author | mgerdin |
Thu, 23 Feb 2012 14:58:35 +0100 | |
changeset 12095 | cc3d6f08a4c4 |
parent 7397 | 5b173b4ca846 |
child 22827 | 07d991d45a51 |
child 22551 | 9bf46d16dcc6 |
permissions | -rw-r--r-- |
1 | 1 |
/* |
7397 | 2 |
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. |
1 | 3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 |
* |
|
5 |
* This code is free software; you can redistribute it and/or modify it |
|
6 |
* under the terms of the GNU General Public License version 2 only, as |
|
7 |
* published by the Free Software Foundation. |
|
8 |
* |
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that |
|
13 |
* accompanied this code). |
|
14 |
* |
|
15 |
* You should have received a copy of the GNU General Public License version |
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation, |
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 |
* |
|
5547
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
1
diff
changeset
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
1
diff
changeset
|
20 |
* or visit www.oracle.com if you need additional information or have any |
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
1
diff
changeset
|
21 |
* questions. |
1 | 22 |
* |
23 |
*/ |
|
24 |
||
7397 | 25 |
#include "precompiled.hpp" |
26 |
#include "prims/jni.h" |
|
27 |
#include "runtime/interfaceSupport.hpp" |
|
28 |
#include "runtime/sharedRuntime.hpp" |
|
1 | 29 |
|
30 |
// This file contains copies of the fdlibm routines used by |
|
31 |
// StrictMath. It turns out that it is almost always required to use |
|
32 |
// these runtime routines; the Intel CPU doesn't meet the Java |
|
33 |
// specification for sin/cos outside a certain limited argument range, |
|
34 |
// and the SPARC CPU doesn't appear to have sin/cos instructions. It |
|
35 |
// also turns out that avoiding the indirect call through function |
|
36 |
// pointer out to libjava.so in SharedRuntime speeds these routines up |
|
37 |
// by roughly 15% on both Win32/x86 and Solaris/SPARC. |
|
38 |
||
39 |
// Enabling optimizations in this file causes incorrect code to be |
|
40 |
// generated; can not figure out how to turn down optimization for one |
|
41 |
// file in the IDE on Windows |
|
42 |
#ifdef WIN32 |
|
43 |
# pragma optimize ( "", off ) |
|
44 |
#endif |
|
45 |
||
46 |
#include <math.h> |
|
47 |
||
48 |
// VM_LITTLE_ENDIAN is #defined appropriately in the Makefiles |
|
49 |
// [jk] this is not 100% correct because the float word order may different |
|
50 |
// from the byte order (e.g. on ARM) |
|
51 |
#ifdef VM_LITTLE_ENDIAN |
|
52 |
# define __HI(x) *(1+(int*)&x) |
|
53 |
# define __LO(x) *(int*)&x |
|
54 |
#else |
|
55 |
# define __HI(x) *(int*)&x |
|
56 |
# define __LO(x) *(1+(int*)&x) |
|
57 |
#endif |
|
58 |
||
59 |
double copysign(double x, double y) { |
|
60 |
__HI(x) = (__HI(x)&0x7fffffff)|(__HI(y)&0x80000000); |
|
61 |
return x; |
|
62 |
} |
|
63 |
||
64 |
/* |
|
65 |
* ==================================================== |
|
5547
f4b087cbb361
6941466: Oracle rebranding changes for Hotspot repositories
trims
parents:
1
diff
changeset
|
66 |
* Copyright (c) 1998 Oracle and/or its affiliates. All rights reserved. |
1 | 67 |
* |
68 |
* Developed at SunSoft, a Sun Microsystems, Inc. business. |
|
69 |
* Permission to use, copy, modify, and distribute this |
|
70 |
* software is freely granted, provided that this notice |
|
71 |
* is preserved. |
|
72 |
* ==================================================== |
|
73 |
*/ |
|
74 |
||
75 |
/* |
|
76 |
* scalbn (double x, int n) |
|
77 |
* scalbn(x,n) returns x* 2**n computed by exponent |
|
78 |
* manipulation rather than by actually performing an |
|
79 |
* exponentiation or a multiplication. |
|
80 |
