1
|
1 |
/*
|
|
2 |
* Copyright 2003 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
20 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
21 |
* have any questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
|
|
25 |
// Memory Access Ordering Model
|
|
26 |
//
|
|
27 |
// This interface is based on the JSR-133 Cookbook for Compiler Writers
|
|
28 |
// and on the IA64 memory model. It is the dynamic equivalent of the
|
|
29 |
// C/C++ volatile specifier. I.e., volatility restricts compile-time
|
|
30 |
// memory access reordering in a way similar to what we want to occur
|
|
31 |
// at runtime.
|
|
32 |
//
|
|
33 |
// In the following, the terms 'previous', 'subsequent', 'before',
|
|
34 |
// 'after', 'preceeding' and 'succeeding' refer to program order. The
|
|
35 |
// terms 'down' and 'below' refer to forward load or store motion
|
|
36 |
// relative to program order, while 'up' and 'above' refer to backward
|
|
37 |
// motion.
|
|
38 |
//
|
|
39 |
//
|
|
40 |
// We define four primitive memory barrier operations.
|
|
41 |
//
|
|
42 |
// LoadLoad: Load1(s); LoadLoad; Load2
|
|
43 |
//
|
|
44 |
// Ensures that Load1 completes (obtains the value it loads from memory)
|
|
45 |
// before Load2 and any subsequent load operations. Loads before Load1
|
|
46 |
// may *not* float below Load2 and any subsequent load operations.
|
|
47 |
//
|
|
48 |
// StoreStore: Store1(s); StoreStore; Store2
|
|
49 |
//
|
|
50 |
// Ensures that Store1 completes (the effect on memory of Store1 is made
|
|
51 |
// visible to other processors) before Store2 and any subsequent store
|
|
52 |
// operations. Stores before Store1 may *not* float below Store2 and any
|
|
53 |
// subsequent store operations.
|
|
54 |
//
|
|
55 |
// LoadStore: Load1(s); LoadStore; Store2
|
|
56 |
//
|
|
57 |
// Ensures that Load1 completes before Store2 and any subsequent store
|
|
58 |
// operations. Loads before Load1 may *not* float below Store2 and any
|
|
59 |
// subseqeuent store operations.
|
|
60 |
//
|
|
61 |
// StoreLoad: Store1(s); StoreLoad; Load2
|
|
62 |
//
|
|
63 |
// Ensures that Store1 completes before Load2 and any subsequent load
|
|
64 |
// operations. Stores before Store1 may *not* float below Load2 and any
|
|
65 |
// subseqeuent load operations.
|
|
66 |
//
|
|
67 |
//
|
|
68 |
// We define two further operations, 'release' and 'acquire'. They are
|
|
69 |
// mirror images of each other.
|
|
70 |
//
|
|
71 |
// Execution by a processor of release makes the effect of all memory
|
|
72 |
// accesses issued by it previous to the release visible to all
|
|
73 |
// processors *before* the release completes. The effect of subsequent
|
|
74 |
// memory accesses issued by it *may* be made visible *before* the
|
|
75 |
// release. I.e., subsequent memory accesses may float above the
|
|
76 |
// release, but prior ones may not float below it.
|
|
77 |
//
|
|
78 |
// Execution by a processor of acquire makes the effect of all memory
|
|
79 |
// accesses issued by it subsequent to the acquire visible to all
|
|
80 |
// processors *after* the acquire completes. The effect of prior memory
|
|
81 |
// accesses issued by it *may* be made visible *after* the acquire.
|
|
82 |
// I.e., prior memory accesses may float below the acquire, but
|
|
83 |
// subsequent ones may not float above it.
|
|
84 |
//
|
|
85 |
// Finally, we define a 'fence' operation, which conceptually is a
|
|
86 |
// release combined with an acquire. In the real world these operations
|
|
87 |
// require one or more machine instructions which can float above and
|
|
88 |
// below the release or acquire, so we usually can't just issue the
|
|
89 |
// release-acquire back-to-back. All machines we know of implement some
|
|
90 |
// sort of memory fence instruction.
