Object value;
|
|
274 |
|
|
275 |
Entry(ThreadLocal k, Object v) {
|
|
276 |
super(k);
|
|
277 |
value = v;
|
|
278 |
}
|
|
279 |
}
|
|
280 |
|
|
281 |
/**
|
|
282 |
* The initial capacity -- MUST be a power of two.
|
|
283 |
*/
|
|
284 |
private static final int INITIAL_CAPACITY = 16;
|
|
285 |
|
|
286 |
/**
|
|
287 |
* The table, resized as necessary.
|
|
288 |
* table.length MUST always be a power of two.
|
|
289 |
*/
|
|
290 |
private Entry[] table;
|
|
291 |
|
|
292 |
/**
|
|
293 |
* The number of entries in the table.
|
|
294 |
*/
|
|
295 |
private int size = 0;
|
|
296 |
|
|
297 |
/**
|
|
298 |
* The next size value at which to resize.
|
|
299 |
*/
|
|
300 |
private int threshold; // Default to 0
|
|
301 |
|
|
302 |
/**
|
|
303 |
* Set the resize threshold to maintain at worst a 2/3 load factor.
|
|
304 |
*/
|
|
305 |
private void setThreshold(int len) {
|
|
306 |
threshold = len * 2 / 3;
|
|
307 |
}
|
|
308 |
|
|
309 |
/**
|
|
310 |
* Increment i modulo len.
|
|
311 |
*/
|
|
312 |
private static int nextIndex(int i, int len) {
|
|
313 |
return ((i + 1 < len) ? i + 1 : 0);
|
|
314 |
}
|
|
315 |
|
|
316 |
/**
|
|
317 |
* Decrement i modulo len.
|
|
318 |
*/
|
|
319 |
private static int prevIndex(int i, int len) {
|
|
320 |
return ((i - 1 >= 0) ? i - 1 : len - 1);
|
|
321 |
}
|
|
322 |
|
|
323 |
/**
|
|
324 |
* Construct a new map initially containing (firstKey, firstValue).
|
|
325 |
* ThreadLocalMaps are constructed lazily, so we only create
|
|
326 |
* one when we have at least one entry to put in it.
|
|
327 |
*/
|
|
328 |
ThreadLocalMap(ThreadLocal firstKey, Object firstValue) {
|
|
329 |
table = new Entry[INITIAL_CAPACITY];
|
|
330 |
int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
|
|
331 |
table[i] = new Entry(firstKey, firstValue);
|
|
332 |
size = 1;
|
|
333 |
setThreshold(INITIAL_CAPACITY);
|
|
334 |
}
|
|
335 |
|
|
336 |
/**
|
|
337 |
* Construct a new map including all Inheritable ThreadLocals
|
|
338 |
* from given parent map. Called only by createInheritedMap.
|
|
339 |
*
|
|
340 |
* @param parentMap the map associated with parent thread.
|
|
341 |
*/
|
|
342 |
private ThreadLocalMap(ThreadLocalMap parentMap) {
|
|
343 |
Entry[] parentTable = parentMap.table;
|
|
344 |
int len = parentTable.length;
|
|
345 |
setThreshold(len);
|
|
346 |
table = new Entry[len];
|
|
347 |
|
|
348 |
for (int j = 0; j < len; j++) {
|
|
349 |
Entry e = parentTable[j];
|
|
350 |
if (e != null) {
|
|
351 |
ThreadLocal key = e.get();
|
|
352 |
if (key != null) {
|
|
353 |
Object value = key.childValue(e.value);
|
|
354 |
Entry c = new Entry(key, value);
|
|
355 |
int h = key.threadLocalHashCode & (len - 1);
|
|
356 |
while (table[h] != null)
|
|
357 |
h = nextIndex(h, len);
|
|
358 |
table[h] = c;
|
|
359 |
size++;
|
|
360 |
}
|
|
361 |
}
|
|
362 |
}
|
|
363 |
}
|
|
364 |
|
|
365 |
/**
|
|
366 |
* Get the entry associated with key. This method
|
|
367 |
* itself handles only the fast path: a direct hit of existing
|
|
368 |
* key. It otherwise relays to getEntryAfterMiss. This is
|
|
369 |
* designed to maximize performance for direct hits, in part
|
|
370 |
* by making this method readily inlinable.