*/ |
|
81 |
||
82 |
static const double |
|
83 |
two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ |
|
84 |
twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */ |
|
85 |
hugeX = 1.0e+300, |
|
86 |
tiny = 1.0e-300; |
|
87 |
||
88 |
double scalbn (double x, int n) { |
|
89 |
int k,hx,lx; |
|
90 |
hx = __HI(x); |
|
91 |
lx = __LO(x); |
|
92 |
k = (hx&0x7ff00000)>>20; /* extract exponent */ |
|
93 |
if (k==0) { /* 0 or subnormal x */ |
|
94 |
if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */ |
|
95 |
x *= two54; |
|
96 |
hx = __HI(x); |
|
97 |
k = ((hx&0x7ff00000)>>20) - 54; |
|
98 |
if (n< -50000) return tiny*x; /*underflow*/ |
|
99 |
} |
|
100 |
if (k==0x7ff) return x+x; /* NaN or Inf */ |
|
101 |
k = k+n; |
|
102 |
if (k > 0x7fe) return hugeX*copysign(hugeX,x); /* overflow */ |
|
103 |
if (k > 0) /* normal result */ |
|
104 |
{__HI(x) = (hx&0x800fffff)|(k<<20); return x;} |
|
105 |
if (k <= -54) { |
|
106 |
if (n > 50000) /* in case integer overflow in n+k */ |
|
107 |
return hugeX*copysign(hugeX,x); /*overflow*/ |
|
108 |
else return tiny*copysign(tiny,x); /*underflow*/ |
|
109 |
} |
|
110 |
k += 54; /* subnormal result */ |
|
111 |
__HI(x) = (hx&0x800fffff)|(k<<20); |
|
112 |
return x*twom54; |
|
113 |
} |
|
114 |
||
115 |
/* __ieee754_log(x) |
|
116 |
* Return the logrithm of x |
|
117 |
* |
|
118 |
* Method : |
|
119 |
* 1. Argument Reduction: find k and f such that |
|
120 |
* x = 2^k * (1+f), |
|
121 |
* where sqrt(2)/2 < 1+f < sqrt(2) . |
|
122 |
* |
|
123 |
* 2. Approximation of log(1+f). |
|
124 |
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) |
|
125 |
* = 2s + 2/3 s**3 + 2/5 s**5 + ....., |
|
126 |
* = 2s + s*R |
|
127 |
* We use a special Reme algorithm on [0,0.1716] to generate |
|
128 |
* a polynomial of degree 14 to approximate R The maximum error |
|
129 |
* of this polynomial approximation is bounded by 2**-58.45. In |
|
130 |
* other words, |
|
131 |
* 2 4 6 8 10 12 14 |
|
132 |
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s |
|
133 |
* (the values of Lg1 to Lg7 are listed in the program) |
|
134 |
* and |
|
135 |
* | 2 14 | -58.45 |
|
136 |
* | Lg1*s +...+Lg7*s - R(z) | <= 2 |
|
137 |
* | | |
|
138 |
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. |
|
139 |
* In order to guarantee error in log below 1ulp, we compute log |
|
140 |
* by |
|
141 |
* log(1+f) = f - s*(f - R) (if f is not too large) |
|
142 |
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) |
|
143 |
* |
|
144 |
* 3. Finally, log(x) = k*ln2 + log(1+f). |
|
145 |
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) |
|
146 |
* Here ln2 is split into two floating point number: |
|
147 |
* ln2_hi + ln2_lo, |
|
148 |
* where n*ln2_hi is always exact for |n| < 2000. |
|
149 |
* |
|
150 |
* Special cases: |
|
151 |
* log(x) is NaN with signal if x < 0 (including -INF) ; |
|
152 |
* log(+INF) is +INF; log(0) is -INF with signal; |
|
153 |
* log(NaN) is that NaN with no signal. |
|
154 |
* |
|
155 |
* Accuracy: |
|
156 |
* according to an error analysis, the error is always less than |
|
157 |
* 1 ulp (unit in the last place). |
|
158 |
* |
|
159 |
* Constants: |
|
160 |
* The hexadecimal values are the intended ones for the following |
|
161 |
* constants. The decimal values may be used, provided that the |
|
162 |
* compiler will convert from decimal to binary accurately enough |
|
163 |
* to produce the hexadecimal values shown. |
|
164 |
*/ |
|
165 |
||
166 |
static const double |
|
167 |
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ |
|
168 |
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ |
|
169 |
Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ |
|
170 |
Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ |
|
171 |
Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ |
|
172 |
Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ |
|
173 |
Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ |
|
174 |
Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ |
|
175 |
Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ |
|
176 |
||
177 |
static double zero = 0.0; |
|
178 |
||
179 |
static double __ieee754_log(double x) { |
|
180 |
double hfsq,f,s,z,R,w,t1,t2,dk; |
|
181 |
int k,hx,i,j; |
|
182 |
unsigned lx; |
|
183 |
||
184 |
hx = __HI(x); /* high word of x */ |
|
185 |
lx = __LO(x); /* low word of x */ |
|
186 |
||
187 |
k=0; |
|
188 |
if (hx < 0x00100000) { /* x < 2**-1022 */ |
|
189 |
if (((hx&0x7fffffff)|lx)==0) |
|
190 |
return -two54/zero; /* log(+-0)=-inf */ |
|
191 |
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ |
|
192 |
k -= 54; x *= two54; /* subnormal number, scale up x */ |
|
193 |
hx = __HI(x); /* high word of x */ |
|
194 |
} |
|
195 |
if (hx >= 0x7ff00000) return x+x; |
|
196 |
k += (hx>>20)-1023; |
|
197 |
hx &= 0x000fffff; |
|
198 |
i = (hx+0x95f64)&0x100000; |
|
199 |
__HI(x) = hx|(i^0x3ff00000); /* normalize x or x/2 */ |
|
200 |
k += (i>>20); |
|
201 |
f = x-1.0; |
|
202 |
if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */ |
|
203 |
if(f==zero) { |
|
204 |
if (k==0) return zero; |
|
205 |
else {dk=(double)k; return dk*ln2_hi+dk*ln2_lo;} |
|
206 |
} |
|
207 |
R = f*f*(0.5-0.33333333333333333*f); |
|
208 |
if(k==0) return f-R; else {dk=(double)k; |
|
209 |
return dk*ln2_hi-((R-dk*ln2_lo)-f);} |
|
210 |
} |
|
211 |
s = f/(2.0+f); |
|
212 |
dk = (double)k; |
|
213 |
z = s*s; |
|
214 |
i = hx-0x6147a; |
|
215 |
w = z*z; |
|
216 |
j = 0x6b851-hx; |
|
217 |
t1= w*(Lg2+w*(Lg4+w*Lg6)); |
|
218 |
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); |
|
219 |
i |= j; |
|
220 |
R = t2+t1; |
|
221 |
if(i>0) { |
|
222 |
hfsq=0.5*f*f; |
|
223 |
if(k==0) return f-(hfsq-s*(hfsq+R)); else |
|
224 |
return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); |
|
225 |
} else { |
|
226 |
if(k==0) return f-s*(f-R); else |
|
227 |
return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); |
|
228 |
} |
|
229 |
} |
|
230 |
||
231 |
JRT_LEAF(jdouble, SharedRuntime::dlog(jdouble x)) |
|
232 |
return __ieee754_log(x); |
|
233 |
JRT_END |
|
234 |
||
235 |
/* __ieee754_log10(x) |
|
236 |
* Return the base 10 logarithm of x |
|
237 |
* |
|
238 |
* Method : |
|
239 |
* Let log10_2hi = leading 40 bits of log10(2) and |
|
240 |
* log10_2lo = log10(2) - log10_2hi, |
|
241 |
* ivln10 = 1/log(10) rounded. |
|
242 |
* Then |
|
243 |
* n = ilogb(x), |
|
244 |
* if(n<0) n = n+1; |
|
245 |
* x = scalbn(x,-n); |
|
246 |
* log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x)) |
|
247 |
* |
|
248 |
* Note 1: |
|
249 |
* To guarantee log10(10**n)=n, where 10**n is normal, the rounding |
|
250 |
* mode must set to Round-to-Nearest. |
|
251 |
* Note 2: |
|
252 |
* [1/log(10)] rounded to 53 bits has error .198 ulps; |
|
253 |
* log10 is monotonic at all binary break points. |
|
254 |
* |
|
255 |
* Special cases: |
|
256 |
* log10(x) is NaN with signal if x < 0; |
|
257 |
* log10(+INF) is +INF with no signal; log10(0) is -INF with signal; |
|
258 |
* log10(NaN) is that NaN with no signal; |
|
259 |
* log10(10**N) = N for N=0,1,...,22. |
|
260 |
* |
|
261 |
* Constants: |
|
262 |
* The hexadecimal values are the intended ones for the following constants. |
|
263 |
* The decimal values may be used, provided that the compiler will convert |
|
264 |
* from decimal to binary accurately enough to produce the hexadecimal values |
|
265 |
* shown. |
|
266 |
*/ |
|
267 |
||
268 |
static const double |
|
269 |
ivln10 = 4.34294481903251816668e-01, /* 0x3FDBCB7B, 0x1526E50E */ |