|
|
91 |
//
|
|
92 |
//
|
|
93 |
// The standalone implementations of release and acquire need an associated
|
|
94 |
// dummy volatile store or load respectively. To avoid redundant operations,
|
|
95 |
// we can define the composite operators: 'release_store', 'store_fence' and
|
|
96 |
// 'load_acquire'. Here's a summary of the machine instructions corresponding
|
|
97 |
// to each operation.
|
|
98 |
//
|
|
99 |
// sparc RMO ia64 x86
|
|
100 |
// ---------------------------------------------------------------------
|
|
101 |
// fence membar #LoadStore | mf lock addl 0,(sp)
|
|
102 |
// #StoreStore |
|
|
103 |
// #LoadLoad |
|
|
104 |
// #StoreLoad
|
|
105 |
//
|
|
106 |
// release membar #LoadStore | st.rel [sp]=r0 movl $0,<dummy>
|
|
107 |
// #StoreStore
|
|
108 |
// st %g0,[]
|
|
109 |
//
|
|
110 |
// acquire ld [%sp],%g0 ld.acq <r>=[sp] movl (sp),<r>
|
|
111 |
// membar #LoadLoad |
|
|
112 |
// #LoadStore
|
|
113 |
//
|
|
114 |
// release_store membar #LoadStore | st.rel <store>
|
|
115 |
// #StoreStore
|
|
116 |
// st
|
|
117 |
//
|
|
118 |
// store_fence st st lock xchg
|
|
119 |
// fence mf
|
|
120 |
//
|
|
121 |
// load_acquire ld ld.acq <load>
|
|
122 |
// membar #LoadLoad |
|
|
123 |
// #LoadStore
|
|
124 |
//
|
|
125 |
// Using only release_store and load_acquire, we can implement the
|
|
126 |
// following ordered sequences.
|
|
127 |
//
|
|
128 |
// 1. load, load == load_acquire, load
|
|
129 |
// or load_acquire, load_acquire
|
|
130 |
// 2. load, store == load, release_store
|
|
131 |
// or load_acquire, store
|
|
132 |
// or load_acquire, release_store
|
|
133 |
// 3. store, store == store, release_store
|
|
134 |
// or release_store, release_store
|
|
135 |
//
|
|
136 |
// These require no membar instructions for sparc-TSO and no extra
|
|
137 |
// instructions for ia64.
|
|
138 |
//
|
|
139 |
// Ordering a load relative to preceding stores requires a store_fence,
|
|
140 |
// which implies a membar #StoreLoad between the store and load under
|
|
141 |
// sparc-TSO. A fence is required by ia64. On x86, we use locked xchg.
|
|
142 |
//
|
|
143 |
// 4. store, load == store_fence, load
|
|
144 |
//
|
|
145 |
// Use store_fence to make sure all stores done in an 'interesting'
|
|
146 |
// region are made visible prior to both subsequent loads and stores.
|
|
147 |
//
|
|
148 |
// Conventional usage is to issue a load_acquire for ordered loads. Use
|
|
149 |
// release_store for ordered stores when you care only that prior stores
|
|
150 |
// are visible before the release_store, but don't care exactly when the
|
|
151 |
// store associated with the release_store becomes visible. Use
|
|
152 |
// release_store_fence to update values like the thread state, where we
|
|
153 |
// don't want the current thread to continue until all our prior memory
|
|
154 |
// accesses (including the new thread state) are visible to other threads.
|
|
155 |
//
|
|
156 |
//
|
|
157 |
// C++ Volatility
|
|
158 |
//
|
|
159 |
// C++ guarantees ordering at operations termed 'sequence points' (defined
|
|
160 |
// to be volatile accesses and calls to library I/O functions). 'Side
|
|
161 |
// effects' (defined as volatile accesses, calls to library I/O functions
|
|
162 |
// and object modification) previous to a sequence point must be visible
|
|
163 |
// at that sequence point. See the C++ standard, section 1.9, titled
|
|
164 |
// "Program Execution". This means that all barrier implementations,
|
|
165 |
// including standalone loadload, storestore, loadstore, storeload, acquire
|
|
166 |
// and release must include a sequence point, usually via a volatile memory
|
|
167 |
// access. Other ways to guarantee a sequence point are, e.g., use of
|
|
168 |
// indirect calls and linux's __asm__ volatile.