|
|
371 |
*
|
|
372 |
* @param key the thread local object
|
|
373 |
* @return the entry associated with key, or null if no such
|
|
374 |
*/
|
|
375 |
private Entry getEntry(ThreadLocal key) {
|
|
376 |
int i = key.threadLocalHashCode & (table.length - 1);
|
|
377 |
Entry e = table[i];
|
|
378 |
if (e != null && e.get() == key)
|
|
379 |
return e;
|
|
380 |
else
|
|
381 |
return getEntryAfterMiss(key, i, e);
|
|
382 |
}
|
|
383 |
|
|
384 |
/**
|
|
385 |
* Version of getEntry method for use when key is not found in
|
|
386 |
* its direct hash slot.
|
|
387 |
*
|
|
388 |
* @param key the thread local object
|
|
389 |
* @param i the table index for key's hash code
|
|
390 |
* @param e the entry at table[i]
|
|
391 |
* @return the entry associated with key, or null if no such
|
|
392 |
*/
|
|
393 |
private Entry getEntryAfterMiss(ThreadLocal key, int i, Entry e) {
|
|
394 |
Entry[] tab = table;
|
|
395 |
int len = tab.length;
|
|
396 |
|
|
397 |
while (e != null) {
|
|
398 |
ThreadLocal k = e.get();
|
|
399 |
if (k == key)
|
|
400 |
return e;
|
|
401 |
if (k == null)
|
|
402 |
expungeStaleEntry(i);
|
|
403 |
else
|
|
404 |
i = nextIndex(i, len);
|
|
405 |
e = tab[i];
|
|
406 |
}
|
|
407 |
return null;
|
|
408 |
}
|
|
409 |
|
|
410 |
/**
|
|
411 |
* Set the value associated with key.
|
|
412 |
*
|
|
413 |
* @param key the thread local object
|
|
414 |
* @param value the value to be set
|
|
415 |
*/
|
|
416 |
private void set(ThreadLocal key, Object value) {
|
|
417 |
|
|
418 |
// We don't use a fast path as with get() because it is at
|
|
419 |
// least as common to use set() to create new entries as
|
|
420 |
// it is to replace existing ones, in which case, a fast
|
|
421 |
// path would fail more often than not.
|
|
422 |
|
|
423 |
Entry[] tab = table;
|
|
424 |
int len = tab.length;
|
|
425 |
int i = key.threadLocalHashCode & (len-1);
|
|
426 |
|
|
427 |
for (Entry e = tab[i];
|
|
428 |
e != null;
|
|
429 |
e = tab[i = nextIndex(i, len)]) {
|
|
430 |
ThreadLocal k = e.get();
|
|
431 |
|
|
432 |
if (k == key) {
|
|
433 |
e.value = value;
|
|
434 |
return;
|
|
435 |
}
|
|
436 |
|
|
437 |
if (k == null) {
|
|
438 |
replaceStaleEntry(key, value, i);
|
|
439 |
return;
|
|
440 |
}
|
|
441 |
}
|
|
442 |
|
|
443 |
tab[i] = new Entry(key, value);
|
|
444 |
int sz = ++size;
|
|
445 |
if (!cleanSomeSlots(i, sz) && sz >= threshold)
|
|
446 |
rehash();
|
|
447 |
}
|
|
448 |
|
|
449 |
/**
|
|
450 |
* Remove the entry for key.
|
|
451 |
*/
|
|
452 |
private void remove(ThreadLocal key) {
|
|
453 |
Entry[] tab = table;
|
|
454 |
int len = tab.length;
|
|
455 |
int i = key.threadLocalHashCode & (len-1);
|
|
456 |
for (Entry e = tab[i];
|
|
457 |
e != null;
|
|
458 |
e = tab[i = nextIndex(i, len)]) {
|
|
459 |
if (e.get() == key) {
|
|
460 |
e.clear();
|
|
461 |
expungeStaleEntry(i);
|
|
462 |
return;
|
|
463 |
}
|
|
464 |
}
|
|
465 |
}
|
|
466 |
|
|
467 |
/**
|
|
468 |
* Replace a stale entry encountered during a set operation
|
|
469 |
* with an entry for the specified key. The value passed in
|
|
470 |
* the value parameter is stored in the entry, whether or not
|
|
471 |
* an entry already exists for the specified key.
|
|
472 |
*
|
|
473 |
* As a side effect, this method expunges all stale entries in the
|
|
474 |
* "run" containing the stale entry. (A run is a sequence of entries
|
|
475 |
* between two null slots.)
|
|
476 |
*
|
|
477 |
* @param key the key
|
|
478 |
* @param value the value to be associated with key
|
|
479 |
* @param staleSlot index of the first stale entry encountered while
|
|
480 |
* searching for key.
|
|
481 |
*/
|
|
482 |
private void replaceStaleEntry(ThreadLocal key, Object value,
|
|
483 |
int staleSlot) {
|
|
484 |
Entry[] tab = table;
|
|
485 |
int len = tab.length;
|
|
486 |
Entry e;
|
|
487 |
|
|
488 |
// Back up to check for prior stale entry in current run.