|
270 |
log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */ |
|
271 |
log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */ |
|
272 |
||
273 |
static double __ieee754_log10(double x) { |
|
274 |
double y,z; |
|
275 |
int i,k,hx; |
|
276 |
unsigned lx; |
|
277 |
||
278 |
hx = __HI(x); /* high word of x */ |
|
279 |
lx = __LO(x); /* low word of x */ |
|
280 |
||
281 |
k=0; |
|
282 |
if (hx < 0x00100000) { /* x < 2**-1022 */ |
|
283 |
if (((hx&0x7fffffff)|lx)==0) |
|
284 |
return -two54/zero; /* log(+-0)=-inf */ |
|
285 |
if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ |
|
286 |
k -= 54; x *= two54; /* subnormal number, scale up x */ |
|
287 |
hx = __HI(x); /* high word of x */ |
|
288 |
} |
|
289 |
if (hx >= 0x7ff00000) return x+x; |
|
290 |
k += (hx>>20)-1023; |
|
291 |
i = ((unsigned)k&0x80000000)>>31; |
|
292 |
hx = (hx&0x000fffff)|((0x3ff-i)<<20); |
|
293 |
y = (double)(k+i); |
|
294 |
__HI(x) = hx; |
|
295 |
z = y*log10_2lo + ivln10*__ieee754_log(x); |
|
296 |
return z+y*log10_2hi; |
|
297 |
} |
|
298 |
||
299 |
JRT_LEAF(jdouble, SharedRuntime::dlog10(jdouble x)) |
|
300 |
return __ieee754_log10(x); |
|
301 |
JRT_END |
|
302 |
||
303 |
||
304 |
/* __ieee754_exp(x) |
|
305 |
* Returns the exponential of x. |
|
306 |
* |
|
307 |
* Method |
|
308 |
* 1. Argument reduction: |
|
309 |
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. |
|
310 |
* Given x, find r and integer k such that |
|
311 |
* |
|
312 |
* x = k*ln2 + r, |r| <= 0.5*ln2. |
|
313 |
* |
|
314 |
* Here r will be represented as r = hi-lo for better |
|
315 |
* accuracy. |
|
316 |
* |
|
317 |
* 2. Approximation of exp(r) by a special rational function on |
|
318 |
* the interval [0,0.34658]: |
|
319 |
* Write |
|
320 |
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... |
|
321 |
* We use a special Reme algorithm on [0,0.34658] to generate |
|
322 |
* a polynomial of degree 5 to approximate R. The maximum error |
|
323 |
* of this polynomial approximation is bounded by 2**-59. In |
|
324 |
* other words, |
|
325 |
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 |
|
326 |
* (where z=r*r, and the values of P1 to P5 are listed below) |
|
327 |
* and |
|
328 |
* | 5 | -59 |
|
329 |
* | 2.0+P1*z+...+P5*z - R(z) | <= 2 |
|
330 |
* | | |
|
331 |
* The computation of exp(r) thus becomes |
|
332 |
* 2*r |
|
333 |
* exp(r) = 1 + ------- |
|
334 |
* R - r |
|
335 |
* r*R1(r) |
|
336 |
* = 1 + r + ----------- (for better accuracy) |
|
337 |
* 2 - R1(r) |
|
338 |
* where |
|
339 |
* 2 4 10 |
|
340 |
* R1(r) = r - (P1*r + P2*r + ... + P5*r ). |
|
341 |
* |
|
342 |
* 3. Scale back to obtain exp(x): |
|
343 |
* From step 1, we have |
|
344 |
* exp(x) = 2^k * exp(r) |
|
345 |
* |
|
346 |
* Special cases: |
|
347 |
* exp(INF) is INF, exp(NaN) is NaN; |
|
348 |
* exp(-INF) is 0, and |
|
349 |
* for finite argument, only exp(0)=1 is exact. |
|
350 |
* |
|
351 |
* Accuracy: |
|
352 |
* according to an error analysis, the error is always less than |
|
353 |
* 1 ulp (unit in the last place). |
|
354 |
* |
|
355 |
* Misc. info. |
|
356 |
* For IEEE double |
|
357 |
* if x > 7.09782712893383973096e+02 then exp(x) overflow |
|
358 |
* if x < -7.45133219101941108420e+02 then exp(x) underflow |
|
359 |
* |
|
360 |
* Constants: |
|
361 |
* The hexadecimal values are the intended ones for the following |
|
362 |
* constants. The decimal values may be used, provided that the |
|
363 |
* compiler will convert from decimal to binary accurately enough |
|
364 |
* to produce the hexadecimal values shown. |
|
365 |
*/ |
|
366 |
||
367 |
static const double |
|
368 |
one = 1.0, |
|
369 |
halF[2] = {0.5,-0.5,}, |
|
370 |
twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/ |