|
|
169 |
//
|
|
170 |
//
|
|
171 |
// os::is_MP Considered Redundant
|
|
172 |
//
|
|
173 |
// Callers of this interface do not need to test os::is_MP() before
|
|
174 |
// issuing an operation. The test is taken care of by the implementation
|
|
175 |
// of the interface (depending on the vm version and platform, the test
|
|
176 |
// may or may not be actually done by the implementation).
|
|
177 |
//
|
|
178 |
//
|
|
179 |
// A Note on Memory Ordering and Cache Coherency
|
|
180 |
//
|
|
181 |
// Cache coherency and memory ordering are orthogonal concepts, though they
|
|
182 |
// interact. E.g., all existing itanium machines are cache-coherent, but
|
|
183 |
// the hardware can freely reorder loads wrt other loads unless it sees a
|
|
184 |
// load-acquire instruction. All existing sparc machines are cache-coherent
|
|
185 |
// and, unlike itanium, TSO guarantees that the hardware orders loads wrt
|
|
186 |
// loads and stores, and stores wrt to each other.
|
|
187 |
//
|
|
188 |
// Consider the implementation of loadload. *If* your platform *isn't*
|
|
189 |
// cache-coherent, then loadload must not only prevent hardware load
|
|
190 |
// instruction reordering, but it must *also* ensure that subsequent
|
|
191 |
// loads from addresses that could be written by other processors (i.e.,
|
|
192 |
// that are broadcast by other processors) go all the way to the first
|
|
193 |
// level of memory shared by those processors and the one issuing
|
|
194 |
// the loadload.
|
|
195 |
//
|
|
196 |
// So if we have a MP that has, say, a per-processor D$ that doesn't see
|
|
197 |
// writes by other processors, and has a shared E$ that does, the loadload
|
|
198 |
// barrier would have to make sure that either
|
|
199 |
//
|
|
200 |
// 1. cache lines in the issuing processor's D$ that contained data from
|
|
201 |
// addresses that could be written by other processors are invalidated, so
|
|
202 |
// subsequent loads from those addresses go to the E$, (it could do this
|
|
203 |
// by tagging such cache lines as 'shared', though how to tell the hardware
|
|
204 |
// to do the tagging is an interesting problem), or
|
|
205 |
//
|
|
206 |
// 2. there never are such cache lines in the issuing processor's D$, which
|
|
207 |
// means all references to shared data (however identified: see above)
|
|
208 |
// bypass the D$ (i.e., are satisfied from the E$).
|
|
209 |
//
|
|
210 |
// If your machine doesn't have an E$, substitute 'main memory' for 'E$'.
|
|
211 |
//
|
|
212 |
// Either of these alternatives is a pain, so no current machine we know of
|
|
213 |
// has incoherent caches.
|
|
214 |
//
|
|
215 |
// If loadload didn't have these properties, the store-release sequence for
|
|
216 |
// publishing a shared data structure wouldn't work, because a processor
|
|
217 |
// trying to read data newly published by another processor might go to
|
|
218 |
// its own incoherent caches to satisfy the read instead of to the newly
|
|
219 |
// written shared memory.
|
|
220 |
//
|
|
221 |
//
|
|
222 |
// NOTE WELL!!
|
|
223 |
//
|
|
224 |
// A Note on MutexLocker and Friends
|
|
225 |
//
|
|
226 |
// See mutexLocker.hpp. We assume throughout the VM that MutexLocker's
|
|
227 |
// and friends' constructors do a fence, a lock and an acquire *in that
|
|
228 |
// order*. And that their destructors do a release and unlock, in *that*
|
|
229 |
// order. If their implementations change such that these assumptions
|
|
230 |
// are violated, a whole lot of code will break.
