25946
|
1 |
/*
|
|
2 |
* Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
20 |
* or visit www.oracle.com if you need additional information or have any
|
|
21 |
* questions.
|
|
22 |
*
|
|
23 |
*/
|
|
24 |
#include "precompiled.hpp"
|
|
25 |
|
|
26 |
|
|
27 |
#include "memory/allocation.inline.hpp"
|
|
28 |
#include "runtime/atomic.hpp"
|
|
29 |
#include "services/mallocSiteTable.hpp"
|
|
30 |
|
|
31 |
/*
|
|
32 |
* Early os::malloc() calls come from initializations of static variables, long before entering any
|
|
33 |
* VM code. Upon the arrival of the first os::malloc() call, malloc site hashtable has to be
|
|
34 |
* initialized, along with the allocation site for the hashtable entries.
|
|
35 |
* To ensure that malloc site hashtable can be initialized without triggering any additional os::malloc()
|
|
36 |
* call, the hashtable bucket array and hashtable entry allocation site have to be static.
|
|
37 |
* It is not a problem for hashtable bucket, since it is an array of pointer type, C runtime just
|
|
38 |
* allocates a block memory and zero the memory for it.
|
|
39 |
* But for hashtable entry allocation site object, things get tricky. C runtime not only allocates
|
|
40 |
* memory for it, but also calls its constructor at some later time. If we initialize the allocation site
|
|
41 |
* at the first os::malloc() call, the object will be reinitialized when its constructor is called
|
|
42 |
* by C runtime.
|
|
43 |
* To workaround above issue, we declare a static size_t array with the size of the CallsiteHashtableEntry,
|
|
44 |
* the memory is used to instantiate CallsiteHashtableEntry for the hashtable entry allocation site.
|
|
45 |
* Given it is a primitive type array, C runtime will do nothing other than assign the memory block for the variable,
|
|
46 |
* which is exactly what we want.
|
|
47 |
* The same trick is also applied to create NativeCallStack object for CallsiteHashtableEntry memory allocation.
|
|
48 |
*
|
|
49 |
* Note: C++ object usually aligns to particular alignment, depends on compiler implementation, we declare
|
|
50 |
* the memory as size_t arrays, to ensure the memory is aligned to native machine word alignment.
|
|
51 |
*/
|
|
52 |
|
|
53 |
// Reserve enough memory for NativeCallStack and MallocSiteHashtableEntry objects
|
|
54 |
size_t MallocSiteTable::_hash_entry_allocation_stack[CALC_OBJ_SIZE_IN_TYPE(NativeCallStack, size_t)];
|
|
55 |
size_t MallocSiteTable::_hash_entry_allocation_site[CALC_OBJ_SIZE_IN_TYPE(MallocSiteHashtableEntry, size_t)];
|
|
56 |
|
|
57 |
// Malloc site hashtable buckets
|
|
58 |
MallocSiteHashtableEntry* MallocSiteTable::_table[MallocSiteTable::table_size];
|
|
59 |
|
|
60 |
// concurrent access counter
|
|
61 |
volatile int MallocSiteTable::_access_count = 0;
|
|
62 |
|
|
63 |
// Tracking hashtable contention
|
|
64 |
NOT_PRODUCT(int MallocSiteTable::_peak_count = 0;)
|
|
65 |
|
|
66 |
|
|
67 |
/*
|
|
68 |
* Initialize malloc site table.
|
|
69 |
* Hashtable entry is malloc'd, so it can cause infinite recursion.
|
|
70 |
* To avoid above problem, we pre-initialize a hash entry for
|
|
71 |
* this allocation site.
|
|
72 |
* The method is called during C runtime static variable initialization
|
|
73 |
* time, it is in single-threaded mode from JVM perspective.