|
|
489 |
// We clean out whole runs at a time to avoid continual
|
|
490 |
// incremental rehashing due to garbage collector freeing
|
|
491 |
// up refs in bunches (i.e., whenever the collector runs).
|
|
492 |
int slotToExpunge = staleSlot;
|
|
493 |
for (int i = prevIndex(staleSlot, len);
|
|
494 |
(e = tab[i]) != null;
|
|
495 |
i = prevIndex(i, len))
|
|
496 |
if (e.get() == null)
|
|
497 |
slotToExpunge = i;
|
|
498 |
|
|
499 |
// Find either the key or trailing null slot of run, whichever
|
|
500 |
// occurs first
|
|
501 |
for (int i = nextIndex(staleSlot, len);
|
|
502 |
(e = tab[i]) != null;
|
|
503 |
i = nextIndex(i, len)) {
|
|
504 |
ThreadLocal k = e.get();
|
|
505 |
|
|
506 |
// If we find key, then we need to swap it
|
|
507 |
// with the stale entry to maintain hash table order.
|
|
508 |
// The newly stale slot, or any other stale slot
|
|
509 |
// encountered above it, can then be sent to expungeStaleEntry
|
|
510 |
// to remove or rehash all of the other entries in run.
|
|
511 |
if (k == key) {
|
|
512 |
e.value = value;
|
|
513 |
|
|
514 |
tab[i] = tab[staleSlot];
|
|
515 |
tab[staleSlot] = e;
|
|
516 |
|
|
517 |
// Start expunge at preceding stale entry if it exists
|
|
518 |
if (slotToExpunge == staleSlot)
|
|
519 |
slotToExpunge = i;
|
|
520 |
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
|
|
521 |
return;
|
|
522 |
}
|
|
523 |
|
|
524 |
// If we didn't find stale entry on backward scan, the
|
|
525 |
// first stale entry seen while scanning for key is the
|
|
526 |
// first still present in the run.
|
|
527 |
if (k == null && slotToExpunge == staleSlot)
|
|
528 |
slotToExpunge = i;
|
|
529 |
}
|
|
530 |
|
|
531 |
// If key not found, put new entry in stale slot
|
|
532 |
tab[staleSlot].value = null;
|
|
533 |
tab[staleSlot] = new Entry(key, value);
|
|
534 |
|
|
535 |
// If there are any other stale entries in run, expunge them
|
|
536 |
if (slotToExpunge != staleSlot)
|
|
537 |
cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
|
|
538 |
}
|
|
539 |
|
|
540 |
/**
|
|
541 |
* Expunge a stale entry by rehashing any possibly colliding entries
|
|
542 |
* lying between staleSlot and the next null slot. This also expunges
|
|
543 |
* any other stale entries encountered before the trailing null. See
|
|
544 |
* Knuth, Section 6.4
|
|
545 |
*
|
|
546 |
* @param staleSlot index of slot known to have null key
|
|
547 |
* @return the index of the next null slot after staleSlot
|
|
548 |
* (all between staleSlot and this slot will have been checked
|
|
549 |
* for expunging).
|
|
550 |
*/
|
|
551 |
private int expungeStaleEntry(int staleSlot) {
|
|
552 |
Entry[] tab = table;
|
|
553 |
int len = tab.length;
|
|
554 |
|
|
555 |
// expunge entry at staleSlot
|
|
556 |
tab[staleSlot].value = null;
|
|
557 |
tab[staleSlot] = null;
|
|
558 |
size--;
|
|
559 |
|
|
560 |
// Rehash until we encounter null
|
|
561 |
Entry e;
|
|
562 |
int i;
|
|
563 |
for (i = nextIndex(staleSlot, len);
|
|
564 |
(e = tab[i]) != null;
|
|
565 |
i = nextIndex(i, len)) {
|
|
566 |
ThreadLocal k = e.get();
|
|
567 |
if (k == null) {
|
|
568 |
e.value = null;
|
|
569 |
tab[i] = null;
|
|
570 |
size--;
|
|
571 |
} else {
|
|
572 |
int h = k.threadLocalHashCode & (len - 1);
|
|
573 |
if (h != i) {
|
|
574 |
tab[i] = null;
|
|
575 |
|
|
576 |
// Unlike Knuth 6.4 Algorithm R, we must scan until
|
|
577 |
// null because multiple entries could have been stale.
