2
|
1 |
/*
|
|
2 |
* Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation. Sun designates this
|
|
8 |
* particular file as subject to the "Classpath" exception as provided
|
|
9 |
* by Sun in the LICENSE file that accompanied this code.
|
|
10 |
*
|
|
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
15 |
* accompanied this code).
|
|
16 |
*
|
|
17 |
* You should have received a copy of the GNU General Public License version
|
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
20 |
*
|
|
21 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
22 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
23 |
* have any questions.
|
|
24 |
*/
|
|
25 |
|
|
26 |
package java.awt;
|
|
27 |
|
|
28 |
import java.awt.image.Raster;
|
|
29 |
import sun.awt.image.IntegerComponentRaster;
|
|
30 |
import java.awt.image.ColorModel;
|
|
31 |
import java.awt.image.DirectColorModel;
|
|
32 |
import java.awt.geom.Point2D;
|
|
33 |
import java.awt.geom.AffineTransform;
|
|
34 |
import java.awt.geom.NoninvertibleTransformException;
|
|
35 |
import java.lang.ref.WeakReference;
|
|
36 |
|
|
37 |
class GradientPaintContext implements PaintContext {
|
|
38 |
static ColorModel xrgbmodel =
|
|
39 |
new DirectColorModel(24, 0x00ff0000, 0x0000ff00, 0x000000ff);
|
|
40 |
static ColorModel xbgrmodel =
|
|
41 |
new DirectColorModel(24, 0x000000ff, 0x0000ff00, 0x00ff0000);
|
|
42 |
|
|
43 |
static ColorModel cachedModel;
|
|
44 |
static WeakReference cached;
|
|
45 |
|
|
46 |
static synchronized Raster getCachedRaster(ColorModel cm, int w, int h) {
|
|
47 |
if (cm == cachedModel) {
|
|
48 |
if (cached != null) {
|
|
49 |
Raster ras = (Raster) cached.get();
|
|
50 |
if (ras != null &&
|
|
51 |
ras.getWidth() >= w &&
|
|
52 |
ras.getHeight() >= h)
|
|
53 |
{
|
|
54 |
cached = null;
|
|
55 |
return ras;
|
|
56 |
}
|
|
57 |
}
|
|
58 |
}
|
|
59 |
return cm.createCompatibleWritableRaster(w, h);
|
|
60 |
}
|
|
61 |
|
|
62 |
static synchronized void putCachedRaster(ColorModel cm, Raster ras) {
|
|
63 |
if (cached != null) {
|
|
64 |
Raster cras = (Raster) cached.get();
|
|
65 |
if (cras != null) {
|
|
66 |
int cw = cras.getWidth();
|
|
67 |
int ch = cras.getHeight();
|
|
68 |
int iw = ras.getWidth();
|
|
69 |
int ih = ras.getHeight();
|
|
70 |
if (cw >= iw && ch >= ih) {
|
|
71 |
return;
|
|
72 |
}
|
|
73 |
if (cw * ch >= iw * ih) {
|
|
74 |
return;
|
|
75 |
}
|
|
76 |
}
|
|
77 |
}
|
|
78 |
cachedModel = cm;
|
|
79 |
cached = new WeakReference(ras);
|
|
80 |
}
|
|
81 |
|
|
82 |
double x1;
|
|
83 |
double y1;
|
|
84 |
double dx;
|
|
85 |
double dy;
|
|
86 |
boolean cyclic;
|
|
87 |
int interp[];
|
|
88 |
Raster saved;
|
|
89 |
ColorModel model;
|
|
90 |
|
|
91 |
public GradientPaintContext(ColorModel cm,
|
|
92 |
Point2D p1, Point2D p2, AffineTransform xform,
|
|
93 |
Color c1, Color c2, boolean cyclic) {
|
|
94 |
// First calculate the distance moved in user space when
|
|
95 |
// we move a single unit along the X & Y axes in device space.
|
|
96 |
Point2D xvec = new Point2D.Double(1, 0);
|
|
97 |
Point2D yvec = new Point2D.Double(0, 1);
|
|
98 |
try {
|
|
99 |
AffineTransform inverse = xform.createInverse();
|
|
100 |
inverse.deltaTransform(xvec, xvec);
|
|
101 |
inverse.deltaTransform(yvec, yvec);
|
|
102 |
} catch (NoninvertibleTransformException e) {
|
|
103 |
xvec.setLocation(0, 0);
|
|
104 |
yvec.setLocation(0, 0);
|
|
105 |
}
|
|
106 |
|
|
107 |
// Now calculate the (square of the) user space distance
|
|
108 |
// between the anchor points. This value equals:
|
|
109 |
// (UserVec . UserVec)
|
|
110 |
double udx = p2.getX() - p1.getX();
|
|
111 |
double udy = p2.getY() - p1.getY();
|
|
112 |
double ulenSq = udx * udx + udy * udy;
|
|
113 |
|
|
114 |
if (ulenSq <= Double.MIN_VALUE) {
|
|
115 |
dx = 0;
|
|
116 |
dy = 0;
|
|
117 |
} else {
|
|
118 |
// Now calculate the proportional distance moved along the
|
|
119 |
// vector from p1 to p2 when we move a unit along X & Y in
|
|
120 |
// device space.