|
|
74 |
*/
|
|
75 |
bool MallocSiteTable::initialize() {
|
|
76 |
assert(sizeof(_hash_entry_allocation_stack) >= sizeof(NativeCallStack), "Sanity Check");
|
|
77 |
assert(sizeof(_hash_entry_allocation_site) >= sizeof(MallocSiteHashtableEntry),
|
|
78 |
"Sanity Check");
|
|
79 |
assert((size_t)table_size <= MAX_MALLOCSITE_TABLE_SIZE, "Hashtable overflow");
|
|
80 |
|
|
81 |
// Fake the call stack for hashtable entry allocation
|
|
82 |
assert(NMT_TrackingStackDepth > 1, "At least one tracking stack");
|
|
83 |
|
|
84 |
// Create pseudo call stack for hashtable entry allocation
|
|
85 |
address pc[3];
|
|
86 |
if (NMT_TrackingStackDepth >= 3) {
|
|
87 |
pc[2] = (address)MallocSiteTable::allocation_at;
|
|
88 |
}
|
|
89 |
if (NMT_TrackingStackDepth >= 2) {
|
|
90 |
pc[1] = (address)MallocSiteTable::lookup_or_add;
|
|
91 |
}
|
|
92 |
pc[0] = (address)MallocSiteTable::new_entry;
|
|
93 |
|
|
94 |
// Instantiate NativeCallStack object, have to use placement new operator. (see comments above)
|
|
95 |
NativeCallStack* stack = ::new ((void*)_hash_entry_allocation_stack)
|
|
96 |
NativeCallStack(pc, MIN2(((int)(sizeof(pc) / sizeof(address))), ((int)NMT_TrackingStackDepth)));
|
|
97 |
|
|
98 |
// Instantiate hash entry for hashtable entry allocation callsite
|
|
99 |
MallocSiteHashtableEntry* entry = ::new ((void*)_hash_entry_allocation_site)
|
|
100 |
MallocSiteHashtableEntry(*stack);
|
|
101 |
|
|
102 |
// Add the allocation site to hashtable.
|
|
103 |
int index = hash_to_index(stack->hash());
|
|
104 |
_table[index] = entry;
|
|
105 |
|
|
106 |
return true;
|
|
107 |
}
|
|
108 |
|
|
109 |
// Walks entries in the hashtable.
|
|
110 |
// It stops walk if the walker returns false.
|
|
111 |
bool MallocSiteTable::walk(MallocSiteWalker* walker) {
|
|
112 |
MallocSiteHashtableEntry* head;
|
|
113 |
for (int index = 0; index < table_size; index ++) {
|
|
114 |
head = _table[index];
|
|
115 |
while (head != NULL) {
|
|
116 |
if (!walker->do_malloc_site(head->peek())) {
|
|
117 |
return false;
|
|
118 |
}
|
|
119 |
head = (MallocSiteHashtableEntry*)head->next();
|
|
120 |
}
|
|
121 |
}
|
|
122 |
return true;
|
|
123 |
}
|
|
124 |
|
|
125 |
/*
|
|
126 |
* The hashtable does not have deletion policy on individual entry,
|
|
127 |
* and each linked list node is inserted via compare-and-swap,
|
|
128 |
* so each linked list is stable, the contention only happens
|
|
129 |
* at the end of linked list.
|
|
130 |
* This method should not return NULL under normal circumstance.
|
|
131 |
* If NULL is returned, it indicates:
|
|
132 |
* 1. Out of memory, it cannot allocate new hash entry.
|
|
133 |
* 2. Overflow hash bucket.
|
|
134 |
* Under any of above circumstances, caller should handle the situation.
|
|
135 |
*/
|
|
136 |
MallocSite* MallocSiteTable::lookup_or_add(const NativeCallStack& key, size_t* bucket_idx,
|
|
137 |
size_t* pos_idx) {
|
|
138 |
int index = hash_to_index(key.hash());
|
|
139 |
assert(index >= 0, "Negative index");
|
|
140 |
*bucket_idx = (size_t)index;
|
|
141 |
*pos_idx = 0;
|
|
142 |
|
|
143 |
// First entry for this hash bucket
|
|
144 |
if (_table[index] == NULL) {
|
|
145 |
MallocSiteHashtableEntry* entry = new_entry(key);
|
|
146 |
// OOM check
|
|
147 |
if (entry == NULL) return NULL;
|
|
148 |
|
|
149 |
// swap in the head
|
|
150 |
if (Atomic::cmpxchg_ptr((void*)entry, (volatile void *)&_table[index], NULL) == NULL) {
|
|
151 |
return entry->data();
|
|
152 |
}
|
|
153 |
|
|
154 |
delete entry;
|
|
155 |
}
|
|
156 |
|
|
157 |
MallocSiteHashtableEntry* head = _table[index];
|
|
158 |
while (head != NULL && (*pos_idx) <= MAX_BUCKET_LENGTH) {
|
|
159 |
MallocSite* site = head->data();
|
|
160 |
if (site->equals(key)) {
|
|
161 |
// found matched entry
|
|
162 |
return head->data();
|
|
163 |
}
|
|
164 |
|
|
165 |
if (head->next() == NULL && (*pos_idx) < MAX_BUCKET_LENGTH) {
|
|
166 |
MallocSiteHashtableEntry* entry = new_entry(key);
|
|
167 |
// OOM check
|
|
168 |
if (entry == NULL) return NULL;
|
|
169 |
if (head->atomic_insert(entry)) {
|
|
170 |
(*pos_idx) ++;
|
|
171 |
return entry->data();
|
|
172 |
}
|
|
173 |
// contended, other thread won
|
|
174 |
delete entry;
|
|
175 |
}
|
|
176 |
head = (MallocSiteHashtableEntry*)head->next();
|
|
177 |
(*pos_idx) ++;
|
|
178 |
}
|
|
179 |
return NULL;
|
|
180 |
}
|
|
181 |
|
|
182 |
// Access malloc site
|
|
183 |
MallocSite* MallocSiteTable::malloc_site(size_t bucket_idx, size_t pos_idx) {
|
|
184 |
assert(bucket_idx < table_size, "Invalid bucket index");
|
|
185 |
MallocSiteHashtableEntry* head = _table[bucket_idx];
|
|
186 |
for (size_t index = 0; index < pos_idx && head != NULL;
|
|
187 |
index ++, head = (MallocSiteHashtableEntry*)head->next());
|
|
188 |
assert(head != NULL, "Invalid position index");
|
|
189 |
return head->data();
|
|
190 |
}
|
|
191 |
|
|
192 |
// Allocates MallocSiteHashtableEntry object. Special call stack
|
|
193 |
// (pre-installed allocation site) has to be used to avoid infinite
|
|
194 |
// recursion.