|
|
578 |
while (tab[h] != null)
|
|
579 |
h = nextIndex(h, len);
|
|
580 |
tab[h] = e;
|
|
581 |
}
|
|
582 |
}
|
|
583 |
}
|
|
584 |
return i;
|
|
585 |
}
|
|
586 |
|
|
587 |
/**
|
|
588 |
* Heuristically scan some cells looking for stale entries.
|
|
589 |
* This is invoked when either a new element is added, or
|
|
590 |
* another stale one has been expunged. It performs a
|
|
591 |
* logarithmic number of scans, as a balance between no
|
|
592 |
* scanning (fast but retains garbage) and a number of scans
|
|
593 |
* proportional to number of elements, that would find all
|
|
594 |
* garbage but would cause some insertions to take O(n) time.
|
|
595 |
*
|
|
596 |
* @param i a position known NOT to hold a stale entry. The
|
|
597 |
* scan starts at the element after i.
|
|
598 |
*
|
|
599 |
* @param n scan control: <tt>log2(n)</tt> cells are scanned,
|
|
600 |
* unless a stale entry is found, in which case
|
|
601 |
* <tt>log2(table.length)-1</tt> additional cells are scanned.
|
|
602 |
* When called from insertions, this parameter is the number
|
|
603 |
* of elements, but when from replaceStaleEntry, it is the
|
|
604 |
* table length. (Note: all this could be changed to be either
|
|
605 |
* more or less aggressive by weighting n instead of just
|
|
606 |
* using straight log n. But this version is simple, fast, and
|
|
607 |
* seems to work well.)
|
|
608 |
*
|
|
609 |
* @return true if any stale entries have been removed.
|
|
610 |
*/
|
|
611 |
private boolean cleanSomeSlots(int i, int n) {
|
|
612 |
boolean removed = false;
|
|
613 |
Entry[] tab = table;
|
|
614 |
int len = tab.length;
|
|
615 |
do {
|
|
616 |
i = nextIndex(i, len);
|
|
617 |
Entry e = tab[i];
|
|
618 |
if (e != null && e.get() == null) {
|
|
619 |
n = len;
|
|
620 |
removed = true;
|
|
621 |
i = expungeStaleEntry(i);
|
|
622 |
}
|
|
623 |
} while ( (n >>>= 1) != 0);
|
|
624 |
return removed;
|
|
625 |
}
|
|
626 |
|
|
627 |
/**
|
|
628 |
* Re-pack and/or re-size the table. First scan the entire
|
|
629 |
* table removing stale entries. If this doesn't sufficiently
|
|
630 |
* shrink the size of the table, double the table size.
|
|
631 |
*/
|
|
632 |
private void rehash() {
|
|
633 |
expungeStaleEntries();
|
|
634 |
|
|
635 |
// Use lower threshold for doubling to avoid hysteresis
|
|
636 |
if (size >= threshold - threshold / 4)
|
|
637 |
resize();
|
|
638 |
}
|
|
639 |
|
|
640 |
/**
|
|
641 |
* Double the capacity of the table.
|
|
642 |
*/
|
|
643 |
private void resize() {
|
|
644 |
Entry[] oldTab = table;
|
|
645 |
int oldLen = oldTab.length;
|
|
646 |
int newLen = oldLen * 2;
|
|
647 |
Entry[] newTab = new Entry[newLen];
|
|
648 |
int count = 0;
|
|
649 |
|
|
650 |
for (int j = 0; j < oldLen; ++j) {
|
|
651 |
Entry e = oldTab[j];
|
|
652 |
if (e != null) {
|
|
653 |
ThreadLocal k = e.get();
|
|
654 |
if (k == null) {
|
|
655 |
e.value = null; // Help the GC
|
|
656 |
} else {
|
|
657 |
int h = k.threadLocalHashCode & (newLen - 1);
|
|
658 |
while (newTab[h] != null)
|
|
659 |
h = nextIndex(h, newLen);
|
|
660 |
newTab[h] = e;
|
|
661 |
count++;
|
|
662 |
}
|
|
663 |
}
|
|
664 |
}
|
|
665 |
|
|
666 |
setThreshold(newLen);
|
|
667 |
size = count;
|
|
668 |
table = newTab;
|
|
669 |
}
|
|
670 |
|
|
671 |
/**
|
|
672 |
* Expunge all stale entries in the table.
|
|
673 |
*/
|
|
674 |
private void expungeStaleEntries() {
|
|
675 |
Entry[] tab = table;
|
|
676 |
int len = tab.length;
|
|
677 |
for (int j = 0; j < len; j++) {
|
|
678 |
Entry e = tab[j];
|
|
679 |
if (e != null && e.get() == null)
|
|
680 |
expungeStaleEntry(j);
|
|
681 |
}
|
|
682 |
}
|
|
683 |
}
|
|
684 |
}
|