|
|
121 |
//
|
|
122 |
// The length of the projection of the Device Axis Vector is
|
|
123 |
// its dot product with the Unit User Vector:
|
|
124 |
// (DevAxisVec . (UserVec / Len(UserVec))
|
|
125 |
//
|
|
126 |
// The "proportional" length is that length divided again
|
|
127 |
// by the length of the User Vector:
|
|
128 |
// (DevAxisVec . (UserVec / Len(UserVec))) / Len(UserVec)
|
|
129 |
// which simplifies to:
|
|
130 |
// ((DevAxisVec . UserVec) / Len(UserVec)) / Len(UserVec)
|
|
131 |
// which simplifies to:
|
|
132 |
// (DevAxisVec . UserVec) / LenSquared(UserVec)
|
|
133 |
dx = (xvec.getX() * udx + xvec.getY() * udy) / ulenSq;
|
|
134 |
dy = (yvec.getX() * udx + yvec.getY() * udy) / ulenSq;
|
|
135 |
|
|
136 |
if (cyclic) {
|
|
137 |
dx = dx % 1.0;
|
|
138 |
dy = dy % 1.0;
|
|
139 |
} else {
|
|
140 |
// We are acyclic
|
|
141 |
if (dx < 0) {
|
|
142 |
// If we are using the acyclic form below, we need
|
|
143 |
// dx to be non-negative for simplicity of scanning
|
|
144 |
// across the scan lines for the transition points.
|
|
145 |
// To ensure that constraint, we negate the dx/dy
|
|
146 |
// values and swap the points and colors.
|
|
147 |
Point2D p = p1; p1 = p2; p2 = p;
|
|
148 |
Color c = c1; c1 = c2; c2 = c;
|
|
149 |
dx = -dx;
|
|
150 |
dy = -dy;
|
|
151 |
}
|
|
152 |
}
|
|
153 |
}
|
|
154 |
|
|
155 |
Point2D dp1 = xform.transform(p1, null);
|
|
156 |
this.x1 = dp1.getX();
|
|
157 |
this.y1 = dp1.getY();
|
|
158 |
|
|
159 |
this.cyclic = cyclic;
|
|
160 |
int rgb1 = c1.getRGB();
|
|
161 |
int rgb2 = c2.getRGB();
|
|
162 |
int a1 = (rgb1 >> 24) & 0xff;
|
|
163 |
int r1 = (rgb1 >> 16) & 0xff;
|
|
164 |
int g1 = (rgb1 >> 8) & 0xff;
|
|
165 |
int b1 = (rgb1 ) & 0xff;
|
|
166 |
int da = ((rgb2 >> 24) & 0xff) - a1;
|
|
167 |
int dr = ((rgb2 >> 16) & 0xff) - r1;
|
|
168 |
int dg = ((rgb2 >> 8) & 0xff) - g1;
|
|
169 |
int db = ((rgb2 ) & 0xff) - b1;
|
|
170 |
if (a1 == 0xff && da == 0) {
|
|
171 |
model = xrgbmodel;
|
|
172 |
if (cm instanceof DirectColorModel) {
|
|
173 |
DirectColorModel dcm = (DirectColorModel) cm;
|
|
174 |
int tmp = dcm.getAlphaMask();
|
|
175 |
if ((tmp == 0 || tmp == 0xff) &&
|
|
176 |
dcm.getRedMask() == 0xff &&
|
|
177 |
dcm.getGreenMask() == 0xff00 &&
|
|
178 |
dcm.getBlueMask() == 0xff0000)
|
|
179 |
{
|
|
180 |
model = xbgrmodel;
|
|
181 |
tmp = r1; r1 = b1; b1 = tmp;
|
|
182 |
tmp = dr; dr = db; db = tmp;
|
|
183 |
}
|
|
184 |
}
|
|
185 |
} else {
|
|
186 |
model = ColorModel.getRGBdefault();
|
|
187 |
}
|
|
188 |
interp = new int[cyclic ? 513 : 257];
|
|
189 |
for (int i = 0; i <= 256; i++) {
|
|
190 |
float rel = i / 256.0f;
|
|
191 |
int rgb =
|
|
192 |
(((int) (a1 + da * rel)) << 24) |
|
|
193 |
(((int) (r1 + dr * rel)) << 16) |
|
|
194 |
(((int) (g1 + dg * rel)) << 8) |
|
|
195 |
(((int) (b1 + db * rel)) );
|
|
196 |
interp[i] = rgb;
|
|
197 |
if (cyclic) {
|
|
198 |
interp[512 - i] = rgb;
|
|
199 |
}
|
|
200 |
}
|
|
201 |
}
|
|
202 |
|
|
203 |
/**
|
|
204 |
* Release the resources allocated for the operation.