|
|
195 |
MallocSiteHashtableEntry* MallocSiteTable::new_entry(const NativeCallStack& key) {
|
|
196 |
void* p = AllocateHeap(sizeof(MallocSiteHashtableEntry), mtNMT,
|
|
197 |
*hash_entry_allocation_stack(), AllocFailStrategy::RETURN_NULL);
|
|
198 |
return ::new (p) MallocSiteHashtableEntry(key);
|
|
199 |
}
|
|
200 |
|
|
201 |
void MallocSiteTable::reset() {
|
|
202 |
for (int index = 0; index < table_size; index ++) {
|
|
203 |
MallocSiteHashtableEntry* head = _table[index];
|
|
204 |
_table[index] = NULL;
|
|
205 |
delete_linked_list(head);
|
|
206 |
}
|
|
207 |
}
|
|
208 |
|
|
209 |
void MallocSiteTable::delete_linked_list(MallocSiteHashtableEntry* head) {
|
|
210 |
MallocSiteHashtableEntry* p;
|
|
211 |
while (head != NULL) {
|
|
212 |
p = head;
|
|
213 |
head = (MallocSiteHashtableEntry*)head->next();
|
|
214 |
if (p != (MallocSiteHashtableEntry*)_hash_entry_allocation_site) {
|
|
215 |
delete p;
|
|
216 |
}
|
|
217 |
}
|
|
218 |
}
|
|
219 |
|
|
220 |
void MallocSiteTable::shutdown() {
|
|
221 |
AccessLock locker(&_access_count);
|
|
222 |
locker.exclusiveLock();
|
|
223 |
reset();
|
|
224 |
}
|
|
225 |
|
|
226 |
bool MallocSiteTable::walk_malloc_site(MallocSiteWalker* walker) {
|
|
227 |
assert(walker != NULL, "NuLL walker");
|
|
228 |
AccessLock locker(&_access_count);
|
|
229 |
if (locker.sharedLock()) {
|
|
230 |
NOT_PRODUCT(_peak_count = MAX2(_peak_count, _access_count);)
|
|
231 |
return walk(walker);
|
|
232 |
}
|
|
233 |
return false;
|
|
234 |
}
|
|
235 |
|
|
236 |
|
|
237 |
void MallocSiteTable::AccessLock::exclusiveLock() {
|
|
238 |
jint target;
|
|
239 |
jint val;
|
|
240 |
|
|
241 |
assert(_lock_state != ExclusiveLock, "Can only call once");
|
|
242 |
assert(*_lock >= 0, "Can not content exclusive lock");
|
|
243 |
|
|
244 |
// make counter negative to block out shared locks
|
|
245 |
do {
|
|
246 |
val = *_lock;
|
|
247 |
target = _MAGIC_ + *_lock;
|
|
248 |
} while (Atomic::cmpxchg(target, _lock, val) != val);
|
|
249 |
|
|
250 |
// wait for all readers to exit
|
|
251 |
while (*_lock != _MAGIC_) {
|
|
252 |
#ifdef _WINDOWS
|
|
253 |
os::naked_short_sleep(1);
|
|
254 |
#else
|
|
255 |
os::naked_yield();
|
|
256 |
#endif
|
|
257 |
}
|
|
258 |
_lock_state = ExclusiveLock;
|
|
259 |
}
|
|
260 |
|
|
261 |
|