|
371 |
o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ |
|
372 |
u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */ |
|
373 |
ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ |
|
374 |
-6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */ |
|
375 |
ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ |
|
376 |
-1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */ |
|
377 |
invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ |
|
378 |
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ |
|
379 |
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ |
|
380 |
P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ |
|
381 |
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ |
|
382 |
P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ |
|
383 |
||
384 |
static double __ieee754_exp(double x) { |
|
385 |
double y,hi=0,lo=0,c,t; |
|
386 |
int k=0,xsb; |
|
387 |
unsigned hx; |
|
388 |
||
389 |
hx = __HI(x); /* high word of x */ |
|
390 |
xsb = (hx>>31)&1; /* sign bit of x */ |
|
391 |
hx &= 0x7fffffff; /* high word of |x| */ |
|
392 |
||
393 |
/* filter out non-finite argument */ |
|
394 |
if(hx >= 0x40862E42) { /* if |x|>=709.78... */ |
|
395 |
if(hx>=0x7ff00000) { |
|
396 |
if(((hx&0xfffff)|__LO(x))!=0) |
|
397 |
return x+x; /* NaN */ |
|
398 |
else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */ |
|
399 |
} |
|
400 |
if(x > o_threshold) return hugeX*hugeX; /* overflow */ |
|
401 |
if(x < u_threshold) return twom1000*twom1000; /* underflow */ |
|
402 |
} |
|
403 |
||
404 |
/* argument reduction */ |
|
405 |
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ |
|
406 |
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ |
|
407 |
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; |
|
408 |
} else { |
|
409 |
k = (int)(invln2*x+halF[xsb]); |
|
410 |
t = k; |
|
411 |
hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ |
|
412 |
lo = t*ln2LO[0]; |
|
413 |
} |
|
414 |
x = hi - lo; |
|
415 |
} |
|
416 |
else if(hx < 0x3e300000) { /* when |x|<2**-28 */ |
|
417 |
if(hugeX+x>one) return one+x;/* trigger inexact */ |
|
418 |
} |
|
419 |
else k = 0; |
|
420 |
||
421 |
/* x is now in primary range */ |
|
422 |
t = x*x; |
|
423 |
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); |
|
424 |
if(k==0) return one-((x*c)/(c-2.0)-x); |
|
425 |
else y = one-((lo-(x*c)/(2.0-c))-hi); |
|
426 |
if(k >= -1021) { |
|
427 |
__HI(y) += (k<<20); /* add k to y's exponent */ |
|
428 |
return y; |
|
429 |
} else { |
|
430 |
__HI(y) += ((k+1000)<<20);/* add k to y's exponent */ |
|
431 |
return y*twom1000; |
|
432 |
} |
|
433 |
} |
|
434 |
||
435 |
JRT_LEAF(jdouble, SharedRuntime::dexp(jdouble x)) |
|
436 |
return __ieee754_exp(x); |
|
437 |
JRT_END |
|
438 |
||
439 |
/* __ieee754_pow(x,y) return x**y |
|
440 |
* |
|
441 |
* n |
|
442 |
* Method: Let x = 2 * (1+f) |
|
443 |
* 1. Compute and return log2(x) in two pieces: |
|
444 |
* log2(x) = w1 + w2, |
|
445 |
* where w1 has 53-24 = 29 bit trailing zeros. |
|
446 |
* 2. Perform y*log2(x) = n+y' by simulating muti-precision |
|
447 |
* arithmetic, where |y'|<=0.5. |
|
448 |
* 3. Return x**y = 2**n*exp(y'*log2) |
|
449 |
* |
|
450 |
* Special cases: |
|
451 |
* 1. (anything) ** 0 is 1 |
|
452 |
* 2. (anything) ** 1 is itself |
|
453 |
* 3. (anything) ** NAN is NAN |
|
454 |
* 4. NAN ** (anything except 0) is NAN |
|
455 |
* 5. +-(|x| > 1) ** +INF is +INF |
|
456 |
* 6. +-(|x| > 1) ** -INF is +0 |
|
457 |
* 7. +-(|x| < 1) ** +INF is +0 |
|
458 |
* 8. +-(|x| < 1) ** -INF is +INF |
|
459 |
* 9. +-1 ** +-INF is NAN |
|
460 |
* 10. +0 ** (+anything except 0, NAN) is +0 |
|
461 |
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0 |
|
462 |
* 12. +0 ** (-anything except 0, NAN) is +INF |