|
|
205 |
*/
|
|
206 |
public void dispose() {
|
|
207 |
if (saved != null) {
|
|
208 |
putCachedRaster(model, saved);
|
|
209 |
saved = null;
|
|
210 |
}
|
|
211 |
}
|
|
212 |
|
|
213 |
/**
|
|
214 |
* Return the ColorModel of the output.
|
|
215 |
*/
|
|
216 |
public ColorModel getColorModel() {
|
|
217 |
return model;
|
|
218 |
}
|
|
219 |
|
|
220 |
/**
|
|
221 |
* Return a Raster containing the colors generated for the graphics
|
|
222 |
* operation.
|
|
223 |
* @param x,y,w,h The area in device space for which colors are
|
|
224 |
* generated.
|
|
225 |
*/
|
|
226 |
public Raster getRaster(int x, int y, int w, int h) {
|
|
227 |
double rowrel = (x - x1) * dx + (y - y1) * dy;
|
|
228 |
|
|
229 |
Raster rast = saved;
|
|
230 |
if (rast == null || rast.getWidth() < w || rast.getHeight() < h) {
|
|
231 |
rast = getCachedRaster(model, w, h);
|
|
232 |
saved = rast;
|
|
233 |
}
|
|
234 |
IntegerComponentRaster irast = (IntegerComponentRaster) rast;
|
|
235 |
int off = irast.getDataOffset(0);
|
|
236 |
int adjust = irast.getScanlineStride() - w;
|
|
237 |
int[] pixels = irast.getDataStorage();
|
|
238 |
|
|
239 |
if (cyclic) {
|
|
240 |
cycleFillRaster(pixels, off, adjust, w, h, rowrel, dx, dy);
|
|
241 |
} else {
|
|
242 |
clipFillRaster(pixels, off, adjust, w, h, rowrel, dx, dy);
|
|
243 |
}
|
|
244 |
|
|
245 |
irast.markDirty();
|
|
246 |
|
|
247 |
return rast;
|
|
248 |
}
|
|
249 |
|
|
250 |
void cycleFillRaster(int[] pixels, int off, int adjust, int w, int h,
|
|
251 |
double rowrel, double dx, double dy) {
|
|
252 |
rowrel = rowrel % 2.0;
|
|
253 |
int irowrel = ((int) (rowrel * (1 << 30))) << 1;
|
|
254 |
int idx = (int) (-dx * (1 << 31));
|
|
255 |
int idy = (int) (-dy * (1 << 31));
|
|
256 |
while (--h >= 0) {
|
|
257 |
int icolrel = irowrel;
|
|
258 |
for (int j = w; j > 0; j--) {
|
|
259 |
pixels[off++] = interp[icolrel >>> 23];
|
|
260 |
icolrel += idx;
|
|
261 |
}
|
|
262 |
|
|
263 |
off += adjust;
|
|
264 |
irowrel += idy;
|
|
265 |
}
|
|
266 |
}
|
|
267 |
|
|
268 |
void clipFillRaster(int[] pixels, int off, int adjust, int w, int h,
|
|
269 |
double rowrel, double dx, double dy) {
|
|
270 |
while (--h >= 0) {
|
|
271 |
double colrel = rowrel;
|
|
272 |
int j = w;
|
|
273 |
if (colrel <= 0.0) {
|
|
274 |
int rgb = interp[0];
|
|
275 |
do {
|
|
276 |
pixels[off++] = rgb;
|
|
277 |
colrel += dx;
|
|
278 |
} while (--j > 0 && colrel <= 0.0);
|
|
279 |
}
|
|
280 |
while (colrel < 1.0 && --j >= 0) {
|
|
281 |
pixels[off++] = interp[(int) (colrel * 256)];
|
|
282 |
colrel += dx;
|
|
283 |
}
|
|
284 |
if (j > 0) {
|
|
285 |
int rgb = interp[256];
|
|
286 |
do {
|
|
287 |
pixels[off++] = rgb;
|
|
288 |
} while (--j > 0);
|
|
289 |
}
|
|
290 |
|
|
291 |
off += adjust;
|
|
292 |
rowrel += dy;
|
|
293 |
}
|
|
294 |
}
|
|
295 |
}
|