|
|
231 |
|
|
232 |
class OrderAccess : AllStatic {
|
|
233 |
public:
|
|
234 |
static void loadload();
|
|
235 |
static void storestore();
|
|
236 |
static void loadstore();
|
|
237 |
static void storeload();
|
|
238 |
|
|
239 |
static void acquire();
|
|
240 |
static void release();
|
|
241 |
static void fence();
|
|
242 |
|
|
243 |
static jbyte load_acquire(volatile jbyte* p);
|
|
244 |
static jshort load_acquire(volatile jshort* p);
|
|
245 |
static jint load_acquire(volatile jint* p);
|
|
246 |
static jlong load_acquire(volatile jlong* p);
|
|
247 |
static jubyte load_acquire(volatile jubyte* p);
|
|
248 |
static jushort load_acquire(volatile jushort* p);
|
|
249 |
static juint load_acquire(volatile juint* p);
|
|
250 |
static julong load_acquire(volatile julong* p);
|
|
251 |
static jfloat load_acquire(volatile jfloat* p);
|
|
252 |
static jdouble load_acquire(volatile jdouble* p);
|
|
253 |
|
|
254 |
static intptr_t load_ptr_acquire(volatile intptr_t* p);
|
|
255 |
static void* load_ptr_acquire(volatile void* p);
|
|
256 |
static void* load_ptr_acquire(const volatile void* p);
|
|
257 |
|
|
258 |
static void release_store(volatile jbyte* p, jbyte v);
|
|
259 |
static void release_store(volatile jshort* p, jshort v);
|
|
260 |
static void release_store(volatile jint* p, jint v);
|
|
261 |
static void release_store(volatile jlong* p, jlong v);
|
|
262 |
static void release_store(volatile jubyte* p, jubyte v);
|
|
263 |
static void release_store(volatile jushort* p, jushort v);
|
|
264 |
static void release_store(volatile juint* p, juint v);
|
|
265 |
static void release_store(volatile julong* p, julong v);
|
|
266 |
static void release_store(volatile jfloat* p, jfloat v);
|
|
267 |
static void release_store(volatile jdouble* p, jdouble v);
|
|
268 |
|
|
269 |
static void release_store_ptr(volatile intptr_t* p, intptr_t v);
|
|
270 |
static void release_store_ptr(volatile void* p, void* v);
|
|
271 |
|
|
272 |
static void store_fence(jbyte* p, jbyte v);
|
|
273 |
static void store_fence(jshort* p, jshort v);
|
|
274 |
static void store_fence(jint* p, jint v);
|
|
275 |
static void store_fence(jlong* p, jlong v);
|
|
276 |
static void store_fence(jubyte* p, jubyte v);
|
|
277 |
static void store_fence(jushort* p, jushort v);
|
|
278 |
static void store_fence(juint* p, juint v);
|
|
279 |
static void store_fence(julong* p, julong v);
|
|
280 |
static void store_fence(jfloat* p, jfloat v);
|
|
281 |
static void store_fence(jdouble* p, jdouble v);
|
|
282 |
|
|
283 |
static void store_ptr_fence(intptr_t* p, intptr_t v);
|
|
284 |
static void store_ptr_fence(void** p, void* v);
|
|
285 |
|
|
286 |
static void release_store_fence(volatile jbyte* p, jbyte v);
|
|
287 |
static void release_store_fence(volatile jshort* p, jshort v);
|
|
288 |
static void release_store_fence(volatile jint* p, jint v);
|
|
289 |
static void release_store_fence(volatile jlong* p, jlong v);
|
|
290 |
static void release_store_fence(volatile jubyte* p, jubyte v);
|
|
291 |
static void release_store_fence(volatile jushort* p, jushort v);
|
|
292 |
static void release_store_fence(volatile juint* p, juint v);
|
|
293 |
static void release_store_fence(volatile julong* p, julong v);
|
|
294 |
static void release_store_fence(volatile jfloat* p, jfloat v);
|
|
295 |
static void release_store_fence(volatile jdouble* p, jdouble v);
|
|
296 |
|
|
297 |
static void release_store_ptr_fence(volatile intptr_t* p, intptr_t v);
|
|
298 |
static void release_store_ptr_fence(volatile void* p, void* v);
|
|
299 |
|
|
300 |
// In order to force a memory access, implementations may
|
|
301 |
// need a volatile externally visible dummy variable.
|
|
302 |
static volatile intptr_t dummy;
|
|
303 |
};
|