|
463 |
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF |
|
464 |
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) |
|
465 |
* 15. +INF ** (+anything except 0,NAN) is +INF |
|
466 |
* 16. +INF ** (-anything except 0,NAN) is +0 |
|
467 |
* 17. -INF ** (anything) = -0 ** (-anything) |
|
468 |
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) |
|
469 |
* 19. (-anything except 0 and inf) ** (non-integer) is NAN |
|
470 |
* |
|
471 |
* Accuracy: |
|
472 |
* pow(x,y) returns x**y nearly rounded. In particular |
|
473 |
* pow(integer,integer) |
|
474 |
* always returns the correct integer provided it is |
|
475 |
* representable. |
|
476 |
* |
|
477 |
* Constants : |
|
478 |
* The hexadecimal values are the intended ones for the following |
|
479 |
* constants. The decimal values may be used, provided that the |
|
480 |
* compiler will convert from decimal to binary accurately enough |
|
481 |
* to produce the hexadecimal values shown. |
|
482 |
*/ |
|
483 |
||
484 |
static const double |
|
485 |
bp[] = {1.0, 1.5,}, |
|
486 |
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ |
|
487 |
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ |
|
488 |
zeroX = 0.0, |
|
489 |
two = 2.0, |
|
490 |
two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ |
|
491 |
/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ |
|
492 |
L1X = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ |
|
493 |
L2X = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ |
|
494 |
L3X = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ |
|
495 |
L4X = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ |
|
496 |
L5X = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ |
|
497 |
L6X = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ |
|
498 |
lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ |
|
499 |
lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ |
|
500 |
lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ |
|
501 |
ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ |
|
502 |
cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ |
|
503 |
cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ |
|
504 |
cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ |
|
505 |
ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ |
|
506 |
ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ |
|
507 |
ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ |
|
508 |
||
509 |
double __ieee754_pow(double x, double y) { |
|
510 |
double z,ax,z_h,z_l,p_h,p_l; |
|
511 |
double y1,t1,t2,r,s,t,u,v,w; |
|
512 |
int i0,i1,i,j,k,yisint,n; |
|
513 |
int hx,hy,ix,iy; |
|
514 |
unsigned lx,ly; |
|
515 |
||
516 |
i0 = ((*(int*)&one)>>29)^1; i1=1-i0; |
|
517 |
hx = __HI(x); lx = __LO(x); |
|
518 |
hy = __HI(y); ly = __LO(y); |
|
519 |
ix = hx&0x7fffffff; iy = hy&0x7fffffff; |
|
520 |
||
521 |
/* y==zero: x**0 = 1 */ |
|
522 |
if((iy|ly)==0) return one; |
|
523 |
||
524 |
/* +-NaN return x+y */ |
|
525 |
if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || |
|
526 |
iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) |
|
527 |
return x+y; |
|
528 |
||
529 |
/* determine if y is an odd int when x < 0 |
|
530 |
* yisint = 0 ... y is not an integer |
|
531 |
* yisint = 1 ... y is an odd int |
|
532 |
* yisint = 2 ... y is an even int |
|
533 |
*/ |
|
534 |
yisint = 0; |
|
535 |
if(hx<0) { |
|
536 |
if(iy>=0x43400000) yisint = 2; /* even integer y */ |
|
537 |
else if(iy>=0x3ff00000) { |
|
538 |
k = (iy>>20)-0x3ff; /* exponent */ |
|
539 |
if(k>20) { |
|
540 |
j = ly>>(52-k); |
|
541 |
if((unsigned)(j<<(52-k))==ly) yisint = 2-(j&1); |
|
542 |
} else if(ly==0) { |
|
543 |
j = iy>>(20-k); |
|
544 |
if((j<<(20-k))==iy) yisint = 2-(j&1); |
|
545 |
} |
|
546 |
} |
|
547 |
} |
|
548 |
||
549 |
/* special value of y */ |
|
550 |
if(ly==0) { |
|
551 |
if (iy==0x7ff00000) { /* y is +-inf */ |
|
552 |
if(((ix-0x3ff00000)|lx)==0) |
|
553 |
return y - y; /* inf**+-1 is NaN */ |
|
554 |
else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ |
|
555 |
return (hy>=0)? y: zeroX; |
|
556 |
else /* (|x|<1)**-,+inf = inf,0 */ |
|
557 |
return (hy<0)?-y: zeroX; |
|
558 |
} |
|
559 |
if(iy==0x3ff00000) { /* y is +-1 */ |
|
560 |
if(hy<0) return one/x; else return x; |
|
561 |
} |
|
562 |
if(hy==0x40000000) return x*x; /* y is 2 */ |
|
563 |
if(hy==0x3fe00000) { /* y is 0.5 */ |
|
564 |
if(hx>=0) /* x >= +0 */ |
|
565 |
return sqrt(x); |
|
566 |
} |
|
567 |
} |
|
568 |
||
569 |
ax = fabsd(x); |
|
570 |
/* special value of x */ |
|
571 |
if(lx==0) { |
|
572 |
if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ |
|
573 |
z = ax; /*x is +-0,+-inf,+-1*/ |
|
574 |
if(hy<0) z = one/z; /* z = (1/|x|) */ |
|
575 |
if(hx<0) { |
|
576 |
if(((ix-0x3ff00000)|yisint)==0) { |
|
6176
4d9030fe341f
6953477: Increase portability and flexibility of building Hotspot
bobv
parents:
5547
diff
changeset
|
577 |
#ifdef CAN_USE_NAN_DEFINE |
4d9030fe341f
6953477: Increase portability and flexibility of building Hotspot
bobv
parents:
5547
diff
changeset
|
578 |
z = NAN; |
4d9030fe341f
6953477: Increase portability and flexibility of building Hotspot
bobv
parents:
5547
diff
changeset
|
579 |
#else |
1 | 580 |
z = (z-z)/(z-z); /* (-1)**non-int is NaN */ |
6176
4d9030fe341f
6953477: Increase portability and flexibility of building Hotspot
bobv
parents:
5547
diff
changeset
|
581 |
#endif |
1 | 582 |
} else if(yisint==1) |
583 |
z = -1.0*z; /* (x<0)**odd = -(|x|**odd) */ |
|
584 |
} |
|
585 |
return z; |
|
586 |
} |
|
587 |
} |
|
588 |
||
589 |
n = (hx>>31)+1; |
|
590 |
||
591 |
/* (x<0)**(non-int) is NaN */ |
|
6176
4d9030fe341f
6953477: Increase portability and flexibility of building Hotspot
bobv
parents:
5547
diff
changeset
|
592 |
if((n|yisint)==0) |
4d9030fe341f
6953477: Increase portability and flexibility of building Hotspot
bobv
parents:
5547
diff
changeset
|
593 |
#ifdef CAN_USE_NAN_DEFINE |
4d9030fe341f
6953477: Increase portability and flexibility of building Hotspot
bobv
parents:
5547
diff
changeset
|
594 |
return NAN; |
4d9030fe341f
6953477: Increase portability and flexibility of building Hotspot
bobv
parents:
5547
diff
changeset
|
595 |
#else |
4d9030fe341f
6953477: Increase portability and flexibility of building Hotspot
bobv
parents:
5547
diff
changeset
|
596 |
return (x-x)/(x-x); |
4d9030fe341f
6953477: Increase portability and flexibility of building Hotspot
bobv
parents:
5547
diff
changeset
|
597 |
#endif |
1 | 598 |
|
599 |
s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ |
|
600 |
if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */ |
|
601 |
||
602 |
/* |y| is huge */ |
|
603 |
if(iy>0x41e00000) { /* if |y| > 2**31 */ |
|
604 |
if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ |
|
605 |
if(ix<=0x3fefffff) return (hy<0)? hugeX*hugeX:tiny*tiny; |
|
606 |
if(ix>=0x3ff00000) return (hy>0)? hugeX*hugeX:tiny*tiny; |
|
607 |
} |
|
608 |
/* over/underflow if x is not close to one */ |
|
609 |
if(ix<0x3fefffff) return (hy<0)? s*hugeX*hugeX:s*tiny*tiny; |
|
610 |
if(ix>0x3ff00000) return (hy>0)? s*hugeX*hugeX:s*tiny*tiny; |
|
611 |
/* now |1-x| is tiny <= 2**-20, suffice to compute |
|
612 |
log(x) by x-x^2/2+x^3/3-x^4/4 */ |
|
613 |
t = ax-one; /* t has 20 trailing zeros */ |
|
614 |
w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); |
|
615 |
u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ |
|
616 |
v = t*ivln2_l-w*ivln2; |
|
617 |
t1 = u+v; |
|
618 |
__LO(t1) = 0; |
|
619 |
t2 = v-(t1-u); |
|
620 |
} else { |
|
621 |
double ss,s2,s_h,s_l,t_h,t_l; |
|
622 |
n = 0; |
|
623 |
/* take care subnormal number */ |
|
624 |
if(ix<0x00100000) |
|
625 |
{ax *= two53; n -= 53; ix = __HI(ax); } |
|
626 |
n += ((ix)>>20)-0x3ff; |
|
627 |
j = ix&0x000fffff; |
|
628 |
/* determine interval */ |
|
629 |
ix = j|0x3ff00000; /* normalize ix */ |
|
630 |
if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */ |
|
631 |
else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */ |
|
632 |
else {k=0;n+=1;ix -= 0x00100000;} |
|
633 |
__HI(ax) = ix; |
|
634 |
||
635 |
/* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ |
|
636 |
u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ |
|
637 |
v = one/(ax+bp[k]); |
|
638 |
ss = u*v; |
|
639 |
s_h = ss; |
|
640 |
__LO(s_h) = 0; |
|
641 |
/* t_h=ax+bp[k] High */ |
|
642 |
t_h = zeroX; |
|
643 |
__HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18); |
|
644 |
t_l = ax - (t_h-bp[k]); |
|
645 |
s_l = v*((u-s_h*t_h)-s_h*t_l); |
|
646 |
/* compute log(ax) */ |
|
647 |
s2 = ss*ss; |
|
648 |
r = s2*s2*(L1X+s2*(L2X+s2*(L3X+s2*(L4X+s2*(L5X+s2*L6X))))); |
|
649 |
r += s_l*(s_h+ss); |
|
650 |
s2 = s_h*s_h; |
|
651 |
t_h = 3.0+s2+r; |
|
652 |
__LO(t_h) = 0; |
|
653 |
t_l = r-((t_h-3.0)-s2); |
|
654 |
/* u+v = ss*(1+...) */ |
|
655 |
u = s_h*t_h; |
|
656 |
v = s_l*t_h+t_l*ss; |
|
657 |
/* 2/(3log2)*(ss+...) */ |
|
658 |
p_h = u+v; |
|
659 |
__LO(p_h) = 0; |
|
660 |
p_l = v-(p_h-u); |
|
661 |
z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ |
|
662 |
z_l = cp_l*p_h+p_l*cp+dp_l[k]; |
|
663 |
/* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ |
|
664 |
t = (double)n; |
|
665 |
t1 = (((z_h+z_l)+dp_h[k])+t); |
|
666 |
__LO(t1) = 0; |
|
667 |
t2 = z_l-(((t1-t)-dp_h[k])-z_h); |
|
668 |
} |
|
669 |
||
670 |
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ |
|
671 |
y1 = y; |
|
672 |
__LO(y1) = 0; |
|
673 |
p_l = (y-y1)*t1+y*t2; |
|
674 |
p_h = y1*t1; |
|
675 |
z = p_l+p_h; |
|
676 |
j = __HI(z); |
|
677 |
i = __LO(z); |
|
678 |
if (j>=0x40900000) { /* z >= 1024 */ |
|
679 |
if(((j-0x40900000)|i)!=0) /* if z > 1024 */ |
|
680 |
return s*hugeX*hugeX; /* overflow */ |
|
681 |
else { |
|
682 |
if(p_l+ovt>z-p_h) return s*hugeX*hugeX; /* overflow */ |
|
683 |
} |
|
684 |
} else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ |
|
685 |
if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ |
|
686 |
return s*tiny*tiny; /* underflow */ |
|
687 |
else { |
|
688 |
if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ |
|
689 |
} |
|
690 |
} |
|
691 |
/* |
|
692 |
* compute 2**(p_h+p_l) |
|
693 |
*/ |
|
694 |
i = j&0x7fffffff; |
|
695 |
k = (i>>20)-0x3ff; |
|
696 |
n = 0; |
|
697 |
if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ |
|
698 |
n = j+(0x00100000>>(k+1)); |
|
699 |
k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ |
|
700 |
t = zeroX; |
|
701 |
__HI(t) = (n&~(0x000fffff>>k)); |
|
702 |
n = ((n&0x000fffff)|0x00100000)>>(20-k); |
|
703 |
if(j<0) n = -n; |
|
704 |
p_h -= t; |
|
705 |
} |
|
706 |
t = p_l+p_h; |
|
707 |
__LO(t) = 0; |
|
708 |
u = t*lg2_h; |
|
709 |
v = (p_l-(t-p_h))*lg2+t*lg2_l; |
|
710 |
z = u+v; |
|
711 |
w = v-(z-u); |
|
712 |
t = z*z; |
|
713 |
t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); |
|
714 |
r = (z*t1)/(t1-two)-(w+z*w); |
|
715 |
z = one-(r-z); |
|
716 |
j = __HI(z); |
|
717 |
j += (n<<20); |
|
718 |
if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */ |
|
719 |
else __HI(z) += (n<<20); |
|
720 |
return s*z; |
|
721 |
} |
|
722 |
||
723 |
||
724 |
JRT_LEAF(jdouble, SharedRuntime::dpow(jdouble x, jdouble y)) |
|
725 |
return __ieee754_pow(x, y); |
|
726 |
JRT_END |
|
727 |
||
728 |
#ifdef WIN32 |
|
729 |
# pragma optimize ( "", on ) |
|
730 |
#endif |